
Draft Submitted for Publication, WMCSA 2002. 1

Supporting Aggregate Queries Over Ad-Hoc Wireless Sensor Networks

Samuel Madden, Robert Szewczyk, Michael J. Franklin and David Culler
University of California, Berkeley�

madden, szewczyk, franklin, culler � @cs.berkeley.edu

Abstract

We show how the database community’s notion of a generic
query interface for data aggregation can be applied to ad-
hoc networks of sensor devices. As has been noted in
the sensor network literature, aggregation is important as a
data-reduction tool; networking approaches, however, have
focused on application specific solutions, whereas our in-
network aggregation approach is driven by a general purpose,
SQL-style interface that can execute queries over any type of
sensor data while providing opportunities for significant op-
timization. We present a variety of techniques to improve the
reliability and performance of our solution. We also show
how grouped aggregates can be efficiently computed and of-
fer a comparison to related systems and database projects.

1 Introduction

Recent advances in computing technology have led to the
production of a new class of computing device: the wireless,
battery powered, smart sensor. Unlike traditional sensors
deployed throughout buildings, labs, and equipment every-
where, these new sensors are not merely passive devices that
modulate a voltage based on some environmental parameter:
they are full fledged computers, capable of filtering, sharing,
and combining sensor readings.

At UC Berkeley, researchers have developed small sen-
sor devices called motes, and an operating system, called
TinyOS, that is especially suited to running on them. Motes
are equipped with a radio, a processor, and a suite of sensors.
TinyOS makes it possible to deploy ad-hoc networks of sen-
sors that can locate each other and route data without any a
priori knowledge of network topology.

As various groups around the country have begun to to de-
ploy large networks of sensors, a need has arisen for tools to
collect and query data from these networks. Of particular in-
terest are aggregates – operations which summarize current
sensor values in some or all of a sensor network. For exam-
ple, given a dense network of a thousand sensors querying

temperature, users want to know temperature patterns in rela-
tively large regions encompassing tens of sensors – individual
sensor readings are of little value.

Sensor networks are limited in external bandwidth, i.e.
how much data they can deliver to an outside system. In
many cases the externally available bandwidth is a small frac-
tion of the aggregate internal bandwidth. Thus computing
aggregates in-network is also attractive from a network per-
formance and longevity standpoint: extracting all data over
all time from all sensors will consume large amounts of time
and power as each individual sensor’s data is independently
routed through the network. Previous studies have shown
[6] that aggregation dramatically reduces the amount of data
routed through the network, increasing throughput and ex-
tending the life of battery powered sensor networks as less
load is placed on power-hungry radios.

Previous networking research [10, 9, 6] approached aggre-
gation as an application specific technique that can be used to
reduce the amount of data that must be sent over a network. In
the database community, however, aggregates are viewed as
a generic technique that can be applied to any data, irrespec-
tive of the application. In this work, we adopt this database
intuition: our system provides a generic aggregation inter-
face that allows aggregate queries to be posed over networks
of sensors. There are two benefits of this approach over the
traditional network solution: first, by defining the language
that users use to express aggregates, we can significantly op-
timize their computation. Second, because the same aggrega-
tion language can be applied to all data types, the burden on
programmers is substantially less: they can issue declarative,
SQL style queries rather than implementing custom network-
ing protocols to extract the data they need from the network.

In this paper, we discuss the challenges associated with im-
plementing the five basic database aggregates (COUNT, MIN,
MAX, SUM, and AVERAGE) with grouping in ad-hoc networks
of sensors. We show how our this generic approach leads to a
significant power savings. Further, we show that sensor net-
work queries can be structured as time series of aggregates,
and how such queries adapt to the changing network struc-

Draft Submitted for Publication, WMCSA 2002. 2

ture. We have implemented early versions of these techniques
and are in the process of experimentally validating them.

We begin with the relevant background in the TinyOS
platform on which our aggregation algorithms are deployed,
along with a brief summary of aggregation in database sys-
tems. Following that, we present our algorithms for aggrega-
tion, related and future work, and conclusions.

2 Background

In this section, we first discuss the relevant design aspects
of the TinyOS operating system and mote architecture. For
more complete treatment of these topics, refer to [8, 16, 7].
We then summarize aggregation in database systems and dis-
cuss how those techniques provide a useful and well defined
framework for computing aggregates in sensor networks.

2.1 Motes

A photograph of the current generation of motes is shown in
Figure 1. These devices are equipped with a 4Mhz Atmel mi-
croprocessor with 512 bytes of RAM and 8 kB of code space,
a 917 MHz RFM radio running at 10 kb/s, and 32kB of EEP-
ROM. An expansion slot accommodates a variety of sensor
boards by exposing a number of analog input lines as well
as popular chip-to-chip serial busses. Current sensor options
include: light, temperature, magnetic field, acceleration (and
vibration), sound, and power.

The radio hardware uses a single channel, and uses on-off
keying. It provides an unbuffered bit-level interface; the rest
of the communication stack (up to message layer) is imple-
mented by TinyOS software. Like all single-channel radios,
it offers only a half duplex channel. Currently, the default
TinyOS implementation uses a CSMA-like media access pro-
tocol with random backoff scheme. Message delivery is un-
reliable by default, though applications can build up an ac-
knowledgement layer. Often, a message acknowledgement
can be obtained for free (see below in Section 2.3).

