
Supporting co-evolution of users and systems by the
recognition of Interaction Patterns

Stefano Arondi, Pietro Baroni, Daniela Fogli, Piero Mussio

Dipartimento di Elettronica per l’Automazione
Università di Brescia

Via Branze 38, 25123 Brescia Italy
Tel. + 39 030 3715450 Fax + 39 030 380014

{baroni, fogli, mussio}@ing.unibs.it

ABSTRACT

This paper presents an approach to support the designer of
Visual Interactive Systems (VISs) in adapting a VIS to the
evolution of its users. This process is called co-evolution of
users and systems. The approach is based on the
identification of the patterns of interaction between the user
and an interactive system and on their use for the evolution
of the system to facilitate novel usages introduced by the
user. The approach is focused on WIMP systems and is
based on the recently introduced PCL (Pictorial Computing
Laboratory) model of interaction, within which we provide a
novel definition of interaction pattern . The proposal
assumes that the VIS is observed by an external system
called SIC (Supporting Interaction Co-evolution), which is
in charge of recording the interactions between the user and
the VIS and of analyzing the relevant interaction patterns. In
particular, SIC exploits a UML-based statechart
specification of the VIS in order to associate observed user
activities with the states of the interactive process. This
information provides a useful basis for a variety of pattern
recognition techniques. Two techniques called usual state
and recurrent sequence recognition are illustrated and the
results of a first experiment are discussed.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques
– user interfaces, state diagrams.

General Terms
Design, Experimentation, Human Factors, Languages.

Keywords

Visual interface design, visual sentence, co-evolution,
system observation.

1. INTRODUCTION
An intriguing phenomenon, often observed in (Human-
Computer Interaction) HCI studies, is that “using the
system changes the users, and as they change they will use
the system in new ways” [24]. In turn, the designer evolves
the system to adapt it to its new usages. We call this
phenomenon co-evolution of users and systems, to
emphasize the interest on methods and tools to support
adequate system co-evolution. This paper presents an
approach to support co-evolution, helping designers in
identifying the new patterns of user behavior and the
context in which they occur, so that designers can decide if
it is worthwhile to co-evolve the system. The concept of
user behavior in a context will be made precise by the
definition of interaction pattern. This notion will be framed
in a model of interaction and a formalism for its description,
recently introduced by the Pictorial Computing Laboratory
(PCL) [6]. Interaction patterns are identified by a system,
SIC (Supporting Interaction Co-evolution), able to observe
the interactions between the user and an interactive system.
SIC associates user activities with the states of the
interactive process, exploiting a statechart [15] specification
of the system, in the notation adopted in UML (Unified
Modeling Language) [4], and uses XML (Extensible Markup
Language) [31] to document its activity and manage the
interaction with the designer. The identified interaction
patterns are thereafter examined by the designer. Two
examples of co-evolution, based on usual state and
recurrent sequence patterns identified by SIC, are
discussed with reference to a running example relevant to
an experiment on an interactive prototype, called “Online
Bookshop”.

2. CO-EVOLUTION AS THE RESULT OF
USER-DESIGNER INTERACTION
Co-evolution stems from two main sources: a) user
creativity: the users may devise novel ways to exploit the
system in order to satisfy some needs not considered in the
specification and design phase; and b) user acquired habits:
a user may insist in following some interaction strategy to
which they are (or become) accustomed; this strategy must
be facilitated with respect to the initial design.

An example of the first type is the integration of non
calculation data in spreadsheets, which was included in
later version of spreadsheets, after the observation that
users frequently forced the spreadsheet to manage non-
calculation data for data archiving and other tasks [25].
Several examples derive from the observation of users
learning how to interact with web documents. At present,
we are facing an astonishing spread and a continuous
discovery of new applications, which call for a
technological evolution, including also semantic hints of
the content [3].

An example of co-evolution stemming from user acquired
habits is offered by the strategy for saving in a new

directory a file being edited. In earlier versions of many
applications (e.g. those of the MSOffice suite) after
selecting the "Save as" command the user can create a new
directory, which however does not become the current
directory. Users are required for a third command - open the
new directory - before saving their file. In this editing
situation, forcing the user to open the newly created
directory is obviously inconvenient. Having recognized this
contextual nuisance, more recent versions of MSOffice
applications have been co-evolved to encompass this user
behavior: when a new directory is created in the "Save as"
context, it automatically becomes the current one.

In this paper, co-evolution is modeled as emerging from the
interaction between users and system designers, mediated
by software tools (figure 1). A user performs some task
interacting with an application Ap - in the running example
the demonstrative prototype “Online Bookshop”. The
interaction occurs through a video screen on which
sequences of images are shown at successive instants of
time. Interacting with Ap, users may find how to use Ap in
achieving new tasks or acquire some habits.

Figure 1: Co-evolution as an interaction between user and designer mediated by two VISs.

