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Support Vector Machines
with Applications1

Javier M. Moguerza and Alberto Muñoz

Abstract. Support vector machines (SVMs) appeared in the early nineties
as optimal margin classifiers in the context of Vapnik’s statistical learning
theory. Since then SVMs have been successfully applied to real-world data
analysis problems, often providing improved results compared with other
techniques. The SVMs operate within the framework of regularization theory
by minimizing an empirical risk in a well-posed and consistent way. A clear
advantage of the support vector approach is that sparse solutions to classifi-
cation and regression problems are usually obtained: only a few samples are
involved in the determination of the classification or regression functions.
This fact facilitates the application of SVMs to problems that involve a large
amount of data, such as text processing and bioinformatics tasks. This paper
is intended as an introduction to SVMs and their applications, emphasizing
their key features. In addition, some algorithmic extensions and illustrative
real-world applications of SVMs are shown.

Key words and phrases: Support vector machines, kernel methods, regular-
ization theory, classification, inverse problems.

1. INTRODUCTION

In the last decade, support vector machines (SVMs)
have increasingly turned into a standard methodology
in the computer science and engineering communities.
As Breiman [12] pointed out, these communities are
often involved in the solution of consulting and indus-
trial data analysis problems. The usual starting point
is a sample data set {(xi ,yi ) ∈ X × Y }ni=1, and the
goal is to “learn” the relationship between the x and y
variables. The variable X may be, for instance, the
space of 20 × 20 binary matrices that represent alpha-
betic uppercase characters and Y would be the label
set {1, . . . ,27}. Similarly, X may be R
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corresponding to a document data base with a vocab-
ulary of 10,000 different words. In this case Y would
be the set made up of a finite number of predefined
semantic document classes, such as statistics, com-
puter science, sociology and so forth. The main goal in
this context usually is predictive accuracy, and in most
cases it is not possible to assume a parametric form
for the probability distribution p(x,y). Within this set-
ting many practitioners concerned with providing prac-
tical solutions to industrial data analysis problems put
more emphasis on algorithmic modeling than on data
models. However, a solely algorithmic point of view
can lead to procedures with a black box behavior, or
even worse, with a poor response to the bias–variance
dilemma. Neural networks constitute a paradigmatic
example of this approach. The (semiparametric) model
implemented by neural networks is powerful enough to
approximate continuous functions with arbitrary preci-
sion. On the other hand, neural network parameters are
very hard to tune and interpret, and statistical inference
is usually not possible [51].

The SVMs provide a compromise between the para-
metric and the pure nonparametric approaches: As
in linear classifiers, SVMs estimate a linear decision
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function, with the particularity that a previous mapping
of the data into a higher-dimensional feature space may
be needed. This mapping is characterized by the choice
of a class of functions known as kernels. The sup-
port vector method was introduced by Boser, Guyon
and Vapnik [10] at the Computational Learning The-
ory (COLT92) ACM Conference. Their proposal sub-
sumed into an elegant and theoretically well founded
algorithm two seminal ideas, which had already indi-
vidually appeared throughout previous years: the use
of kernels and their geometrical interpretation, as intro-
duced by Aizerman, Braverman and Rozonoer [1], and
the idea of constructing an optimal separating hyper-
plane in a nonparametric context, developed by Vapnik
and Chervonenkis [78] and by Cover [16]. The name
“support vector” was explicitly used for the first time
by Cortes and Vapnik [15]. In recent years, several
books and tutorials on SVMs have appeared. A ref-
erence with many historical annotations is the book
by Cristianini and Shawe-Taylor [20]. For a review of
SVMs from a purely geometrical point of view, the pa-
per by Bennett and Campbell [9] is advisable. An ex-
position of kernel methods with a Bayesian taste can
be read in the book by Herbrich [30]. Concerning the
statistical literature, the book by Hastie, Tibshirani and
Friedman [28] includes a chapter dedicated to SVMs.

We illustrate the basic ideas of SVMs for the two-
group classification problem. This is the typical version
and the one that best summarizes the ideas that under-
lie SVMs. The issue of discriminating more than two
groups can be consulted, for instance, in [37].

Consider a classification problem where the dis-
criminant function is nonlinear, as illustrated in Fig-
ure 1(a). Suppose we have a mapping � into a “feature
space” such that the data under consideration have be-
come linearly separable as illustrated in Figure 1(b).

From the infinite number of existing separating hy-
perplanes, the support vector machine looks for the
plane that lies furthermost from both classes, known
as the optimal (maximal) margin hyperplane. To be
more specific, denote the available mapped sample by
{(�(xi ), yi)}ni=1, where yi ∈ {−1,+1} indicates the
two possible classes. Denote by wT �(x) + b = 0 any
separating hyperplane in the space of the mapped data
equidistant to the nearest point in each class. Under the
assumption of separability, we can rescale w and b so
that |wT �(x) + b| = 1 for those points in each class
nearest to the hyperplane. Therefore, it holds that for
every i ∈ {1, . . . , n},

wT �(xi ) + b

{≥ 1, if yi = +1
≤ −1, if yi = −1.

(1.1)

After the rescaling, the distance from the nearest point
in each class to the hyperplane is 1/‖w‖. Hence, the
distance between the two groups is 2/‖w‖, which is
called the margin. To maximize the margin, the follow-
ing optimization problem has to be solved:

min
w,b

‖w‖2

subject to (s.t.)(1.2)

yi

(
wT �(xi ) + b

) ≥ 1,

i = 1, . . . , n,

where the square in the norm of w has been intro-
duced to make the problem quadratic. Notice that,
given its convexity, this optimization problem has no
local minima. Consider the solution of problem (1.2),
and denote it by w∗ and b∗. This solution deter-
mines the hyperplane in the feature space D∗(x) =
(w∗)T �(x) + b∗ = 0. Points �(xi ) that satisfy the

FIG. 1. (a) Original data in the input space. (b) Mapped data in the feature space.
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equalities yi((w∗)T �(xi ) + b∗) = 1 are called sup-
port vectors [in Figure 1(b) the support vectors are the
black points]. As we will make clear later, the sup-
port vectors can be automatically determined from the
solution of the optimization problem. Usually the sup-
port vectors represent a small fraction of the sample,
and the solution is said to be sparse. The hyperplane
D∗(x) = 0 is completely determined by the subsample
made up of the support vectors. This fact implies that,
for many applications, the evaluation of the decision
function D∗(x) is computationally efficient, allowing
the use of SVMs on large data sets in real-time envi-
ronments.

