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Abstract 
 

More and more applications require peer-to-peer (P2P) 
systems to support complex queries over multi-dimensional 
data. For example, a P2P auction network for real estate 
frequently needs to answer queries such as “select five 
available buildings closest to the airport”. Such queries 
are not efficiently supported in current P2P systems. 
Towards an efficient and scalable P2P system capable of 
processing complex multi-dimensional queries, we first 
propose a comprehensive framework for sharing, indexing, 
and querying multi-dimensional data, where (i) peers with 
more computational power coordinate indexing and query 
processing, and (ii) other peers participate in part of the 
computation in order to achieve scalability and load-
balance. Based on this framework, we propose Network-R-
tree (NR-tree), a P2P adaptation of the dominant spatial 
index - R*-tree. NR-tree, indexing spatial data at clustered 
peers, is capable of processing complex queries such as 
range queries and k-nearest neighbor queries. We propose 
query processing algorithms for range and k-nearest 
neighbor queries and experimentally prove the 
effectiveness of proposed techniques with real data. 
 

1. Introduction  
 

Peer-to-peer (P2P) has become a pervasive paradigm of 
data exchange. As more applications and users share or 
access data through P2P networks, many current systems 
seem inadequate due to the inability to support multi-
attribute or multi-dimensional queries efficiently. The first 
generation of P2P systems, namely file sharing applications 
such as Gnutella [23] or most recent BitTorrent [22], 
support only keyword lookups and mostly provide no load-
balancing. The second generation, including Chord [17], 
CAN [13], Pastry [14], and Tapestry [27], are mainly 
structured P2P systems supporting basic key-based routing 
while providing load-balancing and logarithmic hop 
routing. They are not yet designed for complex queries 
(e.g., range query, k-nearest neighbor query) in multi-
dimensional data, but their desirable features make them 
fruitfully used by many third generation systems, such as 
CAN-MC [15] (CAN) and pSearch [21] (CAN). Some 
recent systems support only range queries (e.g., SkipNet [8] 

and Mercury [2]) or similarity queries (e.g., SSW [11]) and 
not requiring a structured overlay, but they cannot support 
other complex query types. 

1.1 Motivation 
 

Complex queries, such as range queries and k-nearest 
neighbor queries, are becoming more important as 
voluminous data are shared and more applications use the 
P2P paradigm. For example, a P2P auction network [19] 
where peers store information on local real estate 
(geographical location, price, etc) needs to frequently deal 
with queries such as “find available buildings at most 10 
km from the city center” or “select five available buildings 
closest to the airport”. In order to answer such queries 
efficiently in P2P networks, we need to take into account 
their characteristics. Studies such as [18] have shown that 
peer exhibits strong heterogeneity in computational power, 
storage, and bandwidth (e.g., up to 3 orders of magnitude 
difference in bandwidth). This phenomenon implies that an 
efficient and realistic P2P system should take into account 
the non-uniformity in computational resources among 
peers. Towards this, super-peer networks [26] have 
emerged as a powerful balance where peers with more 
resources take an active role as local servers while 
resource-scarce peers can be passively served. Such 
systems have already shown their flexibility and 
adaptability with applications such as KaZaa [24] and 
continue to grow with great potential. Therefore, enabling 
super-peer systems for complex multi-dimensional queries 
is the focus of this paper. 

1.2 Contributions 
 

This paper contains three important contributions that 
efficiently support complex multi-dimensional queries in 
super-peer systems. First, we propose a comprehensive 
framework for sharing, indexing, and querying multi-
dimensional data in super-peer networks. In particular, 
peers with more computational power (super-peers) act as 
local servers to which peers with relatively weaker 
capability (passive-peers) connect and thus forming a 
cluster. In order not to overload super-peers and balance the 
workload, part of the indexing and query processing task is 



pushed to passive-peers, which makes our systems scalable 
and stable. 

Second, we propose the Network-R-tree (abbreviated as 
NR-tree), a P2P adaptation of the most popular multi-
dimensional index, R*-tree. The NR-tree is build in the 
same spirit as R*-tree and therefore it can easily 
accommodate existing R*-tree based algorithms with minor 
modification. The NR-tree is built in super-peers by 
indexing minimum bounding rectangles (MBRs) 
summarizing peer data in the same cluster at a coarse level. 
It is thus light-weight and easy to build and maintain, with 
full capability of an R*-tree. NR-trees facilitate the 
processing of complex multi-dimensional queries in P2P 
networks. We also devise techniques for maintaining NR-
trees under frequent node departures in order to adapt to the 
dynamic nature of P2P networks. 

The last contribution is a thorough evaluation of 
proposed system under various settings. We perform 
experiments with different network sizes, data distribution, 
node failures, etc. By testing various factors, we 
experimentally prove the effectiveness of the proposed 
system. 

