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ABSTRACT

Motivation: Most secondary structure prediction programs target

only alpha helix and beta sheet structures and summarize all other

structures in the random coil pseudo class. However, such an assign-

ment often ignores existing local ordering in so-called random coil

regions. Signatures for such ordering are distinct dihedral angle

pattern. For this reason, we propose as an alternative approach to

predict directly dihedral regions for each residue as this leads to a

higher amount of structural information.

Results: We propose a multi-step support vector machine (SVM)

procedure, dihedral prediction (DHPRED), to predict the dihedral

angle state of residues from sequence. Trained on 20 000 residues

our approach leads to dihedral region predictions, that in regions

withoutalphahelicesorbetasheets ishigher than those fromsecondary

structure prediction programs.

Availability:DHPREDhas been implemented as aweb service, which

academic researchers can access from our webpage http://www.fz-

juelich.de/nic/cbb

Contact: u.hansmann@fz-juelich.de

1 INTRODUCTION

Despite decades of research, the prediction of protein structure and

function solely from sequence information has remained one of the

defining challenges in computational biology. However, there has

been considerable progress in the prediction of the local secondary

structure elements (SSE) that build up globular proteins. Based on

neural networks (NN) (Qian and Sejnowski, 1988; Rost and Sander,

1994), hidden Markov models (HMMs) (Bystroff et al., 2000) and
support vector machines (SVMs) (Hua and Sun 2001; Kim and Park,

2003; Ward et al., 2003), the secondary structure state of a residue

can be predicted as either helix, extended (beta sheet) or coil with an

accuracy of�76% if evolutionary information is used (Rost, 2001).

The primary target of secondary structure prediction programs is

the detection of alpha helices and beta sheets.These SSE are macro-

scopic features defined by combinations of dihedral angles, hydro-

gen bonds and number of residues. The complex IUPAC–IUB

definition utilized in secondary structure analysis programs like

DSSP (Kabsch, 1983) makes it difficult to predict the state of an

individual residue. For instance, an individual residue may be at the

border between two different SSE and thus belong to both. Some

prediction programs therefore give the individual probability scores

for each of the three states [e.g. PsiPred (Jones, 1999)].

In the present paper, we choose another approach and restrict

ourselves to the prediction of dihedral angle regions. Such dihedral

constraints were originally formulated by Ramachandran et al.
(Ramachandran, 1968), but for a long time regarded as frequently

violated and therefore of limited usability. However, recent analyses

by Lovell et al. have demonstrated that violations are largely due to

inaccurate assignment of atom positions in experimental structures

(Lovell et al., 2003). Using carefully filtered high-resolution struc-

tures and excluding atoms with high B-factors, they derive surpris-

ingly sharp boundaries for allowed and generously allowed regions

of the Ramachandran plot. Analyses by Betancourt et al. revealed
a strong correlation between the dihedral state of a residue and the

state of its immediate sequence neighbors irrespective of the amino

acid sequence (Betancourt and Skolnick, 2004). In the same study,

it is demonstrated that these correlations can be used as a folding

potential. Hence, dihedral angle regions do indeed describe accu-

rately local ordering in proteins.

Most studies denote those parts of a structure that belong neither

to beta strands nor to alpha helices as random coil. According to

this definition, �45% of the residues in the PDB are random coil.

However, this assignment does not exclude local ordering that is

frequently observed even in these random coil regions (Vucetic

et al., 2005). Several of these structures are mixed, but distinct

patterns of residues with dihedral angles as observed in alpha or

beta conformations. Prediction of the dihedral state of individual

residues in the coil region is a prerequisite to identifying elements

of a general conformational alphabet and thereby augments the

amount of structural information that can be predicted from

sequence.