Figure 1: A TinyOS Sensor Mote

Power is supplied via a free-hanging AA battery pack or a
coin-cell attached through the expansion slot.

The effective lifetime of the sensor is determined by its
power supply. In turn, the power consumption of each sen-
sor node is dominated by the cost of transmitting and receiv-
ing messages; including processor cost, sending a single bit
of data requires about 4000 nJ of energy, whereas a single
instruction on a 5mW processor running at 4Mhz consumes
only 5 nJ (see [8]). Thus, in terms of power consumption,
transmitting a single bit of data is equivalent to 800 instruc-
tions. This energy tradeoff between communication and com-
putation implies that many applications will benefit by pro-
cessing the data inside the network rather than simply trans-
mitting the sensor readings.

2.2 TinyOS

TinyOS provides a number of services to greatly simplify
writing programs that capture and process sensor data and
transmit messages over the radio. The reader is referred to
[7] for details of the operating system. For the purposes of
this paper, TinyOS should be thought of as an API which can
send and receive messages and read from sensors. The next
section goes into some detail on the messaging and network-
ing aspects of TinyOS and wireless sensors, as those are most
relevant to the topic of aggregation.

2.3 Ad-hoc Sensor Networks

In this section, we discuss how data is routed in our ad-hoc
aggregation network. To understand the solution, two proper-
ties of radio communication need to be emphasized. First, ra-
dio is a broadcast medium, such that any sensor within hear-
ing distance can hear any message, irrespective of whether or
not it is the intended recipient. Second, radio links are typ-
ically symmetric: if sensor � can hear sensor

�
, we assume

sensor
�

can also hear sensor � . Note that this may not be
a valid assumption in some cases: if � ’s signal strength is
higher, because its batteries are fresher or its signal is more
amplified,

�
will be able to hear � but not reply to it.

Messages in the current generation of TinyOS are a fixed
size preprogrammed into sensors – by default, 30 byte mes-
sages are used. Each message type has a message id that
distinguishes it from other types of messages. Sensor pro-
grammers write message id specific handlers that are invoked
by TinyOS when a message of the appropriate id is heard
on the radio. Each sensor has a unique sensor id that dis-
tinguishes it from other sensors. All messages specify their
recipient (or broadcast, meaning all available recipients), al-
lowing sensors to ignore messages not intended for them,

Draft Submitted for Publication, WMCSA 2002. 3

although non-broadcast messages must still be received by
all sensors within range – unintended recipients simply drop
messages not addressed to them.

Given this brief primer on wireless sensor communication,
we now show how sensors route data. The technique we
adopt is to build a routing tree.1 We appoint one sensor to
be the root. The root is the point from which the routing
tree will be built, and upon which aggregated data will con-
verge. Thus, the root is typically the sensor that interfaces the
querying user to the rest of the network. The root broadcasts
a message asking sensors to organize into a routing tree; in
that message it specifies its own id and its level, or distance
from the root, which is zero. Any sensor that hears this mes-
sage assigns its own level to be the level in the message plus
one, if its current level is not already less than or equal to
the level in the message. It also chooses the sender of the
message as its parent, through which it will route messages
to the root. Each of these sensors then rebroadcasts the rout-
ing message, inserting their own ids and levels. The rout-
ing message floods down the tree in this fashion, with each
node rebroadcasting the message until all nodes have been as-
signed a level and a parent. Nodes that hear multiple parents
choose one arbitrarily, although we will discuss approaches
in below (Section 3.3) where multiple parents can be used to
improve the quality of aggregates. These routing messages
are periodically broadcasted from the root, so that the pro-
cess of topology discovery goes on continuously. This con-
stant topology maintenance makes it relatively easy to adapt
to network changes caused by mobility of certain nodes, or to
the addition or deletion of sensors: each sensor simply looks
at the history of received routing messages, and chooses the
“best” parent, while ensuring that no routing cycles are cre-
ated with that decision.

This application is makes it possible to efficiently route
data towards the root. When a sensor wishes to send a mes-
sage to the root, it sends the message to its parent, which in
turn forwards the message on to its parent, and so on, eventu-
ally reaching the root. This application doesn’t address point-
to-point routing; however, for our purpose, flooding aggrega-
tion request and routing replies up the tree to the root is suffi-
cient. We’ll see in the Section 3 how, as data is routed towards
the root, it can be combined with data from other sensors to
efficiently combine routing and aggregation. First, however,
we describe how aggregates are expressed in database sys-
tems.

1Note that this is one of many possible techniques that could be used; the
reader is referred to [16, 10, 9, 11, 1] for more information. Our observations
about aggregation of sensor data do not depend on a particular routing tree
algorithm; rather, they exploit the fact that such a structure can be built and
maintained efficiently in the presence of a changing network topology.