The rest of the paper is organized as follows. Section 2 
surveys previous work, focusing on complex queries in P2P 
systems and the R*-tree with its related algorithms, due to 
their immediate relevance with the NR-tree. Section 3 
overviews the system and section 4 discusses cluster 
formation mechanism. Section 5 introduces the NR-tree 
construction and maintenance, before we discuss 
algorithms for range query and k-nearest neighbor query in 
section 6. Section 7 verifies the effectiveness of proposed 
techniques with rigorous experiments and section 8 
concludes the paper with future work. 

 
2. Related work 
 

In this section, we will introduce the most related 
research results in peer-to-peer networks, with the focus on 
processing multi-dimensional queries. Another topic, R*-
tree and its query processing algorithms, is also pertinent 
and will be introduces in section 2.2. 

2.1 Query processing in P2P systems 
 

Ever since the popularity of peer-to-peer file sharing 
applications (e.g., Gnutella), research community has put 
significant amount of effort on extending P2P networks or 
building new P2P systems to support more than just 
keyword search. The first significant step towards this goal 
is structured P2P networks, such as Chord [17], CAN [13], 
Pastry [14], and Tapestry [27]. They offer efficient lookup 
routing, load-balancing, resilience, and scalability by 
building self-organizing overlays to store and locate 
resources in P2P systems. These systems are not directly 

suitable for complex multidimensional queries (e.g., range 
query, nearest neighbor query) since they often use hashing 
for locating resources. Nevertheless, their desirable features 
make them often foundations of successive P2P systems. 
Among those, notably pSearch [[21], employs CAN for 
organizing the overlay network. It uses Vector Space 
Model (VSM) and Latent Semantic Indexing (LSI) to 
generate a semantic space and organize contents around 
their semantics. pSearch is still designed for structured 
networks due to the underlying CAN, which makes it not 
suitable for the P2P system we focus on. 

Significant amount of work has been put on range 
queries in P2P systems. With techniques such as replicated 
B-trees [10], space filling curves [25] and skip lists 
(SkipNet [8]), range queries can be efficiently processed. 
By leveraging the properties of small-world networks, 
Mercury [2] can route range queries efficiently and 
Semantic Small World (SSW) [11] can process similarity 
queries. However, these systems have not yet considered 
other types of multi-dimensional queries such as k-nearest 
neighbor queries.  

Very recently, more progress has been made towards 
supporting complex multi-dimensional queries. Demirbas 
and Ferhatosmanoglu propose a tree-based index for sensor 
networks [5], where sensors collectively build an index tree 
and process various types of spatial queries. However, their 
solution is specific to sensor-networks, and the 
performance is not clear since no experiments are 
presented. A P2PR-tree is proposed in [12], which is an 
extension of the R*-tree in P2P settings. However, the most 
important issue, maintenance of a dynamic R-tree in 
unstructured P2P networks is left unaddressed. The 
maintenance cost is expected to be considerably high, since 
every maintenance operation has to be communicated 
among peers with messages in order to finish. Zhang et al. 
propose a skip graph [1] based structure in [28], which is a 
multi-dimensional extension of SkipNet [8]. Most recently, 
a quad-tree-based technique is proposed by Tanin and 
Harwood [19] capable of supporting range queries, which, 
however, builds on Chord and makes it only suitable for 
structured P2P networks.  

2.2 The R*-tree based query processing 
 
Among various multi-dimensional access methods [6], 

the R*-tree [3], a variation of the original R-tree [7], has 
been widely accepted by industry and research community. 
The R*-tree is a multi-dimensional extension of a B+-tree. 
Figure 2.1 illustrates an R*-tree indexing a set of points {a, 
b, c,…} assuming a capacity of three entries per node. 
Points close in space (e.g., e, f, g) are clustered in the same 
leaf node (E6) represented as a minimum bounding 
rectangle (MBR). Nodes are then recursively grouped 
together following the same principle until the top level, 
which consists of a single root. 



