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Abstract—Microwave Imaging (MI) has been widely investigated
as a method to detect early stage breast cancer based on the
dielectric contrast between normal and cancerous breast tissue at
microwave frequencies. Furthermore, classification methods have been
developed to differentiate between malignant and benign tumours. To
successfully classify tumours using Ultra Wideband (UWB) radar,
other features have to be examined other than simply the dielectric
contrast between benign and malignant tumours, as contrast alone
has been shown to be insuficient. In this context, previous studies
have investigated the use of the Radar Target Signature (RTS) of
tumours to give valuable information about the size, shape and surface
texture. In this study, a novel classification method is examined, using
Principal Component Analysis (PCA) to extract the most important
tumour features from the RTS. Support Vector Machines (SVM) are
then applied to the principal components as a method of classifying
these tumours. Finally, several different classification architectures are
compared. In this study, the performance of classifiers is tested using
a database of 352 tumour models, comprising four different sizes and
shapes, using the cross validation method.

1. INTRODUCTION

Microwave Imaging is an appealing method for early-breast cancer
detection as it does not involve the use of ionising radiation (as is the
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case of X-Ray mammography). MI is based on the dielectric differences
between the constituent tissues of the breast at microwave frequencies,
as recently thoroughly studied by Lazebnik et al. [1, 2].

Three different approaches have been proposed in order to image
the breast based on these contrasting dielectric properties: UWB
Radar Imaging, Microwave Tomography and Time-Reversal FDTD
methods. The UWB Radar Imaging involves illuminating the breast
with a UWB pulse, and recording the resulting backscattered signals.
Subsequently, these recorded signals are processed using a beamforrner
to identify the presence and location of significant dielectric scatterers
within the breast [3–5], which potentially indicates the presence of
tumours. Microwave Tomography involves a full reconstruction of
the dielectric profile of the breast, by solving a forward and inverse
scattering problem. These algorithms seek to minimise the difference
between measured and calculated electric fields [6–11]. Time-Reversal
Finite-Difference Time Domain (FDTD) algorithm involves applying
time-reversed FDTD equations to all points of the breast grid, with
the wave converging at the tumour point [12–14].

Although, historically, many MI studies have looked at methods
to help detect and locate a tumour within the breast, only a few
studies have looked at the classification of the detected suspicious
masses. Chen et al. [15, 16] studied the effect of the morphology of
different tumours on the late-time response of backscattered signals
obtained from an FDTD breast model. In these studies, 2D models of
benign and malignant tumours were created using an approximation
to irregular polygons, with an eleptical baseline, which had been used
by Rangayyan et al. [17] to circumscribe different breast tumours
in X-Ray Mammographies. Chen also developed an algorithm that
allows for the location of a tumour and indicates, by means of a
correlation, whether the lesion boundary is more or less irregular,
possibly indicating whether a tumor is benign or malignant. More
recently, in [18], Chen et al. analysed the issue of classification after
applying a contrast-agent to lesions in order to increase the contrast
between cancerous and normal breast tissue.

In Davis et al. [19] tumours are modelled in a 3D Total-
Field/Scattered-Field (TF/SF) FDTD model, so that only the
response from the tumour is recorded in the backscattered signals and
can be directly analysed, without the need for any more hardware
or software than is already used for UWB imaging. In this study
the tumours were modelled using Gaussian Random Spheres, first
introduced by Muinonen [20, 21], to represent different shapes and sizes
of tumours. A full classification algorithm composed of two methods
for basis selection followed by a Linear Discriminant Analysis (LDA)
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based classifier was applied to a database with targets ranging between
four sizes and three shapes.

Previous work by the authors [22] extended the work by Davis et
al. [19] by investigatings and evaluating various different classification
architectures, adding extra granularity to the tumour classification
process by introducing the macrolobulated shape to benign tumours,
and introducing the Quadratic Discriminant Analysis (QDA) as an
alternative classification method.

This paper has two significant contributions:

- The investigation of Support Vector Machines (SVM) to classify
tumours based on their RTS;

- comparison of SVM with existing classification methods, such as
LDA and QDA [22].

The remainder of the paper is organised as follows: Section 2
describes the experimental setup, including the numerical tumour
models and FDTD simulation; Section 3 presents the feature extraction
method used (PCA); Section 4 describes the SVM classification
algorithm and the different architectures of classifiers; in Section 5 the
results and discussion are presented; finally in Section 6 the conclusions
are drawn and future work is suggested. It must be noted that some
subjects in Sections 2 and 3 have already been described in [22] but
they are included in this paper for completeness.