2.4 Aggregation in Database Systems

Aggregation in SQL-based database systems is defined by an
aggregate function and a grouping predicate. The aggregate
function specifies how a set of values should be combined
to compute an aggregate; the standard set of SQL aggregate
functions is COUNT, MIN, MAX, AVERAGE, and SUM.
These compute the obvious functions; for example, the SQL
statement:

SELECT AVERAGE(temp) FROM sensors

computes the average temperature from some table sen-
sors, which represents a set of sensor readings that have
been read into the system. Similarly, the COUNT function
counts the number of items in a set, the MIN and MAX func-
tions compute minimal and maximal values, and SUM calcu-
lates the total of all values. Additionally, most database sys-
tems allow user-defined functions (UDFs) that specify more
complex aggregates than the five listed above.

Grouping is also a standard feature of database systems.
Rather than merely computing a single aggregate value over
the entire set of data values, a grouping predicate partitions
the values into groups based on some attribute. For example,
the query:

SELECT TRUNC(temp/10), AVERAGE(light)

FROM sensors

GROUP BY TRUNC(temp/10)

HAVING AVERAGE(light) � 50

partitions sensor readings into groups according to their tem-
perature reading and computes the average light reading
within each group. The HAVING clause excludes groups
whose average light readings are less than or equal to 50.

In the rest of this paper, we discuss the challenges associ-
ated with implementing the five basic aggregates with group-
ing in ad-hoc networks of TinyOS sensors. We start by con-
sidering a single aggregate being computed at a time, and
then argue that often users are interested in viewing aggre-
gates as sequences of changing values over time. We discuss
the implication of this assertion in Section 6. Throughout this
work, we will assume the user is stationed at a desktop-class
PC with ample memory. Despite the simple appearances of
this architecture, there are a number of difficulties presented
by the limited capabilities of the sensors, as we will see in the
next section.

Throughout the following analyses, the focus is on reduc-
ing total number of messages required to compute an aggre-
gate; this is because, as discussed above, message transmis-
sion costs typically dominate energy consumption of sensors,
especially when performing only simple computation such as
the five standard database aggregates.

Draft Submitted for Publication, WMCSA 2002. 4

3 Generic Aggregation Techniques

A naive implementation of sensor network aggregation would
be to use a centralized, server-based approach where all sen-
sor readings are sent to the host PC, which then computes
the aggregates. However, as was shown in [6], a distributed,
in-network approach where aggregates are partially or fully
computed by the sensors themselves as readings are routed
through the network towards the host-PC can be considerably
more efficient. In this section, we focus on the in-network
approach, because, if properly implemented, it has the poten-
tial to be both lower latency and lower power than the server
based approach.

To illustrate the potential advantages of the in-network ap-
proach, consider the simple example of computing an aggre-
gate over a group of sensors arranged as shown in Figure
2. Dotted lines represent connections between sensors, solid
lines represent the routing tree imposed on top of this graph
(as discussed above) to allow sensors to propagate data to the
root along a single path. In the centralized approach, each
sensor value must be routed to the root of the network; for a
node at depth � , this requires n-1 messages to be transmitted
per sensor. The sensors in Figure 2(a) have been labeled with
their distance from the root; summing these numbers gives a
total of sixteen messages required to route all aggregation in-
formation to the root. Contrast this with the sensors in Figure
2(b): sensors with no children simply transmit their readings
to their parents. Intermediate nodes (with children) combine
their own readings with the readings of their children via the
aggregation function

�
and propagate the partial aggregate,

along with any extra data required to update the aggregate,
up the tree.

Notice that the amount of data transmitted in this solution
depends on the aggregate. Consider the AVERAGE function:
at each intermediate node � , the sum and count of all chil-
dren’s sensor readings are needed to compute the average of
sensor readings of the subtree rooted at � . We assume that, in
the case of AVERAGE, both pieces of information will easily
fit into a single 30 byte message. Thus, a total of five mes-
sages need to be sent for the average function. In the case
of the other standard SQL aggregates, no additional state is
required: COUNT, MIN, MAX, and SUM can be computed by a
parent node given sensor or partial aggregate values at all of
the child nodes.

In this work we focus on a class of aggregation predicates
that is particularly well suited to the in-network regime. Such
aggregates can be expressed as an aggregate function

�
over

the sets � and
�

such that:

2

333

4

1

(a) (b)

a

c d

ƒ(c,d,f (a,b))

Figure 2: Server-based (a) versus In-network (b) aggregation
In (a), each node is labelled with the number of messages
required to get data to the host PC: a total of 16 messages are
required. In (b), only one message is sent along each edge as
aggregation is performed by the sensors themselves.

���
��� ���	��
 �����

�
�� ��� �����

(1)

We focused on this class of aggregates for two reasons:
first the basic SQL aggregates all exhibit the above property,
and second because the problems with this substructure map
easily onto the underlying network. We expect to tackle more
generalized aggregation predicates, such as median, in a fu-
ture work.

For the reasons described above, in network aggregation
is always a superior choice. Given the in-network regime,
we next give a brief description of how aggregation queries
are pushed down into a sensor network and how results are
returned to the user. For the purposes of this discussion, we
assume aggregate queries do not specify groups; queries with
groups are discussed in Section 4. Then, in the remainder
of this section, we examine other problems that can arise in
ad-hoc sensor environments and sketch possible solutions.