These findings of the users result into patterns of
interaction, sequences of activities which users execute
when some specific situation arises during the task at hand.
The interaction is monitored by SIC, a system which detects
both the user activities and the situations in which they
occur. SIC records this information in a log file, extracts
interaction patterns from it and notifies them to the
designer. The designer decides if it is worthwhile to evolve
the application Ap. To make these concepts more precise, in
the next section we revise the PCL model and formalisms for
specifying Visual Interactive Systems, and adapt them to
the co-evolution needs.

3. A MODEL OF THE HUMAN-COMPUTER
INTERACTION PROCESS
In the PCL approach [6], HCI is modeled as a process in
which the user and the computer communicate by
materializing and interpreting a sequence of messages at
successive instants of time. Two interpretations of each
image on the screen arise in the interaction: one performed
by the user achieving the task, depending on his/her role in
the task, as well as on his/her culture, experience, and skills,
and the second internal to the system, associating the
image with a computational meaning, as determined by the
programs implemented in the system [6].

If we restrict to the case of WIMP (Windows, Icons,
Menus, Pointers) interaction [12], the messages exchanged
are the whole images which appear on the screen display of
a computer and are formed by text, icon, graphs, pictures,
windows. Figure 2a shows one of these images,
representing the initial message of the demonstrative
prototype “Online Bookshop”, designed to support a
human in choosing and purchasing books.

The HCI process is viewed as a sequence of cycles: the
human detects the image on the screen, derives the
message meaning, decides what to do next, and manifests
his/her intention by an activity performed operating on the
input devices of the system; the system perceives these
operations as a stream of input events, interprets them,
computes the response to human activity and materializes
the results on the screen, so that they can be perceived and
interpreted by the human. In principle, this cycle is repeated
until the human decides that the process has to be finished,
because the task has been achieved or failed.

In each cycle the system plays several roles. First it is the
medium conveying the messages on which interaction is
based: some of its programs and tools generate, maintain
and display the images on the screen. Second, the system
plays the role of the second interacting entity, denoted by
Ap: some of its programs compute the system reaction to
the user activity. The input to Ap are computed by a set of
devices and programs which capture and digitize the input
operations performed by the human, relate them to the
image on the screen and assign them a meaning: this third
set of devices and programs plays the role of the tools used
by the human to manifest his/her intention. Last, there are
some programs which materialize the results of the
computation performed by Ap, determining the image on the
screen, acting as the materialization tool for Ap. A Visual
Interactive System (VIS) is a software system which
organizes the four sets of programs, acting as image
support, second communicant, and I/O tools. In figure 1 two
VISs are schematized: the first one allows the interaction of
the user with Ap, which acts as second communicant, while
the second VIS (VIS2) allows the interaction of the designer
with SIC, which acts as second communicant. The PCL
approach formally describes this model.

Figure 2a: The initial message of “Online Bookshop”.

Figure 2b: UML statechart sketching the core description of
the initial message of “Online Bookshop” (“Search” and

“End” buttons are omitted).

4. THE STATE OF THE INTERACTION
PROCESS
Humans interpret an image on the screen by recognizing
characteristic structures (css or structures for short), i.e.
sets of image pixels which they perceive as functional or

perceptual units. The cs recognition and interpretation
results into the association of a meaning with a structure.
Identification and interpretation (or misinterpretation) of css
are influenced by the similarity (dissimilarities) with real
tools and graphical constructs traditionally adopted by the
user community to perform and document their activity. For
example, in figure 2a a user who is acquainted with domestic
appliances and fill-in forms recognizes two sets of (virtual)
radio buttons, two buttons and three fields to be written in.
The human deduces the meaning associated with the whole
image by combining the meanings of the css recognized in
it.

On the system side, each cs on the screen is the result of a
computational process, which determines its graphical
features, position, persistence and behavior and is also in
charge of managing the inputs in the interaction process
which are related to it. A cs is the pictorial part of a virtual
entity, determined by the computational process. For
example, the rectangle framing the word “Search” in figure
2a is a cs representing a virtual button, which can be
selected by the human positioning the mouse pointer on it
and then clicking a mouse button. The selected button
changes its graphical properties to manifest the new state of
the generating process, and fires an associated
computational process. In a well designed system, at each
step of the interaction each cs hints the state of its
underlying process, conveying information for the user to
understand the state of the process with reference to the
task being executed. The current state of the underlying
process is described by the triple <cs, u, <int,mat>>, where
a) cs is the set of pixels produced by the process on the
screen; b) u specifies the current state of the computational
process generating the virtual entity (e.g. the program being
executed, the state of its memory, and the pointer to the
current instruction); and c) the pair <int, mat> are two
functions describing the correspondences between
elements of the cs and components of u. In the PCL model
[5], this triple is called “characteristic pattern” and denoted
as cp=<cs,u,<int,mat>>. The cp is a specification of the
entities called interactive objects or widgets [12].

