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Support Vector Machines with the Ramp Loss and

the Hard Margin Loss ∗

J. Paul Brooks

Department of Statistical Sciences and Operations Research

Virginia Commonwealth University

May 7, 2009

Abstract

In the interest of deriving classifiers that are robust to outlier observations, we present integer
programming formulations of Vapnik’s support vector machine (SVM) with the ramp loss and hard
margin loss. The ramp loss allows a maximum error of 2 for each training observation, while the hard
margin loss calculates error by counting the number of training observations that are misclassified
outside of the margin. SVM with these loss functions is shown to be a consistent estimator when used
with certain kernel functions. Based on results on simulated and real-world data, we conclude that
SVM with the ramp loss is preferred to SVM with the hard margin loss. Data sets for which robust
formulations of SVM perform comparatively better than the traditional formulation are characterized
with theoretical and empirical justification. Solution methods are presented that reduce computation
time over industry-standard integer programming solvers alone.

1 Introduction

The support vector machine (SVM) is a math programming-based binary classification method developed
by Vapnik [39] and Cortes and Vapnik [12]. Math programming and classification have a long history
together, dating back to the fundamental work of Mangasarian [22, 23].

The SVM formulation proposed by Vapnik and coauthors uses a continuous measure for misclassification
error, resulting in a continuous convex optimization problem. Several investigators have noted that such
a measure can result in an increased sensitivity to outlier observations (Figure 4(a)), and have proposed
modifications that increase the robustness of SVM models.

One method for increasing the robustness of SVM is to use the ramp loss (Figure 1(b)), also known as
the robust hinge loss. Training observations that fall outside the margin that are misclassified have error
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2, while observations that fall in the margin are given a continuous measure of error between 0 and 2
depending on their distance to the margin boundary. Bartlett and Mendelson [2] and Shawe-Taylor and
Christianini [33] investigate some of the learning theoretic properties of the ramp loss. Shen et al. [34]
and Collobert et al. [11] use optimization methods for SVM with the ramp loss that do not guarantee
global optimality. Liu et al. [21] propose an outer approximation procedure for multi-category SVM with
ramp loss that converges to global optima, but convergence is slow; only a single 100-observation instance
is solved with the linear kernel. Xu et al. [40] solve a semidefinite programming relaxation of SVM with
the ramp loss, but the procedure is computationally intensive for as few as 50 observations.

Another method for increasing the robustness of SVM is to use the hard margin loss (Figure 1(c)), where
the number of misclassifications is minimized. Chen and Mangasarian [10] prove that minimizing mis-
classifications for a linear classifier is NP-Complete by reducing the OPEN HEMISPHERE [19] problem.
The computational complexity of using the hard margin loss has often been used as the justification of a
continuous measure of error. Orsenigo and Vercellis [27] formulate discrete SVM (DSVM) that uses the
hard margin loss for SVM with a linear kernel and linearized margin term; they use heuristics for solving
instances that do not guarantee global optimality. Orsenigo and Vercellis have extended their formula-
tion and technique to soft margin DSVM (ǫ-DSVM) [29] and to fuzzy DSVM (FDSVM) [28]. Pérez-Cruz
and Figueiras-Vidal [30] approximate the hard margin loss for SVM with continuous functions and use
an iterative reweighted least squares method for solving instances that also does not guarantee global
optimality.

Learning theory has emerged to provide a probabilistic analysis of machine learning algorithms. A method
for classification is consistent if, in the limit as the sample size is increased, the sequence of generated
classifiers converges to a Bayes optimal rule. A Bayes optimal rule minimizes the probability of misclas-
sification. If convergence holds for all distributions of data, then the classification method is universally
consistent. Due to the No Free Lunch Theorem ([13], [14, Theorem 7.2], [15, Theorem 9.1]), there cannot
exist a classification method with a guaranteed rate of convergence to a Bayes optimal rule for all distri-
butions of data; in other words, there always exists a distribution of the data for which convergence is
arbitrarily slow. Steinwart [36] proves that SVM with the traditional hinge loss is universally consistent.
Brooks and Lee [7] prove that an integer-programming based method for constrained discrimination, a
generalization of the classification problem, is consistent.

This paper presents new integer programming formulations for SVM with the ramp loss and hard margin
loss that accommodate the use of nonlinear kernel functions and the quadratic margin term. These
formulations can be solved in a branch-and-bound framework, providing solutions to moderate-sized
instances in reasonable time. Solution methods are presented that provide savings in computation time
when incorporated with industry-standard software. The use of integer programming and branch-and-
bound for deriving globally optimal solutions is not common in machine learning literature. Bennet and
Demiriz [3] and Chapelle [9] use branch-and-bound algorithms to derive globally optimal solutions to a
semi-supervised support vector machine (S3VM). Koehler and Erenguc [20] introduce the use of integer
programming to minimize misclassifications that predates the development of SVM, and their models
do not incorporate the maximization of margin nor the use of kernel functions for finding nonlinear
separating surfaces. Bertsimas and Shioda [4] combine ideas from SVM and classification trees in an
integer programming framework that minimizes misclassifications. Gallagher et al. [16] present an integer
programming model for constrained discrimination, where the number of correctly classified observations
is maximized subject to limits on the number of misclassified observations.

We address the consistency of SVM with the ramp loss and hard margin loss. Relying heavily on the
previous work of Steinwart [36, 37] and Bartlett and Mendelson [2], we provide proofs that SVM with
the ramp loss and the hard margin loss are universally consistent procedures for estimating the Bayes
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Figure 1: Loss functions for SVM. The loss for an observation is plotted against the “left-hand side” of
primal formulations for SVM with (a) the traditional hinge loss, (b) ramp loss, and (c) hard margin loss.
An observation whose left-hand side falls between -1 and 1 lies in the margin.

classification rule when used with so-called universal kernels [35]. We demonstrate the performance of
SVM with the ramp loss and hard margin loss on simulated and real-world data for producing robust
classifiers in the presence of outliers, especially when using low-rank kernels.

The remainder of the paper is structured as follows. Section 2 introduces new integer programming
formulations for SVM with the hard margin loss and the ramp loss. In Section 3, we show that SVM
with the ramp loss and hard margin loss is consistent. Section 4 contains solution methods for the integer
programming formulations. Section 5 contains computational results on simulated and real-world data.

2 Formulations

Suppose a training set is given consisting of data points (xi, yi) ∈ R
d × {−1, 1}, i = 1, . . . , n, where yi is

the class label of the ith observation. The data points are realizations of the random variables X and Y ,
where X has an unknown distribution and Y has an unknown conditional distribution P (Y = h|X = x).
A function f : R

d → {−1, 1} is a classifier.

For a given training set, SVM balances two objectives: maximize margin, the distance between correctly
classified sets of observations, while minimizing error. SVM can be viewed as projecting data into a
higher-dimensional space and finding a separating hyperplane in the projected space that corresponds to
a nonlinear separating surface in the space of the original data. As shown in [12], normalizing w and b so
that w ·x+ b = −1 and w ·x+ b = 1 define the boundaries of sets of correctly classified observations, the
distance between these sets is 2/||w||. Therefore, minimizing 1

2 ||w||2 = 1
2w · w maximizes the margin.

2.1 Ramp Loss

Let di be the distance of observation xi to the margin boundary for the class yi. Define ξi as the
continuous error for observation i such that

ξi =

{

di‖w‖ if xi falls in the margin

0 otherwise

3



Let zi be a binary variable equal to 1 if observation xi is misclassified outside of the margin and 0
otherwise. For an observation that falls in the margin, ξi measured in the same way that error is
measured for traditional SVM. SVM with ramp loss can be formulated as

[SVMIP1(ramp)] min 1
2‖w‖2 + C (

∑n

i=1 ξi + 2
∑n

i=1 zi) , (1)

s.t. yi(w · xi + b) ≥ 1 − ξi, if zi = 0, i = 1, . . . , n,

zi ∈ {0, 1}, i = 1, . . . , n,

0 ≤ ξi ≤ 2, i = 1, . . . , n.

