
Supporting Complex Multi-dimensional Queries in P2P Systems

Bin Liu† Wang-Chien Lee§ Dik Lun Lee†
†Department of Computer Science

Hong Kong University of Science and Technology
Clearwater Bay, Hong Kong

{liubin, dlee}@cs.ust.hk

§Department of Computer Science and Engineering
Pennsylvania State University

University Park, PA 16802
wlee@cse.psu.edu

Abstract

More and more applications require peer-to-peer (P2P)
systems to support complex queries over multi-dimensional
data. For example, a P2P auction network for real estate
frequently needs to answer queries such as “select five
available buildings closest to the airport”. Such queries
are not efficiently supported in current P2P systems.
Towards an efficient and scalable P2P system capable of
processing complex multi-dimensional queries, we first
propose a comprehensive framework for sharing, indexing,
and querying multi-dimensional data, where (i) peers with
more computational power coordinate indexing and query
processing, and (ii) other peers participate in part of the
computation in order to achieve scalability and load-
balance. Based on this framework, we propose Network-R-
tree (NR-tree), a P2P adaptation of the dominant spatial
index - R*-tree. NR-tree, indexing spatial data at clustered
peers, is capable of processing complex queries such as
range queries and k-nearest neighbor queries. We propose
query processing algorithms for range and k-nearest
neighbor queries and experimentally prove the
effectiveness of proposed techniques with real data.

1. Introduction

Peer-to-peer (P2P) has become a pervasive paradigm of
data exchange. As more applications and users share or
access data through P2P networks, many current systems
seem inadequate due to the inability to support multi-
attribute or multi-dimensional queries efficiently. The first
generation of P2P systems, namely file sharing applications
such as Gnutella [23] or most recent BitTorrent [22],
support only keyword lookups and mostly provide no load-
balancing. The second generation, including Chord [17],
CAN [13], Pastry [14], and Tapestry [27], are mainly
structured P2P systems supporting basic key-based routing
while providing load-balancing and logarithmic hop
routing. They are not yet designed for complex queries
(e.g., range query, k-nearest neighbor query) in multi-
dimensional data, but their desirable features make them
fruitfully used by many third generation systems, such as
CAN-MC [15] (CAN) and pSearch [21] (CAN). Some
recent systems support only range queries (e.g., SkipNet [8]

and Mercury [2]) or similarity queries (e.g., SSW [11]) and
not requiring a structured overlay, but they cannot support
other complex query types.

1.1 Motivation

Complex queries, such as range queries and k-nearest
neighbor queries, are becoming more important as
voluminous data are shared and more applications use the
P2P paradigm. For example, a P2P auction network [19]
where peers store information on local real estate
(geographical location, price, etc) needs to frequently deal
with queries such as “find available buildings at most 10
km from the city center” or “select five available buildings
closest to the airport”. In order to answer such queries
efficiently in P2P networks, we need to take into account
their characteristics. Studies such as [18] have shown that
peer exhibits strong heterogeneity in computational power,
storage, and bandwidth (e.g., up to 3 orders of magnitude
difference in bandwidth). This phenomenon implies that an
efficient and realistic P2P system should take into account
the non-uniformity in computational resources among
peers. Towards this, super-peer networks [26] have
emerged as a powerful balance where peers with more
resources take an active role as local servers while
resource-scarce peers can be passively served. Such
systems have already shown their flexibility and
adaptability with applications such as KaZaa [24] and
continue to grow with great potential. Therefore, enabling
super-peer systems for complex multi-dimensional queries
is the focus of this paper.

1.2 Contributions

This paper contains three important contributions that
efficiently support complex multi-dimensional queries in
super-peer systems. First, we propose a comprehensive
framework for sharing, indexing, and querying multi-
dimensional data in super-peer networks. In particular,
peers with more computational power (super-peers) act as
local servers to which peers with relatively weaker
capability (passive-peers) connect and thus forming a
cluster. In order not to overload super-peers and balance the
workload, part of the indexing and query processing task is

pushed to passive-peers, which makes our systems scalable
and stable.

Second, we propose the Network-R-tree (abbreviated as
NR-tree), a P2P adaptation of the most popular multi-
dimensional index, R*-tree. The NR-tree is build in the
same spirit as R*-tree and therefore it can easily
accommodate existing R*-tree based algorithms with minor
modification. The NR-tree is built in super-peers by
indexing minimum bounding rectangles (MBRs)
summarizing peer data in the same cluster at a coarse level.
It is thus light-weight and easy to build and maintain, with
full capability of an R*-tree. NR-trees facilitate the
processing of complex multi-dimensional queries in P2P
networks. We also devise techniques for maintaining NR-
trees under frequent node departures in order to adapt to the
dynamic nature of P2P networks.

The last contribution is a thorough evaluation of
proposed system under various settings. We perform
experiments with different network sizes, data distribution,
node failures, etc. By testing various factors, we
experimentally prove the effectiveness of the proposed
system.

The rest of the paper is organized as follows. Section 2
surveys previous work, focusing on complex queries in P2P
systems and the R*-tree with its related algorithms, due to
their immediate relevance with the NR-tree. Section 3
overviews the system and section 4 discusses cluster
formation mechanism. Section 5 introduces the NR-tree
construction and maintenance, before we discuss
algorithms for range query and k-nearest neighbor query in
section 6. Section 7 verifies the effectiveness of proposed
techniques with rigorous experiments and section 8
concludes the paper with future work.