The SVMs are especially useful within ill-posed
contexts. A discussion of ill-posed problems from a
statistical point of view may be seen in [55]. A com-
mon ill-posed situation arises when dealing with data
sets with a low ratio of sample size to dimension. This
kind of difficulty often comes up in problems such
as automatic classification of web pages or microar-
rays. Consider, for instance, the following classifica-
tion problem, where the data set is a text data base
that contains 690 documents. These documents have
been retrieved from the LISA (Library Science Ab-
stracts) and the INSPEC (bibliographic references for
physics, computing and engineering research, from the
IEE Institute) data bases, using, respectively, the search
keywords “library science” (296 records) and “pattern
recognition” (394 records). We have selected as data
points the terms that occur in at least ten documents,
obtaining 982 terms. Hence, the data set is given by a
982 × 690 matrix, say T , where Tij = 1 if term i oc-
curs in document j and Tij = 0 otherwise. For each
term, we check the number of library science and pat-
tern recognition documents that contain it. The highest
value determines the class of the term. This procedure
is standard in the field of automatic thesaurus gener-
ation (see [5]). The task is to check the performance
of the SVM classifier in recovering the class labels ob-
tained by the previous procedure. Notice that we are
dealing with about 1000 points in nearly 700 dimen-
sions. We have divided the data set into a training set
(80% of the data points) and a test set (20% of the data
points). Since the sample is relatively small with re-
spect to the space dimension, it should be easy for any
method to find a criterion that separates the training set
into two classes, but this does not necessarily imply the
ability to correctly classify the test data.

The results obtained using Fisher linear discrimi-
nant analysis (FLDA), the k-nearest neighbor classifier

TABLE 1
Classification percentage errors for a two-class text data base

Method Training error Test error

FLDA 0.0% 31.4%
k-NN (k = 1) 0.0% 14.0%
Linear SVM 0.0% 3.0%

(k-NN) with k = 1 and the linear SVM [i.e., taking �

as the identity map �(x) = x] are shown in Table 1.
It is apparent that the three methods have been able

to find a criterion that perfectly separates the train-
ing data set into two classes, but only the linear SVM
shows good performance when classifying new data
points. The best result for the k-NN method (shown
in the table) is obtained for k = 1, an unsurprising re-
sult, due to the “curse of dimensionality” phenomenon,
given the high dimension of the data space. Regarding
FLDA, the estimation of the mean vectors and covari-
ance matrices of the groups is problematic given the
high dimension and the small number of data points.
The SVMs also calculate a linear hyperplane, but are
looking for something different—margin maximiza-
tion, which will only depend on the support vectors.
In addition, there is no loss of information caused by
projections of the data points. The successful behavior
of the support vector method is not casual, since, as we
will see below, SVMs are supported by regularization
theory, which is particularly useful for the solution of
ill-posed problems like the present one.

In summary, we have just described the basics of a
classification algorithm which has the following fea-
tures:

• Reduction of the classification problem to the com-
putation of a linear decision function.

• Absence of local minima in the SVM optimization
problem.

• A computationally efficient decision function (spar-
se solution).

In addition, in the next sections we will also discuss
other important features such as the use of kernels as a
primary source of information or the tuning of a very
reduced set of parameters.

The rest of the paper is organized as follows. Sec-
tion 2 shows the role of kernels within the SVM ap-
proach. In Section 3 SVMs are developed from the
regularization theory perspective and some illustrative
examples are given. Section 4 reviews a number of
successful SVM applications to real-world problems.



SUPPORT VECTOR MACHINES 325

In Section 5 algorithmic extensions of SVMs are pre-
sented. Finally, in Section 6 some open questions and
final remarks are presented.

2. THE KERNEL MAPPING

In this section we face one of the key issues of
SVMs: how to use �(x) to map the data into a
higher-dimensional space. This procedure is justified
by Cover’s theorem [16], which guarantees that any
data set becomes arbitrarily separable as the data di-
mension grows. Of course, finding such nonlinear
transformations is far from trivial. To achieve this task,
a class of functions called kernels is used. Roughly
speaking, a kernel K(x,y) is a real-valued function
K :X × X → R for which there exists a function
� :X → Z, where Z is a real vector space, with the
property K(x,y) = �(x)T �(y). This function � is
precisely the mapping in Figure 1. The kernel K(x,y)

acts as a dot product in the space Z. In the SVM liter-
ature X and Z are called, respectively, input space and
feature space (see Figure 1).

As an example of such a K , consider two data points
x1 and x2, with xi = (xi1, xi2)

T ∈ R
2, and K(x1,x2) =

(1+xT
1 x2)

2 = (1+x11x21 +x12x22)
2 = �(x1)

T �(x2),
where �(xi ) = (1,

√
2xi1,

√
2xi2, x

2
i1, x

2
i2,

√
2xi1xi2).

Thus, in this example � : R2 → R
6. As we will show

later, explicit knowledge of both the mapping � and
the vector w will not be needed: we need only K in its
closed form.

To be more specific, a kernel K is a positive def-
inite function that admits an expansion of the form
K(x,y) = ∑∞

i=1 λi�i(x)�i(y), where λi ∈ R
+. Suf-

ficient conditions for the existence of such an ex-
pansion are given in Mercer’s theorem [43]. The
function K(x,y), known as a Mercer’s kernel, im-
plicitly defines the mapping � by letting �(x) =
(
√

λ1�1(x),
√

λ2�2(x), . . .)T .
Examples of Mercer’s kernels are the linear ker-

nel K(x,y) = xT y, polynomial kernels K(x,y) = (c +
xT y)d and the Gaussian kernel Kc(x,y) = e−‖x−y‖2/c.
In the first case, the mapping is the identity. Poly-
nomial kernels map the data into finite-dimensional
vector spaces. With the Gaussian kernel, the data are
mapped onto an infinite dimensional space Z = R

∞
(all the λi 	= 0 in the kernel expansion; see [63] for the
details).

