
Supporting Cooperative Caching in Ad Hoc
Networks

Liangzhong Yin and Guohong Cao
Department of Computer Science & Engineering

The Pennsylvania State University
University Park, PA 16802

E-mail: {yin, gcao}@cse.psu.edu

Abstract— Most researches in ad hoc networks focus on rout-
ing, and not much work has been done on data access. A common
technique used to improve the performance of data access is
caching. Cooperative caching, which allows the sharing and
coordination of cached data among multiple nodes, can further
explore the potential of the caching techniques. Due to mobility
and resource constraints of ad hoc networks, cooperative caching
techniques designed for wired network may not be applicable
to ad hoc networks. In this paper, we design and evaluate
cooperative caching techniques to efficiently support data access
in ad hoc networks. We first propose two schemes: CacheData
which caches the data, and CachePath which caches the data
path. After analyzing the performance of those two schemes, we
propose a hybrid approach (HybridCache) which can further
improve the performance by taking advantage of CacheData and
CachePath while avoiding their weaknesses. Simulation results
show that the proposed schemes can significantly reduce the
query delay and message complexity when compared to other
caching schemes.

I. INTRODUCTION

Wireless ad hoc networks have received considerable at-
tention due to the potential applications in battlefield, disas-
ter recovery, and outdoor assemblies. Ad hoc networks are
ideal in situations where installing an infrastructure is not
possible because the infrastructure is too expensive or too
vulnerable. Due to lack of infrastructure support, each node
in the network acts as a router, forwarding data packets for
other nodes. Most of the previous researches [1], [2], [3]
in ad hoc networks focus on the development of dynamic
routing protocols that can efficiently find routes between two
communicating nodes. Although routing is an important issue
in ad hoc networks, other issues such as information (data)
access are also very important since the ultimate goal of using
ad hoc networks is to provide information access to mobile
nodes. We use the following two examples to motivate our
research on data access in ad hoc networks.
Example 1: In a battlefield, an ad hoc network may consist
of several commanding officers and a group of soldiers
around the officers. Each officer has a relatively powerful
data center, and the soldiers need to access the data centers to
get various data such as the detailed geographic information,
enemy information, and new commands. The neighboring

This work was supported in part by the National Science Foundation
(CAREER CCR-0092770 and ITR-0219711).

soldiers tend to have similar missions and thus share common
interests. If one soldier accessed a data item from the data
center, it is quite possible that nearby soldiers access the same
data some time later. It saves a large amount of battery power,
bandwidth, and time if later accesses to the same data are
served by the nearby soldier who has the data instead of the
faraway data center.
Example 2: Recently, many mobile infostation systems have
been deployed to provide information for mobile users. For
example, infostations deployed by tourist information center
may provide maps, pictures, history of attractive sites. Info-
station deployed by a restaurant may provide menus. Due to
limited radio range, an infostation can only cover a limited
geographical area. If a mobile user, say Jane, moves out of
the infostation range, she will not be able to access the data
provided by the infostation. However, if mobile users are
able to form an ad hoc network, they can still access the
information. In such an environment, when Jane’s request is
forwarded to the infostation by other mobile users, it is very
likely that one of the nodes along the path has already cached
the requested data. Then, this node can send the data back to
Jane to save time and bandwidth.

From these examples, we can see that if mobile nodes are
able to work as request-forwarding routers, bandwidth and
power can be saved, and delay can be reduced. Actually, co-
operative caching, which allows the sharing and coordination
of cached data among multiple nodes, has been widely used
to improve the Web performance in wired networks. These
protocols can be classified as message-based, directory-based,
or router-based. Wessels and Claffy introduced the Internet
cache protocol (ICP) [4], which has been standardized and is
widely used. As a message-based protocol, ICP supports com-
munication between caching proxies using a query-response
dialog. Directory-based protocols such as cache digests [5]
and summary cache [6] enable caching proxies to exchange
information about cached contents. The web cache coordi-
nation protocol [7], as a router-based protocol, transparently
distributes requests among a cache array. These protocols
usually assume fixed network topology and often require high
computation and communication overhead. However, in an
ad hoc network, the network topology changes frequently.
Also, mobile nodes have resource (battery, CPU, and wireless

channel) constraints and cannot afford high computation
or communication overhead. Therefore, existing techniques
designed for wired networks may not be applied directly to
ad hoc networks.

In this paper, we design and evaluate cooperative caching
techniques to efficiently support data access in ad hoc net-
works. Specifically, we propose three schemes: CachePath,
CacheData and HybridCache. In CacheData, intermediate
nodes cache the data to serve future requests instead of
fetching data from the data center. In CachePath, mobile
nodes cache the data path and use it to redirect future
requests to the nearby node which has the data instead of the
faraway data center. To further improve the performance, we
design a hybrid approach (HybridCache), which can further
improve the performance by taking advantage of CacheData
and CachePath while avoiding their weaknesses. Simulation
results show that the proposed schemes can significantly
improve the performance in terms of query delay and message
complexity when compared to other caching schemes.

The rest of the paper is organized as follows. In Section
II, we present the CacheData scheme and the CachePath
scheme. Section III presents the HybridCache scheme. The
performance of the proposed schemes is evaluated in Section
IV. Section V concludes the paper.

II. PROPOSED BASIC COOPERATIVE CACHE SCHEMES

In this section, we propose two basic cooperative cache
schemes and analyze their performance.