2. Related work

In this section, we will introduce the most related
research results in peer-to-peer networks, with the focus on
processing multi-dimensional queries. Another topic, R*-
tree and its query processing algorithms, is also pertinent
and will be introduces in section 2.2.

2.1 Query processing in P2P systems

Ever since the popularity of peer-to-peer file sharing
applications (e.g., Gnutella), research community has put
significant amount of effort on extending P2P networks or
building new P2P systems to support more than just
keyword search. The first significant step towards this goal
is structured P2P networks, such as Chord [17], CAN [13],
Pastry [14], and Tapestry [27]. They offer efficient lookup
routing, load-balancing, resilience, and scalability by
building self-organizing overlays to store and locate
resources in P2P systems. These systems are not directly

suitable for complex multidimensional queries (e.g., range
query, nearest neighbor query) since they often use hashing
for locating resources. Nevertheless, their desirable features
make them often foundations of successive P2P systems.
Among those, notably pSearch [[21], employs CAN for
organizing the overlay network. It uses Vector Space
Model (VSM) and Latent Semantic Indexing (LSI) to
generate a semantic space and organize contents around
their semantics. pSearch is still designed for structured
networks due to the underlying CAN, which makes it not
suitable for the P2P system we focus on.

Significant amount of work has been put on range
queries in P2P systems. With techniques such as replicated
B-trees [10], space filling curves [25] and skip lists
(SkipNet [8]), range queries can be efficiently processed.
By leveraging the properties of small-world networks,
Mercury [2] can route range queries efficiently and
Semantic Small World (SSW) [11] can process similarity
queries. However, these systems have not yet considered
other types of multi-dimensional queries such as k-nearest
neighbor queries.

Very recently, more progress has been made towards
supporting complex multi-dimensional queries. Demirbas
and Ferhatosmanoglu propose a tree-based index for sensor
networks [5], where sensors collectively build an index tree
and process various types of spatial queries. However, their
solution is specific to sensor-networks, and the
performance is not clear since no experiments are
presented. A P2PR-tree is proposed in [12], which is an
extension of the R*-tree in P2P settings. However, the most
important issue, maintenance of a dynamic R-tree in
unstructured P2P networks is left unaddressed. The
maintenance cost is expected to be considerably high, since
every maintenance operation has to be communicated
among peers with messages in order to finish. Zhang et al.
propose a skip graph [1] based structure in [28], which is a
multi-dimensional extension of SkipNet [8]. Most recently,
a quad-tree-based technique is proposed by Tanin and
Harwood [19] capable of supporting range queries, which,
however, builds on Chord and makes it only suitable for
structured P2P networks.

2.2 The R*-tree based query processing

Among various multi-dimensional access methods [6],

the R*-tree [3], a variation of the original R-tree [7], has
been widely accepted by industry and research community.
The R*-tree is a multi-dimensional extension of a B+-tree.
Figure 2.1 illustrates an R*-tree indexing a set of points {a,
b, c,…} assuming a capacity of three entries per node.
Points close in space (e.g., e, f, g) are clustered in the same
leaf node (E6) represented as a minimum bounding
rectangle (MBR). Nodes are then recursively grouped
together following the same principle until the top level,
which consists of a single root.

R*-trees can efficiently answer various types of multi-
dimensional queries, especially range query. Given a query
window q (shaded region in Figure 2.1), a range query
retrieves all objects inside or intersecting q. Range queries
can be processed using the original algorithm from [7].
Processing starts from the root level of the R*-tree. For any
entry whose MBR intersects the query window, its sub-tree
is recursively explored. If a leaf entry is encountered, all
objects whose bounding rectangle intersects the query
window are examined. Entries not intersecting the query
window (e.g., E3) are not examined.

E1

E2

E3

E6
E5

E4

E7

E8

 query q

d
e

f
g

a
b

h

i
j

k

E1 E2 E3

E4 E5 E6 E7 E8

b c d e f g h i ja k

 x-axis

 y-axis

c

 content
omitted

Root

Figure 2.1: R-tree example

(

E1

E2

E3

E6
E5

E4

E7

E8

 query q

d
e

f
g

a
b

h

i
j

k
 x-axis

 y-axis

c

 content
omitted

 mindist E6()

 mindist E2)
 =mindist E7()

Figure 2.2: kNN example

Another important type of queries that R*-trees
efficiently support is k-nearest neighbor (kNN) query.
Given a query point q and parameter k(≥1), a kNN query
retrieves the top k objects (if possible) with the shortest
distance to q. Roussopoulos et al. [16] propose a branch-
and-bound algorithm (enhanced by Cheung and Fu [4]) that
traverses the R*-tree in a depth-first manner. Specifically,
starting from the root, entries are sorted according to their
minimal distance (mindist) to query point q, and sub-tree of
entries with smaller mindist are explored first. This process
repeats recursively until the leaf level is reached and the
first k candidates are discovered. Assume that mindist from
farthest candidate is nn_mindist. During backtracking to
upper levels, only entries with mindist smaller than
nn_mindist are visited. We will illustrate this algorithm
with an example in Figure 2.2. Assume we intend to find
the 2-nearest neighbor of point q. Starting form the root
level of the R*-tree (same tree as in Figure 2.1), the mindist
from q to all entries in the same level are computed. Entry
E2 is visited first since it has the smallest mindist, and it is
recursively traversed. Leaf entry E7 is visited next and point
h and i are candidates of nearest neighbors. The current

nn_mindist is the distance from i to q. The process now
backtracks the R*-tree, and E8 is not visited since it has a
larger mindist than nn_mindist. The next node to be visited
is E1, and in a similar fashion object g is found and g
replaces i since it is closer to q. The current nn_mindist is
adjusted to be the distance from g to q. Other nodes/entries
are not visited according to mindist metric, and the results
are point g and h. Hjaltason and Samet [9] propose an
improved algorithm which traverses the R*-tree in a best-
first manner using a heap.