The parameter C represents the tradeoff in maximizing margin versus minimizing error. Unlike traditional
SVM, the error of an observation is bounded above by 2 (Figure 1(a), (b)). This formulation can
accommodate nonlinear projections of observations by replacing xi with Φ(xi). The conditional constraint
for observation i can be linearized by introducing a sufficiently large constantM and writing yi(w·xi+b) ≥
1−ξi−Mzi. The formulation is then a convex quadratic integer program, solvable by a standard branch-
and-bound algorithm. By making the substitution

w =

n
∑

i=1

yixiαi, (2)

with nonnegative αi variables, we can obtain the following formulation for SVM with the ramp loss.

[SVMIP2(ramp)] min 1
2

∑n

i=1

∑n

j=1 yiyjxi · xjαiαj + C (
∑n

i=1 ξi + 2
∑n

i=1 zi) , (3)

s.t. yi(
∑n

j=1 yjxj · xiαj + b) ≥ 1 − ξi, if zi = 0, i = 1, . . . , n,

αi ≥ 0, i = 1, . . . , n,

zi ∈ {0, 1}, i = 1, . . . , n,

0 ≤ ξi ≤ 2, i = 1, . . . , n.

The data occur as inner products, so that nonlinear kernel functions may be employed by replacing
occurrences of xi · xj with k(xi,xj) for a kernel function k : R

d × R
d → R. For positive semi-definite

kernels (see [33], pp. 61), the objective function for [SVMIP2(ramp)] remains convex, and the solutions
are equivalent to those obtained for [SVMIP1(ramp)]. Again, the conditional constraints can be linearized
by introducing a large constant M .

2.2 Hard Margin Loss

Let

zi =

{

1 if observation i lies in the margin or is misclassified

0 o.w.

Then an SVM formulation with the hard margin loss (Figure 1(b)) for finding a separating hyperplane
in the space of the original data is

[SVMIP1(hm)] min 1
2‖w‖2 + C

n
∑

i=1

zi, (4)

s.t. yi(w · xi + b) ≥ 1, if zi = 0, i = 1, . . . , n,

zi ∈ {0, 1}, i = 1, . . . , n.
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The constraint for observation i can be linearized as for [SVMIP1(ramp)] [27, 8]. The formulation with
linearized constraints is the same as that used by Orsenigo and Vercellis [27], except that they use a
linearized version of the margin term. Making the substitution (2), the following formulation is obtained.

[SVMIP2(hm)] min 1
2

∑n

i=1

∑n

j=1 yiyjxi · xjαiαj + C
∑n

i=1 zi, (5)

s.t. yi(
∑n

j=1 yjxj · xiαj + b) ≥ 1, if zi = 0, i = 1, . . . , n,

αi ≥ 0, i = 1, . . . , n,

zi ∈ {0, 1}, i = 1, . . . , n.

The formulation can accommodate nonlinear kernel functions in the same manner as [SVMIP2(ramp)].
The formulations [SVMIP2(hm)] and [SVMIP2(ramp)] are convex quadratic integer programs for positive-
semidefinite kernel functions.

2.3 Equivalence of [SVMIP1(ramp)] and [SVMIP2(ramp)]

For a positive-semidefinite kernel function k(·, ·), there exists a function Φ such that k(xi,xj) = Φ(xi) ·
Φ(xj) (See [33], pp. 61). In this section, we show that [SVMIP1(ramp)] and [SVMIP2(ramp)] are
equivalent for positive-semidefinite kernels in the sense that an optimal solution for one formulation can
be used to construct an optimal solution to the other.

In practice, the dual form of traditional SVM is solved in part because of the ability to accommodate
kernel functions. The formulation [SVMIP2(ramp)] represents the ability to apply the same analysis
with the ramp loss. We will now demonstrate that solutions to [SVMIP1(ramp)] can be used to construct
solutions to [SVMIP2(ramp)] and vice versa.

Remark 2.1. Given a binary vector z ∈ {0, 1}n, let us define the following parametric quadratic pro-
gramming problem:

[SVM-P(z)] min 1
2‖w‖2 + C

∑n

i=1 ξi, (6)

s.t. yi(w · xi + b) ≥ 1 − ξi, i : zi = 0,

ξi ≥ 0, i = 1, . . . , n. (7)

Suppose z = z∗ is optimal for [SVMIP1(ramp)] with corresponding values w = w∗, b = b∗, and ξ = ξ∗.
Then, (w′, b′, ξ′) is an optimal solution to [SVM-P(z∗)] if and only if (w′, b′, ξ′,z∗) is an optimal solution
to [SVMIP1(ramp)].

The following lemma is non-trivial because we are making a substitution for unrestricted variables in
terms of a linear combination of non-negative variables. It is not immediately apparent that the optimal
solution in the original problem is not excluded.

Lemma 2.1. Given optimal solution (w∗, b∗, ξ∗,z∗) to [SVMIP1(ramp)], we can construct a feasible
solution (α∗, b∗, ξ∗,z∗) of [SVMIP2(ramp)] with equivalent objective values (i.e., 1

2‖w∗‖2 +C(
∑n

i=1 ξ
∗
i +

2
∑n

i=1 z
∗
i ) = 1

2

∑n

i=1

∑n

j=1 yiyjxi · xjα
∗
iα

∗
j + C(

∑n

i=1 ξ
∗
i + 2

∑n

i=1 z
∗
i )).

Proof. Given (w∗, b∗, ξ∗,z∗), from Remark 2.1, (w∗, b∗, ξ∗) is an optimal solution to [SVM-P(z∗)]. Let
α′ be the corresponding optimal solution for the dual of [SVM-P(z∗)]. Then, from the KKT conditions,
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we know that w∗ =
∑

i:z∗
i
=0 yixiα

′
i. Define α∗

i , i = 1, . . . , n, as α∗
i = α′

i if zi = 0 and α∗
i = 0 if zi = 1.

Then (α∗, b∗, ξ∗,z∗) is feasible for [SVMIP2(ramp)] and

‖w∗‖2 =

n
∑

i=1

n
∑

j=1

yiyjxi · xjα
∗
iα

∗
j .

Lemma 2.2. Given optimal solution (α∗, b∗, ξ∗,z∗) to [SVMIP2(ramp)], we can construct a feasible
solution (w∗, b∗, ξ∗,z∗) for [SVMIP1(ramp)] with equivalent objective values (i.e., 1

2

∑n

i=1

∑n

j=1 yiyjxi ·
xjα

∗
iα

∗
j + C(

∑n

i=1 ξ
∗
i + 2

∑n

i=1 z
∗
i ) = 1

2‖w∗‖2 + C(
∑n

i=1 ξ
∗
i + 2

∑n

i=1 z
∗
i )).

Proof. Define w∗ as

w∗ :=

n
∑

i=1

yixiα
∗
i .

Then (w∗, b∗, ξ∗,z∗) is clearly a feasible solution to [SVMIP1(ramp)] with matching objective values, as
this is precisely the substitution used in the creation of [SVMIP2(ramp)] from [SVMIP1(ramp)].

The following theorem follows immediately from Lemmas 2.1 and 2.2.

Theorem 2.1. The optimization problems [SVMIP1(ramp)] and [SVMIP2(ramp)] are equivalent.

This reasoning holds if we replace occurrences of xi with Φ(xi), so that the result holds for all positive-
semidefinite kernels. Similar reasoning shows that [SVMIP1(hm)] and [SVMIP2(hm)] are equivalent [8].
This equivalence theorem ensures that the use of [SVMIP2(ramp)] and [SVMIP2(hm)] with nonlinear
kernel functions retains the same geometric interpretation as the dual for traditional SVM.