2. EXPERIMENTAL SET

This section is divided into two subsections: in Section 2.1 the models
used for representing the different tumours are detailed and in Section
2.2 describes the FDTD model in which the tumours are placed.

2.1. Tumour Models

For the purpose of classification, the significant features defining the
tumour are: size, shape and texture of surface, since these will
most significantly influence the RTS of tumours. Benign tumours
typically have smooth surfaces and have spherical, oval or at least
well-circumscribed contours. Conversely, malignant tumours usually
present rough and complex surfaces with spicules or microlobules, and
their shapes are typically irregular, ill-defined and asymmetric. In
this study, the main concern is the shape classification of early-stage
tumours, up to 1 cm in radius, and therefore shape and texture of
the surface are the two most important features to help differentiate
between a benign and a malignant tumour, whereas size may be
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crucial when looking at the development of a tumour over a period of
time and may indicate malignancy when the tumour reaches a higher
volume [17, 23–25].

In this study, the tumours are modelled using the Gaussian
Random Spheres (GRS) method [19–21]. GRS can be created in
different sizes and shapes by mathematically modifying the mean
radius (α) and the covariance function of the logarithmic radius (or
simply logradius). The shape, r = r(ϑ, ϕ), is described in spherical
coordinates (r, ϑ, ϕ) by the spherical harmonics series for the logradius
s = s(ϑ, ϕ):

r(ϑ, ϕ) = α exp
[
s(ϑ, ϕ)− 1

2
β2

]
(1)

s(ϑ, ϕ) =
∑∞

l=0

∑l

m=−l
slmYlm(ϑ, ϕ) (2)

In the equations above, β is the standard deviation of the logradius, slm

are the spherical harmonics coefficients and Ylm are the orthonormal
spherical harmonics.

The database of tumours used in this study includes four different
models of tumours in four different sizes, similar to [22]. The four
different types of models of tumours are spiculated, microlobulated,
macrolobulated and smooth GRS, in which the first two represent
malignant tumours, and the others represent benign tumours.
Microlobulated, macrolobulated and smooth GRS are obtained by
varying the correlation angle from low to high. Furthermore, spiculated
GRS are obtained by adding 3, 5 or 10 spicules to smooth GRS. The
average radius of all types of spheres take discrete values: 2.5, 5, 7.5 or
10mm [22]. Among all sizes and shapes, the number of tumour models
developed was 352. A sample of each of the four shapes of the GRS,
with a radius of 5 mm, is shown in Figure 1, which was previously
reproduced in [22].

2.2. FDTD Simulation

The breast and the tumour are modelled using a 3D Finite-Difference
Time-Domain (FDTD) model in which the dielectric properties of the
different types of tissue are incorporated. The FDTD model has a
0.5mm cubic grid resolution. The backscattered signals are generated
through a Total-Field/Scattered-Field (TF/SF) region, in which the
tumours are completely embedded in the Total Field (TF) [19, 22].

The TF/SF region has the following dimensions: the Scattered
Field (SF) is a square geometric prism with square bases measuring
153.5mm on the side and the height measuring 137.5mm. The TF
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(a) (b)

(c) (d)

Figure 1. Samples of different Gaussian Random Spheres. From
left to right, top to bottom: (a) smooth, (b) macrolobulated, (c)
microlobulated and (d) spiculated (5 spicules) models, with an average
radius size of 5 mm.

is located at the centre of the SF and is represented by a cube with
50mm on each side. The origins of the SF and the TF are co-located
at (0, 0, 0)mm. The TF/SF region is terminated with a 6 mm Uniaxial
Perfectly Matched Layer (UPML) which suppresses any boundary
reflections [19, 22, 26].

For all simulations, the whole breast region is modelled with
Debye parameters for homogeneous lossy adipose tissue, whereas the
tumour areas are modelled with Debye parameters for malignant
tissue, as established by Lazebnik et al. [1, 2]. The Debye parameters
for malignant tissue are as follows: ε∞ = 6.749, ∆ε = 50.09, σs =
0.794 Sm−1 and τ = 10.50 ps; whereas for homogeneous lossy adipose
tissue they are as follows: ε∞ = 3.140, ∆ε = 1.708, σs = 0.036 Sm−1

and τ = 14.65 ps.
A pulsed plane wave is transmitted towards the target from four

