
Supporting CORBA Applications in a Mobile Environment

Mads Haahr, Raymond Cunningham and Vinny Cahill

Distributed Systems Group

Department of Computer Science

Trinity College Dublin

Ireland

http://www.dsg.cs.tcd.ie/

Abstract

CORBA, the Common Object Request Broker Archi-
tecture, defines a framework for developing object-ori-
ented distributed applications. Unfortunately, current
implementations of CORBA have not been designed
with support for mobile computers in mind. Using

CORBA in a mobile environment raises a number of
problems due to hardware mobility and the character-
istics of wireless networks. This paper identifies and
discusses these problems and presents the design and
implementation of our Architecture for Location Inde-
pendent CORBA Environments (ALICE). ALICE allows
CORBA objects running on mobile devices to inter-
act transparently with objects hosted by off-the-shelf
CORBA implementations. Importantly, ALICE allows
server as well as client objects to reside on mobile hosts
without relying on a centralised location register to keep
track of their whereabouts.

1 introduction

CORBA, the Common Object Request Broker Archi-
tecture [7], from the Object Management Group (OMG),
defines a framework for developing object-oriented dis-
tributed applications. CORBA is based on the client-
server paradigm and the most important component in
the architecture is the Object Request Broker (ORB)
which is responsible for relaying object invocations from

clients to server objects.
Initially, the CORBA standard made no provision

for interoperability between ORBS supplied by differ-
ent vendors. Later versions of the standard addressed
this issue by defining a standard protocol for inter-ORB
communication which is known as the General Inter-
ORB Protocol (GIOP) [7, Chapter 131 and which can

PeMkion to make digital or hard copies of all or part of this work t‘or
PCrSOnal Or ChirOOnl use is granted without fee provided that comic-
are not made or distributed for profit or commercial advarltage and that
copies bear this notice and the f’ull citation on the first page. ho copy
otheRvise, to republish, to post on servers or to redistribute to lists.
rcquircs prior specific permission and/or a fee.

Mobicom ‘99 Seattlc Washington USA
Copyright ACM 1999 l-581 1%142-9/99/08...$5.00

36

be mapped onto different underlying transports. The
OMG also defined a mapping of GIOP onto TCP/IP
known as the Internet Inter-ORB Protocol (IIOP) [7,
Chapter 131. IIOP enables invocations to be relayed
between different ORBS over TCP/IP and must be sup-

ported by all CORBA 2 compliant ORBS.
Current CORBA technology, including the IIOP pro-

tocol, is not designed for use in a mobile computing
environment. Using CORBA in such an environment
raises a number of problems due to hardware mobility
and the characteristics of wireless networks that have
yet to be addressed by the OMG [6]. This paper identi-
fies and discusses the problems of mobile CORBA and
presents the design and implementation of our Architec-
ture for Location Independent CORBA Environments
(ALICE) which all ows CORBA applications running on

mobile devices to communicate transparently with stan-
dard CORBA applications (such as those supported by
off-the-shelf ORBS) using IIOP. The architecture allows
server as well as client objects to reside on mobile hosts
without relying on a centralised location register to keep
track of their whereabouts. IIOP clients and servers re-
siding on mobile hosts are able to interact with IIOP
servers and clients on the wired network using stan-
dard IPv4 and without requiring the wired clients and
servers to know that they are interacting with clients
and servers on a mobile host. In particular, no support
for Mobile IP [2] is required.

The Mobile Environment

Current state-of-the-art mobile computers-laptops and
personal digital assistants (PDAs) such as Windows CE
devices and the Palm Pilot-are often equipped with
several communication interfaces. Common types in-
clude wired and wireless LANs, digital and analogue
modems, infrared links, and serial lines. Most mobile
computers support two or more of these and use them
at various times depending on the user’s preferences as
well as on his or her work and movement patterns. A
common characteristic of these interfaces is that they of-

fer low bandwidth and/or low quality connections com-
pared to traditional wired networks. In addition, the
difference in cost of using the various interfaces may
vary dramatically. For example, the expense of using a
GSM phone is substantially higher than that of using
a corporate LAN. Sometimes, a mobile device does not
connect directly to a LAN but to another host that has
a permanent LAN connection. A common example is
a PDA connected to a desktop computer via a docking
cradle. At other times, a mobile device may be directly
connected to the LAN via its own network interface. A
mobile host may be connected to different desktop com-
puters and different LANs at different points in time.

In short, the networking options for a mobile host
are more complex than those of a fixed host. For dis-
tributed applications designed with more static network
conditions in mind (such as CORBA middleware), this
environment poses a substantial challenge. The extra
functionality required to deal with this environment can
either take the form of mobility-enhanced applications
or of special mobility support on the mobile hosts, or
both.

Another problem is that the processing power and
memory resources available on many mobile devices are
limited in comparison to those of typical desktop ma-
chines. This restricts the user of a mobile device in that

only a limited number of applications may be available.
Moreover, the functionality of available applications is
often limited. These limitations also affect the applica-
tion developer, as the onus is on him/her to maximise
the use of the available resources.

A third problem, associated with mobility rather
than network connectivity or hardware limitations, is
how to locate mobile devices. A mobile device may be
moving from one point of attachment to another, while
a host on the wired network is attempting to send data
to the old point of attachment. This problem is ad-
dressed in Mobile IP but not in IPv4.

