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ABSTRACT

The Support Vector Machine provides a new way to design classification algorithms which learn from examples
(supervised learning) and generalize when applied to new data. We demonstrate its success on a difficult classification
problem from hyperspectral remote sensing, where we obtain performances of 96%, and 87% correct for a 4 class
problem, and a 16 class problem respectively. These results are somewhat better than other recent results on the same
data. A key feature of this classifier is its ability to use high-dimensional data without the usual recourse to a feature

selection step to reduce the dimensionality of the data. For this application, this is important, as hyperspectral data
consists of several hundred contiguous spectral channels for each exemplar. We provide an introduction to this new
approach, and demonstrate its application to classification of an agriculture scene.
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1. INTRODUCTION

The Support Vector Machine (SVM) is a relatively recent approach introduced by Boser, Guyon, and Vapnik, 1 2
for solving supervised classification and regression problems, or more colloquially learning from examples. In the
following we will discuss only classification.

This work is in part motivated by the recent profusion of high-dimensional data in remote sensing, where hyper-
spectral imaging sensors for research, 3 or commercial use, 4 5 measure radiance at hundreds of contiguous channels
for each ground pixel. For this data, part of the challenge is for classifiers that perform well in such high-dimensional
spaces.

Traditionally, classifiers model the underlying density of the various classes and then find a separating surface.
However density estimation in high-dimensional spaces suffers from the Hughes effect, 6 7: For a fixed amount of
training data the classification accuracy as a function of number of bands reaches a maximum and then declines,

because there is limited amount of training data to estimate the large number of parameters needed. Thus usually,
a feature selection step is first performed on the high-dimensional data to reduce its dimensionality.

As we will demonstrate, the SVM approach does not suffer this limitation and uses the full dimensionality of the
hyperspectral data. Support Vector Machines directly seek a separating surface through an optimization procedure
that finds the exemplars that form the boundaries of the classes. These exemplars are called the support vectors.
This is significant because it is usually the case that there are a small subset of all the training data that are involved
in defining the separating surface, i.e., those examples that are closest to the separating surface.

In addition, the Support Vector Machine approach uses the kernel method, discussed below, to map the data

with a non-linear transformation to a higher dimensional space and in that space trys to find a linear separating
surface between the two classes. The transformation to a higher dimensional space tends to spread the data out in
a way that facilitates the finding of a linear separating surface. In this way the separating surfaces that would be
non-linear (not a hyperplane) in the original data space can become linear (a hyperplane) in the higher dimensional
space. Instead of being penalized by the curse of dimensionalitg and its attendant Hughes effect, the Support Vector
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Machine can use tile. full dimcnsionality of t,he hyperspectral dal, a without tile feature selection prcprocessing step.
Why the, curse of dimensionality is not a problenl for the kernel method is discusse,d below.

A number of useful introductions are available iu publicatiolls and on the world wide web, s 9 l0 11 In what
follows we will first, focus on binary classification - in the class or not in t,he class. Subsequently we will handle

multiple classes by building separate,, classifier for each pair of classes and follow this with _, w)ting strategy to choose
the class label.

The plan for the paper is to give an overview of the mathematical formulation for binary classification. Then
we introduce the optimal margin hyperplane, the transformation of its resulting optimization problem by means of
Lagrange multipliers, and its solution. This is done for both the separable and non-separable cases. We then discuss
the kernel method and the generalization to multiple classes. Following this, a section is devoted to describing the
hyperspectral data we have used for demonstrating the classifier. Then we discuss implementation details and present
the results. The conclusion summarizes the results and suggests further development of the method.

2. MATHEMATICAL FORMULATION

2.1. Classification

For classification, a set of examples consisting of pairs of class labels and feature vectors is known, and you desire to
find a classifier function that gives correct answers on these examples and has low generalization error, meaning it
gives good results for the class labels when applied to feature vector inputs it has not seen before.

We are given / training pairs, (yi, x_) / = 1,...l, consisting of class labels, y_ E {1, -1}, and n-dimensional feature
vectors, xi E R n. We wish to find a function f( ; or) : x _ y that represents the classifier y = f(x; or), where ot are
all the parameters of the classifier.

2.2. Optimal Margin Method for Separable Data
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Figure 1. Schematic of separable data in R 2. The circles are feature vectors in class +1 and the diamonds are
feature vectors in class -1. The placement of the hyperplane shown is optimal.