equidistant points, hitting the target at four different angles. The
location of the four observation points are at: (0, 0,−74), (−74, 0, 0),
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(0, 0, 74) and (74, 0, 0)mm, in (x, y, z) axes. The resulting co-polarised
backscatter signals are recorded and analysed from the same four
observation points. It must be noted that only co-polarised backscatter
is recorded as this was previously found to provide sufficiently high
classification performance without the extra computational cost that
would involve analysing full polarimetric backscatter [19]. The incident
pulse is a modulated Gaussian pulse with centre frequency at 6GHz
and a 1/e full temporal width of 160 ps [19]. For the first observer
location, (0, 0,−74), the pulse is linearly polarised in the y and x
direction and transmitted in the z direction, for the remaining observer
locations the pulse is polarised and transmitted accordingly. Each
observation point is located in the SF all around the tumour at a
constant distance of 74 mm from the centre of the tumour, which
is located at the centre of the TF/SF region. The four acquired
backscattered recorded signals are then downsampled from 1200 GHz
to 75 GHz.

Figure 2, adapted from [22], shows a representation of the TF/SF
grid, with the location of the origin of the first incident plane wave and
respective observer point (X) as well as the position of the tumour. All

Figure 2. Cross-section of the 3D FDTD space lattice partitioned into
Total Field (TF), Scattered Field (SF) and UPML regions. The target,
a spiculated tumour located at the centre of the TF, is illuminated by a
pulsed plane wave (the arrows indicate the direction of the plane wave
and the line in front of the arrows represents its origin) propagating
in the +z direction and backscatter is recorded at the first observer
location: (0, 0,−74)mm (represented by X). All four observation
points are represented by small circles in the image.
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four observation points are represented by small circles.

3. TUMOUR CLASSIFICATION ALGORITHM

The tumour classification algorithm comprises two steps: the
extraction of relevant features from each recorded backscattered signal
and the classification method itself. The feature extraction method
used is Principal Component Analysis (PCA), similar to [22], which
ultimately allows for the extraction of the principal components of the
RTS from each tumour. This is followed by a dimensionality reduction
in which the more representative Principal Components of the data are
selected. Finally, Support Vector Machines (SVM) are used to classify
the selected Principal Components. The following two subsections
present the two steps of the classification algorithm separately.

3.1. Principal Components Analysis

PCA reduces the dimensionality of multivariate data and reveals
simplified structures that are often hidden in the original data set while
also disregarding less relevant information such as noise or colinearities
in signals [27, 28]. PCA allows for a new representation of the original
data in which maximal variance is exposed, so that data may then
be better discriminated. Mathematically, the basis that was used to
record the original signals is changed, by means of a linear algebraic
operation, into a new orthonormal basis that allows for the data to
present maximal variance [28]. The resulting principal components
are ordered by decreasing variance. It must be noted that PCA
is non-parametric so only the data influences the PCA calculation
disregarding any prior knowledge on the acquiring system or known
labels [19, 28].

A dimensional reduction of the principal components is often
completed for computational simplicity, restricting the principal
components to a minimum that represents the original data
satisfactorily [29].

To obtain the principal components of a matrix X represented
by (m × n), where m is the number of measurements and n is the
number of samples, the mean of the sample for each ith measurement is
subtracted and finally the basis vectors hm, which are the eigenvectors
of the covariance matrix C = E{X} are calculated. The centered
data is represented, for each ith measurement, by its Karhunen-Loéve
expansion:

X− E{X} =
∑Nm

m=1
θmhm, (3)
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in which θm represents each basis expansion coefficient and Nm

represents the full dimensionality of the problem [19, 28].

3.2. Classifiers Based on Support Vector Machines

This Section is presented in three steps: the first step describes
the SVM method, the second step details the preprocessing of data
for application of SVM, and the final step presents the different
architectures of classifiers using the SVM implementation.

3.2.1. Support Vector Machines

The SVM learning algorithm is typically used as a method to handle
nonlinear relations between the samples input vectors and their labels
by succesfully classifying linearly inseparable data into two groups [30–
37].

A learning machine is a type of classification algorithm in which
the machine learns the system, so the user must provide a labeled
training group from which the machine will generalise a decision
(hyperplane) to differentiate between the classes of any member within
the testing group. For the particular case of the SVM, the input vectors
are mapped to a higher-dimension feature space by means of a Kernel
(K) [34, 35].

