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Abstract 

A system has been developed to extract diagnostic information from jet 
engine carcass vibration data. Support Vector Machines applied to nov
elty detection provide a measure of how unusual the shape of a vibra
tion signature is, by learning a representation of normality. We describe 

a novel method for Support Vector Machines of including information 
from a second class for novelty detection and give results from the appli
cation to Jet Engine vibration analysis. 

1 Introduction 

Jet engines have a number of rigorous pass-off tests before they can be delivered to the 
customer. The main test is a vibration test over the full range of operating speeds. Vibration 
gauges are attached to the casing of the engine and the speed of each shaft is measured 
using a tachometer. The engine on the test bed is slowly accelerated from idle to full 
speed and then gradually decelerated back to idle. As the engine accelerates, the rotation 
frequency of the two (or three) shafts increases and so does the frequency of the vibrations 
caused by the shafts. A tracked order is the amplitude of the vibration signal in a narrow 
frequency band centered on a harmonic of the rotation frequency of a shaft, measured as 
a function of engine speed. It tracks the frequency response of the engine to the energy 
injected by the rotating shaft. Although there are usually some harmonics present, most 
of the energy in the vibration spectrum is concentrated in the fundamental tracked orders. 
These therefore constitute the "vibration signature" of the jet engine under test. It is very 

important to detect departures from the normal or expected shapes of these tracked orders 
as this provides very useful diagnostic information (for example, for the identification of 
out-of-balance conditions). 

The detection of such abnormalities is ideally suited to the novelty detection paradigm for 
several reasons. Usually, there are far fewer examples of abnormal shapes than normal 
ones and often there may only be a single example of a particular type of abnormality in 



the available database. More importantly, the engine under test may show up a type of 
abnormality which has never been seen before but which should not be missed. This is 
especially important in our current work where we are adapting the techniques developed 
for pass-off tests to in-flight monitoring. 

With novelty detection, we first of all learn a description of normal vibration shapes by 
including only examples of normal tracked orders in the training data. Abnormal shapes 
in test engines are subsequently identified by testing for novelty against the description of 
normality. 

In our previous work [2], we investigated the vibration spectra of a two-shaft jet engine, 
the Rolls-Royce Pegasus. In the available database, there were vibration spectra recorded 
from 52 normal engines (the training data) and from 33 engines with one or more unusual 
vibration feature (the test data). The shape of the tracked orders was encoded as a low

dimensional vector by calculating a weighted average of the vibration amplitude over six 
different speed ranges (giving an 18-D vector for three tracked orders). With so few engines 
available, the K -means clustering algorithm (with K = 4) was used to construct a very 
simple model of normality, following component-wise normalisation of the 18-D vectors. 

The novelty of the vibration signature for a test engine was assessed as the shortest dis
tance to one of the kernel centres in the clustering model of normality (each distance being 
normalised by the width associated with that kernel). When cumulative distributions of 
novelty scores were plotted both for normal (training) engines and test engines, there was 
little overlap found between the two distributions [2]. A significant shortcoming of the 
method, however, is the inability to rank engines according to novelty, since the shortest 
normalised distance is evaluated with respect to different cluster centres for different en
gines. In this paper, we re-visit the problem but for a new engine, the RB211-535. We argue 
that the SVM paradigm is ideal for novelty detection, as it provides an elegant distribution 
of normality, a direct indication of the patterns on the boundary of normality (the support 
vectors) and, perhaps most importantly, a ranking of "abnormality" according to distance 
to the separating hyperplane in feature space. 

2 Support Vector Machines for Novelty Detection 

Suppose we are given a set of "normal" data points X = {Xl, ... , xL} . In most novelty 
detection problems, this is all we have; however, in the following we shall develop an 
algorithm that is slightly more general in that it can also take into account some examples 

of abnormality, Z = {Zl' ... ' zt} . Our goal is to construct a real-valued function which, 
given a previously unseen test point x, charaterizes the "X -ness" of the point x, i.e. which 
takes large values for points similar to those in X. The algorithm that we shall present 
below will return such a function, along with a threshold value, such that a prespecified 
fraction of X will lead to function values above threshold. In this sense we are estimating 
a region which captures a certain probability mass. 