3 Consistency

We assume that X is a compact subset of R
d and that there exists an unknown Borel probability measure

P on X×Y . For a classifier f : R
d → {−1, 1}, the probability of misclassification is L(f) = P (f(X) 6= Y ).

A Bayes classifier f∗ assigns an observation x to the group to which it is most likely to belong; i.e.,
f∗(x) = arg max

h∈{−1,1}
P (Y = h|X = x). It can be shown [14] that a Bayes classifier minimizes the

probability of misclassification, so that f∗ = arg min
f

L(f). Let fn(X) be the classifier that is selected by

a method based on a sample of size n.

Definition 3.1. A classifier f is consistent if the probability of misclassification converges in expectation
to a Bayes optimal rule as sample size is increased, or

lim
n→∞

EL(fn) = L(f∗)

6



A classifier is universally consistent if it is consistent for all distributions for X and Y .

Let C(X) be the space of all continuous functions f : X → R on the compact metric space (X, d) with the
supremum norm ||f ||∞ = sup

x∈X

|f(x)|. The following definitions are due to Steinwart [35]. A function f

is induced by a kernel k (with projection function Φ : X → H) if there exists w ∈ H with f(·) = w ·Φ(·).
The kernel k is universal if the set of all induced functions is dense in C(X); i.e., for all g ∈ C(X) and
all ǫ > 0, there exists a function f induced by k with ||f − g||∞ ≤ ǫ. Steinwart [35] showed that the
Gaussian kernel, among others, is universal. We will show that [SVMIP2(ramp)] and [SVMIP2(hm)] are
universally consistent for universal kernel functions.

3.1 Consistency of SVM with the Ramp Loss

Before we prove the consistency of [SVMIP2(ramp)], we need to make a few more definitions and to estab-
lish some more notation. For a training set of size n, a universal positive-semidefinite kernel k, and an ob-
jective function parameter C, we denote a classifier derived from an optimal solution to [SVMIP2(ramp)]
by fk,C

n , or by fΦ,C
n where k(·, ·) = Φ(·) · Φ(·). Further, let wΦ,C

n be given by the same optimal solution
to [SVMIP2(ramp)] and the formula (2).

Theorem 3.1 shows that solutions to [SVMIP2(ramp)] will converge to the Bayes optimal rule as the
sample size n increases.

Theorem 3.1. Let X ⊂ R
d be compact and k : X × X → R be a universal kernel. Let fk,C

n be the
classifier obtained by solving [SVMIP2(ramp)] for a training set with n observations. Suppose that we
have a positive sequence (Cn) with Cn/n→ 0 and Cn → ∞. Then for any ǫ > 0,

lim
n→∞

P (L(fk,Cn
n ) − L(f∗) > ǫ) = 0

Proof. The proof is in the Appendix.

Theorem 3.1 requires that as n is increased, the parameter C is chosen under specified conditions.
The consistency of the ramp loss can also be established directly under different (and more elaborate)
conditions on the choice of C using Theorem 3.5 in [37].

3.2 Consistency of SVM with the Hard Margin Loss

The proof of consistency for SVM with the hard margin loss is similar to that of ramp loss. We again
assume that we have a universal kernel k with projection function Φ. Let fk,C

n and fΦ,C
n denote optimal

solutions to [SVMIP2(hm)] with kernel function k and projection function Φ, respectively. The following
theorem establishes the consistency of SVM with the hard margin loss when used with universal kernels
and appropriate choices for C.

Theorem 3.2. Let X ⊂ R
d be compact and k : X × X → R be a universal kernel. Let fk,C

n be the
classifier obtained by solving [SVMIP2(hm)] for a training set with n observations. Suppose that we have
a positive sequence (Cn) with Cn/n→ 0 and Cn → ∞. Then for any ǫ > 0,

lim
n→∞

P (L(fk,C
n ) − L(f∗) > ǫ) = 0

7
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Figure 2: An observation with class label −1 falls in the convex hull of observations of class +1. All four
observations cannot be simultaneously correctly classified by a linear hyperplane.

Proof. . The proof is in the Appendix.

4 Solution Methods and Computation Time

To improve the computation time for solving the mixed-integer quadratic programming problems [SVMIP1(ramp)],
[SVMIP2(ramp)], [SVMIP1(hm)], and [SVMIP2(hm)] in a branch and cut framework, we describe a fam-
ily of facets to cut off fractional solutions for the linear kernel and introduce some heuristics to find good
integer feasible solutions at nodes in the branch and cut tree. In [8], upper bounds for the constant M
in the linearizations of the constraints are derived. These solution methods and computational improve-
ments are applicable to both ramp loss and hard margin loss formulations with few adjustments; they
will be presented in the form appropriate for the ramp loss.

4.1 Facets of the Convex Hull of Feasible Solutions

In this section, we discuss a class of facets for [SVMIP1(ramp)]. If in a training data set, an observation
from one class lies in the convex hull of observations from the other class, then at least one of the
observations must be misclassified; i.e., have error at least 1 (Figure 2).

Theorem 4.1. [8]. Given a set of d + 1 points {xi : yi = 1, i = 1, . . . , d + 1} and another point xd+2

with label yd+2 = −1 such that xd+2 falls in the convex hull of the other d+ 1 points, then

d+2
∑

i=1

ξi +

d+2
∑

i=1

zi ≥ 1

defines a facet for the convex hull of integer feasible solutions for [SVMIP1(ramp)].

Proof. The proof is in the Appendix.

These convex hull cuts can be generated before optimization and added to a cut pool or derived by solving
separation problems at nodes in the branch and bound tree. In the latter case, two separation problems

8



can be solved, one for each class. The separation problem for the positive class has the following form

[CONV-SEP] min
n
∑

i=1

(ξi + zi)hi

s.t.
∑

i:yi=1

xiλi =
∑

i:yi=−1

xihi,

∑

i:yi=1

hi = d+ 1,

∑

i:yi=−1

hi = 1,

∑

i:yi=1

λi = 1,

λi ≤ hi ∀ i : yi = 1,

λi ≥ 0 ∀ i : yi = 1,

hi ∈ {0, 1}, i = 1, . . . , n.

Solving this mixed-integer programming problem finds an observation from the negative class that lies
in the convex hull of d+ 1 points from the positive class. The hi variables indicate whether observation
xi is one of the d + 2 points. If the optimal objective function value is less than 1.0, then the following
inequality is violated by the current fractional solution.

∑

i∈H

ξi +
∑

i∈H

zi ≥ 1

where H = {i|hi = 1}. Note that [CONV-SEP] may not be feasible if none of the negative class points are
convex combinations of the points of the positive class. However, unless the points are linearly separable,
the corresponding separation problem for the negative class would be feasible.

The convex hull cuts are implemented using ILOG CPLEX 11.1 Callable Library (http://www.ilog.com).
The enhanced solver is applied to the Type A data sets described in Section 5.1 using the same computer
architecture and settings, including indicator constraints. If a cut is found to be violated by 0.01, then
it is added. A time limit of 2 minutes (120 CPU seconds) is imposed on the solution of each separation
problem.

Adding the cuts at the root node provides good lower bounds, but the computation time per subproblem
increases significantly as nodes in the branch and bound tree are explored (data not shown). No attempt
at cut management is conducted, including deleting cuts that are no longer needed and controlling the
number of cuts added at each node in the branch and bound tree. Should a sophisticated cut management
system be employed with the convex hull cuts, we would expect savings in computational time; these
savings would be in addition to the time savings observed with the solution methods in Section 4.2. In
order to provide evidence that these facets are “good” in the sense that they cut off significant portions
of the polytope for the linear programming relaxation, we present the lower bounds generated at the root
node of the branch and bound tree that are obtained by adding violated cuts.

