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Support Vector Machines for
Texture Classification

Kwang In Kim, Keechul Jung, Se Hyun Park, and
Hang Joon Kim

Abstract—This paper investigates the application of support vector machines
(SVMs) in texture classification. Instead of relying on an external feature extractor,
the SVM receives the gray-level values of the raw pixels, as SVMs can generalize
well even in high-dimensional spaces. Furthermore, it is shown that SVMs can
incorporate conventional texture feature extraction methods within their own
architecture, while also providing solutions to problems inherent in these methods.
One-against-others decomposition is adopted to apply binary SVMs to multitexture
classification, plus a neural network is used as an arbitrator to make final
classifications from several one-against-others SVM outputs. Experimental results
demonstrate the effectiveness of SVMs in texture classification.

Index Terms—Support vector machines, texture analysis, pattern classification,
machine learning, feature extraction.
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1 INTRODUCTION

TEXTURE classification is basically the problem of classifying pixels
in an image according to their textural cues. This is different from
conventional image segmentation as the texture is characterized
using both the gray value for a given pixel and the gray-level
pattern in the neighborhood surrounding the pixel. Crucial to the
success of texture classification are 1) the identification of features
that differentiate textures in an image and developing their
representations for further classification and 2) the construction
of classification paradigms that operate on the above representa-
tions and discriminate between texture features associated with
different texture classes. Accordingly, the texture classification
problem is conventionally divided into the two subproblems of
feature extraction and classification [1], [2], [3].

Many methods have been developed to extract textural features,
which can loosely be classified as statistical, model-based, and
signal processing methods. In statistical approaches, textures are
described using statistical measures, such as the co-occurrence or
autocorrelation statistics of the gray levels for k-tuples of pixels [4],
[5]. The major drawback to this type of method is the enormous
amount of data involved in kth order statistics, which is especially
hard to handle when %k is large (k> 2). This is relevant as
psychophysical experiments have demonstrated that the human
visual system is able to extract some statistics of an order higher than
two [6]. Model-based methods characterize texture images based on
probability distributions in random fields, such as Markov chains
and Markov random fields (MRFs) [7], [9], [20], [30]. MRFs are
widely used because they yield a local and economical texture
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description [7]. However, they also require intensive computation to
determine the proper parameters [8]. Signal processing methods,
also known as multichannel filtering methods, are attractive due to
their simplicity [9]. In these methods, a textured input image is
decomposed into feature images using a bank of filters, such as
Gabor, wavelet, or neural network-based filters [10], [11], [12]. As a
result, a high-dimensional textural pattern can be represented by a
relatively small set of feature statistics that need to be extracted
using a set of well-selected filters. Therefore, the major issue for this
type of method is the selection of a good set of filters for a given
texture classification problem.

From Bayes classifiers to neural networks, there are many
possible choices for an appropriate classifier. Among these,
support vector machines (SVMs) would appear to be a good
candidate because of their ability to generalize in high-dimensional
spaces, such as spaces spanned by texture patterns. The appeal of
SVMs is based on their strong connection to the underlying
statistical learning theory. That is, an SVM is an approximate
implementation of the structural risk minimization (SRM) method
[13]. For several pattern classification applications, SVMs have
already been shown to provide better generalization performance
than traditional techniques, such as neural networks [14], [15].

The aim of this paper is to illustrate the potential of SVMs in
texture classification. Accordingly, a method for texture classifica-
tion using SVMs is described. Unlike other texture classification
methods, the proposed method does not externally incorporate
any of the abovementioned feature extraction methods. Instead,
the gray-level values of the raw pixels are directly fed to the SVM.
The only preprocessing of the input before feeding it to the SVM is
the selection of certain pixels following the configuration of
autoregressive (AR) features. As a result, both feature extraction
and classification are performed within the SVM architecture. The
proposed method is based on the observation that an SVM
incorporates feature extractors, therefore, nonlinear mapped input
patterns can be used as feature vectors. Actually, in an SVM,
feature extraction is implicitly performed by a kernel, which is
defined as the dot product of two mapped patterns. It is also
shown that one kernel (called a polynomial kernel) can perform the
same operations as conventional feature extraction methods
(specifically, statistical feature extraction and multichannel filter-
ing). Furthermore, SVMs with such a kernel can provide solutions
to the problems inherent in conventional feature extraction
methods. The main advantage of the proposed method is that
there is no need for a carefully designed feature extraction
mechanism because the feature extraction task is reduced to the
problem of training the SVMs. Thereafter, feature extraction and
classification are both performed in accordance with a unique
criterion referred to as the classification rate.