3.1 Injecting a Query

Computing an aggregate consists of two phases: a propaga-
tion phase, in which aggregate queries are pushed down into
sensor networks, and an aggregation phase, where the aggre-
gate values are propagated up from children to parents. The
most basic approach to propagation works just like the net-
work discovery algorithm described above, except that leaf
nodes (nodes with no children) must discover that they are
leaves and propagate singular aggregates up to their parents.
Thus, when a sensor � receives an aggregate � , either from

Draft Submitted for Publication, WMCSA 2002. 5

another sensor or from the user, it transmits � and begins lis-
tening. If � has any children, it will hear those children re-
transmit � to their children, and will know it is not a leaf. If,
after some time interval � , � has heard no children, it con-
cludes it is a leaf and transmits its current sensor value up the
routing tree. If � has children, it assumes they will all report
within time � , and so after time � it computes the value of

� applied to its own value and the values of its children and
forwards this partial aggregate to its parent.

Notice that choosing too short a duration for � can lead to
missed reports from children, and also that the proper value
of � varies depending on the depth of the routing tree. We
will discuss a possible solution to this problem in the next
section; for now, assume that � is set to be long enough that
the message has time to propagate down to all leaves below �
and back, or, numerically:

� ����� �����
	��������� ��� � ������� ��� � ���������! � � (2)

where � �"��� � is the time to send a message and
� � ���������! � is

the time to process an aggregation request. Empirical studies
suggest that

� � ����� � � � ���������� ! � needs to be 200 or more mil-
liseconds. The time to transmit a 30-byte message on a 10kbit
radio is about 50 ms: each nibble must be DC balanced (have
the same number of ones and zeros), costing extra bits, and
simple forward error correction is used, meaning that for ev-
ery byte, 18 bits must be transmitted; 18 * 30 bytes / 10000
bits / sec = 50ms. Computation time is small, but signifi-
cantly more than 50 ms must be allocated per hop to account
for differences in clock synchronization between sensors and
random collision detection back-off that sensors engage in.
Thus, for a deep sensor network, computing a single aggre-
gate can take several seconds. In the next section, we will
see that the unreliable communication inherent to sensor net-
works, coupled with such long computation times make this
simple simple in-network approach undesirable.

3.2 Streaming Aggregates

Sensor networks are inherently unreliable: individual radio
transmission can fail, nodes can move, and so on. Thus, it
is very hard to guarantee that a significant portion of a sen-
sor network was not detached during a particular aggregate
computation. Consider, for example, what happens when a �
broadcasts � and its only child, # , somehow misses the mes-
sage (perhaps because it was garbled during transmission.) �
will never hear # rebroadcast, and will assume that it has no
children and that it should forward only its own sensor value.
The entire network below � is thus excluded from the aggre-
gation computation, and the end result is probably incorrect.

Indeed, when any subtree of the graph can fail in this way, it
is impossible to give any guarantees about the accuracy of the
result.

One solution to this problem is to double-check aggregates
by computing them multiple times. The simplest way to do
this would be to request the aggregate be computed multiple
times at the root of the network; by observing the common-
case value of the aggregate, the client could make a reason-
able guess as to its true value. The problem with this tech-
nique is that it requires retransmitting the aggregate request
down the network multiple times, at a significant message
overhead, and the user must wait for the entire aggregation
interval for each additional result.

Instead, we propose using a pipelined aggregate, which
works as follows. In this scheme, aggregates are propa-
gated into the network as described above. However, in the
pipelined approach, time is divided into intervals of duration$
. During each interval, every sensor that has heard the re-

quest to aggregate transmits a partial aggregate by applying
� to its local reading and the values its children reported dur-
ing the previous interval. Thus, after the first interval, the
root hears from sensors one radio-hop away. After the sec-
ond, it hears aggregates of sensors one and two hops away,
and so on. In order to include sensors which missed the re-
quest to begin aggregation, a sensor that hears another sensor
reporting its aggregate value can assume it too should begin
reporting its aggregate value.

In addition to tending to include nodes that would have
been excluded from a single pass aggregation, the pipelined
solution has a number of interesting properties: first, after
aggregates have propagated up from leaves, a new aggregate
arrives every

$
seconds. Note that the value of

$
can be quite

small, about the time it takes for a single sensor to produce
and transmit a sensor reading, versus the value of � in the sim-
ple multi-round solution proposed above, which is roughly�&% �'�!(������� times larger. Second, the total time for an aggrega-
tion request to propagate down to the leaves and back to the
root is roughly � , but the user begins to see approximations
of the aggregate after the first interval has elapsed; in very
deep networks, this additional feedback may be a useful ap-
proximation while waiting for the true value to propagate out
and back. These two properties provide users with a stream
of aggregate values that changes as sensor readings and the
underlying network change. As discussed above, such con-
tinuous results are often more useful than a single, isolated
aggregate, as they allow users to understand how the network
is behaving over time. Figure 3 illustrates a simple aggregate
running in a pipelined fashion over a small sensor network.