3. System overview

This section provides an overview of the proposed

network index structure, before we proceed with details in
subsequent sections. We use a super-peer network model
[26] as shown in Figure 3.1. In this model, among a cluster
of nearby clients, some super-peers (e.g., S1 and S2) act as
local servers, to which other passive-peers (e.g., C1 and C2)
are connected. A super-peer is computationally more
powerful and has more network bandwidth, comparing with
passive-peers. Thus super-peers can play the more
important role of local servers of passive-peers, which
submit queries to their connected super-peer and receive
results. This model is realistic and versatile, since it takes
into account the heterogeneity of computational capabilities
and network bandwidth among peers. Yang and Garcia-
Molina thoroughly studied the pros and cons of super-peer
networks and devised several rules of thumbs for their
design [26].

Figure 3.1: A super-peer network

We also assume that peers have reasonable
computational capabilities. In particular, peers should be
capable of communicating with each other, building
multidimensional indexes, and processing queries on their
own data. As the R*-tree is the dominant index for multi-
dimensional data (implemented in Oracle, IBM Informix
and DB2, etc), we assume that each peer indexes its own
data using an R*-tree, which is built before it joins the P2P
network.

According to analysis of [26], redundancy in super-peers
is necessary for two reasons: (i) in case one super-peer fails

others can still serve the cluster, and (ii) super-peers share
the load with each other. Therefore we have more than one
super-peer in a cluster, though a passive-peer connects to
only one super-peer at the same time. Clusters are formed
by grouping peers holding semantically close data, where
the closeness is measured by the centroid of data. By
recursively dividing the data space, each cluster takes one
zone in the semantic space. When a new peer contacts any
super-peer for joining the network, it can be routed to the
cluster responsible for the zone where the data centroid of
the peer falls into. Inter-cluster routing mechanism is
similar to that of CAN (details omitted to save space; note
that we do no use any hashing). Inside each cluster, super-
peers index data shared by all peers using a special R*-tree,
Network-R-tree (abbreviated as NR-tree). The NR-tree is
an R*-tree structure, but the actual data indexed still reside
in all peers in a cluster (except data shared by the super-
peer). As such, the NR-tree possesses the query processing
power of an R*-tree but is much more space-efficient.
When building this index, in order to save space and
processing power for super-peers, not all data in peers are
inserted into NR-trees and migrated to super-peers. Instead,
only a small number of MBRs summarizing peer data are
inserted (illustrated in section 4). The NR-tree provides
some knowledge of data in the cluster to a super-peer.
Upon receiving a query (range query or k-nearest neighbor
query), a super-peer forwards the query to the
corresponding cluster. For example, a range query is
forwarded to the cluster responsible for the zone that the
centroid of query range falls into. The corresponding
cluster processes the query by checking local data and
expanding to neighboring clusters. Those clusters will
process the query and return results to the original peer.

The above discussion serves as a high-level description,
omitting, however, several key issues: (1) cluster formation
and maintenance, (2) exact index structure within each
cluster, and (3) query processing techniques. In subsequent
sections, we will give detailed treatment for these issues.

4. Cluster formation and maintenance

A cluster is a group of peers formed by super-peers and
their respective passive-peers, where super-peers act as
local servers. Forming clusters that host geographically
close data is the foundation of our system.

Without loss of generality, for any multi-dimensional

data, we can assume that there is a universe range in each
dimension (e.g., [0, 10k]). We can always properly scale it
if there are data out of range in any dimension. By
considering the centroid of its data, we can position each
peer uniquely in the universe. In this sequel, the position of

a peer means the centroid of its shared data, and we use the
centroid to stand for the peer in the universe.

As the system starts up, there is only one cluster. When
the total number of peers exceeds the capacity of a cluster,
the universe is split to two equal zones and each contains a
new cluster. This split process is same as that of a CAN. In
each zone new super-peers are elected according to their
computational power. To illustrate, consider the example in
figure 4.1, where we assume that cluster capacity is four
and it is in 2D. Initially there are only four peers and P1 is a
super-peer (part a; for simplicity, we only show one super-
peer in each cluster). When P5 joins, the space is divided
into two zones, and in the right zone P4 becomes a super-
peer (part b). When new peers join, they are assigned to the
zone in which their centroid of data falls. A zone may be
further split when more peers join (part c).

a b c

P1 P3

P2

P4 P1

P3

P2

P4

P5

P1

P3

P2

P4

P5

P6

P8
P7

Figure 4.1: Space division

The cluster formation mechanism forces peers close in
data universe to fall in the same or close clusters, and it
significantly improves the locality of data in the same
cluster. With the same routing mechanism as CAN, for a d-
dimensional space partitioned into n equal zones (clusters),
the average routing path is of length (d/4)(n1/d) and
individual cluster maintains 2d inter-cluster neighbors [13].