Since SVMs were originally developed for two-class problems,
their basic scheme is extended to multitexture classification by
adopting the one-against-others decomposition method. This works
by applying SVMs that first separate one class from all the other
classes, and then arbitrating between several SVMs. A neural
network is used as the arbitrator and the results are compared with
the commonly used max-selection scheme. The proposed method
was tested using several Brodatz and MIT Vision Texture images.
The excellent classification rates achieved in the experiments
confirm that SVMs are well-suited for texture classification.

2 OVERVIEW OF SVMs

An SVM constructs a binary classifier from a set of labeled patterns
called training examples. Let (x;,y;) € RN x {£1},i = 1,...,lbesuch
a set of training examples. The purpose is to select the function
fo: RN — {£1} from a given class of functions {f, : « € A} such
that f will correctly classify test examples (x,y). If no restriction is
placed on the class of functions when choosing the estimate f,evena
function that performs well with training data may not generalize
well to unseen examples. Hence, just minimizing the training error
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TABLE 1
Possible Kernel Functions and Types of Classifier

Inner product kernel

Type of classifier

Polynomial kermel: K(x,y)=(x-y)"

Polynomial learning machine

Gaussian kernel:

K(xy) = exp-—[x -y

1
20°

Radial-basis function network

Tangent hyperbolic kernel: K(x,y) = tanh(x-y - ©)

Two-layer perceptron

does not imply a small test error averaged over test examples drawn
from an underlying distribution P(x, y).

Statistical learning theory [13] shows that it is imperative to
restrict the class of functions so that f is chosen from a class with a
capacity that is suitable for the amount of available training data.
As such, this theory provides bounds for the test error. The
minimization of these bounds, which depend on both the empirical
risk and the capacity of the function class, leads to the principle of
structural risk minimization (SRM) [13], [16]. The best-known
capacity concept of this theory is the VC-dimension, defined as
the largest number of points that can be separated in all possible
ways using the functions of the given class [13].

To design learning algorithms, the capacity of the class of
functions selected needs to be computed. The SVM selects the class
of separating hyperplanes whose VC-dimension bounds can be
computed and then identifies the optimal separating hyperplane
(OSH) that maximizes the margin of the nearest examples. This is
equivalent to minimizing the VC-dimension bound. The OSH is
then computed as a decision surface of the form:

(1)

»

flx)= sgn< Vi X; -x+b>,

i=1
where {x} }:: | is a subset of the training data set. These subsets are
called support vectors (SVs) and are the points from the data set that
fall closest to the separating hyperplane. The coefficients ; and b are
determined by solving the large-scale quadratic programming
problem:
Maximize

N =

l l
W(Oé) = ZO&, - Z Q;0G5Y Y (Xg . Xj)
i=1 ij=1

subject to the constraints:

1
Sawi=0, 0<a;<C fori=1,...,L
i=1

The parameter C' can be regarded as the regularization parameter
and is selected by the user. A larger C' corresponds to assigning a
higher penalty to the training errors.

However, since it is unlikely that a general pattern recognition
problem can actually be solved by a linear classifier (separating
hyperplane), the OSH needs to be augmented in order to allow for
nonlinear decision surfaces. The basic idea is to map the data into
another dot product space (called the feature space) F via a
nonlinear map @ : RY — F and perform the above linear algo-
rithm in F. Since the solution has the form

J(x) = sen (2 i B(); B (x) + b>, (2)
i=1

it is nonlinear in the original input variables.

The mapping ® is performed in accordance with Cover’s
theorem on the seperability of patterns [17]. Consider a space made
up of nonlinearly separable patterns. Cover’s theorem states that
such a multidimensional space can be transformed into a new

feature space F' where the patterns are linearly separable with a
high probability, provided two conditions are satisfied: First, the
transformation is nonlinear and second, the dimensionality of the
feature space is high enough. Accordingly, F' usually needs to have
a very high dimensionality in order to be linearly separable.
This introduces the important problem of how to treat such
high-dimensional space computationally. This can be resolved
based on two observations: First, although some mappings have
very high dimensionalities, their inner products can be easily
computed, and second, all the & mappings used in the SVM occur
in the form of an inner product. Accordingly, the solution is to
replace all the occurrences of an inner product resulting from two
mappings with the kernel function K defined as:

K(x,y) = ®(x) - 2(y).

