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ABSTRACT 
In this paper, we demonstrate the use of support vector regres- 
sion (SVR) techniques for black-box system identification. These 
methods derive from statistical learning theory, and are of great 
theoretical and practical interest. We briefly describe the theory 
underpinning SVR, and compare support vector methods with other 
approaches using radial basis networks. Finally, we apply SVR to 
modeling the behaviour of a hydraulic robot arm, and show that 
SVR improves on previously published results. 

1. INTRODUCTION 

System identification of nonlinear black-box models is a crucial 
but complex problem. There have been numerous recent papers 
in the area based on neural networks, wavelet networks, hing- 
ing hyperplanes, etc. Roughly speaking, one selects a set of re- 
gressors/basis functions, and tries to determine the number of ba- 
sis/regressors and their parameters according to a given statisti- 
cal criterion. Many methods are based on a penalised maximum 
likelihood criterion. Performing model selection and estimation 
is usually a difficult task, however, as it involves solving complex 
integration and/or optimisation problems. Gradient methods are 
often used, but are only guaranteed to converge toward local op- 
tima. Recently, in a Bayesian framework, Markov chain Monte 
Carlo algorithms have also been developed. These methods are 
computationally intensive, however. 

We propose here an alternative approach based on support vec- 
tor machines. These comprise a set of powerful tools to perform 
classification and regression [8], and have become very popular 
recently in the machine learning community. This approach, mo- 
tivated by Statistical Learning Theory [IO], is systematic and prin- 
cipled. One can list its main advantages: 

There are very few free parameters to adjust. 

Estimating the unknown parameters only involves optimi- 
sation of a convex cost function. This can be achieved using 
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standard quadratic programming algorithms. This is fast 
and there are no local minima. 

The model constructed depends explicitly on the most “in- 
formative” data (the support vectors). 

0 It is possible to obtain theoretical bounds on the generalisa- 
tion error and the sparseness of the solution (see [SI). These 
bounds are independent of the distribution generating the 
training and test data. 

To the best of our knowledge, support vector regression (SVR) 
has never been used in the context of system identification, al- 
though it has been used in estimating time series by Miiller et al. 
[4], and Mattera and Haykin [3]. This work differs from these pre- 
vious studies in that it investigates the v-SVR method [5], which 
does not require us to specify an a priori level of accuracy. We 
demonstrate the application of this algorithm to modeling a stan- 
dard data set, and show that it is possible to obtain results that im- 
prove on current state-of-the-art methods [6], [7], with very little 
tuning. 

2. BLACK-BOX SYSTEM IDENTIFICATION 

The problem of nonlinear black-box system identification consists 
of conducting non-parametric regression, as described in Sjoberg 
et al. [6], [7], among others. This means that random variables 
(x, y), which take values in X x Y ,  are generated according to a 
distribution Px,y, and we are required to estimate the regression 
function y on x, or 

We call x the regressor, and y the output. We further define X &JRd 
and Y We want to estimate f (.) from the training sample 

%N = ((xl,Yl) 1 . .  . i (XNIYN)) E (x x Y ) N ,  
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each element of which is drawn from Px,y. Since we do not know 
the mapping f(.), we define a learning algorithm A, which gives 
us an estimate fz(.) off  (.), 

00 

A :  u ( X ~ Y ) ~ + 3 1  
N=l  

z +-+ fz (.) 1 

within a class 31 5 Yx (here yx refers to the set of functions 
mapping X to y) ,  called the hypothesis space, which is flexible 
enough to model a wide range of functions. An estimate fz(.) 
associated with the loss c ( x ,  y ,  fz (.)) is attained by minimising 
the risk, 

fz(.) = argmin [R(sz (.I) k! EX,Y [c(x,Y,sz (X)) l ]  ’ (1) 
S z ( , ) E x  

Possible loss functions include quadratic loss, 

c ( x ,  Y, 9. (.)I = IY - sz  W12 7 

Vapnik’s E-insensitive loss [lo], 

and Huber loss, 

among others. 
In practice, the regression function fz (.) cannot readily be ob- 

tained from equation (l), since we do not usually know the distri- 
bution Px,y. Minimising the empirical risk alone does not take into 
account other requirements that we would like to satisfy, such as 
smoothness, and can therefore result in overfitting [8], [lo]. 