5. Index construction and maintenance

Inside each cluster, super-peers organize the indexing
and query processing with cooperation of passive-peers. In
order not to overload super-peers and balance the
workload, part of the indexing and query processing task is
pushed to passive-peers. In this section, we will discuss
building an NR-tree index inside a cluster (section 5.1) and
maintenance of index structure when peers join/depart
(section 5.2).

5.1 Building NR-tree

In addition to an R*-tree precisely indexing its own data,
each super-peer maintains an NR-tree, coarsely indexing
peer data as well as its own data. The R*-tree of a super-
peer plays the same role as those in passive-peers. NR-tree,
however, takes a different role by indexing special MBRs
summarizing data in each passive peer and super-peers.
These special MBRs are formed by further grouping

existing MBRs in R*-trees of individual peers. We will
illustrate the process of tree construction using a running
example. Consider the example in Figure 5.1 (for
comparison purpose, we still use the same data points as in
Figure 2.1). Assume three peers (S1, P2, and P3) in the
cluster, and S1 is a super-peer. We assume one super-peer
for convenience, but the example can easily extend to the
case of two super-peers. S1 contains points {a, …, g} and
P2 has points {h, i, j, k}. They both index their data using
an R*-tree (Figure 5.2). Assume that originally only S1 is in
the network, and P2 contacts S1 to join. S1 should inform P2
the number of MBRs that can be accommodated (denoted
as m). A large m, for example, 2 in this case, allows
passive-peers to send more MBRs to the super-peer but
introduces more space overhead. Assume m to be 1, and P2
should regroup current MBRs in its R*-tree to form a larger
MBR. As there is only one entry in the root level (E2), it is
sent to S1. In the mean time, S1 also needs to perform the
same task with its own R*-tree. S1 selects MBR of entry E1.
Similarly, assume there is anther MBR from peer P3. With
three MBRs, S1 can start building its NR-tree as shown on
the right of Figure 5.1 (only the shaded region). The shaded
root level is the NR-tree stored at S1, and actually data
reside in all peers. Each entry in the NR-tree has an
additional bit marking whether the data is locally stored or
at other peers. If there are multiple super-peers in the
cluster, same operations as in S1 are carried out for all
super-peers in order to achieve replication of the NR-tree.

E1 E2 E3

E4 E5 E6 E7 E8

b c d e f g h i ja k

Root

S1

P2

P3

E6
E5

E4

E7

E8

d
e

f
g

a
b

h

i
j

k
 x-axis

 y-axis

c

 content
omitted

E1

E2

E3

NR-tree (residing in S)1

 residing in S1 residing in P2

Figure 5.1: NR-tree example

E

E1

E4 E5 6

b c d e f ga

Root

E7 E8

h i j k

E2

Root

(a) R*-tree of S1 (b) R*-tree of P2

Figure 5.2: R*-tree in S1 and P2

In practical scenarios, the number of MBRs from each
peer (m) is negotiated among super-peers inside a cluster.
For general values of m, in order to form m MBRs from its
data, a peer can perform a k-means clustering in all objects.

We can also leverage existing R*-trees at peers to perform
clustering more efficiently.

When MBRs are inserted to an NR-tree, if there is an
overflow during the insertion process, the overflow
handling mechanism of the R*-tree is automatically carried
out. Thus we can maintain a NR-tree at the super-peer
easily with minor modification of existing R*-tree
algorithms. The total cost incurred when a peer joins is the
same as insertion of m rectangular objects, which is very
cheap for small values of m.

5.2 Maintenance of NR-tree

The maintenance of NR-tree is triggered by departure of
peers. When a passive-peer leaves, we just need to mark
this fact in the NR-trees of super-peers. When a super-peer
departs, a new super-peer needs to be elected to take its
place.

When a passive-peer departs, the NR-tree should be
updated to reflect the fact that its shared data are no longer
available. All MBRs from the disconnected peer should be
deleted from the NR-tree. When a super-peer departs, a
new peer is elected from passive-peers by existing peers
based on the computational capabilities and bandwidth. The
new super-peer fetches a copy of NR-tree from any existing
super-peer, turn all existing local bits to false, delete entries
from the disconnected super-peer, and mark the entries
corresponding to its own data as local. If there is only one
super-peer at the moment and it fails, the cluster is
destroyed and peers rejoin the network. We expect this case
to be very rare since we enforce redundancy in super-peers.
Change of super-peers may also happen when a peer with
superior computational power joins the cluster, which will
replace the weakest present super-peer.

6. Query processing algorithms

Query processing is coordinated by super-peers, and part
of the processing is pushed to passive-peers as well. When
a passive-peer intends to issue a query, it sends the query to
its super-peer. For example, in the case of a range query,
the passive-peer sends the query rectangle to its super-peer.
In the case of a kNN query, query point and the desired
number of nearest neighbors (k) are sent. A super-peer,
upon receiving a query from its passive-peer, forwards the
query to the corresponding cluster. In particular, the query
is forwarded to the cluster responsible for the zone where
the centroid of query range (for range query) or query point
(for kNN query) lies. We denote the super-peer in this
cluster that receives the query as the primary super-peer for
this query. The primary super-peer starts processing the
query on behalf of the issuing peer. It first checks it own
NR-tree for results, and it also forwards the query to its

neighbors in the zone with a time-to-live (TTL) denoting
the length of search path. Other clusters process the query
in a similar fashion, and they decrease TTL by one before
they forward the query further. If TTL is zero, the query is
not forwarded any more.