The state of the whole machine participating to the
interaction process is specified in a similar way, reflecting
the necessity of the machine to play its different roles: the
specification has therefore to take into account the current
state of the whole message – i.e. the current image on the
screen -, the state of Ap as well as the relations between
what appears on the screen and the processes going on
within the system. The state of the overall process is
described as a triple vs=<i, u, <int, mat>>, where i is the
array of pixels constituting the current image, u is a suitable
description of the current state of the process Ap, int and
mat are two functions relating elements of i with
components of u, formalizing the interpretation and

materialization arrows of fig. 1. This triple is called “visual
sentence”. Figure 2a displays an image i of a vs and figure
2b its associated u sketched in UML notation [4], as a set of
orthogonal sub-states, collectively describing the current
state of Ap. The int and mat functions are not represented
due to lack of space. According to this definition, a visual
sentence is a special cp whose cs is the whole image on the
screen, i.e. its image part i is the current message to be
interpreted by the human and by the system. Figure 3
shows the complete definition of the cp of a radio button
displayed using the same techniques.

Figure 3: The cp of the radio button “Italian”.

The int and mat functions of the cp in figure 3 are as
follows:

Looking at figure 2, it can be noted that the cs and u of the
radio button of figure 3 appear as elements of the image i
and of the description u of the visual sentence. Actually, as
discussed in [13], cps can be composed to form more
complex ones. In the design of a VIS, a finite set of
equivalence classes of cps, called atomic classes, and a set
of rules for their instantiation and combination are defined
from which more complex cps, up to vss, are derived. In the
following, the set of atomic classes of cps is denoted as CP.
A programmed implementation of the equivalence classes
and of the rules can be naturally produced through a toolkit
[12].

5. THE DYNAMICS OF THE
INTERACTION PROCESS
In each interaction cycle, a visual sentence vs1 is
transformed into a visual sentence vs2 as the consequence
of some human activity a. In a WIMP system, the human
performs an activity operating on an input device – say
clicking a mouse button – in relation to some cs recognized
on the screen. The system relates the operation to the
current active cs (in WIMP systems, the one pointed to by
the mouse pointer) – e.g. the virtual button “Search” in
figure 2a – and interprets it as a command from the user –
push the search button. Then it changes the button state
and fires the consequent computation, referred to in the u
associated to the cs in the corresponding cp. The
computation actually consists in searching the books
whose characteristics are defined in the text fields and radio
buttons.

The designer describes the human activity as a pair
a=<operation, cp> and specifies the transformation as
tr:<a,<vs 1,vs2>>, where cp in a is present in vs1. The
interaction process is specified as a sequence of such
transformations. An interaction process cannot be
predicted in advance, because it is determined by the
sequence of activities the human decides to perform and
each decision is taken on the basis of the observation of the
current message shown by the system. However a phase
space for a VIS can be defined, if an initial state vs0 is
specified. This space is constituted by all the (in general)
infinite sequences of transformations which can be
generated by humans interacting with the VIS, starting from
vs0.

An approach to derive a finite specification of a control
automaton governing the interaction is discussed in detail
in [6] [13]. Here we present a short account of the methods.

The method exploits the finitary nature of the definition of
cp. A cp is the description of the state of a computational
element u in a precise step of the computation. This
description is finite, i.e. it requires a finite amount of memory
to be stored. However, it can be enlarged by a finite amount
in the next step of the computation. The vs , being a special
cp, is also finitary. The memory required to describe the
interaction process from this abstract point of view is
unbound, finite in each step of the computation, but
amenable to a finite increment in the next step.

Moreover, in any step of the interaction, the user can
perform a finite number of operations on the current vs ,
those allowed by the input devices of the system, which are
finite in number and each one able to generate a finite
number of digital events, perceivable by the machine. The
set of css appearing on the screen is also finite: as a
consequence the set of activities the human can perform on

a vs are finite. Moreover two activities a1 and a2 are
equivalent if operation1 and operation2 correspond to the
same set of digital events and cp1 and cp2 belong to the
same class. The number of equivalence classes of activities
is finite due to the finite number of equivalence classes in
CP and of digital events. In the following, each activity
equivalence class is denoted by a representative activity a
belonging to it. The set of activity equivalence classes is
denoted by A. Two vss are equivalent (vs1 ≡ vs2), if the
human can perform on them the same set of classes of
activity. Due to the finiteness of the number of classes of
activity, also the cardinality of its powerset, i.e. the
maximum number of the classes of equivalence on the set of
vss, is finite. The set of vs equivalence classes is denoted
by S.

Let us restrict to deterministic VISs, i.e. systems in which
each activity a performed on a visual sentence vs1

determines one and only one transformation
tr:<a,<vs 1,vs2>>. Let us also assume that, when switched on,
the VIS is in state vs0. A function f(a,vs 1) = vs2 can be
defined, mapping each pair <activity a, visual sentence vs1>
into a visual sentence vs2, where vs2 is the result of the
transformation tr. The binary relation ≡ on S is a congruence
relation with respect to f.