For these reasons, we describe in the present study an SVM-based

method DHPRED (dihedral prediction) to predict in what region

of the Ramachandran plot the dihedral configuration of each

residue lies. We analyze the dependencies from the sequence

and the dihedral environment for each of these dihedral angle

regions. We then describe a multi-step algorithm that exploits

the influence of the dihedral neighborhood (Betancourt and

Skolnick, 2004) using information from local predicted dihedral

preferences. Using Comparative Assessment of Structure Prediction

(CASP6) targets from new-folds as examples, we analyze the

approach’s performance and discuss further improvements.

2 METHODS

Sequence and structure datasets are derived from the representative subsets

of the Protein Data Bank (PDB, Berman et al., 2000). The pdb50 library

provided by the Research Collaboratory for Structural Bioinformatics�To whom correspondence should be addressed.
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(RCSB) contains structures of protein chains with a pairwise sequence

identity <50%. This non-redundant set of protein chains was searched for

all chains longer than 100 residues from X-ray structures with a resolution

better than 2.0 s. Omitting the N- and C-termini, as their dihedral confor-

mation is less reliable, our dataset contains 424 609 residues from 1929

different protein chains. We estimate some of the dihedral angle regions

from the figures in the publication of Lovell et al. (2003) and store these

regions as grids with 1� spacing. Figure 1 shows the regions as we estimated

them. Due to the low number of samples and for comparability to secondary

structure prediction programs we have only used the generously allowed

regions for helical (H) and extended (E) states. All other regions are merged

into an outlier class (O), which is not to be confused with the random coil

pseudo class mentioned above. In contrast to the random coil class, our

outlier class contains only �7% of all residues.

Table 1 shows the distribution of the different dihedral angle regions

for our dataset. Over 93% are located in the generously allowed alpha

and beta regions. Our prediction algorithm belongs to the class of SVM,

i.e. a supervised machine-learning algorithm that requires positive and nega-

tive examples for training. For a comprehensive introduction to SVMs see

(Schoelkopf and Smola, 2002). The C-SVM algorithm implementation of the

LIBSVM-library (http://www.csie.ntu.edu.tw/~cjlin/libsvm) with a radial

basis function (RBF) kernel is used throughout this study. Input data for

training are vectors comprised of a class label and several numerical input

values (features). The resulting model is an abstract specification of the

hyperplane that separates two classes with the largest margin. This model

is then used to classify previously unseen examples. In order to allow the

algorithm to harness homology information, we have encoded each amino

acid residue of the local sequence neighborhood by a profile vector of

amino acid propensities obtained from the position specific scoring matrices

of a PSI-BLAST run (Altschul et al., 1997). We use a sliding window of

length 15 to define the local sequence environment of a residue. Accordingly,

the feature vectors to encode the sequence information are of length 15 ·
20 ¼ 300 (Fig. 2).

For a second set of classifiers, we also use the predicted class labels

obtained from prediction runs using the first SVM-models. We employ a

sequence window of length seven and three separate predictions: helix (alpha

generously allowed region), extended (beta generously allowed region) and

outlier (all others). This gives 21 features, which increase the total length of

the vectors for the second set of SVM-models to 321. A sketch of the

encoding scheme for both types of classifiers is plotted in Figure 2.

Predictions start by performing a PSI-BLAST run for the target sequence,

deriving vectors from the resulting PSSM and obtaining class labels using

the first set of SVM-models (step 1). The output of the second step is again a

set of three independent predictions for the membership of a residue in the

alpha, beta or outlier class, respectively. We find that repeating the second

step using the updated dihedral neighborhood information from the previous

prediction round leads to further improvement (step 3). In particular, resi-

dues showing ambiguous predictions become less frequent. As convergence

of this iterative step is not guaranteed, we limit the number of additional

rounds to nine. Due to the low number of ambiguous predictions, our use of

discrete class labels +1 and �1 (instead of real-valued class probabilities)

and a narrow sequence window of only 7 residues for the dihedral neigh-

borhood, we always observe convergence after two to three additional

rounds. Remaining ambiguities are resolved by assigning the class label

of the nearest non-ambiguous residue (step 4).