A. System Model

11

7

5

8
10

13

12

6

2

9

4

Fig. 1. An ad hoc network

Fig. 1 shows part of an ad hoc network. Some nodes in the
ad hoc network may have wireless interfaces to connect to
the wireless infrastructure such as wireless LAN or cellular
networks. Suppose node N11 is a data source (center), which
contains a database of n items d1, d2, ..., dn. Note that N11

may be a node connecting to the wired network which has
the database.

In ad hoc networks, a data request is forwarded hop-by-hop
until it reaches the data center and then the data center sends
the requested data back. Various routing algorithms have been
designed to route messages in ad hoc networks. To reduce the
bandwidth consumption and the query delay, the number of
hops between the data center and the requester should be as
small as possible. Although routing protocols can be used to

achieve this goal, there is a limitation on how much they can
achieve. In the following, we propose two basic cooperative
caching schemes: CacheData and CachePath.

B. Cache the Data (CacheData)

In CacheData, the node caches a passing-by data item
di locally when it finds that di is popular, i.e., there were
many requests for di, or it has enough free cache space. For
example, in Fig. 1, both N6 and N7 request di through N5,
N5 knows that di is popular and caches it locally. Future
requests by N3, N4, or N5 can be served by N5 directly.
Since CacheData needs extra space to save the data, it should
be used prudently. Suppose the data center receives several
requests for di forwarded by N3. Nodes along the path
N3 − N4 − N5 may all think that di is a popular item
and should be cached. However, it wastes a large amount
of cache space if three of them all cache di. To avoid this, a
conservative rule should be followed: a node does not cache
the data if all requests for the data are from the same node.
As in the previous example, all requests received by N5 are
from N4, which in turn are from N3. With the new rule, N4

and N5 do not cache di. If the requests received by N3 are
from different nodes such as N1 and N2, N3 will cache the
data. If the requests all come from N1, N3 will not cache the
data, but N1 will cache it. Certainly, if N5 receives requests
for di from N6 and N7 later, it may also cache di. Note that
di is at least cached at the requesting node, which can use it
to serve the next query.

C. Cache the Data Path (CachePath)

The idea of CachePath can be explained by Fig. 1. Suppose
node N1 has requested a data item di from N11. When N3

forwards the data di back to N1, N3 knows that N1 has
a copy of di. Later, if N2 requests di, N3 knows that the
data center N11 is three hops away whereas N1 is only one
hop away. Thus, N3 forwards the request to N1 instead of
N4. Note that many routing algorithms (such as AODV [8]
and DSR [2]) provide the hop count information between the
source and destination. By caching the data path for each data
item, bandwidth and query delay can be reduced since the
data can be obtained through less number of hops. However,
recording the map between data items and caching nodes
increases routing overhead. In the following, we propose some
optimization techniques.

In CachePath, a node does not need to record the path
information of all passing-by data. For example, when di

flows from N11 to destination node N1 along the path
N5−N4−N3, N4 and N5 need not cache the path information
of di since N4 and N5 are closer to the data center than the
caching node N1. Thus, a node only records the data path
when it is closer (defined later) to the caching node than the
data center.

When saving the path information, a node need not save all
the node information along the path. Instead, it can save only
the destination node information, as the path from current

router to the destination can be found by the underlying
routing algorithm.

Due to mobility, the node which caches the data may move.
The cached data may be replaced due to the cache size
limitation. As a result, the node which modified the route
should reroute the request to the original data center after
it finds out the problem. Thus, the cached path may not be
reliable and using it may adversely increase the overhead. To
deal with this issue, a node Ni caches the data path only
when the caching node, say Nj , is very close. The closeness
can be defined as a function of its distance to the data center,
its distance to the caching node, the route stability, and the
data update rate. Intuitively, if the network is relatively stable,
the data update rate is low, and its distance to the caching
node (denoted as H(i, j)) is much lower than its distance to
the data center (denoted as H(i, C)), the routing node should
cache the data path. Note that H(i, j) is a very important
factor. If H(i, j) is small, even if the cached path is broken
or the data are unavailable at the caching node, the problem
can be quickly detected to reduce the overhead. Certainly,
H(i, j) should be smaller than H(i, C). The number of hops
that a cached path can save is denoted as

Hsave = H(i, C) − H(i, j)

where Hsave should be greater than a system tuning threshold,
called TH , when CachePath is used.

Maintain cache consistency: There is a cache consistency
issue in both CacheData and CachePath. We have done
some work [9], [10] on maintaining strong cache consistency
in single-hop based wireless environment. However, due to
bandwidth and power constraints in ad hoc networks, it is
too expensive to maintain strong cache consistency, and the
weak consistency model is more attractive. A simple weak
consistency model can be based on the Time-To-Live (TTL)
mechanism, in which a node considers a cached copy up-to-
date if its TTL has not expired, and removes the map from its
routing table (or removes the cached data) if the TTL expires.
As a result, future requests for this data will be forwarded to
the data center.

Due to TTL expiration, some cached data may be inval-
idated. Usually, invalid data are removed from the cache.
Sometimes, invalid data may be useful. As these data have
been cached by the node, it indicates that the node is
interested in these data. When a node is forwarding a data
item and it finds there is an invalid copy of that data in the
cache, it caches the data for future use. To save space, when a
cached data item expires, it is removed from the cache while
its id is kept in “invalid” state as an indication of the node’s
interest. Certainly, the interest of the node may change, and
the expired data should not be kept in the cache forever. In
our design, if an expired data item has not been refreshed for
the duration of its original TTL time (set by the data center),
it is removed from the cache.