Vapnik and Chervonenkis, 12 and Vapnik t3 originated the optimal margin method for separable data. With
reference to Fig. 1 the problem is how to place a hyperplane such that:

1. All data belonging to class +1 lies on one side of the hyperplane and all data belonging to class -1 lies on the
other side.
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2. "Fhe hyperplane is placed so that the (list_mce of the closest wTctors in both classes are tile furthest l,hey can
be from the hyperplanc.

The hyperplane is clefinccl by the equation

w.x+b=O, (i)

where x is a point oil tile hyperplane, w is the n-dimensional w.'ctor perpendicular to the hyperplane, and b is tile

distance of the closest point on the hyperplane to the origin. The classifier is then

f(x;w, b) = sgn(w.x + b). (2)

The orientation of the hyperplane is chosen so that w points towards tile class labeled with +i. Let di, be the
perpendicular distance of vector xl from any point x on the hyperplane,

W

By pre-multiplying by Yi we guarantee that all the di are positive. Using the hyperplane equation, Eq. (1), to
eliminate x in Eq. (3) we obtain

(w .xi + b)
d_= w Iwl (4)

We may then pose the problem as minimize, over all the training vectors, the distance of the hyperplane from all the
training vectors, and then maximize those distances over all placements of the hyperplane:

max rain 9i • (5)
w,b i= 1,...,/ Iwl

The particular vectors that are found to be nearest the hyperplane are called support vectors and are the central

result of the approach. We note that the parameters describing the hyperplane, w and b, can be scaled by a constant
without changing the hyperplane. To remove this ambiguity we choose a canonical form of the hyperplane by scaling
w and b such that

= 0 ifi is a support vectorYi(W'xi+b)-i > 0 ifiisnot asupport vector,
or

w(w.x_+b)-I > 0 i= 1,...,1, (6)

With this normalization the distance of the hyperplane to the nearest feature vector is Iw1-1. When used in Eq. (5)
we obtain

m_x Iwl-_
w,b

yi(w'xi+b)-l>_O i=l,...,l.

1 9 1
It is convenient to replace maximization of Iw[-_ with the equivalent minimization of _[wl- , where the factor of
is cosmetic.

In summary we have: To find the optimal hyperplane for separable data, solve the Quadratic Optimization
problem given by

rain I-w[ _2

w,b (7)
y_(w.xi+b)-:>_0 i=l,...,l.



2.3. Lagrange Undetermined Multipliers

The quadratic optimization problem in Eq. (7) can be simplified so as to replace the inequalities with a simpler form

by transforming the problem to a. dual spacc representation using Lagrangian multipliers. The motivation for doing
this comes from a method invented by Lagrange in mechanics. We give a short digression to motivate the subsequent
transformations.

Suppose we have a a potential energy function of dynamical variables, where the dynamical variables are restricted

to certain ranges. For example a mass, m, which can move only vertically in a gravitational field g is attached to
a string of length I. The mass has potential energy rngz, but there are also the constraints z < l, and z _> -I. We
desire to find the equilibrium position (minimum energy) while taking into effect the constraints. Lagrange suggested
adding additional terms to the original energy function that represent the forces that come into existence only when
a dynamical variable cannot change fi'eely because the constraint extreme is reached (the inequality becomes an
equality). In our example the mass m feels the force of gravity and a constraint force when z = -I or z = l. We can
either explicitly restrict the range of values to -1 < z < l, or allow z to vary over [-oo, oo] and put into the potential
terms which apply constraint forces which are zero unless z < -1 or z _>l. In this way the constraints are built into

the energy function and the dynamical variables are no longer subjected to explicit constraints, though now we must
solve for the additional forces as part of the problem.

2.4. The Dual Optimization Problem for Separable Data

With this as motivation we absorb the constraints into the minimization problem by defining Lagrange undetermined
multipliers (the "constraint forces" discussed above),

A,>0 i= 1,...l. (8)

Defining our extended potential to be

l

_ Iwl 1],2
i=1

the optimization problem becomes
max mln £(w,b,A_,....,At)
k_ ...A_ w,b

Ai_>0 i= 1,...,l. (10)

yi(w . xi + b) - l >_O i = l, .. .,l.