The Kernel used for this study is the Radial Basis Function
(RBF), which allows for all input vectors to be non-linearly mapped
in an infinite-dimension feature space, typically a Hilbert Space. The
decision hyperplane can then be obtained in the feature space and is
generically given in the following format:

wx + b = 0 (4)

in which w is the normal to the hyperplane, x is the data and b is the
bias.

Knowing that the data can be represented by the inner product
xi · xj (this is an implication of using an infinite feature space), the
equation for the RBF is defined in Equation (5):

K(xi, xj) = exp(−γ||xi − xj ||2), γ > 0 (5)

in which γ is the scaling factor of the RBF Kernel [30, 31].
It should be noted that the decision hyperplane is supported by

two parallel vectors, one on each side of the hyperplane. Each of
these support vectors are at the same distance from the hyperplane
— margin — and each of them limits either the first or the second
labels. A classifier will work better when the value for the margin is
maximised, so the concept of a soft margin is introduced, as opposed
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to hard margins, as described in [31, 34, 35]. When soft margins are
used, it implies that the support vectors are most likely built with
supporting samples that represent meaningful samples of the training
group; while outlier samples, such as noisy data or unusual data, are
ignored for the calculation of the support vectors. If such conditions
are met, the learning machine ensures high generalisation [30, 32, 33]
and therefore will be able to successfully classify an independent testing
group. Knowing that the training set is composed of sample-label pairs
(xi, xj), in which i = 1, . . . , l represents each sample, xi represents the
input vectors of each sample and yi represents the respective label,
the soft margins can be calculated by following the mathematical
optimisation in Equation (6):

minw,b,ξ

[
1
2
(w ·w) + C

∑l

i=1
ξi

]
(6)

with the following conditions: yi(w · xi + b) ≥ 1 − ξi, in which the
slack variable ξi ≥ 1. While for the hard margin the data is scaled
so that the margin equals 1, for the soft margin the margin can be
below one as it is given by 1− ξi. However, this results in the increase
of the objective function since the sum of errors, given by

∑l
i=1 ξi, is

multiplied by C [30, 35]. The function of C is two-fold: it controls the
relative weighting to keep w · w small (as the size of the margin is
maximised) and it ensures that most samples have a functional margin
of at least 1 [33].

3.2.2. Data Preprocessing

For application of SVM, the data needs to be preprocessed so that
the SVM classification algorithm can be optimised adequately for the
samples, as efficiently as possible. These preprocessing steps are as
follows:

i) Scaling of the training and data set;
ii) Application of the Kernel function, RBF;
iii) Application of the Cross-Validation method;
iv) Optimisation of the RBF parameters.
In the first step, the input vectors (represented by the selected

Principal Components) for each sample in both training and testing
group are scaled to the range [−1, +1]. This step is important so that
attributes in greater numeric ranges do not dominate those in smaller
numeric ranges, and also that the computational load of the whole
algorithm is restricted [30].

For the second step of the SVM algortihm, the RBF is applied.
Another issue that has to be considered is the fact that the

combination of (C, γ) for the RBF Kernel has to be tested on the
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training data through a cross-validation, or leave-one-out, method,
as this will help to optimise the training accuracy (while minimising
the generalisation error, i.e., the ratio of misclassified samples). A
cross-validation method allows for outlier samples that represent
noise or unusual data to be removed, and as a result, some of the
outlier supporting samples may be omitted from the final solution.
Effectively, the training data is divided in equally-sized A subsets
and, sequentially, each of these subsets is tested against the remaining
(A− 1) training subsets. And so the cross-validation accuracy is given
by the percentage of samples correctly classified, or by the average of
the performance of each sub-classification [30, 31].

Finally, the parameters of the chosen Kernel function are adjusted
so that the classifier is successful in classifying independent testing
groups. For the RBF, the combination of (C, γ) is optimised, C is the
penalty parameter of the error term, and as earlier mentioned, γ is
the scaling factor of the RBF Kernel. A parameter search, such as the
Grid-Search described in [30], is applied to the data set.

3.2.3. Classifier Architectures

Six different classifier architectures are considered, in which there are
different combinations of size and/or shape SVM binary classifiers. The
different architectures are defined by the size and/or shape granularity,
i.e., if there are coarse or fine size and/or shape classifiers. Coarse size
classifiers split tumours in one step into two size groups (the first group
has 2.5 and 5 mm tumours and the second group has 7.5 and 10mm
tumours) and fine size classifiers further split the RTS into the four
subcategories of size (2.5, 5, 7.5 and 10mm) in two steps. Coarse
shape classifiers split tumours into two groups in one step (benign
and malignant tumours) and Fine shape classifiers further split benign
tumours into smooth and macrolobulated tumours, and malignant
tumours into microlobulated and spiculated tumours in two steps. In
this study, the following architectures of classifiers are used: Coarse-
Shape (CS), Fine-Shape (FS), Coarse-Size-Coarse-Shape (CSCS),
Coarse-Size-Fine-Shape (CSFS), Fine-Size-Coarse-Shape (FSCS) and
Fine-Size-Fine-Shape (FSFS). For more details on these architectures,
the reader is advised to refer to the authors’ previous work [22].