As peer failures are common to P2P systems, super-
peers may fail during processing of queries. In order to
make our system more robust, we set up a mechanism in
super-peers such that if one fails, others can continue to
process queries it was responsible for. In particular, when a
super-peer receives a query, it randomly selects another
super-peer in the same cluster (if any) as a backup and
forwards the query together with the address of query-
issuer. After a preset period, if the backup super-peer does
not receive an acknowledgement from the initial one, it can
process the query. Only if both peers fail simultaneously
the query fails to be processed. This mechanism can be
adjusted for networks of different dynamics by tuning the
number of backup super-peers.

The distributed index structures proposed in this paper
can efficiently support various types of multi-dimensional
queries (e.g., range queries and k-nearest neighbor queries).
The query processing power roots from (i) the NR-tree
which indexes local data inside a cluster and (ii) the cluster
formation mechanism. With NR-tree actually being an R*-
tree (except that data are not locally stored), it can process
any query that R*-trees are capable of processing. In this
section, we will discuss two types of queries of
fundamental interest, namely, range queries and kNN
queries.

6.1 Range query processing

Range queries are collaboratively answered by super-
peers and passive-peers. When a super-peer receives a
range query from its passive-peer, it routes the query to the
cluster responsible for the zone where the centroid of query
range falls in. In this way, the query is routed to its primary
super-peer, which checks its NR-tree and finds passive-
peers with data intersecting the query region. These peers
are then passed with the query and address of the peer that
initialized the query, and they process the query with their
own R*-trees and return results individually. In the mean
time, the super-peer also forwards the query to its
neighboring clusters since they might contain possible
results. The query is forwarded together with a TTL,
denoting how long it can be further forwarded. The query is
processed in the same fashion in other clusters.

To illustrate the process of range query processing,
consider the example in Figure 6.1 and Figure 6.2 (we
mainly focus on the algorithm in the primary super-peer as
others are similar). Figure 6.1 shows peers in the cluster S1
(we use the name of the super-peer to denote a cluster), and
Figure 6.2 shows the clusters around S1. Assume that a
passive-peer Pi in some cluster submits a range query q

(shown as a shaded rectangle) and it is initially routed to
super-peer S1. Thus S1 is the primary super-peer for this
query. On the super-peer side, S1 checks its NR-tree and it
indicates that q intersects with MBR E2 from passive-peer
P2, as well as a local MBR E1. S1 immediately forwards the
query q as well as the address of Pi to P2, which will
continue to process the query. Note that this forwarding is
done after traversal of NR-tree is finished. In this manner, a
passive peer is not passed with the same query multiple
times. S1 also forwards the same information to its
neighboring clusters (S2, .., S5), together with a TTL
counter. S2 is a subsequent super-peer for this query (same
for other super-peers contacted). On the passive-peer side,
P2 processes q using a standard range query processing
algorithm [7], retrieves qualified result (point h), and pass it
to query issuing peer Pi. Another super-peer, S2, processes
q in a similar fashion as S1, while the only difference is that
S2 will decrease TTL by 1 if it forwards q to some other
clusters.

 query q

E1 E2 E3

E4 E5 E6 E7 E8

b c d e f g h i ja k

Root

S1

P2

P3

E6
E5

E4

E7

E8

d
e

f
g

a
b

h

i
j

k
 x-axis

 y-axis

c

 content
omitted

E1

E2

E3

 residing in S1

 residing in S1 residing in P2

Figure 6.1: Example of a range query

S

S

S

2

13 S4

S5

Figure 6.2: Clusters around S1

The procedure of range query processing at the primary
super-peer is shown in Figure 6.3, and it can be readily
modified for subsequent super-peers by adding lines for
checking TTL expiration and decrement. Large values of
TTL will increase the number of results, but increase
system workload as well. According to the rule of thumbs
in [26], TTL should be minimized, and we will
experimentally determine the best values for TLL.

Algorithm range_query
Input q: range query rectangle, addr: address of the peer
that issues q
1. check NR-tree with q and retrive all MBRs in leaf level
intersecting q
2. for each MBR mbr retreived in step 1
3. if mbr is local
4. check local R*-tree and return results to addr

5. else //mbr is non-local
6. forward q and addr to the peer containing mbr
7. forward q and addr to neighboring clusters
End range_query