D. Performance Analysis

In this section, we analyze the performance of the proposed
schemes. We make some assumptions to simplify the analysis
to get some conclusions. The simulation results in Section IV
match the analytical results and verify that these assumptions
are reasonable.

The performance is measured by the number of hops
a request is expected to travel before it reaches the data.
Reducing the hop count can reduce the query delay, the
bandwidth and the power consumption since fewer nodes are
involved in the query process. Further, reducing the hop count
can also reduce the workload of the data center since requests
served by caches will not be handled by the data center. The
notations used in the analysis are as follows:

• H: the average number of hops between a mobile node
and the data center.

• Pdd: the probability that a data item is in the cache in
the CacheData scheme.

• Pdp: the probability that a data item is in the cache in
the CachePath scheme.

• Ppp: the probability that a path is in the cache in the
CachePath scheme.

• Pi: the probability that a cached item is not usable.
This may be caused by TTL expiration or broken paths
because of node movement.

• Ld: in CacheData, the average length of the path for a
request to reach the node (or the original server) which
has a valid copy of the data. If the requester has a valid
copy of the data, Ld = 1 for easy of presentation.

• Lp: in CachePath, the average length of the path for a
request to reach the node (or the original server) which
has a valid copy of data. Lp = 1 if the requester has a
valid copy of the data.

Given the above notations, we can obtain the expected
number of hops that a request takes from node Ni to the
node which has the data. Let P

′
d = Pdd(1 − Pi), then

Ld = P
′
d · 1 + (1 − P

′
d) · P

′
d · 2 + ...

+(1 − P
′
d)

H(i,C)−1 · P ′
d · H(i, C)

=
∑H(i,C)

k=1 (1 − P
′
d)

k−1 · P ′
d · k

≈ 1
Pd

′ = 1
Pdd(1−Pi)

(1)

This equation is an approximation of Ld since in practice
Pdd may be different at different nodes. Equation (1) helps
us understand the effects of many important factors, and
we believe the approximation is reasonable. Note that Ld

is bounded by H . When P ′
d is not too small, i.e., not less

than 1/H , line 4 of Equation (1) provides an adequate
approximation.

To calculate Lp, three cases need to be considered:

1) The requested data item is in the local cache.
2) A path is found in the local cache which indicates Ni

caches the requested data. Two sub-cases are possible:
(a) a valid data item is found in Ni.

(b) the data item in Ni is not usable because of broken
path or TTL expiration.

3) No data or path is found in the local cache.

Let P
′
p = Pdp(1 − Pi). The probabilities of Cases 1, 2(a),

2(b), and 3 are P
′
p, (1−P

′
p)Ppp(1−Pi), (1−P

′
p)PppPi, and

(1 − P
′
p)(1 − Ppp) respectively. The number of hops needed

for a request to get the data is 1 for Case 1 and 1 + Lp for
Case 2(a) and Case 3. For Case 2(b), the request need to
travel 1 + Lp to reach Ni. Then it is redirected to the data
center which is H away. At last, the data item is sent back
to the requester in H hops. Therefore, the average number
of hops needed for the request is (1 + Lp + H + H)/2 =
H + (1 + Lp)/2. Thus

Lp = P
′
p · 1 + (1 − P

′
p) · Ppp·

(Pi(H + Lp+1
2) + (1 − Pi)(Lp + 1))

+(1 − P ′
p)(1 − Ppp)(1 + Lp)

(2)

So,

Lp = Pp
′+(1−Pp

′)Ppp(PiH−Pi
2 +1))+(1−P

′
p)(1−Ppp)

1−(1−Pp
′)Ppp(1−Pi

2)−(1−P ′
p)(1−Ppp)

(3)

In Equation (3), Ppp is specific to CachePath. Therefore, it
needs to be fixed when comparing Ld and Lp. If Ppp = 0,
Lp = 1/(Pdp(1 − Pi)) and if Ppp = 1,

Lp =
Pdp(1 − Pi)(Pi

2 − PiH) + (PiH − Pi

2 + 1)
1 − (1 − Pdp(1 − Pi))(1 − Pi

2))
(4)

Ppp = 1 gives the performance upper bound of CachePath.
Equations (1) and (4) are still complex as they contain several
parameters. We can fix some parameters to get a better
understanding of the relation between Ld and Lp.

Suppose Pi = 0 (i.e., all the data items in the cache are
valid), we have

Ld =
1

Pdd
and Lp =

1
Pdp

(5)

CachePath needs less cache space to store extra data1.
Therefore Pdp > Pdd when the cache size is not very big,
which means Lp < Ld.

Suppose Pi = 0.5, and the cache size is big enough so that
Pdp = Pdd. We obtain

Ld =
2

Pdd
(6)

Lp =
−2PddH + Pdd + 4H + 6

2 + 3Pdd
(7)

Thus,

Ld < Lp ⇔ H > (4 − P 2
dd)/(4 − 2P 2

dd) (8)

Note that Pdd ∈ [0, 1] and

4 − P 2
dd

4 − 2P 2
dd

≤ 1.5 if Pdd ∈ [0, 1] (9)

1Note that a cached path only contains the final destination node id, as
explained in Section II-C. We assume that the size of any data item is larger
than the size of a data id.

Combining Inequalities (8) and (9) yields,

Ld < Lp if H > 1.5 (10)

From the above equations, we can get the following con-
clusions:

• Both schemes can reduce the average number of hops
between the requester and the node which has the
requested data. For example, when Pi = 0, the number
of hops can be reduced if the cache hit ratio is greater
than 1/H . If there is no cached data or path available,
our schemes fall back to traditional caching scheme,
where requests are sent directly to the data center.