It must be emphasised that the use of a coarse or fine size
classifier does not influence the decision of whether a tumour is
benign or malignant, however it may influence the performance of
the following shape classifier. Additionally, it must be emphasised
that a coarse shape classifier is used to classify tumours into either
malignant or benign tumours, which may be sufficient for most clinical
applications. However, the extra granularity available through the



Progress In Electromagnetics Research B, Vol. 23, 2010 321

fine shape classifier provides further classification of tumours giving
important clinical information on the development stage of a breast
tumour, for instance a macrolobulated shape could potentially be an
indicator of pre-malignancy and therefore closer surveillance of the
patient may be required.

4. RESULTS AND DISCUSSION

For all results, a database of 352 models, with signals recorded
from four different angles, was used for training and testing the
classifiers, using the Cross-Validation method described in Section
3.2. Similar experimental work was previously carried out by the
authors [22] and results indicated that 30 principal components,
extracted through PCA, are sufficient as they offer a good compromise
between classification accuracy and computational time.

The results for the six different architecture of classifiers are
presented in Table 1, which presents the names of the different
architectures and the corresponding accuracy results. The accuracy
results are shown in three columns which represent:

- the partial accuracy for the size classification;
- the partial accuracy for the shape classification;
- the overall accuracy for the size-then-shape classifier.

The accuracy of the partial size or the partial shape classifier is
expressed in terms of the proportion of tumours correctly identified
in terms of size or shape, respectively, in isolation. The overall
accuracy for the size-then-shape classifier is calculated by multiplying
the partial accuracies for the size and shape classifiers and represents

Table 1. Accuracy for size and subsequent shape classifiers and
overall size-then-shape classifier using SVM binary classification for
six different architectures of classifiers, with γ set to 16 and C set
to 256. LDA and QDA results obtained in [22] are added for direct
comparison of classification methods (*).
Architectures of classifiers Partial size classifier (%) Partial shape classifier (%) Size-then-shape classifier (%) 

 SVM LDA* QDA* SVM LDA* QDA* SVM LDA* QDA* 

Coarse-Shape N/A 89.20 80.90 84.03 N/A 

Fine-Shape N/A 72.73 58.33 55.90 N/A 

Coarse-Size-Coarse-Shape 94.89 93.05 91.32 90.62 87.15 82.29 85.99 81.10 75.13 

Coarse-Size-Fine-Shape 94.89 93.05 91.32 75.00 67.36 62.15 71.16 62.68 56.76 

Fine-Size-Coarse-Shape 86.93 79.86 72.22 90.34 86.80 84.72 78.53 69.32 61.19 

Fine-Size-Fine-Shape 86.93 79.86 72.22 75.28 69.44 64.58 65.44 55.46 46.64 
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the percentage of tumours correctly classified in terms of both size and
shape.

Examining Table 1, it must be noted that there is an error
propagation when a partial coarse size (or shape) classifier is extended
to a fine classifier: as any misclassified tumours in the first step of the
size (or shape) classification — which corresponds to the results of the
coarse classifier — are necessarily misclassified in the second step of size
(or shape) classification. This error propagation results in an absolute
performance decrease of 7.96% for the partial size classification and
between 15.06% and 16.47% for the partial shape classifications.

Examing the six architectures in Table 1, it can be observed that
applying a size classifier, both coarse and fine, to the whole group
of 352 tumours, results in better performance than applying a shape
classifier in isolation, for both coarse and fine classifiers. In absolute
terms, the performance of the coarse size classifier is 5.69% higher than
the coarse shape classifier, and the fine size classifier is 14.20% higher
than the fine shape classifier when applied directly to the whole data
set. Given these results it is sensible to investigate the performance
of a shape classifier when a size classifier is previously applied, like in
architectures CSCS, CSFS, FSCS and FSFS.