A finite state machine – called Control Automaton (CA) -
can be defined as follows on the input alphabet A. The set
of states is the set of vs equivalence classes S. The start
state s0 is the class to which vs0 belongs to. The transition
function is of the form g(a,s1)=s2, where s1, s2 belong to S
and a is in A. CA is equipped with an output function in the
form U(a,s1)=nu, where nu indicates the computational
element of VIS which computes the transformation. Figure 6
shows an example of CA, referred to the “Online Bookshop”
prototype. The CA is specified using the UML statechart
notation, activities are described at the window system
level, i.e. according to [16] input device events are
associated to windows and widgets on the screen, and
computational constructs are hinted by their names [7].
Each state of the automaton is a macrostate in the statechart
language, i.e. it can be expanded into a more refined
representation: for instance, the macrostate
“InsQueryMask” can be expanded in the UML statechart of
figure 2b. From the point of view of the interaction, each
macrostate is associated to a set of vss, which are
equivalent with respect to the user activities, whose name
are labels for the transitions going out of the macrostate.
These vss share a common part of the image, which is here
called ‘mask’. The names of the macrostates refer to these
common structures, which indicate to the users the current
state of the machine and recall them the sub-task that they
are performing.

6. PATTERNS OF INTERACTION
Patterns of interaction (poi) are sequences of activities
which the user performs in some specific situation during
the interactive execution of a task. Designers are interested
in recognizing these patterns and the reasons of their
repetition, so that they can evaluate if it is worthwhile to co-
evolve the system, for example by the introduction of new
functionalities. A pattern of interaction however cannot be
predicted in advance, because it is determined by the users
findings in the execution of some task; but it can be
observed and it can be expressed in a form suitable for
subsequent automatic analysis. During the interaction it is
easy to observe the image i on the screen as well as the
activity a(t) performed by the user at time step t, if one
knows the set CP. Restricting to deterministic VISs and
assuming the knowledge of CA, it is possible to derive the
state s(t) of the CA to which the current vs(t) belongs to
and, observing the activity a(t) performed by the user,
derive the state s(t+1) to which vs(t+1) belongs to and
which is reached as a consequence of a(t).

It is therefore possible to track, log and analyze the path
followed by the CA as a result of the sequence of activities
performed by the user. The state s(t) records in a synthetic
way the history of the interaction, i.e. resumes the situation.
In summary, if the following conditions are satisfied: a) the
system is deterministic, i.e. only one u corresponds to each
image i, b) the CA specifying the VIS is known, c) the set CP
of the classes of atomic cps is known and d) the set A of the
classes of user activities is known, then the interaction
process can be described as the observed sequence of pairs
<s(t), a(t)>, where s(t) describes the state of the control
automaton before the activity is carried out and a(t)
describes the performed activity. A pattern of interaction is
a sub-sequence of an interaction process and is described
as a finite sequence of pairs <s(t), a(t)>, with t in [t1,..,tn].

7. CO-EVOLUTION OF VISUAL
INTERACTIVE SYSTEMS
The co-evolution of a VIS consists in three steps:
observation of the interaction, recognition of interaction
patterns and adaptation of the VIS . The first two steps are
carried out by SIC, which provides the necessary
information to the designer, who performs the third step.
We assume that SIC has access to a representation of the
CA specifying the VIS, to the set CP of atomic classes of
cps and to the set A of classes of user activities.

7.1 An architecture for co-evolution
A prototypal system, called SIC, has been implemented to
support observation and recognition of interaction patterns
as described in the previous section. The high level
architecture of the current implementation of SIC is shown

in the left part of figure 4. It consists of an Interaction
Observer, two Recognition Agents and some designer
support tools. The former component is in charge of
observing user activities, with the purpose of storing
observed sequences in a log file, which is written following
the XML standard for document description [31], to
facilitate interoperability and document exchange. The
Recognition Agents analyze the log file and implement the
two interaction pattern recognition techniques described in
the next sub-sections. They then exchange messages with
the designer in order to notify interaction patterns. Finally,
the designer may modify the VIS (e.g. adding a new
transition in the CA) using the co-evolution support tools,
which facilitate this activity.

The architecture of SIC is particularly suitable for an agent-
based implementation [19]. Generally speaking, an agent is a
computational entity which is situated in an environment
where it autonomously pursues its goals and is able to
exhibit both reactive and proactive behavior. The
organization of SIC naturally lends itself to a multi-agent
system. One of the main advantages of this type of
organization is its openness to extensions, by the addition
of new specialized agents. For example the set of
recognition agents might be extended in order to include
further recognition techniques. For this reason SIC has
been implemented using MadKit [21], a Java-based platform
which supports the development of multi-agent systems.

7.2 Observation of the interaction
System observation is in charge of appending a new pair
<s(t), a(t)> to a log file each time a user activity is
performed. Moreover, the observer computes the new state
s(t+1) of the automaton to be used in the processing of the
next observed activity.

The algorithm describing the observation activity is as
follows:

Interaction Observation
CurrentState := s0;
Do

Let CurrentActivity := Next observation of
user activity;
Append couple <CurrentState,
CurrentActivity> to logfile;
Update CurrentState according to
CurrentState and CurrentActivity on the
basis of the control automaton;

While CurrentState ≠ TerminationState

7.3 Recognition of interaction patterns
The recognition of interaction patterns is carried out taking
into account the control automaton of the VIS in order to
properly interpret the contents of the log file. The results of

the interaction pattern recognition can be used by the
designer to identify useful modifications of the control
automaton, which give rise to an evolved version of the
interactive system. In particular, to experiment the potential

of our approach we have considered two kinds of
interaction pattern recognition, that we have called usual
state and recurrent sequence recognition.