Conversly, given a symmetric positive kernel K(x,y), Mercer’s
theorem [29] implies the existance of a mapping ® such that
K(x,y) = ®(x) - ®(y). Then, without considering the mapping ®
explicitly, a nonlinear SVM can be constructed by selecting the
proper kernel. Table 1 summarizes the kernel functions for three
common types of SVMs: polynomial learning machines, radial basis
function networks (RBFNs), and two-layer perceptrons [13], [16].

3 TEXTURE CLASSIFICATION USING SUPPORT
VECTOR MACHINES

This section describes the classification system devised to assess
the potential of SVMs in texture classification. First, some useful
properties of SVMs for texture classification are discussed in
Section 3.1. Based on these properties, Section 3.2 outlines the
representation of texture patterns from an input image and
introduces an SVM classifier for a two-class texture classification
problem. Section 3.3 describes the SVM-neural network architec-
ture for more general multiclass texture classification problems.
Finally, the postprocessing method is presented in Section 3.4.

3.1 Optimality of SVMs for Texture Classification
The operation of an SVM for texture classification is two-fold:

1. The nonlinear mapping of a texture space into a possibly
high-dimensional feature space.
2. The construction of an OSH in the feature space.

Step 2 is explained in Section 2. Therefore, the current section
discusses the optimality of Step 1 for texture representations i.e.,
texture feature extraction, from two different perspectives:

e  Statistical feature extraction. By introducing various kernel
functions (for example, see Table 1), various ® mappings
can be used, which are implicitly imbedded in the SVMs.
One of these mappings (induced by a polynomial kernel)
takes the p-order correlations between the entries z; of the
input vector x. If x represents a texture pattern with entires
that are pixel values, this amounts to mapping the input
space into the space of the pth order products (monomials)
of the input pixels. It should be noted that the direct
computation of this type of feature is not easy, even for a
moderate sized problem, as N-dimensional input patterns
include Np = (N 4+ p — 1)!/p!(N — 1)! different monomials,
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Fig. 1. Architecture of two-class SVM texture classifier.

comprising a feature space F of dimensionality N. As such,
a 17 x 17 texture pattern and monomial degree p = 5 yield a
feature space dimensionality of about 10°%. However,
introducing a polynomial kernel facilitates work in such a
space, as a polynomial kernel with degree p corresponds to
the dot product of the feature vectors extracted by the
monomial feature extractor C), [13]:

(Cp(x) : Cp(Y)) C T, Yiy e Y

Il Il
=
= S
E =
kS
0
=

e  Signal processing. In multichannel filtering methods, a
textured input image is decomposed into a set of feature
images using a bank of filters. The decomposition is
accomplished by filtering the input image, applying a
nonlinear function to all the pixels in the filtered images,
and spatially smoothing each output image [10]. The
channels corresponding to different filters are assumed to
capture certain specific local characteristics of the input
texture, such as the spatial frequency, directionality, edge-
ness, etc. Yet, the major issue in multichannel filtering is the
filter selection problem: That is, the selection of a moderate
number of filters that can capture the textural properties of
the given classification problem. This filter selection
problem has been tackled both empirically [18] and
theoretically [19], [20]. However, the practical implementa-
tion of both types of solution, tend to be computationally
prohibitive, or result in a suboptimal solution. The opera-
tion performed by a kernel in an SVM is essentially the same
as that of a channel in a multichannel filtering method: The
kernel first computes the inner product z = x - y between its
input x and the SVs y and then performs a nonlinear
transformation ©. In the case of a polynomial kernel, this
transformation corresponds to a polynomial function
(©(z) = (z)"). The only difference is that the spatial
smoothing of the feature values is omitted, as in the
proposed method, this is performed in a postprocessing
stage. In the new method, the SVs play the role of a filter
bank. Even though they are not designed as filters for
capturing specific frequency bands or orientations, they can
still extract critical measures for classification. As such, it
should be noted that an SVM can emphasize the correct
separation of training data through the selection of filters

SUpport vectors X;.....x,

lexture pattern X

textured image

(SVs), while, in a classical multichannel filtering approach,
the filter selection criteria are generally not directly related
to classification performance. In this respect, an SVM
texture classifier is rather similar to a neural network-based
multichannel filtering method [12]. However, in contrast to
a neural network, an SVM is more concerned with
minimizing the test error than with directly minimizing
the training error. Futhermore, in an SVM, the number of
filters and their coefficients are both automatically deter-
mined by the number of SVs and their values, respectively.
By selecting the SVs as special-purpose filters optimized for
given textures, the SVM can automatically identify an
optimal feature extractor and the corresponding texture
classifier based on a unified criterion of minimizing the test
error for a given texture classification task.