Results for the lower bounds at the root node provided by the convex hull cuts for instances with the
linear kernel and C = 1 are presented in Table 1. The columns labeled CPLEX-Generated Cuts shows
the best lower bound and the integrality gap at the root node when all CPLEX-generated cut settings are
set their most aggressive level. The columns labeled Convex Hull Cuts shows the best lower bound and
the integrality gap at the root node when the convex hull cuts are added; no CPLEX-generated cuts are
added. The integrality gap is measured using the formula (z∗ − zLB)/z∗ × 100, where z∗ is the objective
value associated with the best known integer feasible solution and zLB is the lower bound at the root node.
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Table 1: Best Lower Bound at Root Node for Convex Hull Cuts
Convex Hull Cuts

n d # of Best Integrality

Cuts LB Gap (%)

60 2 36 10.3 63.5

100 2 78 18.0 62.2

200 2 197 41.1 57.8

500 2 572 107.0 55.8

60 5 13 3.0 89.1

100 5 83 11.6 78.0

200 5 234 25.8 72.1

500 5 416 56.1 75.1

60 10 0 0.0 100.0

100 10 3 1.0 97.4

200 10 7 2.0 97.9

500 10 46 9.7 96.2

For 2- and 5-dimensional data, the convex hull cuts provide lower bounds that close the integrality gap
by between 11% and 44%. For 10-dimensional data, observations are less likely to fall in the convex hull
of other observations, and the usefulness of the convex hull cuts degrades. Similar behavior is observed
for the real-world data sets described in Section 5.2 (data not shown). When CPLEX alone is used with
indicator constraints, and all cut settings at their most aggressive level, no cuts are generated, leaving
an integrality gap of 100%. When CPLEX is provided linearized constraints with upper bounds for M
as derived in [8], the cuts generated by CPLEX close the integrality gap to 90.3% for the n = 60, d = 10
case; for all other instances, the integrality gap is at least 94.1%.

4.2 Heuristics for Generating Integer Feasible Solutions

This section describes heuristics for generating integer feasible solutions that are implemented within a
branch-and-bound framework and applicable to all four formulations. We present methods for [SVMIP2(ramp)];
minor adjustments are needed for use with the other formulations.

Before solving the root problem in the branch and bound tree, an initial solution is derived by setting
αi = 0 for i = 1, . . . , n. The variable b is set to 1 if n+ > n− and −1 otherwise. This solution, the “zero
solution”, yields an objective function value of 2Cmin{n+, n−}.

When using kernel functions of high rank (for example, the Gaussian kernel function has infinite rank)
and/or for well-separated data sets, a decision boundary can often be found such that no observations
are misclassified outside the margin. If feasible, such a solution can be derived by fixing all zi variables in
[SVMIP2(ramp)] to zero and solving a single continuous optimization problem. The problem is equivalent
to traditional SVM with the exception that the ξi variables are bounded above. This solution, the “zero
error solution”, is checked before beginning the branching procedure.

We implement another procedure for finding initial integer feasible solutions before branching. We check

10



the use of every positive-negative pair of observations to serve as the sole support vectors such that their
conditional constraints hold at equality (i.e., they define the margin boundary). For [SVMIP2(ramp)],
and for observations x1 and x2 with y1 = 1 and y2 = −1, let

α = 2/(k(x1,x1) − 2k(x1,x2) + k(x1,x2)).

The solution is given by

αi =

{

α for i = 1, 2

0 otherwise

b = (1/2)α(k(xi,xi) − k(xj ,xj))

At nodes in the branch and bound tree, we employ a heuristic for deriving integer feasible solutions. Let
(αj , ξj ,zj) represent the solution to the continuous subproblem at node j in the branch and bound tree.
We can project the solution into the space of the ξi and zi variables to derive an integer feasible solution.
For any set of values for α, feasible values of ξ and z can be set such that the conditional constraints are
satisfied.

These methods for finding integer feasible solutions are implemented using ILOG CPLEX 11.1 Callable
Library. The enhanced solver is applied to the real-world data sets described in Section 5.2 using the
same architecture and settings. [SVMIP1(ramp)] and [SVMIP1(hm)] are used for instances with the
linear kernel; [SVMIP2(ramp)] and [SVMIP2(hm)] are used for instances with the other kernels. There
are 9 data sets and 5 C values yielding 45 problem instances for each choice of kernel. For the linear
kernel, the enhanced solver finds solutions at least as good as CPLEX on 40 instances, and provides time
savings on 24 instances.

Figure 3 compares the computation time requirements for the enhanced solver and CPLEX. The geometric
mean of the time to the best solution obtained by CPLEX is plotted for various choices of C and for
the linear and polynomial kernels. As C increases, meaning that more emphasis is placed on minimizing
misclassifications over maximizing margin, the computation time decreases. For small values of C, and
for the linear and polynomial degree 2 kernels, the enhanced solver outperforms CPLEX on average.

As higher rank kernels are used, both solvers are able to find good solutions quickly. These results corre-
spond with the observation in Section 5 that when higher rank kernels are used, few if any observations
are misclassified so that one may solve the traditional SVM formulation. For the Gaussian kernel, both
the enhanced solver and CPLEX find optimal solutions to all 45 instances in less than 3 seconds. Each
training data set is capable of being separated with no observations misclassified outside of the margin.
The “zero error solution” is optimal for these data sets, indicating that ramp loss SVM is equivalent to
traditional SVM for the Gaussian kernel and these training sets.

5 Classification Accuracy on Simulated and Real-World Data

The classification performance of SVM with ramp loss and hard margin loss is compared to traditional

SVM on simulated and real-world data sets. Results for traditional SVM are obtained by using SVMlight

[18].

When using the linear kernel with ramp loss and hard margin loss, formulations [SVMIP1(ramp)]
and [SVMIP1(hm)] are used, respectively. When using polynomial and Gaussian kernels, formulations

11
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Figure 3: A comparison of computation time for instances of [SVMIP1(ramp)] and [SVMIP2(ramp)] for
traditional CPLEX (CPLEX) and CPLEX with the enhancements (Enhanced) presented in the text.
The linear (linear), polynomial degree 2 (poly2), polynomial degree 9 (poly9), and Gaussian/radial basis
function (gauss) kernels are used. The time in CPU seconds to find a solution at least as good as the
best obtained by CPLEX is plotted against values of C, the tradeoff between margin and error. For each
value of C, the geometric mean across 9 real-world data sets is plotted. For the Gaussian kernel, results
for σ = 1.0 are shown.

[SVMIP2(hm)] and [SVMIP2(ramp)] are used. For tests with the polynomial kernel, the form of the
kernel function is k(xi,xj) = (αxi · xj) + β)π, α = 1 and β = 1. The parameter π is tested with values
of 2 and 9, for quadratic and ninth-degree polynomials, respectively. When using the polynomial kernel,
each observation is normalized such that the magnitude of each observation vector is 1. For tests with
the Gaussian kernel, the form of the kernel function is k(xi,xj) = eσ||xi−xj ||

2

. Models are generated for
the Gaussian kernel for values of σ at 0.1, 1, 10, 100, and 1000.

The data sets are split into training, validation, and testing data sets such that they comprise 50%, 25%,
and 25% of the original data set, respectively. For real-world data sets with more than 1000 observations,
a random sample of 500 observations is used for training, and the remaining observations are divided for
validation and testing.

The training set is used to generate models for various values of C, the parameter that indicates the
tradeoff between error and margin in each formulation. For the Gaussian kernel, models are generated for
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each combination of C and σ values. The impact of the choice of C for traditional SVM, ramp loss SVM,
and hard margin loss SVM varies. For traditional SVM and ramp loss SVM, models are generated for
C = 0.01, 0.1, 1, 10, 100; for hard margin loss SVM, models are generated for C = 1, 10, 100, 1000, 10000.