Where to Address Mobility

The problems caused by mobility can be solved on dif-
ferent levels in the protocol stack. ALICE uses a ses-
sion layer type approach in conjunction with applica-
tion support. Another approach, adopted in Mobile IP,
is to solve the problem at the transport layer by extend-
ing the transport protocol. There are advantages and
disadvantages to both approaches.

Solving the problems at the transport layer hides
mobility from higher layers. This is a general and at-
tractive solution because all applications running on
mobile devices can benefit from it. The primary dis-
advantage of changing the transport protocol is that
it requires all the involved parties to use the modified
transport protocol. Solving the problem on a higher
level (such as the session layer) is a less general solution

because it requires applications to use the session layer
instead of the transport layer. The advantage is that
no modifications to the transport protocol are required.

IIOP as Mobile CORBA

In a CORBA context, objects running on mobile hard-
ware move along with the hardware. A CORBA object
is typically hosted by an ORB but current ORBS are
generally too big and cumbersome to run on the full
range of current mobile devices. A better way of let-

ting mobile applications use CORBA technology is to
bring only a subset of ORB functionality onto the mo-
bile host. The IIOP protocol is an example of such a
subset. IIOP implements the minimum ORB function-
ality required for objects running on a mobile device to

interact with remote objects.
IIOP is a client-server based protocol. The client

connects to the server, sends requests and receives replies
whereafter the connection is closed. A common mis-
conception is that servers are always large and complex
pieces of software which would rarely need to reside on

a mobile host. In practice, however, typical distributed
applications often consist of many objects, each being
a client as well as a server. Therefore, it is important
to support servers as well as clients on mobile devices.

Unfortunately, like most existing CORBA standards,
IIOP is designed for a fairly static environment and us-
ing it in a mobile setting is not straightforward. Our
work on mobile CORBA has revealed a number of prob-
lems, some of which are related to mobility and some
to the characteristics of wireless networks and mobile
devices.

It is assumed that IIOP servers rarely (or never)
change their transport connection endpoints, i.e.,
DNS names and IP addresses.

Both IIOP and transport connections are assumed
to break very rarely. IIOP is heavily connection-
oriented but has no support for resuming a broken
IIOP connection over a different transport connec-
tion. When a transport connection breaks, the
IIOP connection’s state is irrevocably lost. This
will typically result in the states of the client and
server becoming inconsistent.

Because IIOP assumes a single underlying trans-
port connection for the lifetime of an IIOP con-
nection, there is no means of changing network
interface (e.g., from GSM to Ethernet) during an
IIOP connection without breaking it.

Transport connections are assumed to have a rela-
tively high bandwidth. As pointed out by [9], the
IIOP encoding format is designed to be easy to use
rather than to optimise bandwidth utilisation.

37

rl
Fixed
Host

T New-“
Connection

: Old
: CoMection

I 1

--a-

.

Wired connection
Wireless connection
Old Connection

Figure 1: Communications in the ALICE Environment

The rest of this paper describes our Architecture for
Location Independent CORBA Environments (ALICE)
that addresses the above problems. The architecture
differs from previous work such as [4] and [9] in that it
supports mobile servers without relying on a centralised

service to keep track of their current locations.
We proceed as follows. First, section 2 gives an

overview of the architecture. Then, sections 3 to 5 de-
scribe the operation and design of the three central com-
ponents of the architecture in detail. Section 6 presents
the results obtained with the implementation and sec-
tion 7 discusses related work. Finally, section 8 con-
cludes.

2 Overview

This section gives an overview of the ALICE architec-
ture. Though specific to IIOP, the ALICE architecture
itself is an instance of a more general architecture which
can be used for a variety of protocols. Work on this ar-
chitecture is currently ongoing and ALICE, being the
first in a series of implementations, has been our test
case. We begin by describing the physical environment
assumed by our work before presenting the software
components that constitute ALICE.

2.1 The ALICE Environment

Figure 1 gives an overview of communications in the
ALICE architecture. Mobile hosts are connected to mo-
bility gateways via wireless links (or low-speed wired
links such as serial lines) shown with dashed lines. The
mobility gateway has several roles, one of which is to act
as a proxy for a mobile host, relaying incoming and out-

going communications over wired connections as shown
with the solid lines. Another role is to perform address
translation and redirection for the higher layers, as ex-

plained in section 5.
A mobile host can change mobility gateway as it

moves, causing a handoff from the old to the new mo-
bility gateway, as shown to the left in the figure. This
involves transferring state information from the old to
the new mobility gateway and tunneling open connec-
tions for the remainder of their lifetime. Handoff, a
fairly complicated procedure, is explained in detail in
section 4.2.

2.2 Software Architecture

Figure 2 gives an overview of the ALICE architecture.
The layers in the figure are shown in the traditional
manner, such that layers at the same level communi-
cate which each other via the layers below them. The
TCP/IP Layer represents any implementation of the
well-known protocol. Note that there is no requirement
for Mobile IP to be available on the various hosts.