By choosing A_> 0 in Eq. (8) and putting the constraints in with a minus sign in Eq. (10) we must maximize over
Ai. More can be said concerning the solution of this extended problem. The Lagrange undetermined multipliers
are zero only when the constraint is an equality. This is because in putting in the Lagrange multipliers into the
minimization problem, they only makes a contribution when a constraint equality is reached. Thus

Ai [yi(w.xi+b)- 1]=0 i= t,...l, (11)

which is called a complementarity condition. Assuming that £ is a differentiable function of w, b we then have the
further condition for a minimum in w, b

0£
_ oOw

0£
- 0. (13)cgb

A more formal presentation is given by Fletcher _4 and a very readable recent account is given by Boyd and L.
Vandenberghe. _ Eqs. (6), (8), ([1), (12), (13) are called the Karush-Kuhn-Tucker (KKT) optimality conditions
and a formal derivation and interpretation can be found in these references.
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Figure 2. Schematic of non-separable data in R 2. The circles are feature vectors in class +l and the diamonds are

feature vectors in class -1. There is one feature vector that is not separable.

Performing the derivatives in Eqs. (12), (13) we have

l

w = E AiYiXi (14)
i=1

l

A,v,= 0,
i=I

which when substituted in Eq. (9) allows us to eliminate w and b in Eq. (10) to obtain an equivalent quadratic

optimization problem. This is called the dual problem optimization and it has simplified constraints:

max! -_ t ' ]
z _j=l •xj)yjAj q- _i=1 Ai

A1 ...A

A___O i= 1,...,l (16)

_;=1 Aiw = 0.

In the process of obtaining a solution, we expect that some of the Ai will be 0, and the remaining ones will be

associated with the support vectors. From the solution for the hi we obtain w from Eq. (14), and b fi'om gq. (il)

for any Ai > 0. Methods of solving the optimization problem are taken up in the section on implementation.

2.5. Non-separable Data

Cortes and Vapnik generalized the optimal margin methods to non-separable data, 16 ir which we discuss next.

With reference to Fig. 2 the problem is now that there is no way to place a hyperplane such that we can separate

the training data into two classes.

Cortes and Vapnik, t6 tr gave the following solution and named it the soft margin classifier. Relax the restriction

that, every training vector of a given class lie on the same side of the optimal hyperplane by introducing new variables,
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&, i = 1.... ,l, that take the values _i _>0, This generalizes Eq. (6) to be

yi(w.xi+t_)-l+_i_>0 i=t .... ,l. (t7)

, C' v'l * (C is a positive constant oo > C > 0), to Eq. (7) that balances tile contribution ofThen add a new term -/z._i=l _;i
.... 1.

rmnunlzmg 51wl2 with penalizing solutions for which _i get large. The non-separable optimization problem is then

yi(w.xi+b)-l+_i >0 i= 1.... ,l (18)

_i>_O i=l,...,l.

Note that as C --+ oo the effect of any _i deviating from 0. is increasingly more costly to the minimization. Thus in
the limit C -+ oo the optimization reduces to the formulation for the separable case. Note that C -+ 0 is not the
separable case, because then there is no effect on the cost if _i > 0, and the optimal hyperplane would be that one
that placed itself at the midpoint of those two feature vectors, one from each class, with the largest separation.

As in the separable case, a dual form can be obtained using two sets of Lagrange multipliers, Ai, #i, i = 1, ..., l,
to handle the two sets of constraints in Eq. (18). We obtain

£(w, b, A1, •.., ,_l, t_l, ••., #l) =

+c _ -_a, [y,(w.x_+_)-x+_,]-_i_. (19/
i=1 i=1

Assembling the constraint inequalities, the properties of the undetermined multipliers, and assuming 1; is a differ-
entiable function which we seek to minimize over w, b, and Ai for i = 1,...,l, we have the KKT conditions for the
non-separable problem:

[yi(w.xi+b)- l+_i] _> 0 i= 1,...,l (20)

_ > o i=l,...,z (21)
_ > 0 i=l,...,l (22)
m > o i= 1,...,t (23)

,x_[w(w-x_+ b)- 1+ _] = 0 i = 1,...,t (24)
#i_i = 0 i= 1,...,l (25)

0£ t
-- = w - _,X_vixi = 0 (26)Ow

i=1

o--g= - _ _,vi = o (27)
i----1

o£
=C-Ai-tti = 0 i= 1,...,l (28)

0&

Eqs. (20), (21) are the constraint inequalities, Eqs. (22), (23) are part of the definition of the Lagrange undetermiv/ed
multipliers, Eqs. (24), (25) are the complementarity conditions of the Lagrange multipliers, and Eqs. (26), (27), (28)
are minimization conditions for a differentiable function. When Eqs. (25), (26), and (27) are substituted in Eq. (19)
we obtain the dual problem