Of the models generated for a training set and loss function, the model that performs best on the validation
set is used to choose the best value for C (and σ for the Gaussian kernel). This model is then applied to
the testing data set, for which results are reported.

SVMlight instances and quadratic integer programming instances are solved on machines with 2.6 GHz
Opteron processors and 4 GB RAM. All instances solved in less than 2 minutes (120 CPU seconds);
the vast majority of instances were solved in a few seconds. Quadratic integer programming instances
are solved using ILOG CPLEX 11.1 Callable Library (http://www.ilog.com). In all computational tests,
CPLEX “indicator constraints” [17] are employed by using the function CPXaddindconstr() to avoid the
negative effects of the M parameter required for linearization of the constraints. CPLEX implements
a branching scheme for branching on disjunctions such as the indicator constraints in the proposed
formulations, rather than on binary variables. For [SVMIP1(ramp)], [SVMIP1(hm)], [SVMIP2(ramp)],
and [SVMIP2(hm)], CPLEX is enhanced with the heuristics for generating feasible solutions described in
Section 4.2. The cuts described in Section 4.1 are not employed. If after 10 minutes (600 CPU seconds),
provable optimality is not obtained, the best known solution is used.

5.1 Simulated Data

Two-group simulated data sets are sampled from Gaussian distributions, each using the identity matrix
as the covariance matrix. The mvtnorm package in the R language and environment for statistical
computing [31] is used for creating samples. The mean for group 1 is the origin, and the mean for
the group 2 is (2/

√
d, 2/

√
d, . . . , 2/

√
d), so that the Mahalanobis distance is 2. This configuration is

equivalent to Breiman’s “twonorm” benchmark model [6]. Training sample sizes n and dimensions d are
given in Table 2. Non-contaminated training data are created by sampling uniformly from a pool of 2n
observations with n observations from each group. The remaining observations are sampled uniformly to
comprise the training and testing data sets. The data sets are contaminated with outliers in one of two
ways. In Type A data sets, outlier observations are sampled for group 1, using a Gaussian distribution
with covariance matrix 0.001 times the identity matrix and with a mean (10/

√
d, 10/

√
d, . . . , 10/

√
d),

so that the Mahalanobis distance between outliers and non-outliers is 10. In Type B data sets, outlier
observations are sampled from both class distributions with the exception that the covariance matrix is
multiplied by 100. Outliers comprise 10% of the observations in the training set, and are not present in
the validation or testing data sets. Examples of the contaminated distributions are plotted in Figure 4.

The Bayes rule for the (non-contaminated) distributions places observations in the group for which the
mean is closest because the data arises from Gaussian distributions with equal class prior probabilities
[15]. For all values of d, the Bayes error is therefore P (z > 1) ≈ 15.87%, where z ∼ N(0, 1).

Misclassification rates for SVM with each of the three loss functions and four kernel functions tested and
for Type A data sets are in Table 2. Using a robust loss function confers a significant advantage over the
hinge loss when using the linear kernel on all 12 data sets. The type A outliers are clustered together and
are able to ‘pull’ the separating surface for SVM with the hinge loss away from the non-contaminated
data, while SVM with the robust loss functions can minimize the effect of the outliers. The advantage
virtually disappears as a higher-rank kernel is used. SVM with a robust loss function outperforms SVM
with the hinge loss on 9 of 12, 3 of 12, and 5 of 12 data sets with the degree-2 polynomial, degree-9
polynomial, and Gaussian kernels, respectively. When a nonlinear (and potentially discontinuous, in the
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Figure 4: Plots of simulated data sets contaminated with (a) Type A and (b) Type B outliers. The plots
are for data sets with n = 60 and d = 2. The classifier selected by SVM, ramp loss SVM, and hard
margin Loss SVM with the linear kernel and C = 1.0 is plotted, as well as the Bayes optimal rule. In
the presence of Type A outliers, traditional SVM does not find a hyperplane but rather finds the “zero
solution” as optimal, placing all observations in the “circle” group; ramp loss and hard margin Loss SVM
ignore the outliers and produce classifiers that approximate the Bayes optimal rule reasonably well. For
Type B outliers, the Bayes optimal rule is a combination of the robust classifiers and the traditional SVM
classifier.

Gaussian case) separating surface is employed, the type B outliers can be assigned to the correct group
in the training data set without affecting generalization performance. SVM with the ramp loss performs
at least as well as SVM with the hard margin loss on 38 of 48 tests.

For type B outliers, using a robust loss function does not appear to confer an advantage over the hinge
loss (data not shown). SVM with the robust loss functions performs at least as well as hinge-loss SVM
on 32 of the 48 tests. SVM with the ramp loss outperforms SVM with the hard margin loss on 25 of 48
tests, and performs at least as well on 38 of 48 tests. This phenomenon is explained by the fact that the
hard margin loss strictly penalizes observations falling in the margin - in the ‘overlap’ of the two groups
of samples - while the ramp loss employs a continuous penalty for observations in the margin (as does
the hinge loss).

5.2 Real-World Data

Nine real-world data sets from the UCI Machine Learning Repository [1] are used. The data set name,
training set size, and number of attributes for each data set are given in Table 3. Observations with
missing values are removed. Categorical attributes with k possible values are converted to k binary
attributes, and are then treated as continuous attributes. Attributes with standard deviation 0 in the
training set are removed from the training, validation, and testing data sets. Each attribute is normalized
by subtracting the mean value in the training set and dividing by the standard deviation in the training
set.

Results for SVM with the various loss functions and kernels on real-world data sets is in Table 4. There
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Table 3: Real-World Training Data Sets

Label Name in UCI Repository n d

adult Adult 500 88

australian Statlog (Australian Credit Approval) 326 46

breast[24] Breast Cancer Wisconsin (Original) 341 9

bupa Liver Disorders 172 6

german Statlog (German Credit Data) 500 24

heart Statlog (Heart) 135 19

sonar Connectionist Bench (Sonar, Mines vs. Rocks) 104 60

wdbc[24] Breast Cancer Wisconsin (Diagnostic) 284 30

wpbc[24] Breast Cancer Wisconsin (Prognostic) 97 30

is no clear advantage to using one loss function over another. The ramp loss performs at least as well as
the traditional SVM on 28 of 36 tests and the largest difference in misclassification rates is 4.6%. The
ramp loss performs at least as well as the hard margin loss on 33 of 36 tests and outperforms the hard
margin loss on 18 tests. These results give further evidence that the ramp loss is preferred to the hard
margin loss. Also, the ramp loss has misclassification rates that are comparable to those of traditional
SVM in the absence of outliers.

5.3 Comparisons with Other Classifiers

SVM with the ramp loss and hard margin loss is compared with other commonly-used classification
methods using eleven data sets. The five real-world data sets of Section 5.2 with at least 500 observations
are included as well as six simulated data sets. The simulated data sets are comprised of 1000 observations,
each sampled from the distributions described in Section 5.1 for d = 2, 5, 10 and for type A and type B
outliers. Ten percent (100) of the observations are sampled from the outlier distributions in each data
set.

Each data set is partitioned into two sets, one for parameter tuning and one for testing. For each partition,
10-fold cross validation is performed. The settings with the best performance on test observations for the
first partition are used for training in the second partition. Performance on the holdout data sets in the
second partition is reported. Confidence intervals are constructed for the misclassification rate of each
classifier.