The most significant drawback of this approach is that a

Draft Submitted for Publication, WMCSA 2002. 6

number of additional messages are transmitted to extract the
first aggregate over all sensors. For the example shown in
Figure 3, 22 messages are sent, since each aggregating node
is transmits once per time interval. The comparable non-
pipelined aggregate requires only 10 messages – one down
and one back along each edge. Note, however, that, in this
example, after this initial 12 message overhead, each addi-
tional aggregate arrives at a cost of only 5 messages and at
a rate of one update per time interval. Still, it is useful to
consider optimizations to reduce this overhead. One option is
that sensors could transmit only when the value of the aggre-
gate computed over their subtree changes, and parents could
assume their children’s aggregate values are unchanged un-
less they hear differently. In such a scheme, far fewer mes-
sages will be sent, but some of the ability to incorporate nodes
that failed to hear the initial request to aggregate will also be
lost, as there will be fewer aggregate reports for those nodes
to snoop on. We reserve the analysis of the tradeoffs of these
approaches for future work.

We believe a hybrid pipeline scheme will significantly im-
prove the robustness of aggregates by tending to incorporate
nodes that lose initial aggregation requests. Pipelining also
improves throughput, which can be important when a a single
aggregate requires seconds to compute. With this pipelined
model in mind, we now consider a number of other optimiza-
tions that can improve the efficiency of aggregates in sensor
networks.

3.3 Taking Advantage of A Shared Channel

In our discussion of aggregation algorithms up to this point,
we have largely ignored the fact that sensors communicate
over a shared radio channel. The fact that every message is
effectively broadcast to all other sensors within range enables
a number of optimizations that can significantly reduce the
number of messages transmitted and increase the accuracy of
aggregates in the face of transmission failures.

We saw an example of how a shared channel can be used to
increase message efficiency when a sensor that misses an ini-
tial request to begin aggregation: it can initiate aggregation
even after missing the start request by snooping on the net-
work traffic of nearby sensors. When it sees another sensor
reporting an aggregate, it can assume it too should be aggre-
gating.

This technique is not only beneficial for improving the
number of sensors participating in any aggregate; it also sub-
stantially reduces the number of messages that must be sent
when using the pipelined aggregation scheme. Because nodes
assume they should begin aggregation any time they hear an

aggregate reported, a sensor does not need to explicitly tell its
children to begin aggregation. It can simply report its value
to its parents, which its children will also hear. The children
will assume they missed the start request and initiate aggre-
gation locally. For the simple example in Figure 3, none of
the messages associated with black arrows actually need to
be sent. This reduces the total messages required to compute
the first full aggregate of the network from 22 to 17, for a
total savings of 23%.

Of course, for later rounds in the aggregation, when no
messages are sent from parents to children, this savings is no
longer available. Snooping can, however, be used to reduce
the number of messages sent for certain classes of aggregates.
Consider computing a maximum over a group of sensors; if a
sensor hears a peer reporting a maximum value greater than
its local maximum, it can elect to not send its own value and
be assured of not affecting the value of the final aggregate.
We will discuss variants of this technique in more detail in
Section 3.4 below.

In addition to reducing the number of messages that must
be sent, the inherently broadcast nature of radio also offers
communications redundancy which improve reliability. Con-
sider a sensor with two parents: instead of sending its aggre-
gate value to just one parent, it can send it to both parents. It is
easy for a node to discover that it has multiple parents, since
it can simply build a list of nodes it has heard that are one step
closer to the root. Of course, for aggregates other than MIN
and MAX, sending to multiple parents results has the undesir-
able effect of causing the node to be counted multiple times.
The solution to this is to send part of the aggregate to one
parent and the rest to the other. Consider a COUNT; a sensor
with # 	�� children and two parents can send a COUNT of #�� �
to both parents instead of a count of # to a single parent. A
simple statistical analysis reveals the advantage of doing this:
assume that a message is transmitted with probability � , and
that losses are independent, so that if a message � from sen-
sor � is lost in transition to parent ��� , it is no more likely to
lost in transit to �
	 . 2 First, consider the case where � sends #
to a single parent; the expected value of the transmitted count
is � � # (0 with probability

� � 	�� �
and # with probability �),

and the variance is # 	 � � � ����	 � � , since these are standard
Bernoulli trials with a probability of success � multiplied by
a constant # . For the case where � sends #�� � to both parents,
linearity of expectation tells us the expected value is the sum
of the expected value through each parent, or

� � � � #�� � .
Similarly, we can sum the variances through each parent to

2Although failure independence is not always a valid assumption, it will
occur when a hidden-node garbles communication to �� but not �� , or when
one parent is forwarding a message and another is not.

Draft Submitted for Publication, WMCSA 2002. 7

Count: 0

t = 0

Non-aggregating nodeAggregating Node

Count: 1

t = 1

Count: 2

t = 2

Count: 2

t = 3

Count: 3

t = 4

Count: 3

t = 5

Count: 5

t = 6

ƒ(1) ƒ(1,2) ƒ(1,2) ƒ(1,2,3) ƒ(1,2,3) ƒ(1,2,3,4,5)

ƒ(2,3) ƒ(2,3) ƒ(2,3) ƒ(2,3,4,5)

ƒ(3,4,5) ƒ(3,4,5) ƒ(3,4,5,6)

ƒ(5,6) ƒ(5,6)

Figure 3: Pipelined computation of aggregates

get:
var =

��� � #�� � � 	 � � � ��� 	 � � = # 	 � � � � � � � 	 � �
Thus, the variance of the multiple parent COUNT is much less,
although its expected value is the same. This is because it is
much less likely (assuming independence) for the message to
both parents to be lost, and a single loss will less dramatically
effect the computed value. Note that the probability that no
data is lost is actually lower with multiple parents (� 	 ver-
sus �), suggesting that there this may not always be a useful
technique. However, since losses are almost assured of hap-
pening occasionally when aggregating, we believe users will
prefer that their aggregates be closer to the correct answer
than exactly right more often.