Figure 6.3: Range query processing at primary
super-peer

6.2 k-nearest neighbor query processing

Processing of k-nearest neighbor is also finished by
super-peers and passive-peers together. When a super-peer
receives a kNN query from its passive-peer, it forwards the
query to the cluster responsible for the zone where the
query point falls in (thus reaching the primary super-peer).
At the primary super-peer, we take depth-first traversal
algorithm over its best-first counterpart since it requires
less space. Note that leaf level of the NR-tree contains no
real data, as data reside either in passive-peers or indexed
by another R*-tree in the super-peer. Our algorithm starts
from the root level of NR-tree, sorting entries by their
mindist to query point, and recursively traverses sub-tree of
entries with smallest mindist. When a leaf entry in NR-tree
(which not really contains any data) is visited, the
corresponding peer that contains the data is passed with the
query and the current k-th smallest mindist. This enables
the peer to continue processing the query itself. When a
passive-peer receives a kNN query, it traverses its own R*-
tree with the mindist it received as the pruning metric.
Nodes/entries with larger mindist are not examined. The
passive-peer returns at most k objects to the super-peer
together with their distance to the query point. Results from
passive-peers are then combined by the initial super-peer to
produce the top-k nearest neighbor candidates. Denote the
largest mindist value as mindist_k. In the mean time, the
primary super-peer forwards the query to neighboring
clusters with the current mindist_k. Subsequent super-peers
can use mindist_k for pruning. Similar as range queries, a
TTL is set for each kNN query, and final results are
combined at the initial super-peer before sending to the
query-issuing peer. The TTL timer ensures that the query
will not excessively span in the network and results can be
timely returned.

To illustrate the query processing procedures, consider
an exemplary kNN query in Figure 6.4, which uses the
same setting as Figure 6.1 and Figure 6.2. Suppose passive-
peer Pi in some cluster issues a 2-NN query and it is routed
to super-peer S1, and the query point is q. S1 is the primary
super-peer for this query. S1 checks its NR-tree and decides
to visit E2 first since it has the smallest mindist. However,
E2 corresponds to data residing in peer P2. So the query and
the current mindist_k (infinity, since there is no candidate
found) are passed to P2. P2 processes the kNN query using
the algorithm we described in section 2.2, and reports to S1
point h and i together with their mindist to q. S1 adjusts
mindist_k to be the 2nd smallest distance from current

candidates before deciding whether to visit E2. Since
mindist of E2 is smaller than that of point i, sub-tree of E2
has to be visited. The query is passed to the R*-tree at S1,
and point g is found to replace i as a candidate. Now S1 can
safely prune entry E3 with the mindist metric. In the same
time, S1 forwards the query and the current mindist_k to S2,
which then performs the exact algorithm except: (i) the
initial mindist is set to mindist_k for pruning and (ii) TTL
will be further decreased before the query is forwarded. S2
will return results to S1 afterwards. Algorithm procedures
are shown in Figure 6.5 (for the primary super-peer), and
they can be modified for subsequent super-peers by
initializing mindist_k to the value passed with the query.

 query q

S1

P2

P3

E6
E5

E4

E7

E8

d
e

f
g

a
b

h

i
j

k
 x-axis

c

 content
omitted

E1

E2

E3

Figure 6.4: Example of a kNN query

Algorithm kNN_query
Input q: query point, k: number of nearest neighbors, addr:
address of the query-issuing peer
Variables: mindist_k, the largest mindist among nearest
neighbor candidates, initially set to infinity, DISTN, mindist
of node N to q
1. for each node N in the NR-tree
2. if the current node N is the leaf level of NR-tree
3. if DISTN < mindist_k

4. pass q, mindist_k, and addr to the peer hosting
data in N
5. else
6. Sort entries in N and recursively ascending their
sub-tree
7. forward q, mindist_k, and addr to neighboring clusters
End kNN_query

Figure 6.5: kNN query processing at primary
super-peer

7. Experimental evaluation

In this section, we demonstrate the effectiveness of the
proposed techniques with extensive experiments.

7.1 Simulation setup

Initially there is only one peer in the network, and new
peers keep joining until the network reaches a certain size
(N). Each peer hosts data randomly drawn from real data,
and the centroid of data in each peer follows uniform or
Zipf distribution. In particular, we use a real data set, CA
[20], containing 1314k geographical locations (X, Y
coordinates) in California, Los Angeles. The values are all
normalized to range [0, 10k]. To collect statistics, we
randomly (based on certain ratios) inject a mixture of
operations (peer join, departure, and search) into the
network. The proportion of peer join and departure is kept
roughly the same to maintain a stable size of the network.
On average, each peer issues 100 queries during the time it
is online. Initially we separately experiment range queries
and kNN queries, and then we test a mixture of queries
where each type of queries takes half. For range queries, we
generate square regions with side length qL uniformly
distributed in space. For kNN queries, query points are
uniformly distributed in space and k varies from 1 to 5.
Additional parameters are in Table 1, and their default
values are underlined.

Table 1
 Descriptions Values
N Number of peers in the network 256, 1024, 4096, 16k
P Number of passive-peers in a cluster 1, 3, 9, 27, 81
S Number of super-peers in a cluster 1, 2, 3, 4, 5
M Number of MBRs from a peer 1, 5, 10, 15, 20
C NR-tree and R*-tree node capacity 5, 10, 15, 20
n Number of data objects per peer 500, 7000, 1000,

1300, 1600
γ Join/departure percentage 0%~50%, 20%
qL Side length of range query 200~1000, 600