Classes of system identification problems falling within the 
nonlinear black-box identification framework are described in [6], 
[7]. These include nonlinear finite impulse response models, non- 
linear autoregressive models with external input, nonlinear output 
error models, nonlinear autoregressive moving average, nonlinear 
Box-Jenkins models, etc. 

3. SUPPORT VECTOR REGRESSION 

We now describe how support vector machines may be used to 
solve the system identification problem described in the previous 
section. The results in this section are derived in Scholkopf et al. 

To describe the v-SVR procedure, we must first define a map- 
ping from the space X of regressors to the possibly infinite di- 
mensional hypothesis space 31, in which an inner product (., .)x 
is defined. We formally describe this map as 

~51. 

*:X+31 
x I+ *(x). 

We choose to limit our choice of regression function fz (.) to the 
class of functions which can be expressed as inner products in ?-l, 
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Fig. 1. Robot arm data and V-SVR model : Training set and model 
approximation. 

taken between some weight vector w and the mapped regressor 

(2) 
The regression function in the hypothesis space is consequently 
linear, and thus the nonlinear regression problem of estimating 
fz ( x )  has become a linear regression problem in the hypothesis 
space 31. Note that the mapping +(.) need never be computed ex- 
plicitly; instead, we use the fact that if 31 is the reproducing kernel 
Hilbert space induced by k(., .), then writing *(x) = k ( x ,  .), we 
get 

The latter requirement is met for kernels fulfilling the Mercer con- 
ditions [8]. These conditions are satisfied for a wide range of ker- 
nels, including Gaussian radial basis functions (see equation (6)). 
We emphasise that the feature space need never be defined explic- 
itly, since only the kernel is used in SVR algorithms. Indeed, it 
is possible for multiple feature spaces to be induced by a single 
kernel. 

We now describe the optimisation problem to be undertaken in 
finding fz (.). All support vector regression methods involve the 
minimisation of a regularised risk functional, which represents a 
tradeoff between smoothness and training error (the latter is deter- 
mined by the cost functional). In the case of the v-SVR method, 
the regularised risk Gmp( fz , z )  at the optimum is given by 

* (X) ; 
f Z ( x )  = (w, *(x))H + b. 

, -  
(*(X%), *(Xj))X = IC(Xi,Xj). = 

where we use the Vapnik E-insensitive loss in the empirical risk; 

in which 

<i = max(0, f z ( x )  - y -e} and 
tt* = max(0, -fi(x) + y - E } .  
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V-SVR performance : validation set 
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Fig. 2. Robot arm data and v-SVR model : Validation set and 
model approximation. 

All training points ( x i ,  yi) for which Ifi ( x i )  - yz I 2 E are known 
as support vectors; it is only these points that determine fi(.). 
Note that other loss functions, such as the Huber loss, can also be 
used in support vector regression, although not all loss functions 
result in a sparse representation. The terms C and v in equation 
(3) specify the tradeoff between model simplicity, the size of the 
parameter E below which the loss is zero, and the total empirical 
loss over the training set, I?&,(.). Scholkopf et al. [5]  describe 
the theoretical behaviour of v and C in more detail. 

It can be shown [5] that the component w in equation ( 2 )  is a 
linear combination of the mapped training points, 

N 

w = C(a; - (Yi)*(Xi), (4) 
i = l  

and that solving equation (3) is equivalent to finding 

subject to 

, 
N 

c c a i  + af) 5 cv. 
i=l 

There exist a number of methods that can be used to solve this 
quadratic programming problem. Our results were obtained using 
the LOQO algorithm in Vanderbei [9]. In the case of large training 
sets, data decomposition methods exist to speed convergence; see 
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Fig. 3. RMS error variation with v, U’ and C. In each case, the 
fixed parameters take their optimal values. 

e.g. Chang er al. [ 2 ] .  The offset b is found using 

(w, +(xj)) . t l  + b - yj = E when acj E 

yj - (w, + ( x j ) ) x  - b = E when CY; E 0, - . ( 3 
the set of equations thus obtained can be solved via linear least 
squares. 