This technique applies equally well for SUM and AVERAGE
aggregates or for any aggregate which is a linear combination
of a number of values. For rank-based aggregates, like mode
and median, this technique cannot be applied.

We now present our final technique for increasing the ef-
ficiency of aggregates: rephrasing aggregates as hypotheses
to dramatically reduce the number of sensors required to re-
spond to any aggregate.

3.4 Hypothesis Testing

Although the above techniques offer significant gains in
terms of number of messages transmitted and robustness with
respect to naive approaches, these techniques still require in-
put from every node in a network to compute an aggregate.
In this section, we observe that we only need to hear from a
particular sensor if that sensor’s sensor value will affect the
end value of the aggregate. For some aggregates, this can
significantly reduce the number of nodes that need to report.

We presented a simple example of hypothesis testing
above: when computing a MAX or MIN, a sensor can snoop on
the values its peers report and omit its own value if it knows it
cannot affect the final value of the aggregate. This technique

can be generalized to an approach we call hypothesis testing.
If a node is presented with a guess as to the proper value of an
aggregate, either by snooping on another sensor’s aggregate
value or by explicitly being presented with a hypothesis by
the user or root of the network, it can decide locally whether
contributing its reading and the readings of its children will
affect the value of the aggregate.

For MAX, MIN and other top-n[3] aggregates, this tech-
nique is directly applicable. There are a number of ways it
can be applied – the snooping approach is one. As another
example, the root of the network seeking a MIN sensor value
might compute the value of the aggregate over the top

�
lev-

els of the network (using the pipelined approach described
above), and then abort the aggregate and issue a new request
asking for only those sensor values less than the minimum ob-
served in the top

�
levels. In this approach, leaf nodes will be

required to send no message if their value is greater than the
minimum observed over the top

�
levels (intermediate nodes

must forward the request to aggregate, so they must still send
messages.) If we assume sensor values are independent and
randomly distributed (a big assumption!), then a particular
leaf note must transmit with probability

� � ��� , which is quite
low for even small values of

�
. Since, in a balanced tree, half

the nodes are in the bottommost level, this can reduce the to-
tal number of messages that must be sent by almost a factor
of two.

For other aggregates that accumulate a total, such as SUM
and COUNT this technique will never be applicable. For the
a third class of statistical aggregates, such as AVERAGE or
variance, this technique can reduce the number of messages,
although not as drastically. To obtain any benefit with such
aggregates, the user must define an error bound that he is will-
ing to tolerate over the value of the aggregate. Given this er-
ror bound, the same approach as for top-n aggregates can be
applied. Consider the case of an average: any sensor that is
within the error bound of the approximate answer need not

Draft Submitted for Publication, WMCSA 2002. 8

answer – its parent can assume its value is the same as the
approximate answer and count it accordingly (this scheme
requires parents to know how many children they have.) The
total computed average will not be off from the actual average
by more than the error bound, and leaf sensors with values
close to the average will not be required to report. Obviously,
the value of this scheme varies greatly on the distribution of
sensor values. If values are uniformly distributed, the frac-
tion of leaves that need not report will approximate the size
of the error bound. If values are normally distributed, a much
larger percentage of leaves will not report. Thus, the value
of this scheme depends on the expected distribution of values
and the tolerance of the user to inaccurate error bounds.

In summary, we proposed using in-network aggregation to
compute aggregates. By pipelining aggregates, we were able
to increase throughput and smooth over intermittent losses
inherent in radio communication. We improved on this basic
approach with several other techniques: snooping over the
radio to reduce message load and improve accuracy of aggre-
gates, and hypothesis testing to invert problems and further
reduce the number of messages sent. In the next section, we
augment the algorithms presented in this section to support
grouping.

4 Grouping

Recall that grouping computes aggregates over partitions of
sensor readings. The basic technique for grouping is to push
down a set of predicates that specify group membership, ask
sensors to choose the group they belong to, and then, as an-
swers flow back, update the aggregate values in the appropri-
ate groups.

Group predicates are appended to requests to begin aggre-
gation. If sending all predicates requires more storage than
will fit into a single message, multiple messages are sent.
Each group predicate specifies a group id, a sensor attribute
(e.g. light, temperature), and a range of sensor values that
define membership in the group. Groups are assumed to be
disjoint and defined over the same attribute, which is typi-
cally not the attribute being aggregated. Because the num-
ber of groups can be large enough such that information
about all groups does not fit into the RAM of any one sen-
sor, sensors pick the group they belong to as messages defin-
ing group predicates flow past and discard information about
other groups.