• When the cache size is small, CachePath is better than
CacheData; when the cache size is large, CacheData is
better.

• When the data items are updated slowly or mobile nodes
move slowly, i.e., Pi is small, CachePath is a good
approach; in other cases, CacheData performs better.

III. A HYBRID CACHING SCHEME (HYBRIDCACHE)

The performance analysis showed that CachePath and
CacheData can significantly improve the system performance.
We also found that CachePath performs better in some
situations such as small cache size or low data update rate,
while CacheData performs better in other situations. To
further improve the performance, we propose a hybrid scheme
HybridCache to take advantage of CacheData and CachePath
while avoiding their weaknesses. Specifically, when a node
forwards a data item, it caches the data or path based on
some criteria. These criteria include the data item size si,
the TTL time TTLi, and the Hsave. For a data item di, the
following heuristics are used to decide whether to cache data
or path:

• If si is small, CacheData should be adopted because the
data item only needs a very small part of the cache;
otherwise, CachePath should be adopted to save cache
space. The threshold value for data size is denoted as
Ts.

• If TTLi is small, CachePath is not a good choice
because the data item may be invalid soon. Using
CachePath may result in chasing the wrong path and end
up with re-sending the query to the data center. Thus,
CacheData should be used in this situation. If TTLi is
large, CachePath should be adopted. The threshold value
for TTL is a system tuning parameter and denoted as
TTTL.

• If Hsave is large, CachePath is a good choice because it
can save a large number of hops; otherwise, CacheData
should be adopted to improve the performance if there is
enough empty space in the cache. We adopt the threshold
value TH used in CachePath as the threshold value.

Fig. 2 shows the algorithm that applies these heuristics in
HybridCache. In our design, caching a data path only needs
to save a node id in the cache. This overhead is very small.

(A) When a data item di arrives:
if (di is the requested data by the current node) then

cache data item di; return;
/* Data passing by */
if (an old version of di is in the cache) then

update the cached copy;
else if (si < Ts or there is an invalid copy in the cache

or there is a cached path for di) then
cache data item di;

else if (Hsave > TH and TTLi > TTTL) then
cache the path of di;

(B) When cache replacement is necessary:
while (not enough free space and

there are invalid data items in the cache) do
Remove an invalid data item;

while (not enough free space) do /*still need space*/
Remove a valid data item;

(C) When a request for data item di arrives:
if (there is a valid copy in cache) then

send di to the requester;
else if (there is a valid path for di in the cache) then

forward the request to the caching node;
else

forward the request to the data center;

Fig. 2. The hybrid caching scheme

Therefore, in HybridCache, when a data item di needs to
be cached using CacheData, the path for di is also cached.
Later, if the cache replacement algorithm decides to remove
di, it removes the cached data while keeping the path for di.
From some point of view, CacheData degrades to CachePath
for di. Similarly, CachePath can be upgraded to CacheData
again when di passes by.

Comparing to Other Schemes
To effectively disseminate data in ad hoc networks, data
replication and caching can be used. Data replication schemes
in ad hoc networks have been studied in [11]. However,
these schemes may not be very effective due to the following
reasons: First, because of frequent node movement, powering
off or failure, it is hard to find stable nodes to host the
replicated data; Second, the cost of initial distribution of the
replicated data and the cost of redistributing the data to deal
with node movement or failure is very high.

Unlike data replication, caching does not rely on finding
stable hosts and it has less overhead. In traditional caching
schemes, referred to as SimpleCache, only the query node
caches the received data. If another query request for the
cached data comes before the cache expires, the node uses
the cached data to serve the query. In case of a cache miss,
it has to get the data from the data center. To utilize the
caches of neighbor nodes, in the 7DS architecture [12], users
can cache data and share with neighbors when experiencing

intermittent connectivity to the Internet. However, the focus
of 7DS is on single-hop environment instead of multi-hop. As
a result, a user only broadcasts the request to its neighbors to
see if the data can be served from their caches.

A cooperative caching scheme designed specifically for
accessing multimedia objects in ad hoc networks has been
proposed in [13]. When a query comes, this scheme relies on
flooding to find the nearest node that has the requested object.
We refer to this approach as the FloodCache scheme. Using
flooding can reduce the query delay since the request may be
served by a nearby node instead of the data center faraway.
Thus, it is good for multimedia applications which have strict
delay requirements. Another benefit of using flooding is that
multiple nodes that contain the requested data can be found.
If the data size is very large, when the link to one node fails,
the requester can switch to other nodes to get the rest of the
requested data.

Using flooding incurs significant message overhead. To
reduce the overhead, in [13] flooding is limited to nodes
within k hops from the requester, where k is the number of
hops from the requester to the data center, but the overhead is
still high. In a wireless network where nodes are uniformly
distributed, on average there are πk2 nodes within k-hops
range of a mobile node. Therefore, πk2 messages are needed
to find a data item using this method. Moreover, when a
message is broadcast in the network, many neighbors will
receive it. Even if the mobile node is able to identify and drop
duplicated messages, each node still needs to broadcast the
messages at least once to ensure full coverage. If a node has
c neighbors on average, the total number of messages needs
to be processed is cπk2. Although the message complexity is
still O(k2), the constant factor may be very high, especially
when the network density is high.

The HybridCache scheme proposed in this paper does not
use flooding. Its query delay may be higher than that of
FloodCache in cases where the data are cached by some
nearby nodes not along the route to the data center. However,
in ad hoc networks FloodCache may not be a good choice
due to its high message overhead.