Given a kernel K , we can consider the set of func-
tions spanned by finite linear combinations of the form
f (x) = ∑

j αjK(xj ,x), where the xj ∈ X. The com-
pletion of this vector space is a Hilbert space known as

a reproducing kernel Hilbert space (RKHS) [3]. Since
K(xj ,x) = �(xj )

T �(x), the functions f (x) that be-
long to a RKHS can be expressed as f (x) = wT �(x),
with w = ∑

j αj�(xj ), that is, f (x) = 0 describes
a hyperplane in the feature space determined by �

[as the one illustrated in Figure 1(b)]. Thus, reproduc-
ing kernel Hilbert spaces provide a natural context for
the study of hyperplanes in feature spaces through the
use of kernels like those introduced in Section 1. With-
out loss of generality, a constant b can be added to f

(see [64] for a complete discussion), taking the form

f (x) = ∑
j

αjK(xj ,x) + b.(2.1)

Equation (2.1) answers the question of how to use �(x)

to map the data onto a higher-dimensional space:
Since f (x) can be evaluated using expression (2.1)
[in which only the kernel values K(xj ,x) are in-
volved], � acts implicitly through the closed form
of K . In this way, the kernel function K is employed
to avoid an explicit evaluation of � (often a high-
dimensional mapping). This is the reason why knowl-
edge of the explicit mapping � is not needed.

As we will show in the next section, SVMs work
by minimizing a regularization functional that involves
an empirical risk plus some type of penalization term.
The solution to this problem is a function that has the
form (2.1). This optimization process necessarily takes
place within the RKHS associated with the kernel K .
The key point in this computation is the way in which
SVMs select the weights αj in (2.1) (the points xj are
trivially chosen as the sample data points xi ). A nice
fact is that the estimation of these weights, which de-
termine the decision function in the RKHS, is reduced
to the solution of a smooth and convex optimization
problem.

3. SUPPORT VECTOR MACHINES:
A REGULARIZATION METHOD

In Section 1 we introduced the formulation of SVMs
for the situation illustrated in Figure 1(b), where the
mapped data have become linearly separable. We con-
sider now the more general case where the mapped
data remain nonseparable. This situation is illustrated
in Figure 2(a). The SVMs address this problem by find-
ing a function f that minimizes an empirical error of
the form

∑n
i=1 L(yi, f (xi )), where L is a particular

loss function and (xi , yi)
n
i=1 is the available data sam-

ple. There may be an infinite number of solutions, in
which case the problem is ill-posed. Our aim is to show
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FIG. 2. (a) Nonseparable mapped data in the feature space. (b) Normalized hyperplane for the data in (a).

how SVMs make the problem well-posed. As a conse-
quence, the decision function calculated by the SVM
will be unique, and the solution will depend continu-
ously on the data.

The specific loss function L used within the SVM
approach is L(yi, f (xi )) = (1 − yif (xi ))+, with
(x)+ = max(x,0). This loss function is called hinge
loss and is represented in Figure 3. It is zero for well
classified points with |f (xi )| ≥ 1 and is linear other-
wise. Hence, the hinge loss function does not penalize
large values of f (xi ) with the same sign as yi (under-
standing large to mean |f (xi )| ≥ 1).

This behavior agrees with the fact that in classifi-
cation problems only an estimate of the classification
boundary is needed. As a consequence, we only take
into account points such that L(yi, f (xi )) > 0 to deter-
mine the decision function.

To reach well-posedness, SVMs make use of regu-
larization theory, for which several similar approaches

have been proposed [33, 60, 73]. The widest used
setting minimizes Tikhonov’s regularization function-
al [73], which consists of solving the optimization
problem

min
f ∈HK

1

n

n∑
i=1

(
1 − yif (xi )

)
+ + µ‖f ‖2

K,(3.1)

where µ > 0, HK is the RKHS associated with the
kernel K , ‖f ‖K denotes the norm of f in the RKHS
and xi are the sample data points. Given that f be-
longs to HK , it takes the form f (·) = ∑

j αjK(xj , ·).
As in Section 2, f (x) = 0 is a hyperplane in the fea-
ture space. Using the reproducing property 〈K(xj , ·),
K(xl , ·)〉K = K(xj ,xl) (see [3]), it holds that ‖f ‖2

K =
〈f,f 〉K = ∑

j

∑
l αjαlK(xj ,xl).

In (3.1) the scalar µ controls the trade-off between
the fit of the solution f to the data (measured by L) and
the approximation capacity of the function space that f

belongs to (measured by ‖f ‖K ). It can be shown [11,

FIG. 3. Hinge loss function L(yi, f (xi )) = (1 − yif (xi ))+: (a) L(−1, f (xi )); (b) L(+1, f (xi )).
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48] that the space where the solution is sought takes the
form {f ∈ HK :‖f ‖2

K ≤ (supy∈Y L(y,0))/µ}, a com-
pact ball in the RKHS. Note that the larger µ is, the
smaller is the ball and the more restricted is the search
space. This is the way in which regularization the-
ory imposes compactness in the RKHS. Cucker and
Smale [21] showed that imposing compactness on the
space assures well-posedness of the problem and, thus,
uniqueness of the solution (refer to the Appendix for
details).

The solution to problem (3.1) has the form f (x) =∑n
i=1 αiK(xi ,x) + b, where xi are the sample data

points, a particular case of (2.1). This result is known
as the representer theorem. For details, proofs and gen-
eralizations, refer to [36, 67] or [18]. It is immediate
to show that ‖f ‖2

K = ‖w‖2, where w = ∑n
i αi�(xi ).