Messages containing sensed values are propagated just as
in the pipelined approach described above. When a sensor is
a leaf, it simply tags the sensor value with its group number.
When a sensor receives a message from a child, it checks the

group number. If the child is in the same group as the sensor,
it combines the two values just as above. If it is in a different
group, it stores the value of the child’s group along with its
own value for forwarding in the next interval. If another child
message arrives with a value in either group, the sensor up-
dates the appropriate aggregate. During the next interval, the
sensor will send out the value of all groups it collected infor-
mation about during the previous interval, combining infor-
mation about multiple groups into a single message as long
as the message size permits. Figure 4 shows an example of
computing a query grouped by temperature that selects aver-
age light readings. In this snapshot, data is assumed to have
filled the pipeline, such that results from the bottom of the
tree have reached the root.

Recall that SQL queries also contain a HAVING clause that
constrains the set of groups in the final query result by ap-
plying a filtration predicate to each group’s aggregate value.
We sometimes pass this predicate into the network along
with partitions. The predicate is only sent into the network
if it can potentially be used to reduce the number of mes-
sages that must be sent: for, example, if the predicate is of
the form MAX(attr) � x, then information about groups
with MAX(attr) � x need not be transmitted up the tree,
and so the predicate is sent down into the network. However,
other HAVING predicates, such as those filtering AVERAGE
aggregates, or of the form MAX(attr) � x, cannot be ap-
plied in the network because they can only be evaluated when
the final group-aggregate value is known.

Because the number of groups can exceed available stor-
age on any one sensor, a way to evict groups is needed. Once
an eviction victim is selected, it is forwarded to the sensor’s
parent, which may choose to hold on to the group or con-
tinue to forward it up the tree. Because groups can be evicted,
the user workstation at the top of the network may be called
upon to combine partial groups to form an accurate aggre-
gate value. Evicting partially computed groups is known as
partial preaggregation, as described in the database literature
[12].

There are a number of possible policies for choosing which
group to evict. We believe that policies which incur a signif-
icant storage overhead (more than a few bits per group) are
undesirable because they will reduce the number of groups
that can be stored and increase the number of messages that
must be sent. Evicting groups with low membership is likely
a good policy, as those are the groups that are least likely to
be combined with other sensor readings and so are the groups
that benefit the least from in-network aggregation.

Evicting groups forces information about the current time
interval into higher level nodes in the tree. Since in the

Draft Submitted for Publication, WMCSA 2002. 9

Temp: 20
Light: 10

Temp: 20
Light: 50

Temp: 10
Light: 15

Temp: 30
Light: 25

Temp: 10
Light: 15

Temp: 10
Light: 5

1

2

3

4

5

6

1

2

3

4

5

6

Aggregate
AVG(light)

Groups
1 : 0 < temp 10
2 : 10 < temp 20
3 : 20 < temp 30

Group AVG
1
2
3

10
-
-

Group AVG
1
2
3

10
-
25

Group AVG
1
2
3

10
50
25

Group AVG
1
2
3

10
30
25

(6,5,2)
(3,1)
(4)

(6,5)
()
(4)

(6,5)
()
()

Figure 4: A sensor network (left) with an in-network, grouped aggregate applied to it (right). Parenthesized numbers represent
the sensors that contributed to the average; they are included for the reader’s benefit – the sensors do not actually track this
information.

standard pipelined scheme presented above, aggregates are
computed over values from the previous time interval, this
presents an inconsistency. We believe, however, that this will
not dramatically effect aggregates; verifying this remains an
area of future work.

Thus, we have shown how to partition sensor readings into
a number of groups and properly compute aggregates over
those groups, even when the amount of group information
exceeds available storage in any one sensor.

5 Related Work

In this section, we discuss related work from both the
database and sensor networking communities. Although the
networking community has begun to explore issues of data
collection within sensor networks, there is no other work that
we are aware of that proposes a generic, query-based scheme
for extracting data from sensor networks.

With respect to aggregation, the semantics used here are
largely a part of the SQL standard [2]. The partial preag-
gregation techniques [12] used to enable group eviction were
proposed as a technique to deal with very large numbers
of groups to improve the efficiency of hash joins and other
bucket-based database operators.

The Cougar project at Cornell [14] discusses queries over
sensor networks, as does our own work on Fjords [13], al-
though the former only considers moving selection operators
onto sensors and neither presents a specific, power-sensitive
algorithms for use in sensor networks.

Literature on active-networks [15] first identified the idea
that the network could simultaneous route and transform data,

rather than simply serving as an end-to-end data conduit.
Within the sensor network community, work on networks
that perform data analysis has been largely confined to the
USC/ISI and UCLA communities. Their work on directed
diffusion [10] discusses techniques for moving specific pieces
of information from one place in a network to another, and
proposes aggregation-like operations that nodes may perform
as data flows through them. [6] proposes a scheme for im-
posing names onto related groups of sensors in a network,
in much the way that our scheme partitions sensor networks
into groups. [9] discusses networking protocols for routing
data to improve the extent to which data can be combined as
it flows up a sensor network – it provides low level techniques
for building routing trees that could be useful in computing
database style aggregates.