When cooperative caching is used, mobile nodes need
to cache data besides routing. This may involve cross-layer
optimization, and it may increase the processing overhead.
However, the processing delay is still very low compared to
the communication delay. Since most ad hoc networks are
specific to some applications, cross-layer optimization can
also reduce some of the processing overhead. Considering
the performance improvement, the use of cooperative cache
is well justified.

IV. PERFORMANCE EVALUATION

The performance evaluation includes two parts. In the first
part (Section IV-B), we verify the analytical results of Cache-
Data and CachePath, and compare them to SimpleCache
and HybridCache in terms of query delay. The second part
(Section IV-C) compares HybridCache to SimpleCache and
FloodCache in terms of query delay and message complexity.

A. The Simulation Model

The simulation is based on ns-2 [14] with the CMU
wireless extension. In our simulation, both AODV [8] and
DSDV [3] were tested as the underlying routing algorithm.
Because our schemes do not rely on specific routing protocols,
the results from AODV and DSDV are similar. To save space,
only the results based on AODV are shown here.

The node density is changed by choosing the number of
nodes between 50 and 100 in a fixed area. We assume that the
wireless bandwidth is 2 Mb/s, and the radio range is 250m.
The node movement model: We model a group of nodes
moving in a 1500m × 320m rectangle area, which is similar
to the model used in [15]. The moving pattern follows the
random way point movement model [16]. Initially, nodes are
placed randomly in the area. Each node selects a random
destination and moves toward the destination with a speed
selected randomly from (0 m/s, vmax m/s). After the node
reaches its destination, it pauses for a period of time and
repeats this movement pattern. Two vmax values, 2 m/s and
20 m/s, are studied in the simulation.
The client query model: The client query model is similar
to what have been used in previous studies [9], [17]. Each
node generates a single stream of read-only queries. The
query generate time follows exponential distribution with
mean value Tquery . After a query is sent out, the node does
not generate new query until the query is served. The access
pattern is based on Zipf − like distribution [18], which has
been frequently used [19] to model non-uniform distribution.
In the Zipf-like distribution, the access probability of the ith

(1 ≤ i ≤ n) data item is represented as follows.

Pai
=

1
iθ

∑n
k=1

1
kθ

where 0 ≤ θ ≤ 1. When θ = 1, it follows the strict Zipf
distribution. When θ = 0, it follows the uniform distribution.
Larger θ results in more “skewed” access distribution. We
choose θ to be 0.8 according to studies on real web traces
[19].

The access pattern of mobile nodes can be location-
dependent; that is, nodes that are around the same location
tend to access similar data, such as local points of interests.
To simulate this kind of access pattern, a “biased” Zipf-like
access pattern is used in our simulation. In this pattern, the
whole simulation area is divided into 10 (X axis) by 2 (Y axis)
grids. These grids are named grid 0, 1, 2,... 19 in a column-
wise fashion. Clients in the same grid follow the same Zipf
pattern, while nodes in different grids have different offset
values. For example, if the generated query should access data
id according to the original Zipf-like access pattern, then in
grid i, the new id would be (id + n mod i) mod n, where
n is the database size. This access pattern can make sure
that nodes in neighboring grids have similar, although not the
same, access pattern.
The server model: Two data servers: server0 and server1 are
placed at the opposite corners of the rectangle area. There are

n data items at the server side and each server maintains half
of the data. Data items with even ids are saved at server0 and
the rests are at server1. The data size is uniformly distributed
between smin and smax. The data are updated only by the
server. The servers serve the requests on FCFS (first-come-
first-service) basis. When the server sends a data item to a
mobile node, it sends the TTL tag along with the data. The
TTL value is set exponentially with a mean value. After the
TTL expires, the node has to get the new version of the data
either from the server or from other nodes before serving the
query.

TABLE I

SIMULATION PARAMETERS

Parameter Default value Range

Database size n 1000 items
smin (KB) 1
smax (KB) 10
Number of nodes 100 50 to 100
vmax (m/s) 2 2, 20
Bandwidth (Mb/s) 2
TTL (secs) 5000 200 to 10000
Pause time (secs) 300
Client cache size (KB) 800 200 to 1200
Mean query generate time
Tquery (secs)

5 1 to 100

TH 2 1 to 5
Ts (% of (smin + smax)) 40 10 to 100
TTTL (secs) 5000 500 to 10000

Most system parameters are listed in Table I. The second
column lists the default values of these parameters. In the
simulation, we may change the parameters to study their
impacts. The ranges of the parameters are listed in the third
column. For each workload parameter (e.g., the mean TTL
time or the mean query generate time), the mean value of the
measured data is obtained by collecting a large number of
samples such that the confidence interval is reasonably small.
In most cases, the 95% confidence interval for the measured
data is less than 10% of the sample mean.

B. Simulation Results: HybridCache

0.17

0.172

0.174

0.176

0.178

0.18

0.182

0.184

0.186

1 1.5 2 2.5 3 3.5 4 4.5 5

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Threshold TH value

CachePath

Fig. 3. Fine-tuning CachePath

0.105

0.11

0.115

0.12

0.125

0.13

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Threshold size (% of Smin+ Smax)

HybridCache

0.106

0.107

0.108

0.109

0.11

0.111

0.112

0.113

0.114

0.115

0.116

0.117

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Threshold TTTL (seconds)

HybridCache

(a) Threshold Ts (b) Threshold TTTL

Fig. 4. Fine-tune HybridCache

Experiments were run using different workloads and sys-
tem settings. The performance analysis presented here is
designed to compare the effects of different system param-
eters such as cache size and TTL on the performance of
SimpleCache, CacheData, CachePath, and HybridCache. All
schemes use the LRU algorithm for cache replacement. The
effect of cache replacement is left as our future work.