Matthew’s correlation coefficient (MCC) is used throughout this study as

main evaluator for classification performance (Matthews, 1975):

MCC ¼ TP · TN � FP · FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ · ðTPþ FNÞ · ðTNþ FPÞ · ðTNþ FNÞ

p ‚

using the definitions in Table 2.

For some tests, we also give the sensitivity and specificity:

Sensitivity ¼ TP/ðTP + FNÞ

Specificity ¼ TN/ðTN + FPÞ:

3 RESULTS

3.1 SVM classifier performance

We have initially trained individual classifiers for each dihedral

angle region. However, due to the low number of available

examples for left handed helices, gamma turns and II0 turns,

classifiers for predicting these secondary structure classes show

only low correlation on the test set (data not shown). We therefore

use here only the information on alpha and beta helices as targets

and only train classifiers for two generously allowed regions:

right-handed alpha helix and beta strand (denoted ralpha-gen and

beta-gen in Fig. 1). A third classifier is trained on residues outside of

Fig. 1. Dihedral regions estimated from (Lovell, 2003). The region interfaces

of the generously allowed regions were defined manually by us and are

partially overlapping.

Table 1. Distribution of dihedral regions where: core ¼ allowed region

(union contains 99% of all data according to [Lovell03]), gen ¼ generously

allowed region (union contains 99.9% of all data according to [Lovell03])

Dihedral region (abbrev.) # of samples

Right handed helix, core 210 840

Right handed helix, gen 215 391

Beta sheet, core 174 534

Beta sheet, gen 182 435

Left handed helix, core 11 406

Left handed helix, gen 17 904

II’-region, gen 2677

Gamma turn, gen 355

In none of these regions 7770

In none of this regions, not Glycine 1003

Total number of residues 424 609
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this both regions. In a first step, we utilize only sequence profile

information from PSI-BLAST. For computational reasons we

restrict the training set to 20 000 residues from 499 proteins.

Our prediction algorithm is then evaluated on an independent

test set of 18 872 residues from 97 proteins. Results are shown

in Table 3. Already the profile-only SVM classifiers show a pre-

diction performanceof�80%, in the rangeof oneof the best secondary

structure prediction programs, PSIPRED (Jones, 1999).However, note

that the models show a marked tendency to over-predict extended

residues and to under-predict residues in helical state.

In a second iteration, we improve on these results by adding

dihedral neighborhood information obtained from prediction runs

using the first classifiers to the training set features. As dihedral

neighborhood information, we use the class labels of the first clas-

sifiers in a sequence window of length 7 (Fig. 2). Results presented

in Table 4 are for the same independent test set of 18 872 residues.

As expected, the results in this iteration show a moderate improve-

ment over the predictions from the profile-only classifiers, validat-

ing the prediction approach described. The bias towards over-

prediction of extended state remains, although less pronounced.

3.2 Comparison to secondary structure prediction

programs

Although we are not aware of any programs which yield predictions

of a residues dihedral state, some secondary structure prediction

programs give probabilities for the secondary structure state of

individual residues. Hence, we use this type of output from the

GOR-IV and PSIPRED programs as an approximate measure for

the dihedral region prediction. We have used the prediction scores

without regard of the coil probability, as this purely macroscopic

category does not imply any dihedral preference. To estimate the

improvement by including information on the 3D environment of

similar sequences, we compared our data with PSIPRED predictions

obtained in single mode as well as to PSIPRED predictions that use

position specific profiles from PSI-BLAST (Table 5).

Fig. 2. Encoding of vectors for SVM training.