3.2 Data Representation and Classification of
Two-Class Textures

The simplest way to characterize the variability in a texture pattern
is by noting the gray-level values of the raw pixels. This set of gray
values becomes the feature set on which the classification is based.
An important advantage of this approach is the speed with which
images can be processed, as the features do not need to be
calculated. However, the main disadvantage is that the size of the
feature vector is large. Accordingly, a texture classifier may need to
generalize texture patterns in a high-dimensional space. SVMs are
the proper tool for this problem because they are capable of
learning in sparse and high-dimensional spaces with very few
training examples. Furthermore, SVMs themselves incorporate
feature extractors and can use their nonlinear mapped input

500 . T T . . .

400

3000 =

VC-dimension

200+ i N o -

100

Polynomial degree

Fig. 2. Estimated VC-dimension of SVMs for polynomial degrees 2 through 9.
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Fig. 3. Two-texture images used in experiments.

pattern ®(x) as features for classification (see Section 3.1).
Therefore, it may be advantageous to allow SVMs to extract
features directly from the pixels rather than forcing them to base
their features on a different user-defined feature set.

Fig. 1 shows the architecture of an SVM texture classifier, which
involves three layers with entirely different roles. The input layer
is made up of source nodes that connect the SVM to its
environment. Its activation x comes directly from the gray-level
values of the M x M window in the input image. However,
instead of using all the pixels in the window, the input
configuration for extracting AR features (only the shaded pixels
from the input window in Fig. 1) [9] is used. This reduces the size
of the feature vector from M? to 4M-3, thereby resulting in an
improved generalization performance and classification speed.
The hidden layer applies a nonlinear transformation from the
input space to the feature space F, where the inner products are
computed. These two operations are in practice performed in a
single step using the kernel function. The size of the hidden layer
m is determined as the number of SVs identified by the SVM. It
should also be noted that the SVs help shape and better define the
decision surface, when compared with other patterns and are
border patterns from a geometrical point of view. Consequently,
since there are usually very few SVs, the size of the hidden layer is
moderate. The output layer is a hyperplane classifier, supplying
the response of the network to the activation pattern applied to the
input layer. The sign of the SVM output y represents the class of
the central pixel in the input window.

The parameters that need to be tuned in the SVMs include the
kernel parameters and regularization parameter C. One straight-
forward method for tuning is to use validation data, which are
distinct from the training data. However, when the amount of
available training data is limited, it is important to have an
alternative means of tuning the parameters, without having to put
aside parts of the training set for validation purposes. The
proposed method for tuning the parameters is mainly based on
Scholkopf et. al’s work [21].

The strength of an SVM is based in its automatic capacity control
(in terms of the VC-dimension). This capacity control takes place
within a class of functions {f, : @ € A} specified a priori by the
choice of the kernel function (or equivalently F)). Scholkopf et. al
pointed out that the VC-dimension of f, can be estimated by a term
that is in proportion to the radius r of the smallest ball containing all
the data points in F' [21]. Since r depends on the shape of F, the
VC-dimension depends on the kernel parameters (p, in the case of a
polynomial kernel). The estimation of r from the given kernel
parameters can be formulated in a similar way to training SVMs [21].
The VC-dimension and training errors can then be compared to
select the optimal kernel parameters. The proposed strategy is to
select those parameters that minimize r, while retaining a zero

TABLE 2
Training Errors for Fig. 3a as a Function of p
p 1 2 3 4 5 6-9
Error rate (%) 28.1 7.5 2.1 0 0 0

training error in the trained system in the corresponding F. In the
case of a polynomial kernel, the condition for a zero training error
would appear to be reasonable because preliminary experiments on
the classification of several texture images have shown that the
training error diminishes when p > 4. However, for more complex
problems, this condition could be relaxed. For the same reason,
parameter C' does not have a significant effect on the classification
because, in the case of a zero training error, it is not included in the
computation of the OSH. Accordingly, a C value of 100 was used in
the current study for training the SVMs. Readers interested in the
automatic selection of C are referred to [22].