Given this last result, problem (3.1) can be restated as

min
w,b

1

n

n∑
i=1

(
1 − yi(wT �(xi ) + b)

)
+ + µ‖w‖2.(3.2)

It is worth mentioning that the second term in (3.2) co-
incides with the term in the objective function of (1.2).
Problems (3.1) and (3.2) review some of the key issues
of SVMs enumerated at the end of Section 1: Through
the use of kernels, the a priori problem of estimating a
nonlinear decision function in the input space is trans-
formed into the a posteriori problem of estimating the
weights of a hyperplane in the feature space.

Because of the hinge loss function, problem (3.2)
is nondifferentiable. This lack of differentiability im-
plies a difficulty for efficient optimization techniques;
see [7] or [47]. Problem (3.2) can be turned smooth by
straightforwardly formulating it as (see [41])

min
w,b,ξ

1
2‖w‖2 + C

n∑
i=1

ξi

s.t. yi

(
wT �(xi ) + b

) ≥ 1 − ξi,

i = 1, . . . , n,(3.3)

ξi ≥ 0, i = 1, . . . , n,

where ξi are slack variables introduced to avoid the
nondifferentiability of the hinge loss function and
C = 1/(2µn). This is the most widely used SVM for-
mulation.

The slack variables ξi allow violations of con-
straints (1.1), extending problem (1.2) to the nonsep-
arable case [problem (1.2) would not be solvable for
nonseparable data]. The slack variables guarantee the

existence of a solution. The situation is shown in Fig-
ure 2(b), which constitutes a generalization of Fig-
ure 1(b). Notice that problem (1.2) is a particular case
of problem (3.3). To be more specific, if the mapped
data become separable, problem (1.2) is equivalent to
problem (3.3) when, at the solution, ξi = 0. Intuitively,
we want to solve problem (1.2) and, at the same time,
minimize the number of nonseparable samples, that is,∑

i #(ξi > 0). Since the inclusion of this term would
provide a nondifferentiable combinatorial problem, the
smooth term

∑n
i=1 ξi appears instead.

We have deduced the standard SVM formulation
(3.3) via the use of regularization theory. This frame-
work guarantees that the empirical error for SVMs con-
verges to the expected error as n → ∞ [21], that is,
the decision functions obtained by SVMs are statisti-
cally consistent. Therefore, the separating hyperplanes
obtained by SVMs are neither arbitrary nor unstable.
This remark is pertinent since Cover’s theorem (which
guarantees that any data set becomes arbitrarily sepa-
rable as the data dimension grows) could induce some
people to think that SVM classifiers are arbitrary.

By standard optimization theory, it can be shown that
problem (3.3) is equivalent to solving

min
λ

1
2

n∑
i=1

n∑
j=1

λiλjyiyjK(xi ,xj ) −
n∑

i=1

λi

s.t.
n∑

i=1

yiλi = 0,(3.4)

0 ≤ λi ≤ C, i = 1, . . . , n.

The λi variables are the Lagrange multipliers asso-
ciated with the constraints in (3.3). This problem is
known in optimization theory as the dual problem
of (3.3) [7]. It is convex and quadratic and, therefore,
every local minimum is a global minimum. In practice,
this is the problem to solve, and efficient methods spe-
cific for SVMs have been developed (see [34, 58, 61]).

Let the vector λ∗ denote the solution to prob-
lem (3.4). Points that satisfy λ∗

i > 0 are the support
vectors (shown in black in Figure 2(b) for the non-
separable case). It can be shown that the solution to
problem (3.3) is w∗ = ∑n

i=1 λ∗
i yi�(xi ) and

b∗ = −
∑n

i=1 λ∗
i yiK(xi ,x+)

2
(3.5)

+
∑n

i=1 λ∗
i yiK(xi ,x−)

2
,

where x+ and x− are, respectively, two support vec-
tors in classes +1 and −1 such that their associ-
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ated Lagrange multipliers λ+ and λ− hold so that
0 < λ+ < C and 0 < λ− < C.

The desired decision function, which determines the
hyperplane (w∗)T �(x) + b∗ = 0, takes the form

D∗(x) = (w∗)T �(x) + b∗
(3.6)

=
n∑

i=1

λ∗
i yiK(xi ,x) + b∗.

Equations (3.5) and (3.6) show that D∗(x) is com-
pletely determined by the subsample made up by the
support vectors, the only points in the sample for
which λ∗

i 	= 0. This definition of support vector is co-
herent with the geometrical one given in Section 1.
The reason is that Lagrange multipliers λ∗

i must ful-
fill the strict complementarity conditions (see [7]), that
is, λ∗

i (D
∗(xi ) − 1 + ξi) = 0, where either λ∗

i = 0 or
D∗(xi ) = 1 − ξi . Therefore, if λ∗

i 	= 0, then D∗(xi ) =
1 − ξi and xi is one of the points that defines the
decision hyperplane [one of the black points in Fig-
ure 2(b)]. Often the support vectors are a small fraction
of the data sample and, as already mentioned, the solu-
tion is said to be sparse. This property is due to the use
of the hinge loss function.

Note that problem (3.4) and equation (3.6) depend
only on kernel evaluations of the form K(x,y). There-
fore, the explicit mapping � is not needed to solve the
SVM problem (3.4) or to evaluate the decision hyper-
plane (3.6). In particular, even when the kernel corre-
sponds to an infinite-dimensional space (for instance,
the Gaussian kernel), there is no problem with the eval-
uation of w∗ = ∑n

i=1 λ∗
i yi�(xi ), which is not explic-

itly needed. In practice, D∗(x) is evaluated using the
right-hand side of equation (3.6).

3.1 SVMs and the Optimal Bayes Rule

The results in the previous section are coherent with
the ones obtained by Lin [40], which state that the sup-
port vector machine classifier approaches the optimal
Bayes rule and its generalization error converges to the
optimal Bayes risk.