1) Fine-tuning CachePath: As stated in Section II-C, the
performance of CachePath is affected by the threshold value
TH as a path is only cached when its Hsave value is greater
than TH . A small TH means more paths are cached, but
caching too many less-valuable paths may increase the delay
because the cached paths are not very reliable. A large TH

means only some valuable paths are cached. However, if TH

is too large, many paths are not cached because of the high
threshold. As shown in Fig. 3, TH = 2 achieves a balance,
and we use it in the rest of our simulations.

2) Fine-tuning HybridCache: In HybridCache, if a data
item size is smaller than Ts, it is cached using CacheData. If
Ts is too small, HybridCache fails to identify some small but
important data items; if it is too large, HybridCache caches
all the data using CacheData. To find an optimal value for
Ts, we measure the query delay as a function of Ts. As Ts

is related to data size, in Fig. 4 (a), we use a relative value:
Ts/(Smin +Smax), which can give us a clearer idea of what
the threshold value should be.

As shown in Fig. 4 (a), when the threshold value increases
from 10% to 40%, the query delay drops sharply since
more data are cached. If the threshold value keeps increasing
beyond 40%, more passing-by data are cached, and the cache
has less space to save the accessed data. As a result, some
important data may be replaced, and the delay increases. We
find that a threshold value of 40% gives the best performance.

Fig. 4 (b) shows the effect of TTTL on the average query
delay. The lowest query delay is achieved when TTTL = 5000
seconds. Compared to Fig. 4 (a), the performance difference
between different TTTL is not significant. This is because the

database we studied has heterogeneous data size. Data size
varies from 1 KB to 10 KB. As data size is a very important
factor for caching, it makes the effect of TTTL less obvious.

3) Effects of the Cache Size: Fig. 5 shows the impacts of
the cache size on the cache hit ratio and the average query
delay. Cache hits can be divided into three categories: local
data hit which means that the requested data item is found
in the local cache, remote data hit which means that the
requested data item is found in one of the intermediate node
when the request is forwarded in the network, and path hit
which means that a path is found for the request and a valid
data item is found in the destination node of that path. Both
remote data hit and path hit are considered as remote cache
hit because the data are retrieved from remote nodes.

From Fig. 5 (a), we can see that the local hit ratio of
SimpleCache is always the lowest. When the cache size is
small, CacheData performs similar to SimpleCache because
small cache size limits the aggressive caching of CacheData.
When the cache size is large, CacheData can cache more data
for other nodes. These data can be used locally and hence
the local data hit ratio increases. CachePath does not cache
data for other nodes, but its cached data can be refreshed
by the data passing by. Therefore, its local data hit ratio is
still slightly higher than that of SimpleCache. HybridCache
prefers small data items when caching data for other nodes.
Therefore, it can accommodate more data and achieve a high
local data hit ratio.

Although CacheData and CachePath have similar local
data hit ratio in most cases, CacheData always has higher
remote data hit ratio because it caches data for other nodes.
Especially when the cache size is large, more data can
be cached in CacheData and its remote data hit ratio is
significantly higher than that of CachePath. HybridCache has
a high remote data hit ratio due to similar reason for its high
local data hit ratio. Even if the path hit is not considered,
HybridCache still has highest cache hit ratio in most cases.
It is worth noticing that CachePath and HybridCache almost

0.0

0.2

0.4

0.6

0.8

1.0
C

ac
he

 h
it

ra
tio

Local data hit
Remote data hit
Path hit

SimpleCache

CachePath

CacheData

CachePath

HybridCache

SimpleCache

CacheData

CacheData

CacheData

CacheData

CacheData

CachePath

SimpleCache

SimpleCache

SimpleCache

CachePath

HybridCache

HybridCache

HybridCache

HybridCache

CachePath

CachePath

SimpleCache

HybridCache

 Cache size (KB)

200 400 600 800 1000 1200 0.1

0.15

0.2

0.25

0.3

0.35

200 400 600 800 1000 1200

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Cache size (KB)

SimpleCache
CachePath
CacheData

HybridCache

(a) Cache hit ratio (b) Query delay

Fig. 5. The system performances as a function of the cache size

reach their best performance when the cache size is 800 KB.
This demonstrates their low cache space requirement. This
particularly shows the strength of HybridCache as it also
provides the best performance at the same time.

Because of the high cache hit ratio, the proposed schemes
perform much better than SimpleCache (see Fig. 5). Compar-
ing CachePath and CacheData, when the cache size is small,
CachePath has lower query delay because its path hit helps
reduce the average hop count. When the cache size is greater
than 800 KB, these two schemes have similar total cache hit
ratio, but CacheData has higher local data hit ratio and remote
data hit ratio. Because the hop count of local data hit is 0 and
the average hop count of remote data hit is lower than that
of path hit, CacheData achieves low query delay. This figure
also agrees with the performance comparisons of CachePath
and CacheData in Section II-D.

Comparing these three proposed schemes, we can see
that HybridCache performs much better than CacheData or
CachePath, because HybridCache applies different schemes
(CacheData or CachePath) to different data items, taking
advantages of both CacheData and CachePath. As the result of
the high local data hit ratio, remote data hit ratio and overall
cache hit ratio, HybridCache achieves the best performance
compared to other schemes.