Table 2. Definition of prediction categories for calculation of MCC,

specificity and sensitivity

Prediction Observation

+1 �1

+ 1 TP (true positive) FP (false positive)

�1 FN (false negative) TN (true negative)

Table 3. Performance of SVM PSSM-only classifiers

Region TP TN FP FN Acc % MCC

Alpha H 7564 7924 1271 2113 82.1 0.645

Beta E 6793 8631 2198 1250 81.7 0.635

Outlier O 906 16 705 920 341 93.3 0.567

Table 4. Performance of SVM PSSM + dihedral classifiers

Region TP TN FP FN Acc % MCC

Alpha H 7780 7971 1224 1897 83.5 0.671

Beta E 6825 8861 1968 1218 83.1 0.661

Outlier O 905 16 724 901 342 93.4 0.570

Table 5. Prediction test for individual residues (n � 17500)

DHPRED

step 1,2

PSIPRED

profile

PSIPRED

single

GOR-IV

Alpha Sens % 77 86 (64) 79 (51) 72 (50)

Spec % 90 73 (96) 60 (85) 64 (83)

MCC 0.67 0.60 (0.62) 0.40 (0.38) 0.35 (0.35)

Beta Sens % 80 73 (42) 60 (32) 64 (34)

Spec % 86 86 (96) 79 (91) 72 (87)

MCC 0.66 0.60 (0.47) 0.40 (0.28) 0.35 (0.25)

Sensitivity, specificity in % and Matthew’s correlation coefficient (mcc). Figures in

brackets denote predictions obtained including coil predictions.

Prediction of dihedral angle regions
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Although trained on a smaller database than GOR-IV or

PSIPRED, the first two steps of our procedure give the same amount

of information on local secondary structure as current secondary

structure programs. Our method gives a MCC higher even than

PSIPRED. This suggests that PSIPREDs unrivaled ability to detect

SSEs comes at the price of a lower ability to detect less uniform

local ordering. The low correlation coefficients for predictions

including coil underlines that a lot of information about the dihedral

state at residue level can be recovered just by ignoring coil

prediction probabilities. Note the pronounced improvement in the

MCC of �0.2 when PSIPRED uses PSI-BLAST profiles. Our own

experiments with SVM-based methods, with and without profile

information, show a similar gain (data not shown).

3.3 Detailed analysis of CASP6 examples

The gold standard for each prediction method is its application to

situations where no structure is known for any protein with similar

sequence. Consequently, we have tested the performance of our

approach for three targets, among them two from the new-fold

category of the CASP6. The first test case, Target 242 (PDB-code:

2blk, chain A), shown in Figure 3, is a new-fold and contains long

stretches where according to DSSP there are no SSE. DHPRED

correctly assigns 72 of the 88 core residues (81.8%) including all

three ‘outliers’, while PSIPRED predicted 70 (79.6%). GOR-IV, in

contrast, predicts less than half of the residues correctly, emphasi-

zing that, even for new-folds, implicit information on the 3D envir-

onment can be obtained using sequence profiles. The correctly

predicted regions are colored in black in Figure 3, while white

denotes false predictions and gray the termini, and outlier residues,

which have not been evaluated in the comparison. A more detailed

listing of our results for this protein and a comparison with compe-

ting techniques, can be found in Figure 4. The false predictions for

target 242 are mainly located in four clusters. The C-terminal part of

the first alpha helix is not recognized, an error, which is, even more

pronounced in the PSIPRED prediction. Before the second helix, an

alternating pattern is missed and two patterns where DSSP reports

turns are not correctly predicted. The correlation of mispredictions

between PSIPRED and DHPRED makes it likely that in these

regions either rare H-bonding patterns occur or the normal local

structure is strongly influenced by non-local interactions.

Our second test case is the new-fold target 238 (PDB-code: 1w33,

complement protein), which has an all-alpha structure and is shown

in Figure 5. In spite of the tendency of DHPRED to under-predict

residues in helical state, it assigns 86.9% of the 145 core residues

to the correct class. Here PSIPRED, which favors helix predictions,

achieves slightly better results (89.0%). The detailed analysis of

Figure 6 demonstrates that false predictions by the SVM method

cluster at the C-terminal half of the first and second helix.