R*-trees can efficiently answer various types of multi-
dimensional queries, especially range query. Given a query 
window q (shaded region in Figure 2.1), a range query 
retrieves all objects inside or intersecting q. Range queries 
can be processed using the original algorithm from [7]. 
Processing starts from the root level of the R*-tree. For any 
entry whose MBR intersects the query window, its sub-tree 
is recursively explored. If a leaf entry is encountered, all 
objects whose bounding rectangle intersects the query 
window are examined. Entries not intersecting the query 
window (e.g., E3) are not examined. 
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Figure 2.1: R-tree example 
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Figure 2.2: kNN example 

Another important type of queries that R*-trees 
efficiently support is k-nearest neighbor (kNN) query. 
Given a query point q and parameter k(≥1), a kNN query 
retrieves the top k objects (if possible) with the shortest 
distance to q. Roussopoulos et al. [16] propose a branch-
and-bound algorithm (enhanced by Cheung and Fu [4]) that 
traverses the R*-tree in a depth-first manner. Specifically, 
starting from the root, entries are sorted according to their 
minimal distance (mindist) to query point q, and sub-tree of 
entries with smaller mindist are explored first. This process 
repeats recursively until the leaf level is reached and the 
first k candidates are discovered. Assume that mindist from 
farthest candidate is nn_mindist. During backtracking to 
upper levels, only entries with mindist smaller than 
nn_mindist are visited. We will illustrate this algorithm 
with an example in Figure 2.2. Assume we intend to find 
the 2-nearest neighbor of point q. Starting form the root 
level of the R*-tree (same tree as in Figure 2.1), the mindist 
from q to all entries in the same level are computed. Entry 
E2 is visited first since it has the smallest mindist, and it is 
recursively traversed. Leaf entry E7 is visited next and point 
h and i are candidates of nearest neighbors. The current 

nn_mindist is the distance from i to q. The process now 
backtracks the R*-tree, and E8 is not visited since it has a 
larger mindist than nn_mindist. The next node to be visited 
is E1, and in a similar fashion object g is found and g 
replaces i since it is closer to q. The current nn_mindist is 
adjusted to be the distance from g to q. Other nodes/entries 
are not visited according to mindist metric, and the results 
are point g and h. Hjaltason and Samet [9] propose an 
improved algorithm which traverses the R*-tree in a best-
first manner using a heap.  
 

3. System overview 
  
This section provides an overview of the proposed 

network index structure, before we proceed with details in 
subsequent sections. We use a super-peer network model 
[26] as shown in Figure 3.1. In this model, among a cluster 
of nearby clients, some super-peers (e.g., S1 and S2) act as 
local servers, to which other passive-peers (e.g., C1 and C2) 
are connected. A super-peer is computationally more 
powerful and has more network bandwidth, comparing with 
passive-peers. Thus super-peers can play the more 
important role of local servers of passive-peers, which 
submit queries to their connected super-peer and receive 
results. This model is realistic and versatile, since it takes 
into account the heterogeneity of computational capabilities 
and network bandwidth among peers. Yang and Garcia-
Molina thoroughly studied the pros and cons of super-peer 
networks and devised several rules of thumbs for their 
design [26].  

 
Figure 3.1: A super-peer network 

We also assume that peers have reasonable 
computational capabilities. In particular, peers should be 
capable of communicating with each other, building 
multidimensional indexes, and processing queries on their 
own data. As the R*-tree is the dominant index for multi-
dimensional data (implemented in Oracle, IBM Informix 
and DB2, etc), we assume that each peer indexes its own 
data using an R*-tree, which is built before it joins the P2P 
network. 

According to analysis of [26], redundancy in super-peers 
is necessary for two reasons: (i) in case one super-peer fails 



others can still serve the cluster, and (ii) super-peers share 
the load with each other. Therefore we have more than one 
super-peer in a cluster, though a passive-peer connects to 
only one super-peer at the same time. Clusters are formed 
by grouping peers holding semantically close data, where 
the closeness is measured by the centroid of data. By 
recursively dividing the data space, each cluster takes one 
zone in the semantic space. When a new peer contacts any 
super-peer for joining the network, it can be routed to the 
cluster responsible for the zone where the data centroid of 
the peer falls into. Inter-cluster routing mechanism is 
similar to that of CAN (details omitted to save space; note 
that we do no use any hashing). Inside each cluster, super-
peers index data shared by all peers using a special R*-tree, 
Network-R-tree (abbreviated as NR-tree). The NR-tree is 
an R*-tree structure, but the actual data indexed still reside 
in all peers in a cluster (except data shared by the super-
peer). As such, the NR-tree possesses the query processing 
power of an R*-tree but is much more space-efficient. 
When building this index, in order to save space and 
processing power for super-peers, not all data in peers are 
inserted into NR-trees and migrated to super-peers. Instead, 
only a small number of MBRs summarizing peer data are 
inserted (illustrated in section 4). The NR-tree provides 
some knowledge of data in the cluster to a super-peer. 
Upon receiving a query (range query or k-nearest neighbor 
query), a super-peer forwards the query to the 
corresponding cluster. For example, a range query is 
forwarded to the cluster responsible for the zone that the 
centroid of query range falls into. The corresponding 
cluster processes the query by checking local data and 
expanding to neighboring clusters. Those clusters will 
process the query and return results to the original peer. 