AI...A_

c>;_>o i=l,...,_ (29)

l
Y'_.i=_Aiyi = 0 i = 1,...,1



Note the only difrei'ence from the dual of the scparal)lc case, Eq. (16), is that the "constraint forces", Ai are bounded
above by C, rellccting the fact that the original inequality constraint, Eq. (6), holds only while 'f,i = 0 a,ud then

becomes soft when _i > O, which iJnplics the constraint three satura, tes. Thus the term soft margin for this approach
to the non-separable case has intuitive meaning. Note that Eq. (28) combined with Eq. (25) gives '_i = 0 if Ai < C
-- the constraint force is not saturated. The terms with Ai = C label the non-separable points.

Knowing the solutions Ai, we can find w for the hyperplane using Eq. (26), and b Dora any one or more solutions
for which C' > Xi > 0, using Eq. (24) with (i = 0.

2.6. Kernel Method.

Up to this point we have only dealt with classification as a linear function of the training data - the decision surface
is a hyperplane defined by linear equations on the training data. However, it can be the case that no hyperplane
exists to separate the data. The non-separable method provides one way to deal with this. As an alternative we
would like a way to build a non-linear decision surface. An extremely useful generalization which can give non-linear
decision surfaces and improved separation of the training data is possible using the following idea, first introduced
by Aizerman, Braverman and Rozoner, is and incorporated into machine learning as part of the Support Vector
Machine by Boser, Guyon, and Vapnik. 1

Note the way that the training data enters the optimization problems, Eqs. (16), (29), is as dot products. Suppose
that we map the feature vectors, x E R '_ into a higher dimensional Euclidean space, "//, by means of a non-linear
vector function _ : R '_ _+ 7-/. Then we may again pose the optimal margin problem in the space 7/ by replacing
xl .x j, by _(xl) • q_(xj). Then, as before, solve the optimization problem for the _. This finds the support vectors
among the transformed vectors, _I'(xl), by association with the Ai > 0. We then use these to build the classifier
function:

f(x,),l,..., _) = sgn ,X_y;_(x_)•,_(x)+ b . (30)

Now suppose there exists a kernel function K such that

•C(xl, ×_) = _(x 0 •_(_), (31)

then everywhere x_.xj occurred, we could replace it with K(x_, xj). We need not explicitly compute O(x), which
could be computationally expensive, but only need compute the kernel functions. In fact we need not have an explicit
representation of • at all, but only K. The restrictions on what functions can qualify as kernel functions is discussed
in Burges. s

What is gained is that we have moved the data into a larger space where the training data may be spread further
apart and a larger margin may be found for the optimal hyperplane. In the cases where we can explicitly find _,
then we can use the inverse of • to construct the non-linear separator in the original space. Clearly there is a lot of
freedom in choosing the Kernel function and recent work has gone into the study of this idea both for SVM and for
other problems. _9

With respect to the curse of dimensionality, we never explicitly work in the higher dimensional space, so we are

never confronted with computing the large number of vector components in that space.

For the results presented below, we have used the inhomogeneous polynomial kernel function

It(x, y) -----(x. y + 1) d, (32)

with d = 7, though we found little difference in our results for d = 2,...,6. The choice of the inhomogeneous
polynomial kernel is based on other workers success using this Kernel function in solving the handwritten digit
problem}

In fact there are principled ways to choose among kernel functions and to choose the parameters of the kernel
function. Vapnik _ has pioneered a body of results frora probability theory that' provide a principled way to approach
these questions in the context of the Support Vector Machine.



Class Number of'Ground Number of Nuniber of

Name Truth Vectors Training Vectors r[_st Vectors
Corn-noti[ 1008 20 l 807

Soybean-notill 727 145 582
Soybean-mintill 1926 385 1541
Grass-Trees 732 146 586

Table 1. Data description of the Indian Pines subset scene.

2.7. Multi-Class Classifiers

Two simple ways to generalize a binary classifier to a classifier for/f classes are:

1. Train K binary classifiers, each one using training data from one of the K classes and training data from all
the remaining K - 1 classes. Apply all K classifier to each vector of the test data, and select the label of the
classifier with the largest margin, the value of the argument of the sgn function in Eq. (30).

( I'(2) = I((K - 1)/2 binary classifiers on all pairs of training data. Apply all It(I'[- 1)/2 binary
2. Train

\ /

classifiers to each vector of the test data and for each outcome give one vote to the winning class. Select the
label of the class with the most votes. For a tie, apply a tie breaking strategy.