Fig. 3. Prediction for CASP6 target 242 (2blkA). Black: correct prediction,

white: wrong prediction, gray: not evaluated (chain ends and outliers).

seq    EFPTTITIDK LDEEDFCLKL ELRLEDGTLI NAIGHDSTIN
DSSP   SSSEEEEEEE E-HHHHHHHH HHHHHTT-EE E----HHHHH
DH    EEEEEEEEEE EEHHHHHHHH HHHHHHTHEE EHEHEHHHHH

DHPRED HEEEEEEEEE EEHEEHHHHH HHHEEEOEEE EHHCHHHHHH
PSIP” HHEEEEEEEE EEEEEHHHHH HHHHHHHHEE EHHHHHHHHH
PSI1” HHHHEEEEEE EHHHHHEEEE EEEEEHEEEE EEEEHHHHHH
GOR”   EEHEEEEEEH HHHHHHHHHH HHHHHHHHEE EEEEEEEEEE

seq    LVNTLCGTQL QKNRVEVKMN EGDEALIIMI SQRLEEGKVL
DSSP   HHHHHH---- --------B- TT-EEEEEEE SS---TT---
DH    HHHHHHTEHE EEEEEEEEEE HHEEEEEEEE HEEEEETEEE

DHPRED HHHHHHOEEE EEEEEEEEEE EOHEEEEEEE HEEEHHOEEE
PSIP”  HHHHHHHEEE HHHEEEEEEE HHHEEEEEEE HEEHHHHEEE
PSI1”  HHHHHHHHHH HHHEEEEEEE HHHEEHEHEH HHHHHHHEEE
GOR” EEEEEHEHHH HHHHHEHHHH HHHHHHHHHH HHHHHHHHHH

seq    SDKDIKDM
DSSP   -HHHHHHH
DH    EHHHHHHH

DHPRED EHHHHHHH
PSIP”  EHHHHHHH 
PSI1”  EHHHHHHH
GOR” HHHHHHHH

Fig. 4. True dihedral state and predictions for CASP6 target 242 (2blkA)with

different algorithms. Normal face: correct, bold: wrong, gray: not evaluated.

seq ¼ amino acid sequence in one-letter-code, DSSP ¼ secondary structure

annotation by DSSP, DH ¼ dihedral region according to the Lovell defini-

tions: E¼within beta-gen (extended), H¼within ralpha-gen, O¼ outside of

both regions (turn), DHPRED: dihedral region predicted by our SVM ap-

proach, GOR0: predicted preference by GOR-IV when ignoring coil predic-

tion, PSI10: same for PSIPRED without using profile information, PSIP0:
same for PSIPRED using profile information.

Fig. 5. Prediction for CASP6 target 238 (1w33A). Black: correct prediction,

white: wrong prediction, gray: not evaluated (chain ends and outliers).
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The first cluster of mispredictions is shared with PSIPRED. A

scattered cluster of mispredictions is also located at the complex

loop structure between the first and second helix. The first cluster of

mispredictions contains the subpattern Ile-Gln-Ile (IQI), which is

found more frequently in beta sheets than in alpha helices. The

same is true for second missed pattern, Lys-Tyr-Ser-Ser (LYSS).

Due to our small number of training residues, we may have missed

the less frequent sequence profiles, which belong to helical

conformations of this pattern.

Although, not a new-fold, the third test case, Target 273

(PDB-code: 1wdj), was chosen for its complex alpha-beta topology

that includes a beta barrel at the C-terminus. The molecule is

displayed in Figure 7. The prediction accuracy of DHPRED

(82.4%) is even higher than that of PSIPRED. Although, the

large number of different loop structures connecting the SSE is

the main problems for the DHPRED predictor, it assigns 33 of

51 (64.7%) correctly, while the residue dihedral state of PSIPRED

is only correct in 49.0% of the cases (Fig. 8 and Table 7).

Tables 6 and 7 summarize the results for the three targets.