Apart from TCP/IP, the architecture consists of three
other layers. Of these, the Mobility Layer (ML) provides
mobility support that is independent of both CORBA
and IIOP and that can also be used to support other
protocols such as HTTP. The IIOP Layer implements
the IIOP protocol independently of mobility and can
be layered either above a standard implementation of
TCP/IP for use in a traditional Internet environment,
or above the ML for use in a mobile environment sup-
porting client objects on mobile devices, or above the
S/IIOP layer where both client and server objects are to
be hosted on mobile devices. The Swizzling or S/IIOP

38

Mobile Host Mobility Gateway Fixed Host

ORE3 or IIOP

------ S/IIOP Layer

t---w Logical flow of communication
l Actual flow of communication

Figure 2: Overview of the ALICE Architecture

Layer provides the IIOP support that is required specif-
ically in mobile environments where server objects are

to be hosted on mobile devices.
The ML plays several roles in the architecture. First,

it hides broken TCP connections from the layer above
it by performing transparent reconnection attempts. In
an IIOP context, this assures at-most-once invocation

semantics even in the presence of broken wireless con-
nections. Second, the ML on the mobile host lets the
layer above it allocate TCP/IP ports on the mobility
gateway for incoming connection attempts. This is nec-
essary to allow clients on the wired network to create
TCP connections to the mobile device. Such connection
attempts are sent to the mobility gateway which creates
corresponding logical connections to the mobile device.
Third, it performs handoff between mobility gateways,
in case the mobile host moves from one gateway to an-

other. Finally, it can (optionally) notify higher layers

about the current network connection point. In paxtic-
ular, this information is used by the S/IIOP layer to
perform the object reference translation described be-
low. The interface exported by the ML is a superset
of the well-known Berkeley sockets interface providing
extensions to support mobile-aware clients while still
being backwards compatible with applications that use
a standard sockets interface.

The S/IIOP layer is the mobility-aware component
of the IIOP implementation and is used in tandem with
the IIOP layer to support server objects on the mobile
host. The S/IIOP layer is used by the IIOP layer to
perform operations which are affected by mobility, es-

pecially publication and encoding of object references.
In CORBA, each server object has its own object refer-

ence, called an Interoperable Object Reference (IOR),
that uniquely identifies and locates the object. At least

one (hostname, PC&#) pair is part of the IOR. When an
IOR is created on a mobile host, the (hostname, port#)
pair of the mobile host is replaced by that of the mobil-
ity gateway. Such an IOR is said to be swizzled. S/IIOP
on the mobile host uses the underlying ML to obtain in-

formation about the current network connection point
in order to perform this swizzling of 10%. This allows a
client on the fixed network to contact the mobility gate-

way instead of the mobile host. S/IIOP on the mobility
gateway is in turn configured to forward incoming re-
quests to the server object on the mobile host. S/IIOP
exports a traditional sockets-like interface to the layer
above as well as operations to create and destroy object
references.

The IIOP layer is our implementation of the IIOP

protocol. It allows the layer above it to communicate
with other CORBA applications, such as those sup-
ported by CORBA 2 compliant ORBS or other IIOP im-
plementations, e.g., IONA’s IIOP Engine [8]. The im-
plementation expects a standard sockets interface from

the layer below and can be supported directly above
TCP/IP, the ML or S/IIOP layer as required.

3 The IIOP Layer

IIOP defines the minimum protocol necessary to trans-
fer invocations between ORBS. IIOP makes a distinc-
tion between clients and servers in a request/reply in-
teraction. A client creates an IIOP connection to a
server and sends request messages to which the server
typically responds with a corresponding reply message.

39

The client is prohibited from sending reply messages as
is the server from sending request messages. The server

may act as a client by opening a different connection to
another server.

IIOP specifies eight message types that provide the
capability to transparently locate and invoke the meth-
ods of a server object. A method is invoked using an
IIOP Request message. The Request message identifies
the object being invoked and also contains the symbolic
name of the method. In addition, the Request message
contains any parameters passed to the method. Any
results from the invocation are returned in an IIOP
Reply message. A client can cancel an outstanding
request by sending a CancelRequest message to the
server. In case the server object no longer resides at
the location specified in the IOR, the server can return
a LOCATION-FORWARD reply containing a new IOR for
the server object.

IIOP also provides a LocateRequest message which
can be used to check an object’s location before pro
ceeding to invoke its methods. The server replies with
a LocateReply message containing the current location
of the object in the form of a new IOR.

IIOP messages are transmitted using a well-defined
transfer syntax called the Common Data Representa-
tion (CDR). CDR maps data types into a low-level rep-
resentation for “on the wire” transfer between clients
and servers. Simple as well as complex data types (in-
cluding IORs) can be marshalled into CDR format.
1OR.s can also be sttingified, meaning marshalled into a
string form. A stringified IOR can be transmitted via
non-CORBA means such as being written to a file, sent
by email or published on a web page.

3.1 Interface

Although the OMG has defined IIOP as its standard
protocol for ORB interoperability, there is no standard
API for IIOP implementations. A primary design con-
sideration for our IIOP layer was to provide a consis-
tent, object-oriented and easy-to-use API. Despite the
fact that there are only eight IIOP messages, there is a
fair amount of complexity (such as sequence numbering
and data alignment) involved in creating and handling
messages. Our API hides a lot of that complexity from
the application without impairing the functionality of
the protocol.

We first wrote the IIOP API in OMG’s Interface
Definition Language (IDL) and then mapped it to a set
of C++ classes which were subsequently implemented.
The API is based on the concepts of messages and end-
points described below.

Messages can be client messages (sent by clients to
servers) or server messages (vice versa). Some

IIOP messages can be sent both ways and there-
fore belong to both groups. Some IIOP messages

can be used to carry data and therefore have mar-
shalling and unmarshalling functions.

Endpoints fall into two groups: client endpoints (owned
by clients) and server endpoints (owned by servers).
A client uses a client endpoint to send client mes-
sages and receive server messages. Analogusly, a
server uses a server endpoint to receive client mes-
sages and send server messages. An IIOP connec-
tion always has one endpoint of each type.