4) Effects of the Query Generate Time: Fig. 6 shows the
average query delay as a function of the Tquery. Both low
mobility (Vmax = 2 m/s) and high mobility (Vmax = 20
m/s) settings are studied. We notice that all the trends are
similar except CachePath. There are cases that CachePath
even performs worse than SimpleCache. This is due to the
fact that high node mobility causes more broken paths,
which affects the performance of CachePath. In high mobility
setting, CacheData performs better and HybridCache still
performs the best in most cases.

When Tquery is small, more queries are generated and the
system workload is high. As a result, the average query delay
is high. As Tquery increases, less queries are generated and
the average query delay drops. If Tquery keeps increasing,
the average query delay only drops slowly or even increases
slightly. The reason is that the query generating speed is so
low that the number of cached data is small and many cached
data are not usable because their TTL have already expired
before queries are generated for them. Fig. 6 verifies this
trend.

Under heavy system workload (Tquery is small), Hybrid-
Cache can reduce the query delay by as much as 40%
compared to CacheData or CachePath. When the system
workload is extremely light, the difference between different
schemes is not very large. This is because under extreme light
workload, the cache hit ratio is low. Therefore, most of the
queries are served by the remote data center and different
schemes perform similarly.

We can also find that when the query generating speed
increases (Tquery decreases), the delay of HybridCache does
not increase as fast as other schemes. This demonstrates that
HybridCache is less sensitive to workload increases and it can
handle much heavier workload.

5) Effects of TTL: Fig. 7 shows the average query delay
when the TTL varies from 200 seconds to 10000 seconds.
TTL determines the data update rate. Higher update rate
(smaller TTL) makes the cached data more likely to be
invalidated, and hence the average query delay is higher.
When the TTL is very small (200 sec), all four schemes
perform similarly, because most data in the cache are invalid
and then the cache hit ratio is very low. Since SimpleCache
does not allow nodes to cooperate with other nodes, its
average query delay does not drop as fast as our schemes
when TTL increases. The delay of our schemes drops much

0.1

0.15

0.2

0.25

0.3

0.35

1 10 100

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Mean query generate time (seconds)

SimpleCache
CachePath
CacheData

HybridCache

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 10 100

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Mean query generate time (seconds)

SimpleCache
CachePath
CacheData

HybridCache

(a) Vmax = 2 m/s (b) Vmax = 20 m/s

Fig. 6. The average query delay as a function of the mean query generate time Tquery

faster as TTL increases because nodes cooperate with each
other to maximize the benefit of low update rate.

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1000 10000

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Mean TTL time (seconds)

SimpleCache
CachePath
CacheData

HybridCache

Fig. 7. The average query delay as a function of TTL

Comparing CachePath to CacheData, CacheData performs
better when TTL is small, whereas CachePath performs
better when TTL is big. This result again agrees with the
performance analysis. HybridCache further reduces the query
delay by up to 45%.

6) Effects of the Node Density: Fig. 8 shows the average
query delay as a function of the number of nodes in the
system. As node density increases, the delay of all four
schemes increases, because more nodes compete for limited
bandwidth. However, the delay of our schemes increases
much slower than SimpleCache. This can be explained by
the fact that more data can be shared as the number of
nodes increases in our schemes, which helps reduce the query
delay. When the total number of nodes is small, HybridCache
performs similar as CacheData and CachePath. When the

number of nodes increases, HybridCache performs much
better than other schemes. This indicates that HybridCache
scales well with the number of nodes.

0.05

0.1

0.15

0.2

0.25

0.3

50 55 60 65 70 75 80 85 90 95 100

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Number of nodes

SimpleCache
CachePath
CacheData

HybridCache

Fig. 8. The average query delay under different node density

C. Simulation Results: Comparisons

In this subsection, we compare the performance of the
HybridCache scheme to the SimpleCache scheme and the
FloodCache scheme in terms of query delay and message
complexity. A commonly used message complexity metric
is the total number of messages injected into the network
by the query process [13]. Since each broadcast message
is processed (received and then re-broadcasted or dropped)
by every node that received it, “the number of messages
processed per node” is used as the message complexity metric
to reflect the efforts (battery power, CPU time, etc.) of the
mobile node to deal with the messages.

Fig. 9 shows the system performances when the cache size

0.05

0.1

0.15

0.2

0.25

0.3

0.35

200 400 600 800 1000 1200

A
ve

ra
ge

 d
el

ay

Cache size (KB)

SimpleCache
HybridCache
FloodCache

(a) Query delay

1000

10000

100000

1e+06

200 400 600 800 1000 1200

of

 m
es

sa
ge

s
pr

oc
es

s
pe

r
no

de

Cache size (KB)

SimpleCache
HybridCache
FloodCache

(b) Message overhead

0

1

2

3

4

5

6

7

8

200 400 600 800 1000 1200

of

 d
at

a
re

pl
ie

s
pe

r
qu

er
y

Cache size (KB)

SimpleCache
HybridCache
FloodCache

(c) # of reply messages per query

Fig. 9. The performance as a function of the cache size

varies. Fig. 9 (a) shows that the query delay decreases as the
cache size increases. After the cache size increases beyond
800 KB, mobile nodes have enough cache size and the query
delay does not drop significantly. The SimpleCache scheme is
outperformed by cooperative caching schemes under different
cache size settings. This demonstrates that mobile nodes can
benefit from sharing data with each other.