The above discussion serves as a high-level description, 
omitting, however, several key issues: (1) cluster formation 
and maintenance, (2) exact index structure within each 
cluster, and (3) query processing techniques. In subsequent 
sections, we will give detailed treatment for these issues. 
 

4. Cluster formation and maintenance 
 

A cluster is a group of peers formed by super-peers and 
their respective passive-peers, where super-peers act as 
local servers. Forming clusters that host geographically 
close data is the foundation of our system. 

 
Without loss of generality, for any multi-dimensional 

data, we can assume that there is a universe range in each 
dimension (e.g., [0, 10k]). We can always properly scale it 
if there are data out of range in any dimension. By 
considering the centroid of its data, we can position each 
peer uniquely in the universe. In this sequel, the position of 

a peer means the centroid of its shared data, and we use the 
centroid to stand for the peer in the universe. 

As the system starts up, there is only one cluster. When 
the total number of peers exceeds the capacity of a cluster, 
the universe is split to two equal zones and each contains a 
new cluster. This split process is same as that of a CAN. In 
each zone new super-peers are elected according to their 
computational power. To illustrate, consider the example in 
figure 4.1, where we assume that cluster capacity is four 
and it is in 2D. Initially there are only four peers and P1 is a 
super-peer (part a; for simplicity, we only show one super-
peer in each cluster). When P5 joins, the space is divided 
into two zones, and in the right zone P4 becomes a super-
peer (part b). When new peers join, they are assigned to the 
zone in which their centroid of data falls. A zone may be 
further split when more peers join (part c).  
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Figure 4.1: Space division 

The cluster formation mechanism forces peers close in 
data universe to fall in the same or close clusters, and it 
significantly improves the locality of data in the same 
cluster. With the same routing mechanism as CAN, for a d-
dimensional space partitioned into n equal zones (clusters), 
the average routing path is of length (d/4)(n1/d) and 
individual cluster maintains 2d inter-cluster neighbors [13]. 
 

5. Index construction and maintenance 
 

Inside each cluster, super-peers organize the indexing 
and query processing with cooperation of passive-peers. In 
order not to overload super-peers and balance the 
workload, part of the indexing and query processing task is 
pushed to passive-peers. In this section, we will discuss 
building an NR-tree index inside a cluster (section 5.1) and 
maintenance of index structure when peers join/depart 
(section 5.2).  

5.1 Building NR-tree 
 

In addition to an R*-tree precisely indexing its own data, 
each super-peer maintains an NR-tree, coarsely indexing 
peer data as well as its own data. The R*-tree of a super-
peer plays the same role as those in passive-peers. NR-tree, 
however, takes a different role by indexing special MBRs 
summarizing data in each passive peer and super-peers. 
These special MBRs are formed by further grouping 



existing MBRs in R*-trees of individual peers. We will 
illustrate the process of tree construction using a running 
example. Consider the example in Figure 5.1 (for 
comparison purpose, we still use the same data points as in 
Figure 2.1). Assume three peers (S1, P2, and P3) in the 
cluster, and S1 is a super-peer. We assume one super-peer 
for convenience, but the example can easily extend to the 
case of two super-peers. S1 contains points {a, …, g} and 
P2 has points {h, i, j, k}. They both index their data using 
an R*-tree (Figure 5.2). Assume that originally only S1 is in 
the network, and P2 contacts S1 to join. S1 should inform P2 
the number of MBRs that can be accommodated (denoted 
as m). A large m, for example, 2 in this case, allows 
passive-peers to send more MBRs to the super-peer but 
introduces more space overhead. Assume m to be 1, and P2 
should regroup current MBRs in its R*-tree to form a larger 
MBR. As there is only one entry in the root level (E2), it is 
sent to S1. In the mean time, S1 also needs to perform the 
same task with its own R*-tree. S1 selects MBR of entry E1. 
Similarly, assume there is anther MBR from peer P3. With 
three MBRs, S1 can start building its NR-tree as shown on 
the right of Figure 5.1 (only the shaded region). The shaded 
root level is the NR-tree stored at S1, and actually data 
reside in all peers. Each entry in the NR-tree has an 
additional bit marking whether the data is locally stored or 
at other peers. If there are multiple super-peers in the 
cluster, same operations as in S1 are carried out for all 
super-peers in order to achieve replication of the NR-tree. 
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Figure 5.1: NR-tree example 
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Figure 5.2: R*-tree in S1 and P2 

 

In practical scenarios, the number of MBRs from each 
peer (m) is negotiated among super-peers inside a cluster. 
For general values of m, in order to form m MBRs from its 
data, a peer can perform a k-means clustering in all objects. 

We can also leverage existing R*-trees at peers to perform 
clustering more efficiently. 