3.2 Design

The design of the IIOP layer can be broken into four sec-
tions: message representation, data marshalling, trans-
port classes, and communication endpoints. Each sec-
tion is discussed below.

Message Representation

A C++ class is used to represent each IIOP message.
These classes inherit from either a client message or a
server message class. This prevents an application, act-
ing as a server, from sending IIOP messages which are
specific to clients and a client application from send-
ing server messages. Two of the eight IIOP messages

(MessageError and Fragment) can be sent by clients as
well as servers and therefore inherit from both classes.

Data Marshalling

The data-carrying IIOP messages (Request, Reply, Lo-
cateReply and Fragment) implement marshalling meth-
ods that insert the various data types into an inter-
nally managed buffer according to the data alignment
requirements of IIOP. This buffer can then be sent over
a transport connection. When an IIOP message is re-
ceived, corresponding unmarshalling methods can be
used to extract data from the IIOP message. Message
classes inherit marshalling operations from a class called
CDR.

Transport Classes

Endpoints are implemented as an abstract base class
from which the subclasses TcpEndpoint, MobileEnd-
point and SwizzleEndpoint inherit. The TcpEndpoint
class uses the underlying TCP/IP layer while Swizzle-
Endpoint and MobileEndpoint use the ML. The ma-
jority of methods of the SwizzleEndpoint class fall
through to the MobileEndpoint class with the excep-
tion of the Listen0 method that implements the sock-
ets listen0 call, as discussed in section 5.2. Distin-
guishing between the underlying transport layer in this
way makes it potentially possible to switch dynamically

40

between using the ML and the TCP/IP layer. This re-
quires that state information is transferred from one
layer to another (obviously non-trivial) and is currently
being investigated.

Communication Endpoints

Client endpoints are implemented by the ClientEnd-
point class which has three public methods: Connect 0,
Send0 and ReceiveO. The first of these takes an in-
stance of the IOR class as a parameter and uses the
addressing information contained in it to create an un-
derlying connection to the server object. The Send0
method is used to send IIOP client messages to the
server after the connection has been obtained. The
Receive0 method is used to receive an IIOP server
message from the underlying connection and return a
corresponding server message object to the caller.

Similar to the ClientEndpoint class, the Server-

Endpoint class also has methods to send and receive
IIOP mesages. Again the server is prevented from send-
ing IIOP client messages because of the inheritance
rules. In addition, the ServerEndpoint class provides
a method to block on the currently open connections,
waiting for an IIOP message to be received.

4 The Mobility Layer

From the point of view of higher layers, the ML per-
forms four important functions.

It shields the IIOP layer from the inherent unreli-
ablity of wireless media by transparently reestab-
lishing broken transport connections either via the
same, or a different, mobility gateway.

It lets the IIOP layer on the mobile host allocate
TCP ports on the mobility gateway to accept in-
coming connections.

It offers mobility information to the S/IIOP layer

on both the mobile host and the mobility gateway,
so that address translation and request forwarding
can be performed.

It performs handoff between mobility gateways,
in particular tunnelling the open transport con-
nections between fixed hosts and the old mobility
gateway for the remainder of their lifetime.

The following sections describe the ML interface and
its implementation in detail.

4.1 Interface

In order to make its functionality available to applica-
tions in an easily usable manner, the ML implements
a sockets-like API known as sockets+. This API offers

all the conventional sockets calls in addition to two new
ones. The semantics one of the standard calls have been
modified slightly because the ML cannot make the same
guarantees with regards to interface and port allocation
that an ordinary TCP implementation can.

Callbacks

The sockets+ API introduces two new operations to
provide mobility information to higher layers by regis-
tration and deregistration of callback functions. When
a mobile host changes mobility gateways, all registered
callback functions are invoked by the ML on both the
mobile host and the two mobility gateways. The API
for registering and deregistering callback functions is:

typedef void (*CBF)
(int fd, char *new-mg-name. int new-port);

int add-callbackcint fd, CBF cbf);
int delete-callbackcint fd);

Callbacks are only used for server sockets. A typical
server application (such as our IIOP layer when used to
implement a CORBA server) will invoke socket 0 fol-
lowed by bindO, listen0 and accept 0 when start-
ing to wait for client connections. When using the sock-
ets+ API, the server should also register a callback func-
tion between invoking bind0 and listeno. This will

cause it to receive a callback in case the mobility gate-
way changes. The thread that is listening will not be
interrupted. The S/IIOP layer uses this functionality
to maintain up-to-date information about the mobile
host’s current connection point.

Changed Sockets Semantics

A minor modification to the standard sockets seman-
tics was required because the ML cannot (and should
not) make the same guarantees concerning interface and
port allocation as a normal implementation of TCP/IP.
A server-type application using sockets typically uses
the bind0 operation to specify the interface and port
number on which it wants to receive client connections.
For example, a web-server would typically bind to port
80, because this is the port generally used by HTTP
servers.

When an application on the mobile host performs a
bind0 using the ML, the operation is in reality per-
formed on the mobility gateway rather than the mobile
host. Consequently, it is impossible for the ML to hon-
our a request for a specific local interface and a spe-
cific port. In addition, the endpoint actually obtained
will change if the mobile host changes mobility gate-
way. Thus, endpoints are not only unpredictable but
also short-lived.