Figure 4: Current SIC Architecture and its interactions with the human-computer system.

7.3.1 Usual state recognition
The usual state recognition technique is used to identify
those values of variables defining the state of the VIS,
which are more suitable to be assumed as default values.
The aim of the technique is to allow the designer to
establish default values which make more efficient the
achievement of the task by the user. To this end, we
classify cps in CP (atomic cps) in two categories: a) data
insertion cps, devoted to establishing the values of the
variables which determine the VIS behavior; b) action cps,
devoted to firing computational activities of Ap. In figure 5,
examples of cps of the first category are check boxes, radio
buttons and text boxes, while examples of the second
category are buttons.

An important sub-category of action cps are the exit cps,
which determine the transition from a macrostate to another
macrostate of CA (figure 6), called here exit transition. For
example, in figure 5, “Order” and “Cancel” buttons are exit
cps .

Figure 5: The mask of “Online Bookshop” for payment and
shipping.

An exit transition can be associated with three types of
activity: a) confirmation activity (for example, in figure 5, a
mouse click on the “Order” button), which starts the
subsequent processing activity; b) cancellation activity
(for example, in figure 5 a mouse click on “Cancel” button),
to return to the previous mask; c) quit activity (for example,
a click on the “End” button in figure 2a), to definitely exit the
program. The user triggers a confirmation activity when
s/he is satisfied with the set values of the variables on
which Ap has to perform its computations. This set of
values are the states of the data insertion cps. We define
usual state the state of a data insertion cp which is most

frequently selected by the user before triggering a
confirmation activity.

The usual state recognition technique is in charge of
identifying the usual states in order to notify them to the
designer, if different from default values. The designer may
then decide to set them as default values by modifying the
initial state markers (arrows with bold circle queue in figure
2b) which are present in the statechart representation of the
control automaton.

In practice, the usual state recognition technique analyzes
the log file by looking for those pairs <s(t), a(t)>, where the
user activity a(t) corresponds to a confirmation activity. A
frequency analysis can be performed on the states of the
cps in s(t), so to determine usual states. Information about
usual states is presented to the designer, who then has to
decide whether modifying default states accordingly. The
algorithm for usual state recognition is as follows:

Usual state recognition
For each macrostate

For each data insertion cp
For each state assumed by the cp

Create a counter associated to it
For each pair <s(t), a(t)> in logfile

If a(t) is a confirmation activity
Then For each sub-state in s(t)

referring to a data insertion cp
increment the counter associated
to the sub-state

For each macrostate
For each data insertion cp

Find the maximum value among the
counters associated to the states of
the cp
If the maximum value is not associated
to the default state

Then notify it to the designer

7.3.2 Recurrent sequence recognition
The second technique we considered is related with the
recognition of recurrent sequences within the log file.
Several techniques for sequence retrieval have been
proposed [17]. In the context of the interaction model
adopted in the present work, the result of observation
activity (actually, the log file) is a string on the alphabet
ALP whose elements are pairs <state, user activity>, i.e. ALP
= S x A. Projections of this string can be obtained by
restricting the alphabet to S or A only, i.e. focusing
attention on states or activities respectively.

A retrieval technique can be applied to find recurrent sub-
strings within the complete log file or a projection of it. The
algorithm for sub-string retrieval is parametric with respect
to maximum sub-string length (MSL), minimum number of
sub-string occurrences considered significant (MNS), and

the selected alphabet (either S x A, S, or A). Frequent sub-
strings are identified by constructing a tree data structure
similar to those used in data compression algorithms (see
[20] for details).

The algorithm works as follows:

Recurrent sequence recognition
If the selected alphabet ≠ ALP

Then let P = projection of the log file
wrt the selected alphabet

Else let P = contents of log file
Initialize an empty tree structure T
For L := 2 to MSL

For each element E in P
Extract from P the sub-string of
length L starting with E
If the sub-string is in T

Then update the corresponding
occurrence counter

Else add the sub-string to T
and set its occurrence
counter to 1

End (internal for)
Select from T all the sub-strings whose
occurrence counter value is over MNS

End (external for)
Notify the selected sub-strings to the
designer

Let us now consider an example of system co-evolution
related with recurrent sequence recognition. Many systems
ask the user whether saving work before definitely exiting
the application after the user has given an “Exit” command,
if any modification has been introduced since the last
“Save” command. If the user is accustomed to save his/her
work after the “Exit” command, it can be recognized that the
relevant sequence of commands is rather frequent. In this
case the designer might decide to add a new command
“Save and Exit” among the exit choices (by the way this
command was available in the UNIX vi editor, while it is not
present in MSOffice applications).

An example of the implications of the use of different
alphabets can be noticed in this case. In fact the recurrent
sub-string formed by activities “Exit” and “Save” can be
identified if the considered alphabet is A only, possibly
resulting in the addition of a new activity, available in all
states. On the other hand, if the alphabet S x A is
considered, the additional information about the states can
be exploited to make the new command available only in the
states where it is actually needed.