Consider a two-group classification problem with
classes +1 and −1 and, to simplify, assume equal costs
of misclassification. Under this assumption, the ex-
pected misclassification rate and the expected cost co-
incide. Let p1(x) = P(Y = +1|X = x), where X and Y

are two random variables whose joint distribution
is p(x,y). The optimal Bayes rule for the minimiza-
tion of the expected misclassification rate is

BR(x) =
{+1, if p1(x) > 1

2 ,
−1, if p1(x) < 1

2 .
(3.7)

On one hand, from the previous section we know
that the minimization of problem (3.1) guarantees
(via regularization theory) that the empirical risk
1
n

∑n
i=1(1 − yif (xi ))+ converges to the expected er-

ror E[(1 − Yf (x))+]. On the other hand, in [40] it is
shown that the solution to the problem minf E[(1 −
Yf (x))+] is f ∗(x) = sign(p1(x) − 1/2), an equivalent
formulation of (3.7). Therefore, the minimizer sought
by SVMs is exactly the Bayes rule.

In [41] it is pointed out that if the smoothing parame-
ter µ in (3.1) is chosen appropriately and the approx-
imation capacity of the RKHS is large enough, then
the solution to the SVM problem (3.2) approaches the
Bayes rule as n → ∞. For instance, in the two exam-
ples shown in the next subsection, where the linear ker-
nel K(x,y) = xT y is used, the associated RKHS (made
up of linear functions) is rich enough to solve the clas-
sification problems. A richer RKHS should be used
for more complex decision surfaces (see [41]), for in-
stance, the one induced by the Gaussian kernel or those
induced by high degree polynomial kernels. Regarding
the choice of µ, methods to determine it in an appro-
priate manner have been proposed by Wahba [79, 80,
82].

3.2 Illustrating the Performance with
Simple Examples

In this first example we consider a two-class separa-
ble classification problem, where each class is made
up of 1000 data points generated from a bivariate
normal distribution N(µi, I ), with µ1 = (0,0) and
µ2 = (10,10). Our aim is to illustrate the performance
of the SVM in a simple example and, in particular,
the behavior of the algorithm for different values of
the regularization parameter C in problem (3.3). The
identity mapping �(x) = x is used. Figure 4(a) illus-
trates the result for C = 1 (for C > 1, the same result is
obtained). There are exactly three support vectors and
the optimal margin separating hyperplane obtained by
the SVM is 1.05x + 1.00y − 10.4 = 0. For C = 0.01,
seven support vectors are obtained [see Figure 4(b)],
and the discriminant line is 1.02x + 1.00y − 10.4 = 0.
For C = 0.00001, 1776 support vectors are obtained
[88.8% of the sample; see Figure 4(c)] and the separat-
ing hyperplane is 1.00x + 1.00y − 13.0 = 0. The three
hyperplanes are very similar to the (normal theory) lin-
ear discriminant function 1.00x + 1.00y − 10.0 = 0.
Notice that the smaller C is, the larger the number of
support vectors. This is due to the fact that, in prob-
lem (3.3), C penalizes the value of the ξi variables,
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FIG. 4. (a)–(c) SVM hyperplanes for a separable data set. The support vectors are the black points. (d)–(f) SVM hyperplanes for a nonsep-
arable data set.

which determine the width of the band that contains
the support vectors.

This second example is quite similar to the pre-
vious one, but the samples that correspond to each
class are not separable. In this case the mean vectors
of the two normal clouds (500 data points in each
group) are µ1 = (0,0) and µ2 = (4,0), respectively.
The theoretical Bayes error is 2.27%. The normal
theory (and optimal) separating hyperplane is x = 2,
that is, 0.5x + 0y − 1 = 0. The SVM estimated hyper-
plane (taking C = 2) is 0.497x − 0.001y − 1 = 0.
The error on a test data set with 20,000 data points
is 2.3%. Figure 4(d) shows the estimated hyperplane
and the support vectors (the black points), which rep-
resent 6.3% of the sample. To show the behavior of
the method when the parameter C varies, Figure 4(e)
shows the separating hyperplanes for 30 SVMs that
vary C from 0.01 up to 10. All of them look very
similar. Finally, Figure 4(f) shows the same 30 hyper-
planes when two outlying points (enhanced in black)
are added to the left cloud. Since the estimated SVM
discriminant functions depend only on the support vec-
tors, the hyperplanes remain unchanged.

3.3 The Waveform Data Set

We next illustrate the performance of SVMs on a
well-known three-class classification example consid-
ered to be a difficult pattern recognition problem [28],
the waveform data set introduced in [13]. For the sake
of clarity, we reproduce the data description. Each class
is generated from a random convex combination of
two of three triangular waveforms, namely, h1(i) =
max(6 − |i − 11|,0), h2(i) = h1(i − 4) and h3(i) =
h1(i + 4), sampled at the integers i ∈ {1, . . . ,21}, plus
a standard Gaussian noise term. Thus, each data point
is represented by x = (x1, . . . , x21), where each com-
ponent is defined by

xi = uh1(i) + (1 − u)h2(i) + εi, for Class 1,

xi = uh1(i) + (1 − u)h3(i) + εi, for Class 2,

xi = uh2(i) + (1 − u)h3(i) + εi, for Class 3,

with u ∼ U(0,1) and εi ∼ N(0,1). A nice picture of
sampled waveforms can be found on page 404 of [28].
The waveform data base [available from the UCI repos-
itory (data sets available from the University of Cali-
fornia, Irvine, at http://kdd.ics.uci.edu/)] contains 5000

http://kdd.ics.uci.edu/
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FIG. 5. A PCA projection of the waveform data. The black points
represent the misclassified data points using an SVM with the
Gaussian kernel.

instances generated using equal prior probabilities. In
this experiment we have used 400 data values for train-
ing and 4600 for test. Breiman, Friedman, Olshen and
Stone [13] reported a Bayes error rate of 14% for this
data set. Since we are handling three groups, we use
the “one-against-one” approach, in which