The present approach employs two ideas from support vector machines [6] which are cru
cial for their fine generalization performance even in high-dimensional tasks: maximizing 
a margin, and nonlinearly mapping the data into some feature .space F endowed with a dot 
product. The latter need not be the case for the input domain X which may be a general set. 
The connection between the input domain and the feature space is established by a feature 
map <1> : X -+ F, i.e. a map such that some simple kernel [1,6] 

k(x,y) = (<1>(x)· <1>(y)), (1) 

such as the Gaussian 
k(x,y) = e-llx-yIl2/c, (2) 



provides a dot product in the image of <P. In practice, we need not necessarily worry about 
<P, as long as a given k satisfies certain positivity conditions [6]. 

As F is a dot product space, we can use tools of linear algebra and geometry to construct 
algorithms in F , even if the input domain X is discrete. Below, we derive our results in F, 

using the following shorthands: 

(3) 

(4) 

Indices i and j are understood to range over 1, ... ,i (in compact notation: i, j E [.e]), sim

ilarly, n,p E [t]. Bold face greek letters denote i-dimensional vectors whose components 
are labelled using normal face typeset. 

In analogy to an algorithm recently proposed for the estimation of a distribution's sup
port [5], we seek to separate X from the centroid of Z with a large margin hyperplane 
committing few training errors. Projections on the normal vector of the hyperplane then 
characterize the "X -ness" of test points, and the area where the decision function takes the 
value 1 can serve as an approximation of the support of X. While X is the set of normal 
examples, the (possibly empty) set Z thus only plays the role of, in some weak and possibly 
imprecise sense, modeling what the unknown "other" examples might look like. 

The decision function is found by minimizing a weighted sum of a support vector type 
regularizer and an empirical error term depending on an overall margin variable p and 

individual errors ~i' 

min !llw l1 2 + ;l Li ~i - P 
wEF , ~E R l , pER 

subjectto (W'(Xi-t LnZn)) ~ p- ~i' ~i ~ O. 

(5) 

(6) 

The precise meaning of the parameter v governing the trade-off between the regularizer and 
the training error will become clear later. Since nonzero slack variables ~i are penalized in 
the objective function, we can expect that if wand p solve this problem, then the decision 

function 
1 

f(x) = sgn((w . (x - t L zn)) - p) (7) 

n 

will be positive for many examples Xi contained in X, while the SV type regularization 

term Ilwll will still be small. This can be shown to correspond to a large margin of separa

tion from t Ln Zn· 

We next compute a dual form of this optimization problem. The details of the calculation, 
which uses standard techniques of constrained optimization, can be found in [4]. We in
troduce a Lagrangian and set the derivatives with respect to w equal to zero, yielding in 
particular 

(8) 

All patterns {Xi: i E [.e], Di > O} are called Support Vectors. The expansion (8) 
turns the decision function (7) into a form which only depends on dot prducts, f(x) = 

sgn((LiDi(Xi - t LnZn) . (x - t LnZn)) - p). By multiplying out the dot prod
ucts, we obtain a form that can be written as a nonlinear decision function on the in
put domain X in terms of a kernel (1) (cf. (3». A short calculation yields f(x) = 

sgn (Li Dik(Xi, x) - t Ln k(zn, x) + b Lnp k(zn, zp) - t Lin Dik(Zn, Xi) - p). In 

the argument of the sgn, only the first two terms depend on x, therefore we may absorb the 



next terms in the constant p, which we have not fixed yet. To compute p in the final form 
of the decision function 

(9) 

we employ the Karush-Kuhn-Tucker (KKT) conditions of the optimization problem [6, 

e.g.]. They state that for points Xi where ° < Cli < 1/ (vi), the inequality constraints 
(6) become equalities (note that in general, Cli E [O,l/(vi)]), and the argument of the 
sgn in the decision function should equal 0, i.e. the corresponding Xi sits exactly on the 
hyperplane of separation. 

The KKT conditions also imply that only those points Xi can have a nonzero Cli for which 
the first inequality constraint in (6) is precisely met; therefore the support vectors Xi with 

Cli > ° will often form but a small subset of X. 

Substituting (8) (the derivative of the Lagrangian by w) and the corresponding conditions 
for ~ and p into the Lagrangian, we can eliminate the primal variables to get the dual 
problem. A short calculation shows that it consists of minimizing the quadratic form 

1 
W(Cl) = 2" L CliClj (k(Xi,Xj) + q - qj - qi), (10) 

ij 

where q = b I:np k(zn, zp) and qj = t I:n k(xj, zn), subject to the constraints 

(11) 

This convex quadratic program can be solved with standard quadratic programming tools. 
Alternatively, one can employ the SMO algorithm described in [3], which was found to 
approximately scale quadratically with the training set size. 