SVM with the ramp loss and hard margin loss is compared to traditional SVM, classification trees, k-
nearest neighbor, random forests, and logistic regression. The support vector machines are computed
as previously described. Classification trees (CART), k-nearest neighbor, random forests, and logistic
regression are trained and tested using the R language and environment for statistical computing [31]
using the functions rpart(), kknn(), randomForest(), and glm(family=binomial(“logit”)), respectively,
which are contained in packages rpart[38], kknn [32], randomForest [5], and stats [31], respectively. SVM
with the ramp loss and hard margin loss tuned for loss function (ramp loss or hard margin loss), C
(0.01, 0.1, 1, 10, 100 for ramp loss, 1, 10, 100, 1000, 10000 for hard margin loss), kernel (linear, degree-2
polynomial, degree-9 polynomial, Gaussian), and σ for the Gaussian kernel (0.1, 1, 10, 100, 1000). Tradi-
tional SVM is tuned for the same parameter values except for the loss function. Classification trees are
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Table 5: Confidence Intervals for Misclassification Rate based on 10-fold Cross Validation

Results: Average (95% CI width)

SVM (hard margin SVM k-Nearest Classification Random Logistic

dataset & ramp loss) (hinge loss) Neighbor Trees Forest Regression

adult 17.2(0.03) 17.0(0.03) 23.4(0.04) 20.0(0.04) 15.8(0.03) 16.8(0.03)

australian 14.1(0.04) 15.0(0.04) 14.7(0.04) 17.1(0.04) 11.8(0.04) 13.7(0.04)

breast 9.7(0.03) 3.5(0.02) 4.1(0.02) 6.2(0.03) 3.5(0.02) 5.3(0.02)

german 0.00(0.00) 0.0(0.00) 6.2(0.02) 0.0(0.00) 0.0(0.00) 0.0(0.00)

wdbc 3.9(0.02) 3.9(0.02) 5.6(0.02) 6.7 (0.03) 4.9(0.03) 7.0(0.03)

n1000d2A 19.6(0.03) 15.8(0.03) 15.8(0.03) 16.4(0.03) 17.0(0.03) 44.8(0.04)

n1000d2B 25.0(0.04) 23.0(0.04) 25.8(0.03) 25.6(0.04) 22.8(0.04) 42.4(0.04)

n1000d5A 16.6(0.03) 15.8(0.03) 17.8(0.03) 22.8(0.04) 17.8(0.03) 46.8(0.04)

n1000d5B 22.6(0.04) 21.2(0.04) 24.0(0.04) 32.4(0.04) 24.6(0.04) 29.6(0.04)

n1000d10A 24.8(0.04) 26.8(0.04) 16.8(0.04) 27.0(0.04) 17.0(0.03) 48.6(0.04)

n1000d10B 14.4(0.03) 14.4(0.03) 29.6(0.03) 34.8(0.04) 29.0(0.04) 28.8(0.04)

tuned for the split criterion (Gini or information) and k-nearest neighbor is tuned for k (1, 3, 4, 7, 9) and
distance function (L1 and L2). Random forests and logistic regression are used with default settings for
all tests.

The 95% confidence intervals for misclassification rate are presented in Table 5. SVM with the ramp
loss or hard margin loss obtains misclassification rates within 3.8% of the best classifier for all but two
of the data sets, and achieves the minimum misclassification rate among the classifiers for 3 data sets.
Traditional SVM achieves the minimum misclassification rate among the classifiers on 7 of 11 data sets.
On the outlier-contaminated data sets, SVM with robust loss functions, traditional SVM, and k-nearest
neighbor perform best. Classification trees and random forest have high misclassification rates in the
presence of type B outliers, while logistic regression has high misclassification rates in the presence of
both type A and type B outliers. Consistent with the results of Sections 5.1 and 5.2, SVM with the ramp
loss and hard margin loss has misclassification rates that are comparable to those of traditional SVM
for these data sets, and their robustness properties are not needed when a high-rank kernel is used for
training.

6 Discussion

We have introduced new integer programming formulations for ramp loss and hard margin loss SVM
that can accommodate nonlinear kernel functions. As traditional SVM with the hinge loss is a consistent
classifier [36], we should not be too surprised that SVM with these robust loss functions is consistent
as well. The formulations and solution methods for the ramp loss and hard margin loss SVM that are
presented here can generate good solutions for instances that are an order of magnitude larger than
previously attempted. The cuts introduced in Section 4.1 can be generalized to other math programming
formulations where the number of misclassifications is minimized, and are independent of the method of
regularization.
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Using a branch-and-bound algorithm to solve instances of SVM with the robust loss functions is more
computationally intensive than solving SVM instances with the hinge loss. In the worst case for the com-
putational study presented here, the difference in computing time is approximately an order of magnitude.
This result begs the question, “Is the extra computational time justified for the robust loss functions?”
SVM with the hard margin loss can provide more robust classifiers in certain situations, but can also
derive undesirable classifiers based on non-contaminated data because it strictly penalizes observations
falling in the margin. SVM with the ramp loss performs no worse than SVM with the hinge loss, yet can
provide more robust classifiers in the presence of outliers in certain situations.

The choice of kernel appears to be crucial as to whether SVM with the ramp loss will confer an advantage
over SVM with the hinge loss. When using the linear kernel, SVM with the ramp loss is preferred to
SVM with the hinge loss. As the rank of the kernel function is increased, the advantage of using a robust
SVM formulation decreases. When using the most “complex” kernels, universal kernels [35], SVM with
ramp loss provides no advantage. The reason for this can be seen in the definition of universal kernels
and the property of universal kernels given in equation (8). Universal kernels project data into a space
in such a way that none of the projected points are “far” from one another. Further, they are capable
of learning nonlinear and discontinuous separating surfaces in the space of the original data. These
properties eliminate the adverse effects of outliers, and a more robust formulation is not needed. We infer
that the need for a robust formulation of SVM depends directly on the rank of the kernel function.

We conclude that when a low-rank kernel is used with SVM, it is advisable to employ the ramp loss
to derive classifiers that are uninfluenced by outliers. If the number of observations is large so that
computational time is a concern, we note that an ensemble classifier can be formed based on samples of
the data. An open research question is to quantify the robustness of SVM as a function of kernel rank.
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7 Appendix

8 Proof of Theorems 3.1 and 3.2.

Theorem 3.1 Let X ⊂ R
d be compact and k : X × X → R be a universal kernel. Let fk,C

n be the
classifier obtained by solving [SVMIP2(ramp)] for a training set with n observations. Suppose that we
have a positive sequence (Cn) with Cn/n→ 0 and Cn → ∞. Then for any ǫ > 0,

lim
n→∞

P (L(fk,C
n ) − L(f∗) > ǫ) = 0

Proof. To establish the consistency of ramp loss SVM, first write the difference in population loss between
fk,C

n and f∗ as
L(fk,C

n ) − L(f∗) = L(fk,C
n ) − L(f†) + L(f†) − L(f∗).

We will show that each of the differences above is bounded by ǫ/2 for an appropriately-chosen f†.
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The bound L(f†) − L(f∗) < ǫ/2 follows directly from [36, Lemma 2]. Let

B1(P ) = {x ∈ X : P (y = 1|x) > P (y = −1|x)},
B−1(P ) = {x ∈ X : P (y = −1|x) > P (y = 1|x)},
B0(P ) = {x ∈ X : P (y = −1|x) = P (y = 1|x)}.

Since k is universal, by [36, Lemma 2] there exists w† ∈ H such that w† · Φ(x) ≥ 1 for all x ∈ B1(P )
except for a set of probability bounded by ǫ/4 and w† · Φ(x) ≤ −1 for all x ∈ B−1(P ) except for a set
of probability bounded by ǫ/4. Further, we can require that

w† · Φ(x) ∈ [−(1 + ǫ/4), 1 + ǫ/4] (8)

for all x. Setting f†(x) = sgn(w† · Φ(x)), these conditions ensure that L(f†) − L(f∗) < ǫ/2.