4. COMPARISON WITH STANDARD RBF APPROACHES 

A popular set of regression functions are the radial basis functions. 
The radial basis function expansion is 

where M is the number of radial basis functions used (this need 
not be the same as the number N of training points), wj E R 
scale the various basis functions kj ( p j ,  .), W O  scales the constant 
offset term ko(po ,  .) 1, and each basis function k j ( p j r  .) has 
an individual centre parameter pj and width parameter uj. For 
instance, in the case of Gaussian radial basisnetworks, 
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It is also possible to use a more general covariance matrix, rather 
than U:; this results in a greater number of parameters that require 
adjustment. 

It is clear that SVR methods in fact produce radial basis func- 
tion networks, with all width parameters U; set at the same value, 
and centres pj corresponding to support vectors xj (thus M is 
the number of support vectors). As discussed previously, the SVR 
training procedure selects the training points to be used in this ex- 
pansion so as to avoid overfitting, and to achieve sparseness with 
regards to the training data. Furthermore, the attendant optimisa- 
tion process is convex, and has a single optimum. 

There is a great deal of literature, past and present, on meth- 
ods for training radial basis function networks; see for instance 
Bishop [l]. Without going into detail, it is fairly common prac- 
tice to centre the basis functions on the training data and fix the 
basis width a priori, as in SVR. Model selection (determining the 
number of non-null weight vector components wi) and parame- 
ter estimation (estimating the values of the wi) in traditional ra- 
dial basis function network methods, however, are usually based 
on Bayesiadpenalized maximum likelihood approaches; the as- 
sociated optimisation problems are often non-convex and possess 
multiple local minima, which can lead to greater computational 
complexity. 

5. EXPERIMENTAL RESULTS 

In the following experiments, we make use of a Gaussian radial ba- 
sis function kernel, as described in equation (6), with kernel width 
U' (note that other kernel options, such as polynomial kernels or 
sigmoid kernels, could also be used). As we perform SV regres- 
sion, the kernel centres are set at the training point locations xj . 
We apply the v-SVR algorithm to modeling behaviour of a hy- 
draulic robot arm; our result will be compared with the neural net- 
work NARX and wavelet network NARX models in Sjoberg et a1 
[6]. The input ut represents the size of the valve through which 
oil flows into the actuator, and the output yt is a measure of oil 
pressure (the latter determines the arm position). For the purpose 
of comparison, we used the regressor 

X t  = [Yt-1 yt-2 yt-3 ut-1 u t q ,  

since this is also used by Sjoberg et al. We also used half the 
data set for training, and half as validation data, again following 
the procedure of Sjoberg et al. The kernel width was set at a' = 
1.2242, and we used the U-SVR parameters v = 0.2444 and C = 
4.07 x lo3. It must be emphasised that the experimental outcome 
varies little for a wide range of parameter values; see figure 3. Note 
also that prior knowledge of the observation noise would allow us 
to select a value of v that is asymptotically optimal in the number 
of data [SI. 

The v-SVR model output on the training data is given in fig- 
ure 1, and the model output on the validation data in figure 2. The 
RMS error of this prediction on the validation set is 0.280, which 
is lower than both the wavelet network RMS error (0.579), and 
the prediction made by a one-hidden-layer sigmoid neural network 
with ten hidden units (0.467). Although Sjoberg et al. were able to 
further reduce the RMS error to 0.328 on this data set, this required 
assumptions regarding the model structure not made in our algo- 
rithm. Further advantages of the v-SVR solution include simplic- 
ity, computational efficiency, robustness in the face of decreased 
training set size, and ease of tuning, due to the low sensitivity of 

the solution to changes in 02, v and C. Our implementation of the 
v-SVR algorithm required 56 lines of Matlab code (excluding the 
standard quadratic programming component), and took 193 sec- 
onds to train on the data set in figure 1, using a Pentium I11 proces- 
sor running at SOOMHz. 

6. CONCLUSION 
- 

In this study, we describe the important theoretical and practical \- 
advantages of support vector regression for back box system iden- 
tification. The simplicity of implementation, coupled with good 
performance in both this and other studies on time series predic- 
tion, make SVR methods an attractive alternative to standard sys- 
tem identification techniques. 
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