To illustrate the idea presented in this section, figure 1 shows a 2D example of separating 
the data from the mean of another data set in feature space. 

Figure 1: Separating one class of data from the mean of a second data set. The first class is 
a mixture of three gaussians; the SVM algorithm is used to find the hyperplane in feature 
space that separates the data from the second set (another Gaussian - the black dots). The 
image intensity represents the SVM output value which is the measure of novelty. 



We next state a few theoretical results, beginning with a characterization of the influence 

of v. To this end, first note that the constraints (11) rule out solutions where v > 1, as in 

that case, the Qi cannot sum up to 1. Negative values of v are ruled out, too, since they 

would amount to encouraging (rather than penalizing) training errors in (5). Therefore, in 
the primal problem (5) only v E (0,1] makes sense. We shall now explain that v actually 

characterizes how many points of X are allowed to lie outside the region where the decision 

function is positive. To this end, we introduce the term outlier to denote points Xi that have 

a nonzero slack variable ~i' i.e. points that lie outside of the estimated region. By the 

KKT conditions, all outliers are also support vectors; however there can be support vectors 
(sitting exactly on the margin) that are not outliers. 

Proposition 1 (v-property) Assume the solution of (5) satisfies p '" 0. The following 

statements hold: 
(i) v is an upper bound on the fraction of outliers. 
(ii) v is a lower bound on the fraction of SVs. 

(iii) Suppose the data (4) were generated independently from a distribution P(x) which 

does not contain discrete components. Suppose, moreover, that the kernel is analytic and 
non-constant. With probability 1, asymptotically, v equals both the fraction of Sv.\· and the 

fraction of outliers. 

The proof can be found in [4]. We next state another desirable theoretical result: 

Proposition 2 (Resistance [3]) Local movements of outliers parallel to w do not change 

the hyperplane. 

Essentially, this result is due to the fact that the errors ~i enter in the objective function only 

linearly. To determine the hyperplane, we need to find the (constrained) extremum of the 

objective function, and in finding the extremum, the derivatives are what counts. For the 

linear error term, however, those are constant, so they do not depend on how far away from 
the hyperplane an error point lies. 

We conclude this section by noting that if Z is empty, the algorithm is trying to separate 

the data from the origin in F, and both the decision function and the optimization problem 
reduce to what is described in [5]. 

3 Application of SVM to Jet Engine Pass-off Tests 

The Support Vector machine algorithm for novelty detection is applied to the pass-off data 

from a set of 162 Rolls-Royce jet engines. The shape of the tracked order of interest is en

coded by calculating a weighted average of the vibration amplitude over ten speed ranges, 

thereby generating a lOD shape vector. The available data was split into the following three 

sets: 

• 99 Normal Engines to be used as training data; 

• 40 Normal Engines to be used as validation data; 

• 23 engines labelled as having at least one abnormal aspect in their vibration sig
nature (the "test" data). 

Using the training dataset, the SVM algorithm finds the hyperplane that separates the nor

mal data from the origin in feature space with the largest margin. The number of support 

vectors gives an indication of how well the algorithm is generalising (if all data points were 

support vectors, the algorithm would have memorized the data). A Gaussian kernel was 



used with a width c = 40.0 in equation 2 which was chosen by starting with a small kernel 

width (so that the algorithm memorizes the data), increasing the width and stopping when 

similar results are obtained on the training and validation data. 

Cumulative novelty distributions are plotted for two different values of v and these are 

shown in figure 2. The curves show a slight overlap between the normal and test engines. 

Although it is not given here, a ranking of the engines according to their novelty is also 

provided to the Rolls-Royce test engineers. 

No oIEng,r.s No "'Eng'''' 

rMtEng._ 

(a) l/ = 0.1 (b) l/ = 0.2 

Figure 2: Cumulative novelty distributions for two different values of v. The curves show 

that there is a slight overlap in the data; For v = 0.1, there are 11 validation engines over 

the SVM decision boundary and 2 test engines inside the boundary. 