We chose the second approach, and though it requires building more classifiers, it keeps the size of the training data
smaller and is faster for training.

3. HYPERSPECTRAL DATA

In this work, hyperspectral data was obtained from the AVIRIS imaging spectrometer which has (on the ER-2

aircraft) a ground pixel size of 17 m x 17 m and a spectral resolution of 224 channels, covering the range from 400
nm to 2500 nm centered at 10 nm intervals. We focus on a part of data taken in June 12, 1992 in the northern
part of Indiana, U.S. This data _° has been studied by D. Landgrebe and students, and his website has a companion
paper 21 describing its analysis by a free software package: _2 The data consists of 145 x 145 pixels by 220 bands that
has been approximately converted from the radiance measured at the sensor to the reflectance, which is an intrinsic
property of the surface. _3 Data from bands where there is a large amounts of water absorption in the atmosphere
have been replaced by a constant value.

The scene consists of about two-thirds agriculture, and one-third forest or other natural perennial vegetation.
There are two major dual lane highways, a rail line, as well as some low density housing, other built structures,
and smaller roads. Since the scene is taken in June some of the crops present, corn, soybeans, are in early stages

of growth with less than 5'% coverage. The ground truth available is designated into sixteen classes and is not all
mutually exclusive.

In order to compare to the recent results of S. Tadjudin and D. Landgrebe, -_4_5 we have studied two scenes also
used in their work.

1. A part of the 145 x 145 scene, called the subset scene, consisting of pixels [27 - 94] x [31 - 116] for a size of
68 x 86. [Upper left in the original scene is at (1, 1)]. There is ground truth for over 75% of this scene and it is
comprised of the three row crops, Corn-notill, Soybean-notill, Soybean-mintill, and Grass-Trees. Table 1 gives
further details.

2. The full 145 x 145 scene for which there is ground truth covering 49% of the scene and it is divided amoung
16 classes ranging in size from 20 pixels to 2468 pixels.



Figure 3. Training data for classification in the subset scene. The data has been centered.

Following Tadjudin and Landgrebe's work, we have also reduced the number of bands to 200 by removing bands
covering the region of water absorption: [104 - 108], [150 - 163], 220. For each band at each pixel in the subset scene,
the data was rescaled from the input two byte short integer by dividing by 10000 to make a floating point number
in the range [0, 1].

Then the data was centered, which means that for the whole scene, for each band, the mean was found and this

was subtracted from all the data in that band. This distributes the data around 0 and considerably speeds up the
optimization routines. Fig. 3 shows this centered data for the four classes. Note that there is substantial overlap
between Corn-notill, Soybean-notill, and Soybean-mintill, while Grass-Trees is well separated from the other three
classes.

4. APPLICATION OF SVM TO HYPERSPECTRAL DATA AND RESULTS

4.1. SVM Implementation

We have implemented the Support Vector Machine first by building on free Matlab software available from S. Gunn 9
and de Ridder. 11 For the separable case, Gunn has shown that the problem may be recast as non-linear least
squares and he has provided a routine to perform this. However for the non-separable case, quadratic optimization is

required. We first used the quadratic optimizer package available from Matlab, which can be slow for larger data sets.
Subsequently we have adapted the software package from T. Joachims, 26 which works with A. Smola's optimization
code, =r and which takes advantage of the KKT conditions in the non-separable case to provide good performance
for large training sets.

4.2. Classifier Results for the Subset Scene

From the subset scene, a random sample of 20% of the pixels was chosen from the known ground truth of the four
classes: Corn-notill, Soybean-notill, Soybean-mintill, Grass-Trees. This was used to train six binary classifiers, one
for each pair of classes. The trained classifiers were then applied to the remaining 80% of the known ground pixels
in the scene, with the voting strategy above. Ties were broken by a random choice.

This procedure was repeated in five trials using a different random seed for the selection of the 20% of the training
data. Table 2 shows the contingency table for a typical trial. For a trial, the overall performance is the sum of the
number of samples correctly labeled for each class in the test set divided by the total number of samples in the test



Class Percent Number of Corn- Soybean- Soybean- Grass-

Name Correct Samples notill notill mintill Trees
Corn-not.ill 94.3 807 761 4 38 4

Soybean-notill 95.7 582 1 557 23 1
Soybean-mintitl 96.1 1541 39 21 1481 0
Grass-Trees 100 586 0 0 0 586
TOTAL 96.3 3516 801 582 1542 591

Table 2. A typical result for the Indian Pines subset scene. The entries in rows 2 - 5 and colums 4 - 7 are the
contingency table for results for the subset scene. For each horizontal line labeled on the left by class name A, the
entries under the four classnames B1, B_, Ba, B_ give the distribution of the all the testing ground truth pixels of
class A into the four classes. Bold face numbers are correctly classified samples. A perfect result would have all zeros
except on the diagonal. The overall performance is computed by the ratio of the sum of the diagonal elements to the
sum of all entries of the contingency table.