We now show that limn→∞ L(fk,C
n )−L(f†) ≤ ǫ/2. Let R(f) be the population ramp loss (with maximum

value 2) for a classifier f , and let R̂(f) be the empirical ramp loss for f . Then

L(fk,C
n ) − L(f†) ≤ R(fk,C

n ) −R† + ǫ/2 (9)

≤ R̂(fk,C
T ) + Ĉn(F) + 3

√

ln(2/δ)

2n
−R(f†) + ǫ/2 (10)

≤ R̂(fk,C
T ) +

2B

n

√

√

√

√

n
∑

i=1

k(xi,xi) + 3

√

ln(2/δ)

2n
−R(f†) + ǫ/2 (11)

≤ R̂(fk,C
T ) +

2(2
√
C)

n

√

√

√

√

n
∑

i=1

k(xi,xi) + 3

√

ln(2/δ)

2n
−R(f†) + ǫ/2 (12)

≤ R̂(sgn(w† · Φ)) +
1

2C
||w†||2 +

4
√
C

n

√

√

√

√

n
∑

i=1

k(xi,xi) + 3

√

ln(2/δ)

2n
−R(f†) + ǫ/2 (13)

≤ R(sgn(w† · Φ)) + 2

√

− ln γ

n
+

1

2C
||w†||2 +

4
√
C

n

√

√

√

√

n
∑

i=1

k(xi,xi) + 3

√

ln(2/δ)

2n
−R(f†) + ǫ/2(14)

≤ 2

√

− ln γ

n
+

1

2C
||w†||2 +

4
√
C

n

√

√

√

√

n
∑

i=1

k(xi,xi) + 3

√

ln(2/δ)

2n
+ ǫ/2 (15)

The right-hand side of the last line converges to ǫ/2 as C/n → 0 and C → ∞. Inequality (9) is due to
Lemma 8.1. Inequality (10) follows from [2] as stated in [33, Theorem 4.9], where Ĉn(F) is the empirical
Rademacher complexity of the set of classifiers. Inequality (11) is due to [2, Theorem 21] as stated in [33,
Theorem 4.12], where B2 is an upper bound on the kernel function. Such an upper bound is guaranteed
to exist because X is compact. Inequality (12) follows from the fact that ||w|| ≤ 2

√
C for any optimal

solution of [SVMIP2(ramp)] so that B ≤ 2
√
C. Inequality (13) is due to the fact that fk,C

n is optimal
for [SVMIP2(ramp)], so that 1/2||wk,C ||2 +CR̂(fk,C

n ) ≤ 1/2||w†||2 +CR̂(w† ·Φ). Inequality (14) follows
from an application of McDiarmid’s inequality [25] which implies that

P

(∑n

i=1(ξi + 2zi)

n
−R(w† · Φ) ≥ γ

)

≤ exp

(

−2ǫ2
∑2n

i=1(2/n)2

)

.
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Lemma 8.1. Let L(f) be the probability of misclassification for classifier f and let R(f) be the population
ramp loss for classifier f . For a universal kernel k, if f† is chosen as in [36, Lemma 2], then for any
ǫ > 0,

L(fk,C
n ) − L(f†) ≤ R(fk,C

n ) −R(f†) + ǫ/2.

Proof.

L(fk,C
n ) − L(f†) =

∑

j∈{±1}

(

∫

1{x:jf
k,C
n (x)<−1}dx+

∫

1{x:jf
k,C
n (x)≥−1,≤0}dx

−
∫

1{x:jf†(x)<−1}dx−
∫

1{x:jf†(x)≥−1,≤0}dx) (16)

≤ 2
∑

j∈{±1}

(
∫

1{x:jf
k,C
n (x)<−1}dx−

∫

1{x:jf†(x)<−1}dx

)

+
∑

j∈{±1}

(

∫

{x:jf
k,C
n (x)≥−1,≤0}

(1 − jfk,C
n )dx−

∫

{x:jf†(x)≥−1,≤0}

(1 − jf†)dx

)

(17)

= R(fk,C
n ) −R(f†)

−
∑

j∈{±1}

∫

{x:jf
k,C
n (x)>0,≤1}

(1 − jfk,C
n )dx+

∑

j∈{±1}

∫

{x:jf†(x)>0,≤1}

(1 − jf†)dx(18)

≤ R(fk,C
n ) −R(f†) +

∑

j∈{±1}

∫

{x:jf†(x)>0,≤1}

(1 − jf†)dx (19)

≤ R(fk,C
n ) −R(f†) + ǫ/2 (20)

By [36, Lemma 2], we can select f† in such a way that the last term in (18) is arbitrarily small.

Theorem 3.2 Let X ⊂ R
d be compact and k : X×X → R be a universal kernel. Let fk,C

n be the classifier
obtained by solving [SVMIP2(hm)] for a training set with n observations. Suppose that we have a positive
sequence (Cn) with Cn/n→ 0 and Cn → ∞. Then for any ǫ > 0,

lim
n→∞

P (L(fk,C
n ) − L(f∗) > ǫ) = 0

Proof. Let R(f) be the population ramp loss where the loss for an observation for which yf(x) > 0 is 0
and the loss when yf(x) < −1 is 1. Let R̂(f) be the empirical ramp loss for f , and let L̂ be the empirical
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hard margin loss. Many of the steps in the proof correspond to steps in the proof of Theorem 3.1.

L(fk,C
n ) ≤ R(fk,C

n ) (21)

≤ R̂(fk,C
n ) +
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n

√

√

√

√

n
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√

ln(2/δ)
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2C
||w†||2 +

2
√
C

n

√

√

√

√

n
∑

i=1

k(xi,xi) + 3

√

ln(2/δ)

2n
(24)

≤ L(w† · Φ) +
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≤ L(f∗) + ǫ+
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− ln γ

2n
+

1

2C
||w†||2 +
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√

√

√

√

n
∑
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k(xi,xi) + 3

√

ln(2/δ)
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The right-hand side of the last line converges to ǫ as C/n→ 0 and C → ∞. Inequality (22) follows from
[2, Theorem 21] as stated in [33, Theorems 4.9 and 4.12], where B2 is an upper bound on the kernel
function. Such an upper bound is guaranteed to exist because X is compact. Inequality (23) is due to the
definitions of the losses and the upper bound for ||w|| ≤

√
C for any optimal solution to [SVMIP2(hm)]

so that B ≤
√
C. Inequality (24) is due to the fact that fk,C

n is optimal for [SVMIP2(ramp)], so that
1/2||wk,C ||2 + CL̂(fk,C

n ) ≤ 1/2||w†||2 + CL̂(w† · Φ). Inequality (25) follows from an application of
McDiarmid’s inequality [25] which implies that

P

(∑n

i=1 zi

n
− L(w† · Φ) ≥ γ

)

≤ exp

( −2ǫ2
∑n

i=1(1/n)2

)

.

Inequality (26) follows from the choice of f† (and therefore w† ·Φ) whose existence is guaranteed by [36,
Lemma 2].

9 Proof of Theorem 4.1.

Assumption 9.1. The observations xi ∈ R
d, i = 1, . . . , n are in general position, meaning that no set of

d+ 1 points lies in a (d− 1)-dimensional subspace. Equivalently, every subset of d+ 1 points is affinely
independent.

Lemma 9.1. The convex hull of integer feasible solutions for [SVMIP1(ramp)] has dimension 2n+d+1.