(3
2

)
binary

SVM classifiers are trained and the predicted class is
found by a voting scheme: each classifier assigns to
each datum a class, being the data point assigned to its
most voted class [37]. A first run over ten simulations
of the experiment using C = 1 in problem (3.3) and
the Gaussian kernel K(x,y) = e−‖x−y‖2/200 gave an
error rate of 14.6%. To confirm the validity of the re-
sult, we have run 1000 replications of the experiment.
The average error rate over the 1000 simulations on the
training data was 10.87% and the average error rate on
the test data was 14.67%. The standard errors of the
averages were 0.004 and 0.005, respectively. This re-
sult improves any other described in the literature to
our knowledge. For instance, the best results described
in [28] are provided by FLDA and Fisher FDA (flex-
ible discriminant analysis) with MARS (multivariate
adaptive regression splines) as the regression proce-
dure (degree = 1), both achieving a test error rate of
19.1%. Figure 5 shows a principal component analysis
(PCA) projection of the waveform data into two dimen-
sions with the misclassified test data points (marked in
black) for one of the SVM simulations.

4. FURTHER EXAMPLES

In this section we will review some well-known ap-
plications of SVMs to real-world problems. In particu-

lar, we will focus on text categorization, bioinformatics
and image recognition.

Text categorization consists of the classification of
documents into a predefined number of given cate-
gories. As an example, consider the document col-
lection made up of Usenet News messages. They are
organized in predefined classes such as computation,
religion, statistics and so forth. Given a new document,
the task is to conduct the category assignment in an au-
tomatic way. Text categorization is used by many In-
ternet search engines to select Web pages related to
user queries. Documents are represented in a vector
space of dimension equal to the number of different
words in the vocabulary. Therefore, text categoriza-
tion problems involve high-dimensional inputs and the
data set consists of a sparse document by term matrix.
A detailed treatment of SVMs for text categorization
can be found in [34]. The performance of SVMs in
this task will be illustrated on the Reuters data base.
This is a text collection composed of 21,578 docu-
ments and 118 categories. The data space in this exam-
ple has dimension 9947, the number of different words
that describe the documents. The results obtained us-
ing a SVM with a linear kernel are consistently bet-
ter along the categories than those obtained with four
widely used classification methods: naive Bayes [24],
Bayesian networks [29], classification trees [13] and
k-nearest neighbors [17]. The average rate of success
for SVMs is 87% while for the mentioned methods the
rates are 72%, 80%, 79% and 82%, respectively (see
[34] and [25] for further details). However, the most
impressive feature of SVM text classifiers is their train-
ing time: SVMs are four times faster than the naive
Bayes classifier (the fastest of the other methods) and
35 times faster than classification trees. This perfor-
mance is due to the fact that SVM algorithms take
advantage of sparsity in the document by term ma-
trix. Note that methods that involve the diagonalization
of large and dense matrices (like the criterion matrix
in FLDA) are out of consideration for text classifica-
tion because of their expensive computational require-
ments.

We next outline some SVM applications in bioin-
formatics. There is an increasing interest in analyzing
microarray data, that is, analyzing biological samples
using their genetic expression profiles. The SVMs
have been applied recently to tissue classification [26],
gene function prediction [59], protein subcellular lo-
cation prediction [31], protein secondary structure pre-
diction [32] and protein fold prediction [23], among
other tasks. In almost all cases, SVMs outperformed



SUPPORT VECTOR MACHINES 331

other classification methods and in their worst case,
SVM performance is at least similar to the best non-
SVM method. For instance, in protein subcellular
location prediction [31], we have to predict pro-
tein subcellular positions from prokaryotic sequences.
There are three possible location categories: cyto-
plasmic, periplasmic and extracellular. From a pure
classification point of view, the problem reduces to
classifying 20-dimensional vectors into three (highly
unbalanced) classes. Prediction accuracy for SVMs
(with a Gaussian kernel) amounts to 91.4%, while
neural networks and a first-order Markov chain [75]
have accuracy of 81% and 89.1%, respectively. The re-
sults obtained are similar for the other problems. It is
important to note that there is still room for improve-
ment.

Regarding image processing, we will overview two
well-known problems: handwritten digit identification
and face recognition. With respect to the first problem,
the U.S. Postal Service data base contains 9298 sam-
ples of digits obtained from real-life zip codes (divided
into 7291 training samples and 2007 samples for test-
ing). Each digit is represented by a 16 × 16 gray level
matrix; therefore each data point is represented by a
vector in R

256. The human classification error for this
problem is known to be 2.5% [22]. The error rate for
a standard SVM with a third degree polynomial kernel
is 4% (see [22] and references therein), while the best
known alternative method, the specialized neural net-
work LeNet1 [39], achieves an error rate of 5%. For
this problem, using a specialized SVM with a third
degree polynomial kernel [22] lowers the error rate
to 3.2%—close to the human performance. The key to
this specialization lies in the construction of the deci-
sion function in three phases: in the first phase, a SVM
is trained and the support vectors are obtained; in the
second phase, new data points are generated by trans-
forming these support vectors under some groups of
transformations, rotations and translations. In the third
phase, the final decision hyperplane is built by training
a SVM with the new points.

Concerning face recognition, gender detection has
been analyzed by Moghaddam and Yang [45]. The data
contain 1755 face images (1044 males and 711 fe-
males), and the overall error rate for a SVM with a
Gaussian kernel is 3.2% (2.1% for males and 4.8%
for females). The results for a radial basis neural net-
work [63], a quadratic classifier and FLDA are, respec-
tively, 7.6%, 10.4% and 12.9%.

Another outstanding application of SVMs is the de-
tection of human faces in gray-level images [56]. The

problem is to determine in an image the location of
human faces and, if there are any, return an encoding
of their position. The detection rate for a SVM using
a second degree polynomial kernel is 97.1%, while for
the best competing system the rate is 94.6%. A number
of impressive photographs that show the effectiveness
of this application for face location can be consulted
in [57].