Trial Overall Class correct(%)
correct (%) Corn-notill Grass-Trees Soybean-notill Soybean-mintill

1 9613 94.3 100.0 96.1 95.7
2 95.8 92.8 99.8 95.7 96.0

3 96.1 95.2 99.8 95.7 94.7
4 95.5 94.7 100.0 95.1 93.5
5 95.6 95.7 99.8 94.8 93.3

Average 95.9 94.5 99.9 95.5 94.6

Table 3. Summary of trials on SVM classifier for the Indian Pines subset scene.

set. Table 3 summarizes the five trials. Note that Grass-Trees was classified almost completely correctly as might be
expected from the lack of overlap in the training data.

The results across the five trials were consistent within one percent and the average performance was 96%,
which is somewhat better than 93% from recent results of Tadjudin and Landgrebe _4 for their best classifier,
bLOOC+DAFE+ECHO, on the same data. Table 4 summarizes the results for the subset scene comparing the
SVM classifier, bLOOC+DAFE+ECHO, and a simple Euclidean classifier. _4 The Euclidean classifier uses only the

first order statistics of the training data. Its poor performance is expected for this data due to the overlap of the
classes. The details of the bLOOC+DAFE+ECHO classifier is covered in Tadjudin and Landgrebe. _4

METHOD PERFORMANCE

Subset Scene Full scene

Support Vector Machine 95.9% 87.3%
bLOOC+DAFE+ECHO 93.5% 82.9%

Euclidean 66.7% 48.2%

Table 4. A comparison of results for the Indian Pines subset scene (68 x 86 pixels) and the full scene (145 × 145
pixels). The results labeled bLOOC+DAFE+ECHO and Euclidean are taken from the recent work of Tadjudin and
Landgrebe -_4-_aand represent the best classifier results reported for this scene in that work. Also note that their
results for the full scene are for 17 classes compared to our 16. The difference is explained in the text. All training
is based on 20% of the ground truth and testing on the remaining 80%.



4.3. Classifier Results for the Full Scene

Results for the full scene were produced using only one trial. [[ere we used the sixteen ground truth classes given
in [,andgrebe's data. 2° We made a random selection of 20% of the ground truth data and tested on the remaining
80%. A difference with the data and results reported by Tadjudin and gandgrebe, 24 25 is that they studied the scene
using 17 classes whereas we only used 16. The difference being that they further resolved the class Soybeans-notill
into two subclasses of Soybeans-notill based on fields that were in different locations in the full scene. The results are

reported in Table 4 show the Support Vector Machine to be somewhat better, although the difference in the number
of classes may have some effect.

5. CONCLUSIONS

We have described a new approach to building a supervised learning machine called the Support Vector Machine, and

applied it to classify hyperspectral remote sensing data. The inherent high dimensionality of this data is challenging
for traditional classifiers, due to the Hughes effect, cud usually a feature selection preprocessing step is performed
to first reduce the dimensionality of the data. The Support Vector Machine does not suffer from this handicap, and
is thus suitable for use with hyperspectral data. The results we have obtained show it to be competitive with other
recently developed classifiers for hyperspectral data when applied to the same data sets.

In this work the choice of kernel function is ad-hoc, as are the choices of the kernel function parameter d,
and the separability parameter, C. However, the Support Vector Machine can be placed into the Structural Risk
Minimization approach of Vapnik, 2 and using rigorous bounds from recent results from probability theory, a more
rigorous approach can be taken to choosing these parameters.

Also we note that all the results we have shown are completely in the spectral domain and no aspect of the
spectral coherence of the data has been used. The results would be identical if all the classifier bands were permuted
consistently throughout the data. And, we have not utilized the spatial coherence of the data. We note recent
studies on the classification of hand written digits us show that performance gains can be made by incorporating
prior knowledge into the construction of the Support Vector Machine and we believe similar gains can be made for
classifying hyperspectral data using the coherence in the data.
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