When MBRs are inserted to an NR-tree, if there is an 
overflow during the insertion process, the overflow 
handling mechanism of the R*-tree is automatically carried 
out. Thus we can maintain a NR-tree at the super-peer 
easily with minor modification of existing R*-tree 
algorithms. The total cost incurred when a peer joins is the 
same as insertion of m rectangular objects, which is very 
cheap for small values of m.  

 

5.2 Maintenance of NR-tree 
 

The maintenance of NR-tree is triggered by departure of 
peers. When a passive-peer leaves, we just need to mark 
this fact in the NR-trees of super-peers. When a super-peer 
departs, a new super-peer needs to be elected to take its 
place. 

When a passive-peer departs, the NR-tree should be 
updated to reflect the fact that its shared data are no longer 
available. All MBRs from the disconnected peer should be 
deleted from the NR-tree. When a super-peer departs, a 
new peer is elected from passive-peers by existing peers 
based on the computational capabilities and bandwidth. The 
new super-peer fetches a copy of NR-tree from any existing 
super-peer, turn all existing local bits to false, delete entries 
from the disconnected super-peer, and mark the entries 
corresponding to its own data as local. If there is only one 
super-peer at the moment and it fails, the cluster is 
destroyed and peers rejoin the network. We expect this case 
to be very rare since we enforce redundancy in super-peers. 
Change of super-peers may also happen when a peer with 
superior computational power joins the cluster, which will 
replace the weakest present super-peer. 
 

6. Query processing algorithms 
 

Query processing is coordinated by super-peers, and part 
of the processing is pushed to passive-peers as well. When 
a passive-peer intends to issue a query, it sends the query to 
its super-peer. For example, in the case of a range query, 
the passive-peer sends the query rectangle to its super-peer. 
In the case of a kNN query, query point and the desired 
number of nearest neighbors (k) are sent. A super-peer, 
upon receiving a query from its passive-peer, forwards the 
query to the corresponding cluster. In particular, the query 
is forwarded to the cluster responsible for the zone where 
the centroid of query range (for range query) or query point 
(for kNN query) lies. We denote the super-peer in this 
cluster that receives the query as the primary super-peer for 
this query. The primary super-peer starts processing the 
query on behalf of the issuing peer. It first checks it own 
NR-tree for results, and it also forwards the query to its 



neighbors in the zone with a time-to-live (TTL) denoting 
the length of search path. Other clusters process the query 
in a similar fashion, and they decrease TTL by one before 
they forward the query further. If TTL is zero, the query is 
not forwarded any more. 

As peer failures are common to P2P systems, super-
peers may fail during processing of queries. In order to 
make our system more robust, we set up a mechanism in 
super-peers such that if one fails, others can continue to 
process queries it was responsible for. In particular, when a 
super-peer receives a query, it randomly selects another 
super-peer in the same cluster (if any) as a backup and 
forwards the query together with the address of query-
issuer. After a preset period, if the backup super-peer does 
not receive an acknowledgement from the initial one, it can 
process the query. Only if both peers fail simultaneously 
the query fails to be processed. This mechanism can be 
adjusted for networks of different dynamics by tuning the 
number of backup super-peers. 

The distributed index structures proposed in this paper 
can efficiently support various types of multi-dimensional 
queries (e.g., range queries and k-nearest neighbor queries). 
The query processing power roots from (i) the NR-tree 
which indexes local data inside a cluster and (ii) the cluster 
formation mechanism. With NR-tree actually being an R*-
tree (except that data are not locally stored), it can process 
any query that R*-trees are capable of processing. In this 
section, we will discuss two types of queries of 
fundamental interest, namely, range queries and kNN 
queries.  

6.1 Range query processing 
 

Range queries are collaboratively answered by super-
peers and passive-peers. When a super-peer receives a 
range query from its passive-peer, it routes the query to the 
cluster responsible for the zone where the centroid of query 
range falls in. In this way, the query is routed to its primary 
super-peer, which checks its NR-tree and finds passive-
peers with data intersecting the query region. These peers 
are then passed with the query and address of the peer that 
initialized the query, and they process the query with their 
own R*-trees and return results individually. In the mean 
time, the super-peer also forwards the query to its 
neighboring clusters since they might contain possible 
results. The query is forwarded together with a TTL, 
denoting how long it can be further forwarded. The query is 
processed in the same fashion in other clusters.  