It is also observed that the partial shape classifier has slightly
higher performance when there is a previous size classifier compared
to when there is no previous size classification: the partial coarse shape
classifier is highest in CSCS, 90.62%, when there is a previous coarse
size classifier, and the partial fine shape classifier is highest in FSFS,
75.28%, when there is a previous fine size classifier. However, it must be
noted that the performance of the partial shape classifiers does not vary
significantly depending on whether there is a previous size classifier or
not, in absolute terms, the performance of the coarse shape classifier in
CSCS is 1.42% higher than in CS and the performance of the fine shape
classifier in FSFS is 2.55% higher than in FS. Another observation
that must be made is that shape classifiers perform significantly better
when discriminating between malignant and benign tumours when
compared to classifiers that further discriminate between the four
shape categories. This difference of performance varies between 15.06
and 16.47% in absolute terms.

In terms of the overall performance of the classifiers it is observed
that the more steps of partial size and/or shape classifiers the lower
the overall performance. Conversely, the fewer steps of partial size
and/or shape classifiers the higher the overall performance. The overall
performance drops by 23.76%, in absolute terms, from the architectures
CS to FSFS. The performance of the classifiers decreases with the
increase of granularity for two specific reasons:
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- Firstly, for fine classification (e.g., differentiating between smooth
and macrolobulated), the RTSs of the tumours are quite similar,
so classification is much more difficult and misclassifications are
much more likely to occur;

- Secondly, when classifiers are grouped in architectures such as the
ones used in this study, errors can propagate through the multi-
stage classifier. For instance, a microlobulated tumour which is
first classified as benign will never be classified correctly in a
fine shape classifier (as it will automatically be misclassified as
a smooth or a macrolobulated tumour).

The misclassified tumours in terms of both size and shape are
recorded at each step of the classification architectures. In general it
was observed that the number of tumours misclassified for one class
was very similar to the number of tumours misclassified for the other
class. However, there were two noticeable exceptions:

- The fine classifier misclassified several smooth tumours as
macrolobulated and vice-versa despite the type of size pre-
classification. This is due to the similarity between these two
types of benign tumours.

- There is a significant number of spiculated tumours misclassified
as microlobulated and vice-versa for larger tumours (with 7.5 and
10mm radius). This can be explained by the fact that the spicules
of the spiculated tumours are always the same length (independent
of the tumour radius). Therefore, in smaller tumours models,
the spicules extend further beyond the surface of the tumour
compared to larger tumours. In larger malignant tumours, the
spicules may not influence the RTS of the tumours as much as
for smaller spiculated tumours, and therefore misclassifications
between larger spiculated and microlobulated tumours are more
likely to occur.

Comparing the SVM results with the LDA and QDA results obtained
in [22] for a 288 tumour-database, the SVM outperforms the other
two classifiers for all the architectures used for this study: CS, FS,
CSCS, CSFS, FSCS and FSFS. The most noticeable improvements
are observed in the size-then-shape performance of the FSFS, which is
9.98% and 18.80% higher, in absolute terms, for SVM than for LDA
and QDA, respectively. Also, in absolute terms, the partial coarse
shape classifier in CSCS is 3.47% and 8.33% higher in SVM than it is
for LDA and QDA, respectively; and the partial fine shape classifier
in FSFS is 5.84% and 10.70% higher in SVM than for LDA and QDA,
respectively. The reason why SVM results outperforms both LDA
and QDA classification algorithms is due to the fact that SVM is
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able to handle nonlinear relations between measurements and their
classes by mapping the measurements in a higher dimension feature
space, allowing for an optimised classification whereas the dimension
feature space of LDA and QDA is limited by the dimensions of the
measurements.

5. CONCLUSIONS AND FUTURE WORK

In this paper, a novel classification scheme based on SVM is used to
classify 352 breast tumours in terms of size and shape. The size is
correctly classified in coarse and fine groups with an accuracy of 94.89%
and 86.93%, respectively. The shape is correctly classified in coarse
groups with an accuracy varying between 89.20% to 90.62% between
the CS and the CSCS architectures, identifying a tumour as either
benign or malignant. The shape is correctly classified in fine groups
with an accuracy varying between 72.73% to 75.28% between the FS
and the FSFS architectures, indentifying more precisely the stage of
development of a tumour. Regarding the size-then-shape accuracy of
the classifiers, it can be concluded that as granularity increases, the
classification performance decreases.

Future work will include the study of dielectric heterogeneity and
its impact on classification algorithms. Spiking Neural Networks will
also be investigated as an alternative tumour classification algorithm.
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