Note that in all three cases false predictions tend to cluster and

that all methods show strong correlations on the residues for

which they predict the wrong class. While this is not surprising

for residues within ‘coil’ regions with their irregular H-bond

pattern, we find such ‘difficult residues’ also in helices that have

neither strong kinks nor bends. The observed correlation of false

predictions between three independent methods implies that in

these particular regions the local structures strongly deviate from

the average structures observed for similar sequences. We conjec-

ture that in these cases the local secondary structure is more strongly

determined by the non-local environment of the surrounding protein

seq    DQKKEENIQI AKIAKEKFDF LSTFKVGPYD LIDEDIQMKI
DSSP   HHHHHHHHHH HHHHHTT--G GGT--SSTT- ---HHHHHHH
DH    HHHHHHHHHH HHHHHHTHEH HHHEEHEHAE EEEHHHHHHH

DHPRED HHHHHHEEEE EEEEHHHHHH HHHEEEOEEE EEEHHHHHHH
PROF”  HHHHHHHEEE EEEEHHHHHH HHHEEEEHEE HHHHHHHHHH
PSI1”  HHHHHHHEEE HHHHHHHHHH HHHEEEEHHH HHHHHHHHHH
GOR”   HHHHHHHHHH HHHHHHHHHH HEEEEEEEEE EEHHHHHHHH

seq    KRTLYSSLDY KKENIEKLKE ILEILKKNSE HYNIIGRLIY
DSSP   HHHHHHHTTT -HHHHHHHHH HHHHHHTSGG GHHHHHHHHT
DH     HHHHHHHATT EHHHHHHHHH HHHHHHHEHH HHHHHHHHHH

DHPRED HHEEEEEHEE EHHHHHHHHH HHHHHHHEHH HHHHHHHHHH
PROF”  HHHHHHHHEH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
PSI1”  HHHHHHHHEH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
GOR”   HHEEEEHHHH HHHHHHHHHH HHHHHHHHHH HEEEEEEEEE

seq    HISWGIQFQI EQNLELIQNG VENLSQEESK SLLMQIKSNL
DSSP   TTHHHHHHHH HHHHHHHHT- GGGS-HHHHH HHHHHHHHHH
DH    HHHHHHHHHH HHHHHHHHHT HHHEEHHHHH HHHHHHHHHH

DHPRED HEEHHHHHHH HHHHHHHHHH HHHHEHHHHH HHHHHHHHHH
PSIP”  HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
PSI1” HEEEEEEEEE HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
GOR” EEEHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH

seq    EIKQRLKKTL NETLKVYNQN TQDNEKILAE H
DSSP   HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH H
DH    HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH H

DHPRED HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH H
PROF”  HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH H
PSI1”  HHHHHHHHHH HHHHHHHEHH HHHHHHHHHH H
GOR”   HHHHHHHHHH HHHHEEEHHH HHHHHHHHHH H

Fig. 6. True dihedral state and predictions for CASP6 target 238 (1w33A)

with different algorithms. Normal font: correct prediction, bold font: wrong

prediction, gray: not evaluated (ambiguous or outliers). (Fig. 4. for detailed

legend).

Fig. 7. Prediction for CASP6 target 273 (1wdjA). Black: correct prediction,

white: wrong prediction, gray: not evaluated (chain ends and outliers).

seq    RRLSELNPGY QWERSPEGRL WVSPTGGESG RRSLQLAYQL
DSSP   HHHHHHSTTE EEEE-TTS-E EEEE--HHHH HHHHHHHHHH
DH    HHHHHHEETE EEEEEHHTEE EEEEEEHHHH HHHHHHHHHH

DHPRED HHHHHHEHHE EEEEEHOEEE EEEEEEEEEE EHHHHHHHHH
PSIP”  HHHHHHHHHE EEEEEEEEEE EEEEEEHEEH HHHHHHHHHH
PSI1”  HHHHHHHHHH EEEEEHHEEE EEEEEHHHHH HHEHHHEHHE
GOR”   HHHHHHEHHE EEEEEHEEEE EEEEEEHHHH HHHHHHHHHH

seq    ARWNEERGLG VVFDSSTGFK FPDGSILSPD AAFVERGAWE
DSSP   HHHHHHH-SE EEE-TT--EE –TTS-EE--S EEEEEHHHHH
DH    HHHHHHHTHE EEEEHHEEEE EHHTEEEEEH EEEEEHHHHH