For these reasons, the ML silently ignores any re-
quests for particular interfaces and ports specified in the

41

bind0 operation. This means that a m&e server may
not be running at the interface and port number that it
expects. This may seem like a drastic change at a first
glance. However, because physical mobility requires the

mobile host to change its IP address there is no way
around this problem save for extending the IP proto-
co1.l In the solution described here, a mobile-aware

server (such as the IIOP implementation described in
section 3) may use the callback functions to obtain the
actual endpoint obtained.

4.2 Design

The ML consists of two components, one on the mobile
host and one on the mobility gateway. The two com-
ponents communicate via a single transport layer con-
nection. All data exchanged by the two halves of the
ML is sent on this connection in the form of ML PDUs.
In the following, we describe the different PDU types
and explain when they are used. When we are talking
about the mobile host or the mobility gateway we re-
ally mean the ML on each respective side. PDUs have
sequence numbers and are acknowledged by the other
side upon receipt. Unacknowledged PDUs are cached
on both sides such that they can be retransmitted if
necessary.

Mobile Host as a Client

When a higher layer calls the connect 0 sockets func-
tion, to create a connection to a host on the wired net-
work, the connect 0 call and associated information is
cached in the ML. The connect () call returns indicat-
ing that the connection has been established.

When a client attempts to send or receive data for
the first time using the send0 and recv() functions
over what appears to it to be a TCP connection, the ML
on the mobile host sets up a logical connection to the
ML on the mobility gateway, passing the server name
and port number, cached by the connect (> call, to the
ML on the mobility gateway. The latter uses the server
name and port number to create a TCP connection to
the required host on the wired network. The ML on
the mobility gateway responds with a logical connection
identifier (LCID) that uniquely identifies the connection
between the mobility gateway and the host on the wired
network.

Data Transmission

The ML on the mobile host will assign a unique identi-
fier to data passed to it for transmission. The ML caches
the data, unique identifier and LCID before transmit-
ting them to the mobility gateway. The ML on the
mobility gateway acknowledges the sent items, caching

‘This solution is adopted in Mobile IP. [2]

the acknowledgement, and transmits the data on the
TCP connection associated with the LCID to the fixed
host.

Connection Reestablishment

The ML on the mobile host will detect when the un-
derlying TCP connection is broken and is responsible

for reestablishing the connection between the mobile
host and the mobility gateway. This relieves the mo-
bility gateway from having to know what interfaces are

available on each mobile host and allows the ML on the
mobile host to choose which interface it wishes to use to
reestablish communication. Picking the most suitable
interface in a given situation is non-trivial. Interfaces
could for example be given priorities according to cost,
reliability, bandwidth, connection setup time or power
consumption. In practise, however, the ‘best’ interface
would probably be defined by a combination of several
such factors subject to variations according to the cur-
rent state of the mobile device (e.g., connectivity and
battery life) and to user preferences. In this case, pick-

ing the most suitable interface would involve querying
a user profile and examining available system resources.

If the ML on the mobile host connects to the same
mobility gateway, existing connections are merely re-
sumed. We call this reconnection. In caSe the ML
connects to a different mobility gateway, a handoff (de-
scribed below) between the two mobility gateways takes
place. In the former case, the ML on the mobile host

sends a Reconnect message, including a unique identifier
and the LCID, to the ML on the mobility gateway. The
ML on the mobility gateway acknowledges the Recon-
nect message, and any unacknowledged data that was
sent over the lost connection is retransmitted over the
new TCP connection.

Connection Shutdown

Higher layers on the mobile host invoke the ML’s close 0
function to close down a logical connection. Both halves
of the ML retransmit any unacknowledged data until
all data is acknowledged. The ML on the mobile host
then sends a shutdown logical connection message to
the mobility gateway. The ML on the mobility gateway
removes all data associated with the logical connection
and acknowledges the shut,down message. On receipt
of the shutdown acknowledgement, the ML on the mo-
bile host removes all data associated with the logical
connection.

Mobile Host as a Server

When the ML bind0 function is called on the mo-
bile host, specifying an address and port number to
which to bind, the ML caches the address and port

42

number. This is again done to minimise the use of the
wireless link. When the listen0 function is subse-
quently called on the mobile host, followed by a call
to accept 0 or select 0, the ML on the mobile host
sends a message to the ML on the mobility gateway,
to start listening for connection attempts. The ML on
the mobility gateway dynamically allocates a port and
acknowledges the previous message, passing back the
port number and the address of the mobility gateway.
The ML on the mobile host takes the dynamically allo-
cated port and proceeds to invoke any registered call-
back functions associated with this logical connection.

When a client on the fixed network attempts to set-
up a connection with the server application on the mo-
bile host, it must possess the @&name, port#) pair
of the mobility gateway. The ML on the mobility gate-
way relays connection attempts to the ML on the mo-
bile host. The ML on the mobile host acknowledges
the connection attempt and un-blocks the first caller of
the accept0 or select0 functions (assuming there
was one). The connection attempt between the mo-
bility gateway and the mobile host includes the LCID
already allocated along with a new LCID for the con-
nection between the mobility gateway and the client on
the fixed network.

Handoff

As described above, a mobile host reconnecting to the
same mobility gateway causes the ML on the mobile
host to send a Reconnect message. In case the mobility
gateway is not the same, the ML on the mobile host
initiates a handoff between the old and new mobility
gateways by sending a Handoff Request message to the
ML on the new mobility gateway. This request includes
the address of the old mobility gateway and the identi-
fiers of any logical connections that existed between the
mobile host and the old mobility gateway.