To illustrate the process of range query processing, 
consider the example in Figure 6.1 and Figure 6.2 (we 
mainly focus on the algorithm in the primary super-peer as 
others are similar). Figure 6.1 shows peers in the cluster S1 
(we use the name of the super-peer to denote a cluster), and 
Figure 6.2 shows the clusters around S1. Assume that a 
passive-peer Pi in some cluster submits a range query q 

(shown as a shaded rectangle) and it is initially routed to 
super-peer S1. Thus S1 is the primary super-peer for this 
query. On the super-peer side, S1 checks its NR-tree and it 
indicates that q intersects with MBR E2 from passive-peer 
P2, as well as a local MBR E1. S1 immediately forwards the 
query q as well as the address of Pi to P2, which will 
continue to process the query. Note that this forwarding is 
done after traversal of NR-tree is finished. In this manner, a 
passive peer is not passed with the same query multiple 
times. S1 also forwards the same information to its 
neighboring clusters (S2, .., S5), together with a TTL 
counter. S2 is a subsequent super-peer for this query (same 
for other super-peers contacted). On the passive-peer side, 
P2 processes q using a standard range query processing 
algorithm [7], retrieves qualified result (point h), and pass it 
to query issuing peer Pi. Another super-peer, S2, processes 
q in a similar fashion as S1, while the only difference is that 
S2 will decrease TTL by 1 if it forwards q to some other 
clusters. 
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Figure 6.1: Example of a range query 
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The procedure of range query processing at the primary 
super-peer is shown in Figure 6.3, and it can be readily 
modified for subsequent super-peers by adding lines for 
checking TTL expiration and decrement. Large values of 
TTL will increase the number of results, but increase 
system workload as well. According to the rule of thumbs 
in [26], TTL should be minimized, and we will 
experimentally determine the best values for TLL. 

Algorithm range_query 
Input q: range query rectangle, addr: address of the peer 
that issues q 
1. check NR-tree with q and retrive all MBRs in leaf level 
intersecting q 
2. for each MBR mbr retreived in step 1 
3.   if mbr is local 
4. check local R*-tree and return results to addr 



5. else  //mbr is non-local 
6.  forward q and addr to the peer containing mbr 
7. forward q and addr to neighboring clusters  
End range_query 

Figure 6.3: Range query processing at primary 
super-peer 

6.2 k-nearest neighbor query processing 
 

Processing of k-nearest neighbor is also finished by 
super-peers and passive-peers together. When a super-peer 
receives a kNN query from its passive-peer, it forwards the 
query to the cluster responsible for the zone where the 
query point falls in (thus reaching the primary super-peer). 
At the primary super-peer, we take depth-first traversal 
algorithm over its best-first counterpart since it requires 
less space. Note that leaf level of the NR-tree contains no 
real data, as data reside either in passive-peers or indexed 
by another R*-tree in the super-peer. Our algorithm starts 
from the root level of NR-tree, sorting entries by their 
mindist to query point, and recursively traverses sub-tree of 
entries with smallest mindist. When a leaf entry in NR-tree 
(which not really contains any data) is visited, the 
corresponding peer that contains the data is passed with the 
query and the current k-th smallest mindist. This enables 
the peer to continue processing the query itself. When a 
passive-peer receives a kNN query, it traverses its own R*-
tree with the mindist it received as the pruning metric. 
Nodes/entries with larger mindist are not examined. The 
passive-peer returns at most k objects to the super-peer 
together with their distance to the query point. Results from 
passive-peers are then combined by the initial super-peer to 
produce the top-k nearest neighbor candidates. Denote the 
largest mindist value as mindist_k. In the mean time, the 
primary super-peer forwards the query to neighboring 
clusters with the current mindist_k. Subsequent super-peers 
can use mindist_k for pruning. Similar as range queries, a 
TTL is set for each kNN query, and final results are 
combined at the initial super-peer before sending to the 
query-issuing peer. The TTL timer ensures that the query 
will not excessively span in the network and results can be 
timely returned.  

To illustrate the query processing procedures, consider 
an exemplary kNN query in Figure 6.4, which uses the 
same setting as Figure 6.1 and Figure 6.2. Suppose passive-
peer Pi in some cluster issues a 2-NN query and it is routed 
to super-peer S1, and the query point is q. S1 is the primary 
super-peer for this query. S1 checks its NR-tree and decides 
to visit E2 first since it has the smallest mindist. However, 
E2 corresponds to data residing in peer P2. So the query and 
the current mindist_k (infinity, since there is no candidate 
found) are passed to P2. P2 processes the kNN query using 
the algorithm we described in section 2.2, and reports to S1 
point h and i together with their mindist to q. S1 adjusts 
mindist_k to be the 2nd smallest distance from current 

candidates before deciding whether to visit E2. Since 
mindist of E2 is smaller than that of point i, sub-tree of E2 
has to be visited. The query is passed to the R*-tree at S1, 
and point g is found to replace i as a candidate. Now S1 can 
safely prune entry E3 with the mindist metric. In the same 
time, S1 forwards the query and the current mindist_k to S2, 
which then performs the exact algorithm except: (i) the 
initial mindist is set to mindist_k for pruning and (ii) TTL 
will be further decreased before the query is forwarded. S2 
will return results to S1 afterwards. Algorithm procedures 
are shown in Figure 6.5 (for the primary super-peer), and 
they can be modified for subsequent super-peers by 
initializing mindist_k to the value passed with the query.  
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Figure 6.4: Example of a kNN query 