A two-class texture classification problem was considered as an
example (Fig. 3a). SVMs with a varying p were trained with
2,000 training examples obtained using random selections of
1,000 patterns from both classes. The input window size was fixed
at 17 x 17. The estimated VC-dimensions and training errors for
different degrees are shown in Fig. 2 and Table 2. From the results, the
optimal degree for this problem was determined to be 5, which
exhibited the minimal VC-dimension and produced zero training
errors.

3.3 Multiclass Texture Classification

The previous section described an SVM for a two-class texture
classification problem, called a dichotomy. This may also be
appropriate for texture-based object detection applications when
discriminating an object from the background. However, the
majority of texture classification problems involve more than two
textures. Consequently, extended SVMs are required for applica-
tion to multiple textures, and the optimal design of multiclass SVM
classifiers is still an area of active research. One frequently used
method is one-against-others decomposition, which works by
constructing an SVM w, for each class r that first separates that
class from all the other classes and then uses an expert F' to
arbitrate between each SVM output in order to produce the final
decision. The effectiveness of this method in the problem of texture
classification has already been demonstrated using HMM-based
classifiers [23].

A max-selector is the simplest form of arbitrator. If g=
(¢",...,¢")" denotes the output' of a system of R one-against-
others SVMs, the max-selector picks class r for the input x, which
then maximizes ¢ as defined by

F = argmax(g).

However, a max-selector suffers from a scaling problem because it
assumes that all the gs are on the same scale, which is not the case
for SVMs. If the SVM is trained to produce outputs for the SVs as
+1, the scale is not robust as it only depends on a few data, often
including outliers [24]. In a max-selector, the output class is
determined by choosing the maximum of all the SVM outputs.
However, the outputs of the remaining SVMs, other than the
winner, also carry certain information. Moreover, the mean of g
can vary significantly according to the class of input [24]. This

1. The distance from the OSH obtained by removing sgn(-) from (1) and (2).
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Fig. 4. Multitexture images used in experiments.

TABLE 3
Sources of Test Images

Image Sources
Figs. 3(a) and 3(c) D4 and D84 from [25]
Fig. 3(b) D5 and D92 from [25]
Fig. 4(a) D4, D9, D19, and D57 from [25]
Fig. 4(b) Fabric.0007, Fabric.0009, Leaves.0003, Misc.0002, and Sand.0000 from [26]
Fig. 4(c) Fabric.0000, Fabric.0007, Flowers.0005, Food.0005, Grass.0001, Metal 0002,

Misc.0002, Sand.0000, and Stone.0004 from [26]

knowledge can be used to improve the overall recognition
performance. In [24], a stacking technique based on linear mapping
was applied for normalizing g. While this technique shows
significant improvements over the bare one-against-others decom-
position, preliminary experiments have indicated that a linear
normalization is often insufficient for texture classification as the
relation among gs becomes nonlinear. In the current work, after
uniformly scaling g by applying a tangent hyperbolic function
h = (h,...,h)", a nonlinear mapping M : R" — R is used to
aggregate the answers of all the SVMs into a score for each class.
Thus, the arbitrator can be defined by

F = argmax(M(h(g))).

A two-layer neural network, composed of a size 2 hidden layer with
a tangent hyperbolic activation function, is adopted for the mapping
M. The network is designed to minimize the mean square error
between h(g(x)) and the desired output y = (—1,...,+1,... — 1)7
and trained using a back-propagation algorithm.

3.4 Postprocessing

Any method can result in a classification error. In the proposed
method, misclassified pixels usually take the form of noisy speckles
scattered across the entire classification image. In this case, simple
image smoothing techniques can reduce the error rate by an order of
magnitude. In the current study, two-dimensional median filtering
with a window size of five was used for postprocessing the classified
image. The application of this method improved the error rate by an
average of 7 percent. However, it is worth noting that the error rate
created by a smoothing technique may depend on the size and shape
of the uniformly textured regions.

4 EXPERIMENTAL RESULTS

To verify the effectiveness of the proposed method, experiments
were performed on a supervised segmentation of several test
images. The test images were drawn from two different commonly

used texture sources: the Brodatz album [25] and MIT Vision
Texture (VisTex) database [26] (See Figs. 3 and 4). Table 3
summarizes the sources of the test images.