A significant support to the system designer can be given
by the recognition of recurrent anomalous sequences. A
very simple example of this case is a sequence of mouse
clicks on the background, which might indicate that the user
finds the interface unclear or hard to understand. The

identification of such kind of sequences may in general help
the designer in finding possible design mistakes or
problems.

8. EXPERIMENTAL ACTIVITY
As already mentioned, experimental activity has been
carried out on “Online Bookshop”, a prototypal VIS
simulating the on-line purchase of books, which was
designed according to a precise discipline so that its CA
was available as its specification. In the prototype, vs0 is the
vs presented in figure 2a, where the user is prompted for
his/her book preferences. The user activates the related
search by clicking on the “Search” button. In this case, a
sequence of vss showing search progression are presented.
When the search is completed or interrupted by the user,
the vs presenting the (possibly partial) search results is
shown. The user can then select one or more books and
require their purchase. In this case, a mask requiring
payment and shipping information is shown (figure 5). After
the user has given and confirmed the required information, a
notification that the purchase has been completed is
presented. The user can then proceed to further purchases
or to a new search.

8.1 An example of usual state recognition
Various working sessions have been carried out in the
experiments, so leading to the creation of a log file storing
the information about the history of the interactions
between the users and the VIS. The log file has been
analyzed by one of the recognition agents, which has then
notified to the designer the usual states of some of the cps
in the VIS. For example, in the experiments, the users had
often activated the book search with the language “Italian”
and the genre “Adventure”, and selected “Courier” for
shipping and “Credit Card” for payment (figures 2a and 5).
The system has suggested these choices as default values.
It has to be noted that, even in this simple example, taking
into account the system state is useful: in fact, only the
state values associated with confirmation activities are
analyzed. Considering information about user activities only
would make impossible to distinguish between significant
user choices and erroneous or wavering selection actions.

8.2 An example of recurrent sequence
recognition
Recurrent sequence recognition has been applied to the log
file referring to a set of working sessions with the
prototypal system. Several sequences corresponding to
expected user behaviors were extracted and presented to
the designer, while one sequence turned out to be
anomalous and required an additional analysis. The
anomalous sequence is described by the highlighted
transitions in figure 6, specifying the control automaton of

“Online Bookshop”. As a matter of fact, the sequence
corresponds to a relatively subtle design problem: after any
purchase completion, the activity of pressing the “OK”
button determines a transition to the previous mask
(“PurchaseMask”), i.e. the one requiring payment and
shipping data (figure 5). From that mask, the user always
goes back to the mask presenting the results of the
previous book search and then frequently goes back to the
first mask to perform another search. This inefficient
behavior was not noticed by the designer.

Actually, this behavior follows from a commonly adopted
rule concerning the navigation between the masks of an
interactive system: always going back to the previous mask
in order not to disorient the user. However, this rule was not
appropriate in this case and the notification of the recurrent
anomalous sequence has permitted a suitable evolution of
the system.

 Figure 6: The UML statechart describing the CA of the first
version of “Online Bookshop”.

Figure 7: The UML statechart describing the CA of “Online
Bookshop” after the co-evolution.

Figure 7 shows the control automaton describing the
system after this modification. It has to be noted that this
kind of design problems is rather common, since general
interface design rules admit exceptions, which may escape
designer attention. The formal support provided by control
automaton representation to interaction pattern recognition
makes easier the identification of these problems.

9. DISCUSSION AND RELATED WORKS
Co-evolution is a word widely used in scientific works, and
also in the HCI field, from Carroll and Rosson’s co-
evolution of users and tasks [9] to the co-evolution of
artifacts supporting HCI design in the different steps of the
product lifecycle, with the aim of obtaining a consistent set
of tools [8]. Co-evolution of users and systems as proposed
in this paper stresses the importance of co-evolving the
systems, as soon as users evolve the performance of their
tasks. Co-evolution of users and systems is rooted in the
usability engineering, in that it supports designers to collect
feedback on system from the field of use, to improve the
system usability [24]. Tools designed to support co-
evolution are suitable for observational evaluation in user-
centered design approaches [27]. SIC observes the user
behavior and context from inside the digital world; classical
usability techniques [24] should be used to complement this
view, feeding observation on system behavior in the
context, from the human point of view. Use of agents, able
to interview users and perform the two kinds of observation
concurrently is foreseen in EDEM (Expectation-Driven
Event Monitoring) [16]. EDEM is an agent-based system,
which collects usage and contextual data and exploits a
multi-level event model in order to compare developer’s
usage expectations against actual usage, at different levels
of abstraction. Expectation mismatches are reported to the
designer. However designers may not be able to correctly

figure out expectations. SIC focuses on the contrary on the
observable user activity situated in the interaction context,
described by the sequences of interaction patterns and
analyses these sequences using the model of the
interaction process, synthesized by the control automaton
CA.