Comparing HybridCache and FloodCache, we can see that
HybridCache does not perform as well as FloodCache in
terms of query delay. However, Fig. 9 (b) shows that Hybrid-
Cache incurs much less message overhead than FloodCache.
The message overhead of HybridCache is even less than
that of SimpleCache. The reason is that HybridCache gets
data from nearby nodes instead of the faraway data center
if possible. Therefore, the data requests and replies need to
travel less number of hops and mobile nodes need to process
less number of messages. As the cache size increases, the
cache hit ratio of HybridCache increases and its message
overhead decreases. Because FloodCache uses flooding to find
the requested data, it incurs much higher message overhead
compared to SimpleCache and HybridCache.

In FloodCache the request is sent out through flooding,
and multiple copies of data replies may be returned to the
requester by different nodes that have the requested data. In
SimpleCache and HybridCache, this can not happen because
only one request is sent out for each query in case of local
cache miss. Fig. 9 (c) shows that more than 7 copies of data
replies are returned per query in FloodCache. The number
of duplicated data replies increases slightly as the cache size
increases because data can be cached in more nodes. In our
simulation, the data size is relatively small (from 1 KB to
10 KB), and hence the duplicated messages do not affect
the performance significantly. For some other environments
such as multimedia accessing, transmitting duplicated data
messages may waste much more power and bandwidth. As
one solution, instead of sending the data to the requester upon
receiving a request, mobile nodes which have the data send
back an acknowledgment. The requester can then send another
unicast request to the nearest node among them to get the
data. The drawback of this approach is that the query delay
will be significantly increased.

V. CONCLUSIONS

In this paper, we designed and evaluated cooperative
caching techniques to efficiently support data access in ad hoc
networks. Specifically, we proposed three schemes: CacheP-
ath, CacheData, and HybridCache. In CacheData, interme-
diate nodes cache the data to serve future requests instead
of fetching data from the data center. In CachePath, mobile
nodes cache the data path and use it to redirect future requests
to the nearby node which has the data instead of the far-
away data center. HybridCache takes advantage of CacheData
and CachePath while avoiding their weaknesses. Simulation
results showed that the proposed schemes can significantly
reduce the query delay when compared to SimpleCache and

significantly reduce the message complexity when compared
to FloodCache.

REFERENCES

[1] S. Das, C. Perkins, and E. Royer, “Performance comparison of two
on-demand routing protocols for ad hoc networks,” IEEE INFOCOM,
pp. 3–12, 2000.

[2] D. Johnson and D. Maltz, “Dynamic Source Routing in Ad Hoc
Wireless Network,” Mobile Computing, pp. 153–181, 1996.

[3] C. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers,” ACM SIG-
COMM, pp. 234–244, 1994.

[4] D. Wessels and K. Claffy, “ICP and the Squid Web Cache,” IEEE
Journal on Selected Areas in Communication, pp. 345–357, 1998.

[5] A. Rousskov and D. Wessels, “Cache digests,” Computer Networks
and ISDN Systems, vol. 30, no. 22-23, pp. 2155–2168, 1998.

[6] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary cache: A scalable
wide area web cache sharing protocol,” ACM SIGCOMM, pp. 254–265,
1998.

[7] M. Cieslak, D. Foster, G. Tiwana, and R. Wilson, “Web
cache coordination protocol v2.0,” IETF Internet draft, 2000.
http://www.ietf.org/internet-drafts/ draft-wilson-wrec-wccp-v2-00.txt.

[8] C. Perkins, E. Belding-Royer, and I. Chakeres, “Ad Hoc On Demand
Distance Vector (AODV) Routing,” IETF Internet draft, draft-perkins-
manet-aodvbis-00.txt, Oct. 2003.

[9] G. Cao, “Proactive Power-Aware Cache Management for Mobile
Computing Systems,” IEEE Transactions on Computer, vol. 51, no.
6, pp. 608–621, June 2002.

[10] G. Cao, “A Scalable Low-Latency Cache Invalidation Strategy for
Mobile Environments,” IEEE Transactions on Knowledge and Data
Engineering, vol. 15, no. 5, September/October 2003 (A preliminary
version appeared in ACM MobiCom’00).

[11] T. Hara, “Effective Replica Allocation in Ad Hoc Networks for
Improving Data Accessibility,” IEEE INFOCOM, 2001.

[12] M. Papadopouli and H. Schulzrinne, “Effects of power conservation,
wireless coverage and cooperation on data dissemination among mobile
devices,” ACM MobiHoc, Oct. 2001.

[13] W. Lau, M. Kumar, and S. Venkatesh, “A Cooperative Cache Archi-
tecture in Supporting Caching Multimedia Objects in MANETs,” The
Fifth International Workshop on Wireless Mobile Multimedia, 2002.

[14] ns Notes and Documentation, “http://www.isi.edu/nsnam/ns/,” 2002.
[15] Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed Energy

Conservation for Ad Hoc Routing,” ACM MobiCom, pp. 70–84, July
2001.

[16] J. Broch, D. Maltz, D. Johnson Y. Hu, and J. Jetcheva, “A Perfor-
mance Comparison of Multi-Hop Wireless Ad Hoc Network Routing
Protocols,” ACM MobiCom, pp. 85–97, October 1998.

[17] L. Yin, G. Cao, and Y. Cai, “A Generalized Target-driven Cache
Replacement Policy for Mobile Environments,” The 2003 International
Symposium on Applications and the Internet, Jan. 2003.

[18] G. Zipf, “Human Behavior and the Principle of Least Effort,” Addison-
Wesley, 1949.

[19] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf-like Distributions: Evidence and Implications,” IEEE
INFOCOM, 1999.