The ML on the new mobility gateway acknowledges
the handoff request and proceeds to request handoffs for
each logical connection by setting up TCP connections
over the fixed network to the old mobility gateway. The
ML on the old mobility gateway updates the ML cache
on the new mobility gateway, sending all sent but un-
acknowledged data (including their unique identifiers),
any acknowledgements received and any data that has
not yet been sent to the ML on the mobile host.

When the ML on the old mobility gateway has fin-
ished updating the cache on the new mobility gateway,
it clears it owns cache and sends a Finished Handoff
message to the ML on the new mobility gateway. It
then invokes any registered callback functions (e.g., to
update its S/IIOP layer), specifying the new mobility
gateway address. The ML on the new mobility gate-
way sends a Finished Handoff message to the ML on
the mobile host, which is then acknowledged.

At this stage, there may be a number of open trans-
port connections between fixed hosts and the old mo-
bility gateway. Each of these connections will be tun-
nelled between the old and new mobility gateways for
the remainder of its lifetime. It is therefore possible
that a chain of mobility gateways could exist if a mo-
bile host moves frequently and a logical connection has
a long lifetime. New connections are not tunnelled but
refused by the old mobility gateway’s ML. The old mo-
bility gateway’s swizzling layer, however, may redirect
clients as described in section 5.

5 Swizzling Layer

The Swizzling Layer for IIOP (S/IIOP) is the mobile-
aware part of the IIOP implementation and is necessary
to support mobile servers. The S/IIOP layer is invoked
by the application to perform operations that have to do
with IORs. The S/IIOP layer uses the callback mech-
anism of the ML to keep track of the current mobility
gateway and uses this information to swizzle IORs and

keep existing ones up to date.

Swizzling IORs

An IOR contains a number of profiles, each specifying a
location (for IIOP profiles, a hostname or address and a
port number) at which the object can be reached. Each
profile also contains an object lsey (in form of a string)
identifying the object within the server at the given
location. A CORBA server creating an IOR typically
adds one profile to it for each endpoint at which the
object can be reached. A client opening a connection
to a server should try the profiles of the server’s IOR
one at a time until one succeeds.

Swizzling an IOR occurs when a new IOR is to be
created and the mobile host is connected to a mobil-
ity gateway. In this case, each profile referring to a
local interface is removed from the IOR, saved for later
unswizzling and replaced by a profile for the S/IIOP
layer on the current mobility gateway. The S/IIOP
layer on the mobility gateway listens on a default port,
which is known to the S/IIOP layer on the mobile host,
thereby allowing swizzling to take place on the mobile
host.

When the server starts listening on an IOR, a logical
connection between the mobile host and the S/IIOP
layer on the mobility gateway is set up. This allows
connection attempts that arrive at the S/IIOP layer
on the mobility gateway to be forwarded to the server
application on the mobile host.

Reswizzling an IOR occurs when a mobile host moves
from one mobility gateway to another. In this case, the
S/IIOP layer on the mobile host receives a callback from
the ML that the mobility gateway address has changed.

43

The S/IIOP layer reswizzles an IOR by replacing all
profiles referring to the S/IIOP layer on the old mobility
gateway with profiles referring to the S/IIOP layer on
the new mobility gateway.

Unswizzling an IOR occurs if mobility support is re-
moved from the protocol stack, for example in case the
mobile host gets a direct connection to a LAN. In this
case, all IORs known to the S/IIOP layer are unswiz-
zled. For each IOR, the profiles referring to the S/IIOP
layer on the mobility gateway are replaced by the local

profiles that were saved during swizzling. Any profiles
referring to remote interfaces are unchanged.

Invoking a Mobile Server

A client may hold a swizzled IOR identifying a server

object that resides on a mobile host. Because the IOR is
swizzled, it will contain one or more profiles identifying
the S/IIOP layer on a mobility gateway rather than the

mobile device itself. A client attempting to invoke an
object with a swizzled IOR will go through the following

steps.

1. Attempt to connect to the (address,port#) speci-
fied in the first profile. This is the S/IIOP layer on
the mobility gateway to which the mobile host was
connected when the IOR was created. If the mo-

bile host is still connected to this mobility gateway,
the connection attempt will succeed and any IIOP
messages will be forwarded to the mobile server.

2. If the mobile host has moved and reconnected to
a new mobility gateway (after a handoff between
mobility gateways), the S/IIOP layer will redirect
the client to the S/IIOP layer on the new mobility
gateway. If the client sent a Request, the forward-
ing is done with an IIOP LOCATION-FORWARD reply.
If the client sent a LocateRequest, a LocateReply
is used. The S/IIOP layer on the old mobility gate-
way will already have been notified of the handoff
by a callback from the ML on the old mobility
gateway.

3. If the mobile device has not reconnected and no
handoff has taken place, the S/IIOP layer on the
mobility gateway cannot redirect the client. In
this case, the S/IIOP layer passes the incoming
connection to the underlying ML which in turn
waits for the mobile host to reconnect to this or
another mobility gateway. The client is blocked
until this happens.2

The redirection message (in step 2) contains a new
IOR for the object, containing a profile for the S/IIOP

*Accepting connections while the mobile host is disconnected is a
design decision which may change in the future. Another approach
could be to refuse new connections. This may be a better approach
for IIOP clients, if the IOR in question contains other profiles, some
of which may be reachable.

44

layer on the new mobility gateway. In case the mobile
device has already moved on again, the S/IIOP layer on
the new mobility gateway will redirect the client again.
No attempts are made to keep old mobility gateways

up-to-date during handoff, except of course for the two
mobility gateways involved in the handoff.