5. EXTENSIONS OF SVMS: SUPPORT
VECTOR REGRESSION

It is natural to contemplate how to extend the kernel
mapping explained in Section 2 to well-known tech-
niques for data analysis such as principal component
analysis, Fisher linear discriminant analysis and clus-
ter analysis. In this section we will describe support
vector regression, one of the most popular extensions
of support vector methods, and give some references
regarding other extensions.

The ideas underlying support vector regression are
similar to those within the classification scheme. From
an intuitive viewpoint, the data are mapped into a fea-
ture space and then a hyperplane is fitted to the mapped
data. From a mathematical perspective, the support
vector regression function is also derived within the
RKHS context. In this case, the loss function involved
is known as the ε-insensitive loss function (see [76]),
which is defined as L(yi, f (xi )) = (|f (xi )−yi |−ε)+,
ε ≥ 0. This loss function ignores errors of size less
than ε (see Figure 6). A discussion of the relation-
ship of the ε-insensitive loss function and the ones
used in robust statistics can be found in [28]. Using
this loss function, the following optimization problem,
similar to (3.1) (also consisting of the minimization of

FIG. 6. The ε-insensitive loss function L(yi, f (xi )) =
(|f (xi ) − yi | − ε)+, ε > 0.
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a Tikhonov regularization functional), arises:

min
f ∈HK

1

n

n∑
i=1

(|f (xi ) − yi | − ε
)
+ + µ‖f ‖2

K,(5.1)

where µ > 0, HK is the RKHS associated with the ker-
nel K , ‖f ‖K denotes the norm of f in the RKHS and
(xi , yi) are the sample data points.

Once more, by the representer theorem, the solution
to problem (5.1) has the form f (x) = ∑n

i=1 αiK(xi ,

x) + b, where xi are the sample data points. It is
immediate to show that ‖f ‖2

K = ‖w‖2, where w =∑n
i αi�(xi ) and � is the mapping that defines the ker-

nel function. Thus, problem (5.1) can be restated as

min
w,b

1

n

n∑
i=1

(|wT �(xi ) + b − yi | − ε
)
+ + µ‖w‖2.(5.2)

Since the ε-insensitive loss function is nondifferen-
tiable, this problem has to be formulated so that it
can be solved by appropriate optimization methods.
Straightforwardly, the equivalent (convex) problem to
solve is

min
w,b,ξ,ξ ′

1
2‖w‖2 + C

n∑
i=1

(ξi + ξ ′
i )

s.t. (wT �(xi ) + b) − yi ≤ ε + ξi,

i = 1, . . . , n,
(5.3)

yi − (wT �(xi ) + b) ≤ ε + ξ ′
i ,

i = 1, . . . , n,

ξi, ξ
′
i ≥ 0, i = 1, . . . , n,

where C = 1/(2µn). Notice that ε appears only in the
constraints, forcing the solution to be calculated by tak-
ing into account a confidence band around the regres-
sion equation. The ξi and ξ ′

i are slack variables that
allow for some data points to stay outside the confi-
dence band determined by ε. This is the standard sup-
port vector regression formulation. Again, the dual of
problem (5.3) is a convex quadratic optimization prob-
lem, and the regression function takes the same form
as equation (2.1). For a detailed exposition of support
vector regression, refer to [71] or [69].

One of the most popular applications of support
vector regression concerns load forecasting, an im-
portant issue in the power industry. In 2001 a pro-
posal based on SVMs for regression was the winner
of the European Network of Excellence on Intelligent
Technologies competition. The task was to supply the
prediction of maximum daily values of electrical loads

for January 1999 (31 data values altogether). To this
aim each challenger was given half an hour loads, av-
erage daily temperatures and the holidays for the pe-
riod 1997–1998. The mean absolute percentage error
for daily data using the SVM regression model was
about 2%, significantly improving the results of most
competition proposals. It is important to point out that
the SVM procedure used in the contest was standard,
in the sense that no special modifications were made
for the particular problem at hand. See [14] for further
details.

Many other kernel methods have been proposed in
the literature. To name a few, there are extensions to
PCA [70], Fisher discriminant analysis [6, 44], cluster
analysis [8, 46], partial least squares [66], time series
analysis [50], multivariate density estimation [49, 68,
54], classification with asymmetric proximities [52],
combination with neural network models [53] and
Bayesian kernel methods [74].

6. OPEN ISSUES AND FINAL REMARKS

The underlying model implemented in SVMs is de-
termined by the choice of the kernel. Deciding which
kernel is the most suitable for a given application is
obviously an important (and open) issue. A possible
approach is to impose some restrictions directly on the
structure of the classification (or regression) function f

implemented by the SVM. A way to proceed is to con-
sider a linear differential operator D, and choose K

as the Green’s function for the operator D∗D, where
D∗ is the adjoint operator of D [4]. It is easy to show
that the penalty term ‖f ‖2

K equals ‖Df ‖2
L2

. Thus, the
choice of the differential operator D imposes smooth-
ing conditions on the solution f . This is also the ap-
proach used in functional data analysis [65]. For in-
stance, if D∗D is the Laplacian operator, the kernels
obtained are harmonic functions. The simplest case
corresponds to (see, e.g., [35]) K(x,y) = xT y + c,
where c is a constant. Another interesting example is
the Gaussian kernel. This kernel arises from a differen-
tial operator which penalizes an infinite sum of deriva-
tives. The details for its derivation can be found in [63].

A different approach is to build a specific kernel
directly for the data at hand. For instance, Wu and
Amari [83] proposed the use of differential geometry
methods [2] to derive kernels that improve class sepa-
ration in classification problems.

An alternative research line arises when a battery of
different kernels is available. For instance, when deal-
ing with handwriting recognition, there are a number of
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different (nonequivalent) metrics that provide comple-
mentary information. The task here is to derive a single
kernel which combines the most relevant features of
each metric to improve the classification performance
(see, e.g., [38] or [42]).