The model of HCI, from which the CA definition stems,
derives its cyclic nature from the seminal model proposed
by Hutchins et al. in [18]. However, the PCL model looks at
the interactive system as a new medium [26] [1], and
focuses on the communication as managed on the machine
side, in order to derive an approach to the design of usable
and co-evolvable interactive systems. From this point of
view, the PCL model is indebted with the PIE (Program,
Interpretation function, Effect) model [11], a black box model
in which the difference between the effemeral display of the
system and the permanent results is central to the definition
of system properties. At the highest level of abstraction, the
PCL model focuses on the messages exchanged without
taking care of their specific nature, while at the lower level
focuses on the system structure. It also recognizes the
syndetic [2] nature of the system formed by the human and
the computer – i.e. it recognizes the fundamental difference
in the behavior of the two systems bound together in the
interaction process. However, again the PCL model focuses
on modeling the machine, taking into account the human as
a source of constraints on the design and as a resource for
its validation.

The specification of CA is a major difficulty in our
approach. If the system has been properly specified, CA
can be derived by the documentation or (in few cases)
directly found in it. In other situations, the only possibility
is to derive it from observations of the interaction with the
system. Dealing with a similar problem, Guzdial characterizes
sequences of user interface events by a Markov-based
analysis and models the interaction process with nodes
representing process steps and arcs indicating the
observed probabilities of transitions between process steps
[14]. This approach suggests the possibility of summarizing
the partial knowledge obtained by the observations into a
probabilistic CA, from which plausible deductions on
interaction patterns can be obtained and used in co-
evolution. However, Guzdial’s approach, like most of those
reported in the literature, focuses on the extraction and
analysis of events generated by the user interface, without
rooting observations into a model of the process itself (see
[17] for a survey).

For instance, the system ActionStreams [23] aims at
recognizing recurrent sequences of user activities and at
inferring from them hierarchical models of user tasks. The
approach does not take into account system states and,
according to the author himself, “1) it does not match

applications of a given task to different data, 2) it does not
represent optional or conditional events, and 3) it does not
coalesce sequences that differ trivially in the order of
events”.

As a different example, the APE (Adaptive Programming
Environment) project [29] aims at developing a system able
to help users in performing repetitive tasks. The architecture
of APE is constituted by three software agents, an
Observer, an Apprentice and an Assistant. The Observer
monitors user’s actions and stores them into a trace. The
Apprentice applies machine learning techniques to learn
situation patterns in which repetitive tasks are performed,
with the purpose of building a set of user’s habits. The
Assistant proposes to the users the performance of
repetitive tasks whenever user’s actions match one or
several learned situation patterns. APE agent architecture
and its operation closely recall those of SIC, however
situation patterns differ from our interaction patterns, as
they do not include system state information.

Personalization issues have received a special attention in
the context of Web systems, as witnessed by [28]. Many of
these works focus on the personalization of contents to be
presented to users (e.g. [22]). In particular, the approach
presented in [10] adopts recent standards from the W3C
Consortium, such as XML, RDF and P3P. In this proposal, a
user agent at the client side captures the navigational
history of the user and logs it as an XML file. Then,
descriptive statistics are applied to the log file by executing
a query (written in XML-QL) which produces the user
profile in RDF. Finally, Web servers exploit user profiles,
obtained from the clients according to the privacy rules
supported by P3P, to deliver personalized information,
namely information that fits user interests. While the
application context and the goals of this approach are
clearly different from ours, we share the design criterion of
using standard representation formats (in particular XML
and UML) for information exchanges among the
components of the system. This is especially important in a
multi-agent architecture where openness to future
extensions and interoperability among agents, possibly
developed by different people, are fundamental
requirements.

The goals of the work presented in [30] are more similar to
ours: a technique for discovery of navigation patterns,
describing the routes followed by users while accessing
web pages, is used to support a web designer in improving
the pages of a site and the navigation links among them.
Our work seems more articulated in the classification of
interaction patterns and their structure, even if the study of
the specific characteristics (and difficulties) of web systems
is reserved to future research.

10. CONCLUSIONS
In this paper an approach is introduced to support user-
system co-evolution based on the observation of the
interactive process and on the recognition of interaction
patterns. The approach is based on the PCL model of HCI:
this makes possible a deeper analysis of the interaction
process and more sophisticated forms of co-evolution with
respect to approaches which are limited to a more shallow
observation of user activity. The availability of a
specification of the system control automaton is a
prerequisite: though this kind of information is not generally
made available in current practice, we believe that its
importance will be increasingly recognized, since it enforces
a sound discipline in design activity, besides being a useful
tool for interaction analysis. The approach has been
experimented through the implementation of the SIC
prototype, applied to a simple interactive system. Though
experimental results are very preliminary, they seem to
indicate that the approach has an interesting potential.

As to future research, we plan the study of how to derive
the control automaton from observation, of how to use
plausible reasoning techniques in interaction pattern
recognition, and of automatic or semi-automatic techniques
for deriving proper modifications to the interactive system.

11. ACKNOWLEDGMENTS
The authors are indebted to the anonymous referees for
their insightful comments. The support of grants by
MURST 60%, and MURST Cofin 2000 is acknowledged.

12. REFERENCES
[1] Armour, P., The case for a new business model. Comm.

Acm. 43(8), August 2000, 19-22.