All textures were originally gray-scale images with 256 levels.
The texture classifier was trained on randomly selected portions of
256 %256 subimages of texture images that were not included in the
test images. To make the textures indiscriminable for the local
mean gray level or local variance, both the training and test images
were globally histogram-equalized before being used and the gray
scales linearly normalized into [—1,1]. The desired classes for the
patterns were then manually assigned. Patterns lying on the
texture boundaries were excluded from the training set due to the
difficulties involved in manually assigning the desired value for
the training pattern. Accordingly, this introduced a tradeoff when
choosing the appropriate window size for the classification
accuracy of uniform texture regions and texture boundaries, as
the shape and size of the texture boundaries and input window
size all affect the performance of the classification method.
Therefore, the experiments were performed with different input
window sizes of 5 x 5,9 x 9, 13 x 13, 17 x 17, and 21 x 21.

Polynomial kernels were emphasized because of their relevance
to conventional feature extraction methods, yet the performance of
the SVMs with other kernels, including a linear SVM (with a
polynomial kernel of degree 1), was also tested. All the experiments
were performed using a 500 MHz Pentium3 CPU. The time spent
classifying an image depended on the number of texture classes
(equal to the number of SVMs), input window size, type of kernels,
and number of SVs. It took about one minute to classify the entire
image of Fig. 3a using a degree-5 polynomial kernel and
17 x 17 window.

4.1 Two-Texture Images

The sizes of the images in Fig. 3 are 512 x 256 and the size of each
textured subregion is half that of the test image. The sources of the
texture classes in Fig. 3c are the same as those in Fig. 3a. However,
since the texture boundary in Fig. 3c is more complex and larger
than that in Fig. 3a, a larger window size was considered to be
disadvantageous for classifying Fig. 3c, when compared with
Fig. 3a. The training data set was obtained by randomly selecting
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TABLE 4
Error Rates and Number of SVs for Figs. 3a and 3b with a 17 x 17 Window Using Varying Polynomial Degrees
Polynomial degree p 1 3 5 7 9
Fig. 3(a) Error rate  29.4% 11.6% 8.6% 8.5% 9.1%
e # of SVs 698 142 135 149 146
Fig. 3(b) Errorrate 313% 14.1% 119% 120% 11.4%
g # of SVs 854 309 332 342 327
TABLE 5

Error Rates (%) with Different Window Sizes

Window size

Kernel Image
xS 9x9 13x13  17x17_ 21x21
. Fig.3() _ 17.8 12.7 9.4 8.6 13.0
Polynomial = —0 = ) 205 14.6 12.1 11.9 15.6

kernel (p=5) =

Fig.3(c) 202 15.4 12.2 133 17.9
. Fig.3(a)  17.3 13.1 1.8 10.6 13.2
Gauf;‘i%"f)r“el Fig.3(b) 213 15.2 132 12.3 17.2
- Fig.3(c) 216 17.1 12.9 13.7 18.5
Tangent Fig.3(a) 204 16.4 15.5 13.1 153
hyperbolic kernel  Fig. 3(b) 243 19.7 153 14.9 19.2
(0=1.5) Fig. 3(c)  28.1 214 16.3 17.9 215

1,000 patterns from each texture. This corresponded to about
1.7 percent of the total available input patterns.

To evaluate the effect of the polynomial degree p on the texture
classification performance, a set of experiments was performed
with varying degrees of p. The input window size was fixed at
17 x 17. Table 4 shows the error rates and numbers of SVs for the
classification of Figs. 3a and 3b. The highest recognition rates were
obtained using degree-7 and -9 polynomial kernels. However, no
obvious optimum was identified. Higher degrees of p afforded a
low error rate, while a saturation point was reached when p > 5.
Although not optimal in testing, a degree-5 polynomial kernel for
Fig. 3a, estimated from the training set (see Section 3.2), was
identified as second best, which was only slightly behind the best
(0.1 percent). For a degree-1 polynomial kernel (i.e., linear SVM),
the problem was not separable and the error rate was rather high.
In this case, all the training errors were related to the SVs, thereby
causing a larger number of SVs. The number of SVs only slightly
increased with an increasing polynomial degree. When compared
with the number of training patterns, the relatively large number
of SVs revealed that the texture-learning task for Fig. 3b was rather
difficult to solve. Since no significant difference was observed
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Fig. 5. First 40 components of average feature vectors for textures D5 and D92.

across the classification results when p > 5, a fixed value of five
was used for p in the rest of the experiments.