7.2 Scalability and stability

In this section, we evaluate proposed system with
various numbers of peers and peer data distributions. The
size of network decides the total number of clusters and
inter-cluster routing cost, and peer data distribution
determines distribution of centroid of peer data. As clusters
are formed primarily based on the centroid of peer data, it
is expected that the distribution of centroids will affect
cluster formation and thus search and maintenance cost.
Search cost is measured as the average number of peers
(passive peer or super-peer) visited over a mixture of range
and kNN queries. Maintenance cost is measured by two
parts: (i) the average number of inter-cluster links a super-
peer has to maintain, and (ii) the average number of NR-
tree node accesses incurred by peer join/departure in each
super-peer. The first part is taken into account because a
peer needs to be routed to the right cluster before it can join
the network, and the second part is from the maintenance
cost of the NR-tree. In order to take statistics, 10N node
joins/departures are injected into the network for each value

of N (256, 1024, 4096, and 16k), which means that on
average every peer joins and departs five times. The results
are shown in Figure 7.1. Part (a) shows the trend of number
of visited peers per query, part (b) shows the average
number of inter-cluster links, and part (c) shows the
average node accesses. Two conclusions can be made from
the results: (i) Search and maintenance cost grows
gracefully with total number of peers, and (ii) the system
performs slightly worse under Zipf distribution but the
difference is insignificant. Search cost increases due to
elongated path between clusters (average routing path in
CAN is proportional to G1/2, where G is the total number of
clusters). The average number of inter-cluster links is
relatively stable (approximately 2*d, where d is
dimensionality) since each super-peer only has to maintain
links to its four neighboring clusters. The average number
of node access is also quite stable, since the workload is
actually directly linked to the total number peers in a
cluster, which is stable during experiments. The slight
increase in node accesses is due to irregularity of cluster
sizes. In sum, skewed distribution of centroids leads to
uneven zones in clusters and elongates routing paths.
However, the difference is insignificant due to the stability
of CAN. For simplicity, in the following experiments we
only use Zipf distribution.

Zipf Uniform

0

20

40

60

80

256 1024 4096 16384

number of peers

number of visited peers

number of peers

number of links

3

4

5

6

256 1024 4096 16384

(a) search cost (b) number of links

number of peers

node access

260

280

300

320

256 1024 4096 16384

(c) Node access

Figure 7.1: Cost vs. data distribution

7.3 Query processing cost and query size

Queries affect processing cost and time. In particular, a
larger side length of range query (qL) implies more results
to retrieve and hence more nodes to visit. Similar
implication applies to value of k of kNN queries. Figure
7.2a shows that the number of visited peers grows as the

size of range query increases, similar trend exhibits in
figure 7.2b for kNN query.

0

10

20

30

40

200 400 600 800 1000

side length

number of visited peers

k
0

10

20

30

1 2 3 4 5

number of visited peers

(a) range query (b) kNN query

Figure 7.2: Cost vs. query size

7.4 Cluster size and super-peer redundancy

Cluster size is important since it is related to number of
clusters and workload of super-peers. A larger number of
peers in a cluster mean smaller number of clusters, and thus
cheaper inter-cluster routing cost. However, this also
implies that super-peers have to handle more operations
(peer join/departure, query, and routing). These operations,
if shared by more super-peers in a cluster, will be less a
burden to individuals. In this section, we measure the
maintenance cost by two parts, node access incurred by
peer joins/departures and the total number of links
maintained by a super-peer. We fix the network size to be
1024, and injected 100k node joins/departures interleaved
with queries into the network as we take statistics.

number of passive-peers per cluster

number of visited peers

0

10

20

30

1 3 9 27 81
no. of pass. peers per cluster

number of links

0

25

50

75

100

1 3 9 27 81

(a) search cost (b) number of links

node access

100

500

900

1300

1700

1 3 9 27 81

no. of pass. peers per cluster

(c) Node access

Figure 7.3: Cost vs. cluster size

Results are shown in Figure 7.3, where in each cluster
there are three super-peers. Part (a) shows that search
becomes more efficient as clusters grow larger, which is
because of shortened inter-cluster routing path and larger
NR-trees indexing more data. The negative side of large
cluster is reflected in part (b) and (c), where each super-

peer has to maintain more links and perform more
maintenance operations. As for multiple super-peers, they
can share the work load of query processing evenly, but
they will slightly increase the amount of maintenance work
(as this is quite easy to conceive, the results are not
presented). As a conclusion, as long as super-peers are not
overloaded, it is desirable to have more peers in a cluster; if
they are overloaded, it is good to have more super-peers to
share the load.

7.5 Result quality and cost

Our system is capable of providing complete answers as
well as approximate answers to a query with reduced cost.
This is achieved by adjusting the value of TTL for a query,
since TTL controls the length of search path in terms of
clusters. This section demonstrates the relationship between
the quality of results and search costs, where quality of a
query is defined as: Q = |Sreal∩Sapprox.|/| Sreal | (percentage of
correctly retrieved results). Note that in this set of
experiments, we use 10 for k in order to measure the quality
of kNN results. Figure 7.4a shows that the number of
visited nodes increases with the value of TTL. This is
reasonable since the more cluster to visit, the more likely to
find peers containing related data. Figure 7.4b shows the
result quality increases with TTL, and both range queries
can kNN queries can be answered with high quality
answers with rather small values of TTL.

kNN Range

TTL

number of visited peers

0

10

20

30

40

0 1 2 3 4

TTL

result quality

0.2

0.4

0.6

0.8

1

0 1 2 3 4

(a) Visited peers (b) Result quality

Figure 7.4: Cost vs. cluster size

7.6 Tolerance of node failures

Peer failures in P2P networks happen frequently. Our
system has a backup mechanism for queries (section 6) and
thus it is very robust under super-peer failures. If passive-
peer fails and it contains the only copy of data required by a
query, results of the query will be affected. In this set of
experiments, we vary the number of backup super-peers for
each query, and observe the percentage of queries that fail
(assuming 5 super-peers in each cluster). With different
peer failure rates (20% and 40%), we measure the
probability that a query fails (dropped due to failed super-
peers). As we can observe from Figure 7.5, the percentage
of query failure is extremely low with 2 backup peers even

under 40% of super-peer failure rate. This verifies the
effectiveness of proposed backup mechanism in case of
peer failures.