 

Algorithm kNN_query 
Input q: query point, k: number of nearest neighbors, addr: 
address of the query-issuing peer 
Variables: mindist_k, the largest mindist among nearest 
neighbor candidates, initially set to infinity, DISTN, mindist 
of node N to q 
1. for each node N in the NR-tree 
2. if the current node N is the leaf level of NR-tree 
3.  if DISTN < mindist_k 

4.       pass q, mindist_k, and addr to the peer hosting  
data in N 
5. else 
6.   Sort entries in N and recursively ascending their 
sub-tree 
7.  forward q, mindist_k, and addr to neighboring clusters 
End kNN_query 

Figure 6.5: kNN query processing at primary 
super-peer 

 

7. Experimental evaluation 
 

In this section, we demonstrate the effectiveness of the 
proposed techniques with extensive experiments.  
 

7.1 Simulation setup 
 



Initially there is only one peer in the network, and new 
peers keep joining until the network reaches a certain size 
(N). Each peer hosts data randomly drawn from real data, 
and the centroid of data in each peer follows uniform or 
Zipf distribution. In particular, we use a real data set, CA 
[20], containing 1314k geographical locations (X, Y 
coordinates) in California, Los Angeles. The values are all 
normalized to range [0, 10k]. To collect statistics, we 
randomly (based on certain ratios) inject a mixture of 
operations (peer join, departure, and search) into the 
network. The proportion of peer join and departure is kept 
roughly the same to maintain a stable size of the network. 
On average, each peer issues 100 queries during the time it 
is online. Initially we separately experiment range queries 
and kNN queries, and then we test a mixture of queries 
where each type of queries takes half. For range queries, we 
generate square regions with side length qL uniformly 
distributed in space. For kNN queries, query points are 
uniformly distributed in space and k varies from 1 to 5. 
Additional parameters are in Table 1, and their default 
values are underlined.  

Table 1 
 Descriptions Values 
N Number of peers in the network 256, 1024, 4096, 16k 
P Number of passive-peers in a cluster 1, 3, 9, 27, 81 
S Number of super-peers in a cluster 1, 2, 3, 4, 5 
M Number of MBRs from a peer 1, 5, 10, 15, 20 
C NR-tree and R*-tree node capacity 5, 10, 15, 20 
n Number of data objects per peer 500, 7000, 1000, 

1300, 1600 
γ Join/departure percentage 0%~50%, 20% 
qL Side length of range query 200~1000, 600 

 

7.2 Scalability and stability 
 

In this section, we evaluate proposed system with 
various numbers of peers and peer data distributions. The 
size of network decides the total number of clusters and 
inter-cluster routing cost, and peer data distribution 
determines distribution of centroid of peer data. As clusters 
are formed primarily based on the centroid of peer data, it 
is expected that the distribution of centroids will affect 
cluster formation and thus search and maintenance cost. 
Search cost is measured as the average number of peers 
(passive peer or super-peer) visited over a mixture of range 
and kNN queries. Maintenance cost is measured by two 
parts: (i) the average number of inter-cluster links a super-
peer has to maintain, and (ii) the average number of NR-
tree node accesses incurred by peer join/departure in each 
super-peer. The first part is taken into account because a 
peer needs to be routed to the right cluster before it can join 
the network, and the second part is from the maintenance 
cost of the NR-tree. In order to take statistics, 10N node 
joins/departures are injected into the network for each value 

of N (256, 1024, 4096, and 16k), which means that on 
average every peer joins and departs five times. The results 
are shown in Figure 7.1. Part (a) shows the trend of number 
of visited peers per query, part (b) shows the average 
number of inter-cluster links, and part (c) shows the 
average node accesses. Two conclusions can be made from 
the results: (i) Search and maintenance cost grows 
gracefully with total number of peers, and (ii) the system 
performs slightly worse under Zipf distribution but the 
difference is insignificant. Search cost increases due to 
elongated path between clusters (average routing path in 
CAN is proportional to G1/2, where G is the total number of 
clusters). The average number of inter-cluster links is 
relatively stable (approximately 2*d, where d is 
dimensionality) since each super-peer only has to maintain 
links to its four neighboring clusters. The average number 
of node access is also quite stable, since the workload is 
actually directly linked to the total number peers in a 
cluster, which is stable during experiments. The slight 
increase in node accesses is due to irregularity of cluster 
sizes. In sum, skewed distribution of centroids leads to 
uneven zones in clusters and elongates routing paths. 
However, the difference is insignificant due to the stability 
of CAN. For simplicity, in the following experiments we 
only use Zipf distribution. 
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Figure 7.1: Cost vs. data distribution 