The error rates according to the various window sizes are
summarized in Table 5. The tendency for a smaller error rate
was observed with larger input window sizes, except for a
21 x 21 window. The 17 x 17 window exhibited the best overall
performance for the images in Figs. 3a and 3b. For more complex
texture boundaries (Fig. 3c), the unstable classification of those
patterns lying on the texture boundaries resulted in a larger error rate
for a 17 x 17 window. For comparison, classification results using
Gaussian kernels and tangent hyperbolic kernels are also presented,
where the parameters (0 = 0.5 for Gaussian kernels and © = 1.5 for
tangent hyperbolic kernels) were empirically selected. The highest
recognition rates were obtained when using a polynomial kernel.
The Gaussian kernels were slightly outperformed by the polynomial
kernels, whereas the tangent hyperbolic kernels produced much
higher error rates.

It should be noted that Fig. 3b was very difficult to discriminate
for several texture feature extraction approaches, including Laws
filters (a bank of band pass filters [28]), optimal representation
Gabor filters, etc. [9], whereas an SVM with a polynomial kernel
resulted in a rather low error rate. This demonstrates the usefulness
of a monomial feature extractor induced by a polynomial kernel.
Since it is not easy to visualize the feature space when the
polynomial degree is larger than 2, the operation of this space was
indirectly observed through the kernel responses (activation of
hidden layer in Fig. 1). Fig. 5 shows the first 40 components of the
average kernel responses calculated from each texture class (D5,
D92). The distinct signatures observed from each texture class
highlight the role of the hidden layer as a discriminative feature
extractor for a given texture classification problem. It should also be
noted that the operation of the hidden layer is essentially the same as
that of a multichannel filtering scheme (see Section 3.1).

TABLE 6
Error Rates (%) with Postprocessing
Window size Fig. 3(a) Fig. 3(b) Fig. 3(c)
13x13 1.1 0.8 2.3
17x17 0.3 0.2 2.9
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Fig. 6. Classification results for two texture classes: (a), (e), and (i) reference images, (b), (f), and (j) classification results for Figs. 3a, 3b, and 3c using only texture
classifier, (c), (g), and (k) postprocessed results of (b), (f), and (j), respectively, and (d), (h), and (I) misclassified pixels illustrated as black-gray levels.

TABLE 7
Error Rates (%) for Multitexture Images

Window size 5x5 9%9 13%x13 17x17 21x21
Fig. 4(a) 28.8 22.3 17.3 16.1 21.8
Fig. 4(b) 28.5 21.8 20.0 18.5 19.7
Fig. 4(c) 29.9 27.7 22.9 24.2 29.9
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Fig. 7. Classification results for four texture classes: (a) reference image, (b), (c), (d), (e) intermediate results obtained from classification using individual SVMs,
(f) classification results using SVM and neural network, (g) postprocessed result, and (h) misclassified pixels illustrated as black-gray levels.

The error rates in Table 5, except for Fig. 3b, were higher than
those reported in previous texture analysis literature because no
smoothing or averaging of the outputs was used. Accordingly,
when the classification results were postprocessed, the error rates
were substantially reduced (Table 6 and Fig. 6). In particular, in the
case of Fig. 3b, postprocessing resulted in almost perfect
classification. However, since this technique means the error rates
depend heavily on the size and shape of uniform texture regions,

the analysis of the classification results in the current study
concentrated on those results obtained without postprocessing.

4.2 Multitexture Images

Fig. 4a shows a 256 x 256-size test image composed of four Brodatz
textures. 2,000 training patterns (500 from each texture class) were
used to train four SVMs. The best error rate obtained was
16.1 percent when using a 17 x 17 window (Table 7), while the
average error rate of each one-against-others was 9.9 percent. It
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TABLE 8
Classification Results Using Various Multiclass Extension Methods

Method Error rate (%)
One-against-others 21.2
One-against-others with linear 17.2
normalization [24]

One-against-others with neural network 15.9
Onc-against-onc 19.9
All-at-once [27] 22.4
Avcrage 19.3

should be noted that the classification errors occurring in the
individual SVMs did not necessarily end up as errors in the
arbitrated classification image. Fig. 7 shows the classification results.

To understand the relevance of the results obtained with the
proposed multiclass extension method for SVMs, a comparison
was made of the classification results obtained from several
different extension methods, including simple one-against-others,
one-against-others with linear normalization [24], one-against-one,
and all-at-once. For the all-at-once method, the implementation of
a library for support vector machines (LIBSVM) made by Hsu and
Lin [27] was utilized. Table 8 summarizes the results. Scaling with
a neural network significantly improved one-against-others, which
ranked as the best, meanwhile linear normalization and one-
against-one came in second and third, respectively, and all-at-once
showed a rather inferior performance.