40% failure 20% failure

query failure rate

0%

10%

20%

30%

40%

50%

0 1 2 3 4

backup super-peers

Figure 7.5: Cost vs. cluster size

8. Conclusion and future work

Current P2P systems can not efficiently support complex
queries over multi-dimensional data, which seriously limits
their practical value. In this paper, we solve this problem in
the framework of super-peer networks. We first propose a
framework for sharing, indexing, and query processing
multi-dimensional data where peers with stronger
computational power serve as local servers. We then
propose the NR-tree, a P2P adaptation of R*-tree, for
indexing and querying multi-dimensional data in a P2P
framework. Our system is capable of answering various
types of queries with complete or approximate answers,
and its efficiency, stability, versatility, and scalability are
demonstrated with rigorous experiments. For future work,
we plan to devise cost models in order to facilitate
optimization in the system.

Acknowledgement

Wang-Chien Lee was supported in part by US National
Science Foundation grant IIS-0328881. This work was also
supported by a grant from the Research Grant Council,
Hong Kong SAR, China (HKUST 6179/03E).

References

[1] Aspnes, J., Shah, G. Skip Graphs. SODA, 2003.
[2] Bharambe, A. R., Agrawal, M. Mercury: Supporting

Scalable Multi-Attribute Range Queries. SIGCOMM,
2004.

[3] Beckmann, N., Kriegel, H. P., Schneider, R., Seeger,
B. The R*-tree: An Efficient and Robust Access
Method for Points and Rectangles. SIGMOD, 1990.

[4] Chueng, K., Fu., W. Enhanced Nearest Neighbour
Search on the R-tree. SIGMOD Record, 27(3), 1998.

[5] Demirbas., M., Ferhatosmanoglu, H. Peer-to-Peer

Spatial Queries in Sensor Networks. P2P, 2003.
[6] Gaede, V., Günther, O. Multidimensional Access

Methods. ACM Computing Surveys, 30(2), 1998.
[7] Guttman, A. R-Trees: A Dynamic Index Structure for

Spatial Searching. SIGMOD, 1984.
[8] Harvey, N., et al. SkipNet: A Scalable Overlay

Network with Practical Locality Properties. USITS,
2003.

[9] Samet, H., Hjaltason, G. Distance Browsing in
Spatial Databases. ACM TODS, 1999.

[10] Johnson, T., Krishna, P. Lazy Updates for Distributed
Search Structures. SIGMOD, 1993.

[11] Li, M., Lee. W., Sivasubramaniam, A. Semantic Small
World: An Overlay Network for Peer-to-Peer Search.
ICNP, 2004.

[12] Mondal, A., Yilifu, Kitsuregawa, M. P2PR-tree: An
R-tree-based Spatial Index for Peer-to-Peer
Environments. EDBT Workshop, 2004.

[13] Ratnasamy, S., et al. A Scalable Content-Addressable
Network. SIGCOMM, 2001.

[14] Rowstron, A., Druschel, P. Pastry: Scalable,
Distributed Object Location and Routing for Large-
Scale Peer-to-peer Systems. MIDDLE-WARE, 2001.

[15] Ratnasamy, S., Handley, M., Karp, R., Schenker, S.
Application-level Multicast Using Content-
Addressable Networks. NGC, 2001.

[16] Roussopoulos, N., Kelly, S., Vincent, F. Nearest
Neighbor Queries. SIGMOD, 1995.

[17] Stoica, I., et al. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. SIGCOMM,
2001.

[18] Saroiu, S., Gummadi, P., Gribble, S. A Measurement
Study of Peer-to-Peer File Sharing Systems. 2002.

[19] Tanin, E., Harwood, A. A Distributed Quadtree Index
for Peer-to-Peer Settings. ICDE, 2005.

[20] http://www.census.gov/geo/www/tiger/
[21] Tang, C., Xu, Z., Dwarkadas, S. Peer-to-Peer

Information Retrieval Using Self-Organizing
Semantic Overlay Networks. SIGCOMM, 2003.

[22] BitTorrent. http://bittorrent.com
[23] Gnutella. http://www.gnutella.com
[24] KaZaa. http://www.kazaa.com
[25] Andrzejak, A., Xu, Z. Scalable, Efficient Range

Queries for Grid Information Services. P2P, 2002.
[26] Yang, B., Garcia-Molina, H. Designing a Super-Peer

Network. ICDE, 2003.
[27] Zhao, B. Y., et al. Tapestry: A Resilient Global-Scale

Overlay for Service Deploymenta Super-Peer
Network. IEEE JSAC, 2004.

[28] Zhang, C., Krishnamurthy, A., Wang, R. SkipIndex:
Towards a Scalable Peer-to-Peer Index Service for
High Dimensional Data. Princeton Univ. Tech.
Report, 2004.