 

7.3 Query processing cost and query size 
 

Queries affect processing cost and time. In particular, a 
larger side length of range query (qL) implies more results 
to retrieve and hence more nodes to visit. Similar 
implication applies to value of k of kNN queries. Figure 
7.2a shows that the number of visited peers grows as the 



size of range query increases, similar trend exhibits in 
figure 7.2b for kNN query.  
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Figure 7.2: Cost vs. query size 
 

7.4 Cluster size and super-peer redundancy 
 

Cluster size is important since it is related to number of 
clusters and workload of super-peers. A larger number of 
peers in a cluster mean smaller number of clusters, and thus 
cheaper inter-cluster routing cost. However, this also 
implies that super-peers have to handle more operations 
(peer join/departure, query, and routing). These operations, 
if shared by more super-peers in a cluster, will be less a 
burden to individuals. In this section, we measure the 
maintenance cost by two parts, node access incurred by 
peer joins/departures and the total number of links 
maintained by a super-peer. We fix the network size to be 
1024, and injected 100k node joins/departures interleaved 
with queries into the network as we take statistics.  
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Figure 7.3: Cost vs. cluster size 
 

Results are shown in Figure 7.3, where in each cluster 
there are three super-peers. Part (a) shows that search 
becomes more efficient as clusters grow larger, which is 
because of shortened inter-cluster routing path and larger 
NR-trees indexing more data. The negative side of large 
cluster is reflected in part (b) and (c), where each super-

peer has to maintain more links and perform more 
maintenance operations. As for multiple super-peers, they 
can share the work load of query processing evenly, but 
they will slightly increase the amount of maintenance work 
(as this is quite easy to conceive, the results are not 
presented). As a conclusion, as long as super-peers are not 
overloaded, it is desirable to have more peers in a cluster; if 
they are overloaded, it is good to have more super-peers to 
share the load. 

7.5 Result quality and cost 
 

Our system is capable of providing complete answers as 
well as approximate answers to a query with reduced cost. 
This is achieved by adjusting the value of TTL for a query, 
since TTL controls the length of search path in terms of 
clusters. This section demonstrates the relationship between 
the quality of results and search costs, where quality of a 
query is defined as: Q = |Sreal∩Sapprox.|/| Sreal | (percentage of 
correctly retrieved results). Note that in this set of 
experiments, we use 10 for k in order to measure the quality 
of kNN results. Figure 7.4a shows that the number of 
visited nodes increases with the value of TTL. This is 
reasonable since the more cluster to visit, the more likely to 
find peers containing related data. Figure 7.4b shows the 
result quality increases with TTL, and both range queries 
can kNN queries can be answered with high quality 
answers with rather small values of TTL.  
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Figure 7.4: Cost vs. cluster size 

 

7.6 Tolerance of node failures 
 

Peer failures in P2P networks happen frequently. Our 
system has a backup mechanism for queries (section 6) and 
thus it is very robust under super-peer failures. If passive-
peer fails and it contains the only copy of data required by a 
query, results of the query will be affected. In this set of 
experiments, we vary the number of backup super-peers for 
each query, and observe the percentage of queries that fail 
(assuming 5 super-peers in each cluster). With different 
peer failure rates (20% and 40%), we measure the 
probability that a query fails (dropped due to failed super-
peers). As we can observe from Figure 7.5, the percentage 
of query failure is extremely low with 2 backup peers even 



under 40% of super-peer failure rate. This verifies the 
effectiveness of proposed backup mechanism in case of 
peer failures. 
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Figure 7.5: Cost vs. cluster size 

 

8. Conclusion and future work 
 

Current P2P systems can not efficiently support complex 
queries over multi-dimensional data, which seriously limits 
their practical value. In this paper, we solve this problem in 
the framework of super-peer networks. We first propose a 
framework for sharing, indexing, and query processing 
multi-dimensional data where peers with stronger 
computational power serve as local servers. We then 
propose the NR-tree, a P2P adaptation of R*-tree, for 
indexing and querying multi-dimensional data in a P2P 
framework. Our system is capable of answering various 
types of queries with complete or approximate answers, 
and its efficiency, stability, versatility, and scalability are 
demonstrated with rigorous experiments. For future work, 
we plan to devise cost models in order to facilitate 
optimization in the system. 
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