DHPRED HHHHHHHOEO EEEEEEEEEE EEEOEEEEEE EEEEEHHHEH
PSIP”  HHHHHHHEEE EEEEEEEEEE EEHHHHEHHE EEEEEHHHHH
PSI1”  HHHEHHHEEE EEEEEHHEEE EEHHEEEEHH HHHHHHHHHH
GOR”   HHHHHHHEEE EEEEEEEEEE EEEEEEEEHH HHHHHHHHHH

seq    ALSEAEREGF PPLAPKAVFE VRSASQDPEE LRAKMGIYLR
DSSP   TS-HHHHHSS -BS--SEEEE E--TTS-HHH HHHHHHHHHH
DH    HEEHHHHHEE EEEEEHEEEE EEEHHEEHHH HHHHHHHHHH

DHPRED HEEHHHHEOE EEEEHHEEEE EEEEEHHHHH HHHHHHHHHH
PSIP” HHHHHHHHHE HEEHHHEEEE EEEEHHHHHH HHHHHHHHHH
PSI1” HHHHHHHHEE EHHHHHHHHE HHHHHHHHHH HHHHHEEEEH
GOR” HHHHHHHHHH HHHHHHHHEE EHHHHHHHHH HHHHHHHEEH

seq    NGVLLGVLVD PYARAVEVFR PGKPPLRLEG VERVSL
DSSP   TT-SEEEEEE TTTTEEEEE- TTS--EEEES -SEEE-
DH    HTEHEEEEEE HHHTEEEEEE ETEEEEEEET EHEEEH

DHPRED HOEEEEEEEE HHHHEEEEEE EOEEHEEEEE HHEEEE 
PSIP” HHEEEEEEEE EHHHEEEEEE EHHEEEEEEE HEEEEH
PSI1” HEEEEEEEHH HHHHHHHHEE HHEEEEEEHE EEEEEE
GOR” HHEEEEEEEE HHHHHHEEEE HHEHHEEEEE EHEEEH

Fig. 8. True dihedral state and predictions for CASP6 target 273 (1wdjA)

with different algorithms. Normal font: correct prediction, bold font: wrong

prediction, gray: not evaluated (ambiguous or outliers). (Fig. 4. for detailed

legend).
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than it is on average. This is a principal limitation of all techniques

that use only local sequence information.

4 CONCLUSION AND OUTLOOK

We have developed a multi-step SVM-procedure DHPRED for

predicting the dihedral class of individual residues. The advantage

of such an approach over conventional secondary structure

prediction methods is twofold. First, some of the difficulties arising

from the inherent complexity of secondary structure definitions are

avoided and second, it leads to additional information in ‘coil’

regions. Our approach is based solely on sequence profiles. How-

ever, each step generates additional information on the dihedral

neighborhood that is used in the following step to improve the

prediction performance. The method compares favorably to non-

profile methods and is on par with PSIPRED regarding the overall

prediction quality.

While PSIPRED excels especially on proteins with high helix

content, DHPRED shows much higher prediction accuracy in

regions between SSE. For computational reasons, we have used

a rather small training set (20 000 residues from 499 proteins).

We expect that larger training sets and rigorous parameter optimi-

zation will improve the prediction results considerably. In the

future, we plan to use parallelized implementations of SVM algo-

rithms that will allow for the weighting of features. We will also try

to address some of the shortcomings of DHPRED e.g. employing

special training sets for Glycine and Proline, which have dihedral

preferences that deviate considerably from those of the other

amino acid residues. Starting from microscopic predictions, as in

DHPRED, we intend to target the prediction of macroscopic

secondary structure in a bottom-up approach.
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