Networking protocols for routing data in wireless networks
are very popular within the literature [11, 1, 4, 5], however,
none of them address higher level issues of data processing,
merely techniques for data routing. Our tree based routing
approach is clearly inferior to these approaches for peer to
peer routing, but works well for the aggregation scenarios we
are focusing on.

The TinyOS group at UC Berkeley has published a num-
ber of papers describing the design of motes [8], the design of
TinyOS [7], and the implementation of the networking pro-
tocols used to construct ad-hoc sensor networks [16]. None
of this work directly addresses issues of data collection or
aggregation, but is important as the platform on which our
solution operates.

Draft Submitted for Publication, WMCSA 2002. 10

6 Future Work

There are a number of areas of future work. Clearly, exper-
imental and mathematical validation of many of the tech-
niques presented in this paper is needed. As researchers
at UC Berkeley, we are currently working with the sensor
testbed built by the TinyOS group to empirically verify the
algorithms we have presented. Beyond verification, however,
there are several significant challenges that have been glossed
over in this work.

We have not explored the tradeoffs between fully pipelined
communication and techniques such as sending values only
when sensor readings change. There are a number of options
in this space, each of which has different message costs and
robustness properties.

We do not yet fully understand how our approach behaves
when sensors move. Although the routing tree construction
algorithm allows moving nodes to reattach, and the pipelined
aggregation scheme can eventually adjust to moved nodes or
subtrees, it is important to formally characterize how move-
ments and disconnections affect the value of aggregates.

Finally, we have not explored the problem of computing
multiple simultaneous aggregates over a single sensor net-
work. It should be possible for sensors to accommodate mul-
tiple queries (just as they handle multiple groups) up to some
small number of queries. There may be an eviction option, as
with grouping, but there may also be a point at which the in-
network approach is so slow that the server-based approach
again becomes viable. The implementation issues associated
with simultaneous aggregates must be explored before these
in-network approaches can be implemented in a database sys-
tem that supports concurrent queries.

7 Conclusion

We have demonstrated techniques for applying database style
aggregates with groups to sensor readings flowing through
ad-hoc sensor networks. By applying generic aggregation
operations in the tradition of database systems, our approach
offers the ability to query arbitrary data in a sensor network
without custom-building applications. By pipelining the flow
of data through the sensor network, we are able to robustly
compute aggregates while providing rapid and continuous
updates of their value to the user. Finally, by snooping on
messages in the shared channel and applying techniques for
hypothesis testing, we are able to substantially improve the
performance of our basic approach.

This work marks a first step towards a generic, in-network
approach for collecting and computing over sensor data.

SQL, as it has developed over many years, has proven to work
work well in the context of database systems. We believe a
similar language, when properly applied to sensor networks,
will offer similar benefits as SQL: ease of use, expressive-
ness, and a standard on which research and industry can build.

References
[1] W. Adjue-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The

design and implementation of an intentional naming system. In ACM
SOSP, December 1999.

[2] ANSI. SQL Standard, 1992. X3.135-1992.

[3] M. J. Carey and D. Kossman. Processing top n and bottom n queries.
Data Engineering Bulletin, 20(3):12–19, 1197.

[4] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An
energy-efficient coordination algorithm for topology maintenance in
ad-hoc wireless networks. In ACM MobiCom, July 2001.

[5] T. Goff, N. Abu-Ghazaleh, D. Phatak, and R. Kahvecioglu. Preemptive
routing in ad hoc networks. In ACM MobiCom, July 2001.

[6] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin,
and D. Ganesan. Building efficient wireless sensor networks with low-
level naming. In SOSP, October 2001.

[7] J. Hill. A software architecture to support network sensors. Master’s
thesis, UC Berkeley, 2000.

[8] J. Hill, R. Szewczyk, A. Woo, S. Hollar, and D. C. K. Pister. System
architecture directions for networked sensors. In Proceedings of the 9th
International Conference on Architectural Support for Programming
Languages and Operating Systems, November 2000.

[9] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact
of network density on data aggregation in wireless sensor networks.
Submitted for Publication, ICDCS-22, November 2001.

[10] C. Intanagonwiwat, R. Govindan, , and D. Estrin. Directed diffusion: A
scalable and robust communication paradigm for sensor networks. In
In Proceedings of the Sixth Annual International Conference on Mo-
bile Computing and Networks (MobiCOM 2000), Boston, MA, August
2000.

[11] J. Kulik, W. Rabiner, and H. Balakrishnan. Adaptive protocols for
information dissemination in wireless sensor networks. In Proceedings
of the 5th Annual IEEE/Mobicom Conference, Seattle, WA, 1999.

[12] P.-A. Larson. Data reduction by partial preaggregation. In ICDE, 2002.
(to appear).

[13] S. Madden and M. J. Franklin. Fjording the stream: An architechture
for queries over streaming sensor data. In ICDE, 2002. (to appear).

[14] P.Bonnet, J.Gehrke, and P.Seshadri. Towards sensor database systems.
In 2nd International Conference on Mobile Data Management, Hong
Kong, January 2001.

[15] D. Tennenhouse. Active networks. In OSDI, October 1996.

[16] A. Woo and D. Culler. A transmission control scheme for media access
in sensor networks. In ACM Mobicom, July 2001.