The Validity of IORs

A client invoking a server must have an IOR for the
server. In practice, this IOR can be obtained either by
CORBA means (e.g., from a naming service) or non-
CORBA means (e.g., being read from a file in stringified

form). Since a server’s IOR changes as it moves and we
make no attempts to update IORs that have been pub-
lished previously, clients may easily obtain IORs that
are out of date. However, when invoking a server us-
ing an outdated IOR, the client will be redirected to-
wards the current location of the server by the S/IIOP
layers on the intermediate mobility gateways. Hence,
the IORs maintained on these mobility gateways effec-
tively consitute a chain of forwarding references. Work
on the maintenance (e.g., shortening) of these chains
is currently in progress. One approach, developed for
migrating objects, is described in [5].

5.1 Interface

The S/IIOP layer on the mobile device has an API that
is used by the IIOP layer above it and by the applica-
tion. The S/IIOP layer on the mobility gateway does
not have an API (it is the uppermost layer in the proto-
col stack) and it is assumed to be already in place along
with the ML on the mobility gateway. The S/IIOP layer
on the mobility gateway registers a callback function
with the ML, so that it is notified whenever handoff
takes place.

As can be seen from figure 2, the S/IIOP layer im-
plements the sockets API. One of the reasons for the
S/IIOP layer implementing a sockets-like API is to fa-
cilitate dynamic configuration of the protocol stack. In
addition, the S/IIOP layer also implements the SIOR
class. The SIOR class is very similar to the IOR class
except that it creates swizzled IORs.

5.2 Design

An IOR is swizzled on the mobile host by pre-pending
the (hostname,port#) pair onto the object key in each
profile of an IOR that refers to a local interface. All
profiles that are not associated with local interfaces are
left untouched. Figure 3 illustrates that state of an IOR,
with just one local interface, before and after swizzling.

It is important to notice that an IOR is constructed
before the server starts to listen for connection attempts
on the address specified within the IOR. This means

IOR before swizzle

hos tname = nmobile.host.comlS
port = 1234
object key = “grid”

IOR after swizzle

hostname = lWmobility.gateway.comlW
port = 5004
object key = *tmobile.host.com:1234:gridu

Figure 3: Swizzling of IORs

that the appropriate S/IIOP default port on the mo-
bility gateway must be known at the time an IOR is

created.
Another approach could have been to use the ML

listen0 function to dynamically allocate a port on the
mobility gateway. The S/IIOP layer would then have
to wait to receive a callback from the ML to obtain this
dynamic port. However, this would cause the wireless
link to be used unnecessarily when the application has
only published the IOR and has not started to accept
client connections.

Since a default port approach is used, the listen0
function exported by the S/IIOP layer needs to be over-
ridden to prevent the dynamic allocation of a port on
the mobility gateway by the ML listen0 function.
The listen0 function of the S/IIOP layer creates a
logical connection to the S/IIOP layer on the mobil-
ity gateway passing it the mobile hostname and port
number.

When an IIOP message, containing the object key of
a swizzled IOR, is sent to the S/IIOP layer on the mobil-
ity gateway by a client on the fixed network, the S/IIOP
layer on the mobility gateway strips off the hostname
and port number from the object key. It then uses this
hostname and port number to lookup the previously es-
tablished logical connection and then forwards the IIOP
message on this logical connection. If no correspond-
ing logical connection can be found, the server on the
mobile host is not yet ready to receive IIOP messages
and the S/IIOP layer returns an error. When a hand-
off occurs, the S/IIOP layer on the mobility gateway is
notified by a callback from the ML and it proceeds to
redirect any new IIOP messages for that connection.

Windows NT and BSD sockets on Solaris. Work is still
being done on the implementation and some features,
for example handoff, are not completely implemented
yet.

This section describes and discusses the experiments
conducted with the architecture. The approach is to
test the IIOP Layer with various combinations of the
ALICE layers (ML and S/IIOP) enabled. A total of
three combinations were tried, each featuring a fixed
and a mobile host. The mobile host was a Handheld
PC (H/PC) running Windows CE and equipped with a
credit card GSM adaptor connected to a GSM phone.
The fixed host was a desktop PC running Windows NT
and equipped with a standard 33.6 kbps modem con-
nected to an ordinary phone line. The fixed host acted
as mobility gateway in all scenarios.

In each scenario, a client on one host invoked a server
on the other by sending an IIOP request and receiving a
reply of the same size as the request. This experiment
was run for a number of different request/reply sizes

(1, 128, 256, 384, 512, 640, 768, 896, 1024, 2048, 3072,
4096, and 5120 bytes) and the invocation times were
measured. Each of these invocations was performed 100
times and the average invocation time was computed.
In all scenarios, times were measured on the client side.

The results of the experiments are shown in figure 4
which gives invocation time as a function of request size.
There are three plots, one for each configuration used:

IIOP shows results from an experiment in which the

IIOP layer was run directly on top of TCP/IP, i.e.,
without any mobility support whatsoever. In this
case, the client resided on the mobile host and the
server on the fixed host.

IIOP+ML shows results from an experiment in which
the IIOP layer was running on top of the ML, i.e.,
with mobility support but without server capabil-
ities on the mobile host. Thus, the client resided
on the mobile host.

IIOP+S/IIOP+ML shows results from an experiment
where the IIOP layer was running with full mo-
bility support, i.e., both the ML and the S/IIOP
layer. In this scenario, the server was run on the
mobile host and the client on the fixed host.