Regarding more theoretical questions, Cucker and
Smale [21], as already mentioned, provided sufficient
conditions for the statistical consistency of SVMs
from a functional analysis point of view (refer to
the Appendix for the details). On the other hand, the
statistical learning theory developed by Vapnik and
Chervonenkis (summarized in [77]) provides neces-
sary and sufficient conditions in terms of the Vapnik–
Chervonenkis (VC) dimension (a capacity measure for
functions). However, the estimation of the VC dimen-
sion for SVMs is often not possible and the relationship
between both approaches is still an open issue.

From a statistical point of view an important subject
remains open: the interpretability of the SVM outputs.
Some (practical) proposals can be consulted in [62, 76]
and [72] about the transformation of the SVM classifi-
cation outputs into a posteriori class probabilities.

Regarding the finite sample performance of SVMs,
a good starting point can be found in [55], where bias
and variability computations for linear inversion algo-
rithms (a particular case of regularization methods) are
studied. The way to extend these ideas to the SVM non-
linear case is an interesting open problem.

Concerning software for SVMs, a variety of imple-
mentations are freely available from the Web, most
reachable at http://www.kernel-machines.org/. In par-
ticular, Matlab toolboxes and R/Splus libraries can be
downloaded from this site. Additional information on
implementation details concerning SVMs can be found
in [20] and [69].

As a final proposal, a novice reader could find
it interesting to review a number of other regular-
ization methods, such as penalized likelihood meth-
ods [27], classification and regression with Gaussian
processes [72, 82], smoothing splines [81], functional
data analysis [65] and kriging [19].

APPENDIX: STATISTICAL CONSISTENCY OF
THE EMPIRICAL RISK

When it is not possible to assume a parametric model
for the data, ill-posed problems arise. The number of
data points which can be recorded is finite, while the
unknown variables are functions which require an infi-
nite number of observations for their exact description.
Therefore, finding a solution implies a choice from an

infinite collection of alternative models. A problem is
well-posed in the sense of Hadamard if (1) a solution
exists; (2) the solution is unique; (3) the solution de-
pends continuously on the observed data. A problem is
ill-posed if it is not well-posed.

Inverse problems constitute a broad class of ill-posed
problems [73]. Classification, regression and density
estimation can be regarded as inverse problems. In the

general setting, we consider a mapping H1
A−→ H2,

where H1 represents a metric function space and H2
represents a metric space in which the observed data
(which could be functions) live. For instance, in a lin-
ear regression problem, H1 corresponds to the finite-
dimensional vector space R

k+1, where k is the number
of regressors; H2 is R

n, where n is the number of
data points; and A is the linear operator induced by
the data matrix of dimension n × (k + 1). Let y =
(y1, . . . , yn) be the vector of response variables and de-
note by f the regression equation we are looking for.
Then the regression problem consists of solving the in-
verse problem Af = y. A similar argument applies to
the classification setting. In this case, the y values live
in a compact subset of the H2 space [77].

An example of an inverse problem in which H2
is a function space is the density estimation one. In
this problem H1 and H2 are both function spaces
and A is a linear integral operator given by (Af )(x) =∫

K(x,y)f (y) dy, where K is a predetermined kernel
function and f is the density function we are seeking.
The problem to solve is Af = F , where F is the dis-
tribution function. If F is unknown, the empirical dis-
tribution function Fn is used instead, and the inverse
problem to solve is Af = y, with y = Fn.

We will focus on classification and regression tasks.
Therefore, we assume there exist a function f :X −→
Y and a probability measure p defined in X × Y so
that E[y|x] = f (x). For an observed sample {(xi , yi) ∈
X × Y }ni=1, the goal is to obtain the “best” possible
solution to Af = y, where, as mentioned above, y is
the n-dimensional vector of yi ’s and A is an operator
that depends on the xi values. To evaluate the quality of
a particular solution, a “loss function” L(f ;x, y) has
to be introduced, which we will denote L(y,f (x)) in
what follows. A common example of a loss function
for regression is the quadratic loss L(y,f (x)) = (y −
f (x))2.

Consider the Banach space C(X) of continuous
functions on X with the norm ‖f ‖∞ = supx∈X |f (x)|.
The solution to the inverse problem in each case is the
minimizer f ∗ of the risk functional R(f ) :C(X) −→

http://www.kernel-machines.org/
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R defined by (see [21])

R(f ) =
∫
X×Y

L
(
y,f (x)

)
p(x, y) dxdy.(A.1)

Of course, the solution depends on the function space
in which f lives. Following [21], the hypothesis space,
denoted by H in the sequel, is chosen to be a compact
subset of C(X). In particular, only bounded functions
f :X −→ Y are considered.

In these conditions, and assuming a continuous loss
function L, Cucker and Smale [21] proved that the
functional R(f ) is continuous. The existence of f ∗ =
arg minf ∈H R(f ) follows from the compactness of H
and the continuity of R(f ). In addition, if H is con-
vex, f ∗ will be unique and the problem becomes well-
posed.

In practice, it is not possible to calculate R(f ) and
the empirical risk Rn(f ) = 1

n

∑n
i=1 L(yi, f (xi )) must

be used. This is not a serious complication since as-
ymptotic uniform convergence of Rn(f ) to the risk
functional R(f ) is a proven fact (see [21]).

In summary, imposing compactness on the hypothe-
sis space assures well-posedness of the problem to be
solved and uniform convergence of the empirical error
to the risk functional for a broad class of loss functions,
including the square loss and loss functions used in the
SVM setting.

The question of how to impose compactness on
the hypothesis space is fixed by regularization the-
ory. A possibility (followed by SVMs) is to minimize
Tikhonov’s regularization functional

min
f ∈H

1

n

n∑
i=1

L
(
yi, f (xi )

) + λ�(f ),(A.2)

where λ > 0, H is an appropriate function space, and
�(f ) is a convex positive functional. By standard op-
timization theory arguments, it can be shown that, for
fixed λ, the inequality �(f ) ≤ C holds for a con-
stant C > 0. Therefore, the space where the solution
is searched takes the form H = {f ∈ H :�(f ) ≤ C},
that is, a convex compact subset of H .
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