[2] Barnard, P., May, J., Duke, D., Duce, D., Systems,
Interactions and Macrotheory. Acm Trans. On Human-
Computer Interaction, 7(2), June 2000, 222-262.

[3] Berners-Lee, T., What the Semantic Web can represent,
1998, http://www.w3.org/DesignIssues/RDFnot.html.

[4] Booch G., Rumbaugh, J., Jacobson, I., The Unified
Modeling Language User Guide. Addison Wesley,
Reading, MA, 1999.

[5] Bottoni, P., Costabile, M. F., Levialdi, S., Mussio, P.,
Defining Visual Languages for Interactive Computing.
IEEE Trans. on Systems, Man, and Cybernetics, 27(6),
1997, 773-783.

[6] Bottoni, P., Costabile, M. F., Mussio, P., Specification
and Dialog Control of Visual Interaction. ACM Trans.
on Programming Languages and Systems 21(6), 1999,
1077-1136.

[7] Bottoni, P., Costabile, M. F., Fogli, D., Levialdi, S.,
Mussio, P., Multilevel Modelling and Design of Visual
Interactive Systems. Proc. of the IEEE Symposia on
Human-Centric Computing Languages and
Environments, Stresa, I, 2001, 256-263.

[8] Brown, J., Graham, T.C.N., Wright, T., The Vista
environment for the coevolutionary design of user
interfaces. Proc. of CHI 98, Conf. on Human Factors in
Computer Systems, Los Angeles, 1998, 376-383.

[9] Carroll, J. M., Rosson, M.B., Deliberated Evolution:
Stalking the View Matcher in design space. Human-
Computer Interaction 6 (3 and 4), 1992, 281-318.

[10] Cingil, I., Dogac, A., Azgin, A., A Broader Approach to
Personalization. Comm. ACM, 43(8), 2000, 136-141.

[11] Dix, A. J., Formal Methods for Interactive Systems.
Academic Press, 1991.

[12] Dix, A., Finlay, J., Abowd, G., Beale, R., Human
Computer Interaction. Prentice Hall, London, 1998.

[13] Fogli, D., Mussio, P., A systemic approach to the
specification and design of usable interactive systems,
Internal Report, University of Brescia, 2001.

[14] Guzdial, M., Deriving software usage patterns from log
files, Tech. Rep. GIT-GVU-93, 41, 1993.

[15] Harel, D., On visual formalisms. Comm. of the ACM,
31(5), 1988, 514-529.

[16] Hilbert, D. M., Robbins, J. E., Redmiles, D. F., EDEM:
Intelligent Agents for Collecting Usage Data and
Increasing User Involvement in Development. ACM
Int. Conf. on Intelligent User Interfaces , San Francisco,
CA, 1998, 73-76.

[17] Hilbert, D. M., Redmiles, D. F., Extracting usability
information from user interface events. ACM
Computing Surveys, 32(4), December 2000, 384-421.

[18] Hutchins, E.L, Hollan, J. D, Norman, D., Direct
manipulation interfaces. In User Centred System
Design, Norman D. and Draper S., eds., 87-124.
Hillsdale, NJ: Lawrence Erlbaum Associates, 1986.

[19] Jennings, N., An agent-based approach for building
complex software systems. Comm. of the ACM, 44(4),
2001, 35-41.

[20] Lelewer, D. A., Hirschberg, D. S., Data Compression.
ACM Computing Surveys, 19(3), 1987, 261-296.

[21] MadKit Web Site, http://www.madkit.org.

[22] Manber, U., Patel, A., Robison, J., Experience with
personalization on Yahoo! Comm. of the ACM , 43(8),
2000, 35-39.

[23] Maulsby, D., Inductive Task Modeling for User
Interface Customization. ACM Int. Conf. on Intelligent
User Interfaces, Orlando, FL, USA, 1997, 233-236.

[24] Nielsen, J., Usability Engineering. Academic Press,
San Diego, CA, 1993.

[25] Nielsen, J., Mack, R.L., Bergendorff, K.H., Grishkowsky,
N.L., Integrated software in the professional work
environment: evidence from questionnaires and
interviews. Proc. CHI 86 Conf., Boston, MA, 1986, 11-
120.

[26] Prates, R., De Souza, C., Barboza, S., A Method for
Evaluating the Communicability of User Interfaces.
Interactions, 7(1), 2000, 31-38.

[27] Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland,
S., Carey, T. Human-Computer Interaction, Addison-
Wesley, Wokingham, UK, 1994.

[28] Riecken, D., Personalized views of personalization,
Introduction to special issue on Personalization. Comm.
of the ACM , 43(8), August 2000, 27-28.

[29] Ruvini,. J-D., Dony, C., APE: Learning User’s Habits to
Automate Repetitive Tasks. ACM Int. Conf. on
Intelligent User Interfaces, New Orleans, LA, USA,
2000, 229-232.

[30] Spiliopoulou, M., Web Usage Mining for Web Site
Evaluation. Comm. ACM , 43(8), 2000, 127-134.

[31] W3C Consortium, Extensible markup language (XML),
2001, http://www.w3.org/XML