Separating the Normal Engines from the Test Engines. In a retrospective analysis such 

as described in this paper (for which the test engines with unusual vibration signatures have 

already been identified as such by the Rolls-Royce experts), the SVM algorithm can be re
run to find the hyperplane that separates the normal data from the mean of the test data in 

feature space with the largest margin (instead of separating from the origin). The algorithm 

is trained on the 99 training engines and 22 of the 23 test engines. Each test engine is left 
out in tum and the algorithm re-trained to compute its novelty. Cumulative distributions are 

again plotted (see figure 3) and these show an improved separation between the two sets of 
engines. It should be noted however, that the improvement is less for the validation engines 

than for the training engines. Nevertheless, there is an improvement for the validation 

engines seen from the higher intersection of the distribution with the axis. 

No.ofEngille5 

T .... iningEngin .... 

Test Engines 

Novelty 

(a) (v = 0.1) 

No.orEngill~S 

(b) 

V"'idgtionF.ngi~s 

TeslEngille!l 

, ~ 

Nowlty 

Figure 3: Cumulative novelty distributions showing the variation of novelty with number 

of engines for (a) the training data versus the test data (each test engine omitted from the 
training phase in tum to compute its novelty) and (b) the validation data versus the test data. 



4 Discussion 

This paper has presented a novel application of Support Vector Machines and introduced 
a method for including information from a second data set when considering novelty de

tection. The results on the Jet Engine data show very good separation between normal and 
test engines. We believe Support Vector Machines are an ideal framework for novelty de

tection and indeed, we have obtained better results than with our previous clustering based 
algorithms for detecting novel Jet Engine signatures. 

The present work builds on a previous algorithm for estimating a distribution's support 

[5]. That algorithm, separating the data from the origin in feature space, suffered from the 

drawback that the origin played a special role. One way to think of it is as a prior on where, 
in a novelty detection context, the unknown "other" class lies. The present work alleviates 

this problem by allowing for the possibility to separate from a point inferred from the data, 

either from the same class, or from some other data. 

There is a concern that one could put forward about one of the variants of the presently 

proposed approach, namely about the case where X and Z are disjoint, and we are sep
arating X from Z's centroid: why not actually train a full binary classifier separating X 

from all examples from Z, rather that just from its mean? Indeed there might be situations 
where this is appropriate. More specifically, whenever Z is representative of the instances 
of the other class that we expect to see in the future, then a binary classification is certainly 

preferable. However, there can be situations where Z is not representative for the other 

class, for instance due to nonstationarity. Z may even only consists of artificial examples. 
In this situation, the only real training examples are the positive ones. In this case, separat

ing the data from the mean of some artificial, or non-representative examples, provides a 

way of taking into account some information from the other class which might work better 
than simply separating the positive data from the origin. 

The philosophy behind our approach is the one advocated by [6] . If you are trying to solve 

a learning problem, do it directly, rather than solving a more general problem along the 
way. Applied to the estimation of a distribution's support, this means: do not first estimate 

a density and then threshold it to get an estimate of the support. 

Acknowledgments. Thanks to John Platt, John Shawe-Taylor, Alex Smola and Bob 

Williamson for helpful discussions. 

References 

[1] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. 

In D. Haussler, editor, Proceedings of the 5th Annual ACM Workshop on Computational Learning 

Theory, pages 144-152, Pittsburgh, PA, July 1992. ACM Press. 

[2] A. Nairac, N. Townsend, R. Carr, S. King, P. Cowley, and L. Tarassenko. A system for the 

analysis of jet engine vibration data. Integrated Computer-Aided Engineering, 6:53 - 65, 1999. 

[3] B. SchOlkopf, 1. Platt, J. Shawe-Taylor, AJ. Smola, and R.C. Williamson. Estimating the support 

of a high-dimensional distribution. TR MSR 99 - 87, Microsoft Research, Redmond, WA, 1999. 

[4] B. Scholkopf, J. Platt, and A.J. Smola. Kernel method for percentile feature extraction. TR MSR 

2000 - 22, Microsoft Research, Redmond, WA, 2000. 

[5] B. SchOlkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C. Platt. Support vector 

method for novelty detection. In S.A. Solla, T.K. Leen, and K.-R. Muller, editors, Advances in 

Neural Information Processing Systems 12, pages 582- 588. MIT Press, 2000. 

[6] V. Vapnik. The Nature of Statistical Learning Theory. Springer, N.Y., 1995. 