Proof. There are 2n + d + 1 variables in [SVMIP1(ramp)]. Let P ∗ be the polyhedron formed by the
convex hull of integer feasible solutions to [SVMIP1(ramp)]. We will show that that no equality holds for
every solution in P ∗ (i.e., the affine hull of the integer feasible solutions is R

2n+d+1), from which we can
conclude that dim(P ∗) = 2n+ d+ 1. Let ωj be the multiplier for the wj for each j, β be the multiplier
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for b, σi be the multiplier ξi for each i, and ζi be the multiplier for the zi for each i. For a constant c,
suppose that the following equality holds for all points in P ∗.

d
∑

j=1

ωjwj + βb+

n
∑

i=1

σiξi +

n
∑

i=1

ζizi + c = 0 (27)

For a given training data set, consider a separating hyperplane (and assignment of resulting half-spaces
to classes) that is “far” from all of the observations that classifies all observations in class +1. Such a
hyperplane corresponds to a feasible solution for [SVMIP1(ramp)] with zi = 1 for all i with yi = −1. For
an arbitrary wj , there exists a δ > 0 small enough such that adding δ to wj results in another feasible
solution with no changes to other variable values. Plugging the two solutions into (27) and taking the
difference implies that ωj = 0. Because wj is chosen arbitrarily, ωj = 0 for all j. A similar argument
shows that β = 0. The equality (27) now has the form

n
∑

i=1

σiξi +

n
∑

i=1

ζizi + c = 0 (28)

Consider again an observation that is “far” from all observations that classifies all observations in class
+1, so that zi = 1 for i with yi = −1. Note that for observations with zi = 1, the value of ξi can be
changed without changing the values of any zi variables or any other ξi variables and remain feasible.
Taking the difference of the two solutions yields σi = 0 for all such i. Similar reasoning yields σi = 0 for
observations with yi = +1. The equality (27) now has the form

n
∑

i=1

ζizi + c = 0 (29)

Consider an observation xi that defines the convex hull of observations. By Assumption 9.1, there
exists a hyperplane that separates xi from the other observations. Therefore, we can find solutions to
[SVMIP1(ramp)] with zi = 1 and zi = 0 with no other zi variable values unchanged. Plugging these
solutions into equation 29 and taking the difference yields ζi = 0. Therefore, ζi = 0 for any observation
that defines the convex hull of observations. Discarding the observations that define the convex hull and
applying the same reasoning to the observations that define the convex hull of the remaining observations
yields ζi = 0 for those observations. Continuing in the same fashion yields ζi = 0 for all i and therefore
c = 0. There is no equality that holds for all points in P ∗, and P ∗ has dimension 2n+ d+ 1.

Lemma 9.2. Given a set of d + 1 points H = {xi : yi = 1, i = 1, . . . , d + 1} and another point xd+2

with label yd+2 = −1 such that xd+2 falls in the convex hull of the other d+ 1 points, then

F = {(w, b, ξ,z) ∈ P ∗ :

d+2
∑

i=1

ξi +

d+2
∑

i=1

zi = 1}

defines a proper face of P ∗.

Proof. Consider a hyperplane “far” from all of the observations and an assignment of its half-spaces
to classes that places all observations in class +1, so that xd+2 is the only observation in H that is
misclassified with zd+2 = 1, ξd+2 = 0, and ξi = 0 for i = 1, . . . , d+1. There exists a corresponding solution
that is feasible for [SVMIP1(ramp)], which proves that F 6= ∅. Now consider the same hyperplane with
assignment of half-spaces to classes that places all observations in class −1. Then there is a corresponding
solution to [SVMIP1(ramp)] that has

∑d+2
i=1 zi = d+1. The solution does not lie on F , so F 6= P ∗. Because

F 6= ∅ and F 6= P ∗, F is a proper face of P ∗.
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Lemma 9.3. The face F defined in Lemma 9.2 has dimension dim(P ∗) − 1.

Proof. We will now show that F is a facet for P ∗ by showing that the inequality that defines F has
dimension dim(P ∗) − 1, in accordance with Theorem 3.6 on page 91 of [26]. We will show that only one
equality holds for all points in F . Suppose for multipliers ωj , j = 1, . . . , d; β; σi, i = 1, . . . , n; and ζi,
i = 1, . . . , n and a constant c that the following equality holds for all solutions in F .

d
∑

j=1

ωjwj + βb+

n
∑

i=1

ζizi + c = 0 (30)

Consider a hyperplane that is “far” from the points in the training data set that places all observations
in class +1. There exists a corresponding solution with zd+2 = 1, ξd+2 = 0, ξi = 0 for i = 1, . . . , d + 1,
and zi = 0 for i = 1, . . . , d + 1 in F . Choosing an arbitrary wj and tilting the hyperplane slightly as in
the proof of Lemma 9.1 produces another solution in F . Plugging the solutions into into (30) and taking
the difference implies that ωj = 0. Because wj is chosen arbitrarily, ωj = 0 for all j. A similar argument
shows that β = 0.

Now consider an observation xi that is not in the convex hull of points in H. There exists a hyperplane
separating the observation from all points in H, so that there exist separate solutions placing all obser-
vations in H in class +1 with ξi = 0 and zi = 1, ξi > 0 and zi = 1, and ξi = 0 and zi = 0, respectively.
These solutions imply that σi = ζi = 0 for all observations not in the convex hull of points in H.

By Assumption 9.1, no observation lies in the convex hull of any set of d other observations. Accordingly,
observation xd+2 does not lie in the convex hull of any set of d other observations in H. Also, the line
segment connecting x1 with xd+2 does not intersect the convex hull of {xi : i = 2, . . . , d + 1}, and
therefore a hyperplane exists that separates the two sets. Assigning the half space with x1 and xd+2 to
the class −1 can generate solutions that lie in F , as x1 is the only observation in H misclassified. Now
consider an observation xk that is not in H but is in the convex hull of {xi : i = 2, . . . , d + 2}. There
exist hyperplanes “near” xk corresponding to solutions with zk = 0 and ξk = 0, ξk = 0 and zk = 1, and
ξk > 0 and zk = 1, respectively, while maintaining z1 = 1, zi = 0 for i ∈ H \ {1}, and constant values for
all other zi variables. The difference between these solutions implies that σk = ζk = 0. Similar reasoning
can be used to show that σk = ζk = 0 for all k /∈ H with xk in the convex hull of H.

We now have that (30) reduces to
∑

i∈H

σiξi +
∑

i∈H

ζizi + c = 0. (31)

Consider again a solution with z1 = 1, zi = 0 for i ∈ H \ {1}, and ξi = 0 for i ∈ H. This solution
implies that ζ1 = −c. Consider also a solution with ξ1 = 1, ξi = 0 for i ∈ H \ {1}, and zi = 0 for
i ∈ H. This solution implies that σ1 = −c. Similar reasoning can be used to show that σi = ζi = −c for
i = 1, . . . , d+ 1.

Consider again a solution that places all observations in class +1 so that zd+2 = 1 and zi = 0 for
i ∈ H \ {d + 2} and ξi = 0 for i ∈ H. This solution implies that ζd+2 = −c. Consider also a solution
with ξd+2 = 1, ξi = 0 for i ∈ H \ {d + 2}, and zi = 0 for i ∈ H. This solution implies that σd+2 = −c.
Plugging the σi and ζi values into (31) produces

∑

i∈H

ξi +
∑

i∈H

zi = 1 (32)
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which is the equality that defines F . Therefore, (32) is the only equality satisfied by all points in F , and
F has dimension dim(P ∗) − 1.

Theorem 4.1 [8]. Given a set of d + 1 points {xi : yi = 1, i = 1, . . . , d + 1} and another point xd+2

with label yd+2 = −1 such that xd+2 falls in the convex hull of the other d+ 1 points, then

d+2
∑

i=1

ξi +

d+2
∑

i=1

zi ≥ 1

defines a facet for the convex hull of integer feasible solutions for [SVMIP1(ramp)].

Proof. The theorem follows directly from Lemmas 9.1-9.3.
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