Fig. 4b shows a 256 x 256-size test image composed of 5 VisTex
textures. To train the classifier, 500 patterns were randomly selected
from each texture class. The best error rate was 18.5 percent when
using a 17 x 17 window (Table 7). Fig. 4c shows another textured
image consisting of nine VisTex textures. The image size is 384 x 384
and the size of each textured subregion is 128 x 128. A total of
3,600 patterns were randomly selected (400 patterns from each
texture class) as the training set, corresponding to about 2.4 percent
of the total input patterns. The best error rate was 22.9 percent,
obtained when using a 13 x 13 window. In Fig. 4b, most of the errors
were related to classifying the first texture class (Fabric.0007) due to
difficulties in discriminating between the first and third texture
classes (Fabric.0007 and Leaves.0003). In contrast, in Fig. 4c, many of
the misclassified pixels were near the boundaries between the
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different textures (more than 50 percent of the total errors identified).
Fig. 8 shows the classification results of the two images.

4.3 Comparisons

So far, SVMs have only been applied directly to the gray values of
raw pixels. This configuation is based on two observations: SVMs
work well even in high-dimensional spaces, plus they incorporate
feature extractors within their own architecture. Yet, there is still a
question as to the quality of the classification result when external
feature extraction is used with an SVM. Accordingly, experiments
were performed using one of the most commonly used feature
extraction methods for texture classification. A multichannel
filtering method was used based on Gabor filters with four different
orientations (0°, 45°, 90°, and 135°) and four high-radial frequencies
64/ V2, 32 / V2,16 / V2, and 8 / V2 cycles per image), as described in
[10]. The classification of the extracted features was performed using
SVMs with a polynomial kernel of degree 5. To make the
comparison fair, the feature images were not averaged before being
fed to the classifier. In addition, for benchmark comparisons with
other classification methods, experiments were also performed
using neural networks. The networks included two hidden layers of
size 20 with tangent hyperbolic activation functions and were
trained using a back-propagation algorithm minimizing the mean
squared error. Following the studies of Jain and Karu [12], where
neural networks were also used to classify textures, the number of
training steps was fixed at 1,000,000. To avoid local minima, the
reported results were obtained by training 10 neural networks with
different initial weights, and then selecting the minimal error over
all the results.

Table 9 shows the results for the classification of Figs. 3a and 3b.
For comparison, the results obtained from the SVM are also
presented. With Gabor filters, a slight improvement was observed
in Fig. 3a, while a significant increment in the error rate was
observed in Fig. 3b. As such, the ability to achieve acceptable
results without the use of Gabor filters indicates the possibility of
using SVMs directly on texture patterns. In contrast, the better
performance of the SVM over the neural network suggests that the
decision boundary generated by the SVM was more effective in
generalizing the given set of texture patterns.
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Fig. 8. Texture classification results for Figs. 4b and 4c: (a) and (e) reference images, (b) and (f) classification results, (c) and (g) classification results after

postprocessing, and (d) and (h) misclassified pixels illustrated as black-gray levels.
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TABLE 9
Error Rates (%) Using Different Classifiers

Neural networks SVMs Gabor filters + SVMs
Fig. 3(a) 13.9 8.6 8.3
Fig. 3(b) 17.8 11.9 16.4

5 CONCLUSIONS

This paper described an SVM-based texture classification method to
assess the potential of SVMs in texture classification. With the
exception of adopting the input configuration from the AR features,
the proposed method does not use any external feature extraction
scheme. Instead, the SVMs receive the gray-level values of the raw
pixels as the input pattern. The rationale for this configuration is that
an SVM has the capability of learning in high-dimensional spaces,
such as gray-level texture pattern spaces, plus it can incorporate a
feature extraction scheme within its own architecture. The validity
of using polynomial kernels for texture feature extraction was also
discussed from two feature extraction perspectives. The excellent
performance achieved by an SVM when using these kernels also
supported these views. For a multitexture classification problem,
one-against-others decomposition is adopted and a neural network
used to arbitrate the outputs of each SVM.

Future studies will investigate incorporating more texture-
specific knowledge within SVM architectures. Possible choices
include the selection of a feature space induced by specific kernels.
For example, a Fourier-domain analysis would be helpful in
extracting specific frequency and orientation components. Some of
the main applications of this method include page-layout segmen-
tation, text location in a video image, and textured object detection.
Accordingly, further experiments are required related to real-world
applications along with the fine-tuning of certain parameters, such
as the input window size and structure of the arbitrator.
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