As can be seen from the figure, running the IIOP
layer directly on top of TCP/IP generally gave bet-

6 Evaluation
ter performance than in the two other cases. In par-
tic&r for small invocations (less than approximately

ALICE was initially implemented on Windows NT 4.0
using Visual C++ 5.0. It was then ported to Solaris
using Spare Works C++ and to Windows CE using
the Windows CE Toolkit for Visual C++. Network
communication was achieved using WinSock sockets on

2000 bytes) the cost of mobility support is substantial.
One explanation of this could be that the MLs on both
hosts spend resources multiplexing data onto a single
transport connection. This involves some data copy-
ing, sequence numbering and maintaining a cache of
unacknowledged PDUs, all of which make demands to

45

I ~~ I ~ r

HOP +
IIOP+ML -t-.

IIOP+SIIIOP+ML -n--

0 1000 2000 3000 4000 5000 6000
Request size (bytes)

Figure 4: Performance of IIOP over a Wireless Link (Windows CE)

the mobile host’s limited memory and processing power.
Another factor could be the current acknowledgement
scheme, (described in section 4.2) where each invocation
is given its own sequence number and is acknowledged
individually. For small invocations, the acknowledge-
ment will be comparatively large as will be the time
taken to transmit it. For larger invocations, the time
required to transmit the acknowledgement will be rela-
tively small compared to that of transmitting the entire
invocation.

An interesting observation, which can be made from
figure 4, is that the IIOP+ML and IIOP+S/IIOP+ML
plots are very similar. Although using the ML intro-
duces some overhead, it seems that little extra overhead
is caused by also using the S/IIOP layer. A natural in-
terpretation of this is that supporting mobile servers is
an inexpensive addition to supporting mobile clients. It
should be noted, however, that the overhead caused by
the S/IIOP layer can be expected to increase as more
handoffs occur and more time is spent swizzling and
reswizzling IORs.

7 Related Work

This section describes related work done in the area
of CORBA support on mobile devices. Two projects
in particular, both supported by the European Union’s
ACTS programme, have addressed this problem.

DOLMEN

The DOLMEN [9] project uses a model where mobile
hosts communicate with fixed hosts via DPE bridges
much like the approach described in this paper. Mobile
devices can move between bridges without losing open
connections. The protocol used is called Lightweight
Inter-Orb Protocol (LW-IOP) and is an Enwironment-
Specific Inter-Orb Protocol (ESIOP). LW-IOP is func-
tionally equivalent to IIOP but is designed with mobile
environments in mind. First, it employs caching of un-
sent data combined with an acknowledgement scheme to
deal with the unreliability of the wireless medium. Sec-
ond, its object references contain not the actual names
and addresses of machines (as do IORs) but references
which are translated at runtime via a naming service.

In this way, the DOLMEN approach supports servers
on mobile hosts but relies on a register (the naming
service) to maintain up-to-date information about the
current location of a mobile host.

OnTheMove

Another project which solves the problem at the ses-
sion layer is the OnTheMove [4] project. This project
features an adaption of a commercial IIOP implemen-
tation, IONA’s IIOP Engine [B], on top of a session
layer. The session layer consists of two parts, one run-
ning on the mobile device and one on a base station

46

called a mobility gateway. The mobility gateway talks
to the mobile host via a wireless link and the rest of the
world via a wired network. The session layer shields
the IIOP implementation from the unreliability of the
underlying network layer but does not support handoff
between mobility gateways and does not perform ad-
dress translation of IORs. Therefore, servers can reside
on a mobile host but when it changes connection point,
clients have no means of finding its new location.

Other Projects

Other projects which deal with CORBA and mobility
are the Mobiware [l] project and the Jumping Beans [3]
framework. Mobiware is a toolkit which “enables adap-
tive mobile services to dynamically exploit the intrinsic

scalable properties of mobile multimedia applications in
response to time-varying mobile network conditions” [l]
and is built on the CORBA distributed object model.
Jumping Beans is a toolkit which lets CORBA server
objects move between nodes in a network transparently
to the clients. The approach is based on a centralised

Jumping Beans server. When a CORBA server object
moves, it first moves to the Jumping Beans server and
then to its final destination.

8 Conclusion

This paper has identified and discussed the problems
of mobile CORBA and presented the design and imple-
mentation of our Architecture for Location Independent
CORBA Environments (ALICE). We have explained
how the architecture allows both client and server ob-
jects to reside on mobile hosts and interact with stan-
dard CORBA client and server objects which are un-
aware that they are communicating with mobile peers.
The paper has also explained why the architecture re-
quires no mobility support from the transport layer
(such as Mobile IP [2]) and how it avoids relying on
a centralised location register to keep track of the mo-
bile hosts.

The architecture has been tested in a variety of con-
figurations over a wireless link and the results have
shown that there is a certain overhead in supporting
mobile clients but that mobile servers, given client func-
tionality, come at a very low additional cost.

One particularly interesting feature of the architec-
ture is its separation of the issues into those related
to CORBA and those related to mobility. The latter
are addressed in a general and CORBA-independent
way by the ML, whereas the former are divided into
a mobile-aware (S/IIOP) and a mobile-unaware (IIOP)
part. This threefold structure is independent of CORBA
and can be used as a general way of adding mobility
support to some protocols (such as HTTP) in a similar
fashion to the IIOP implementation described here.

Acknowledgements

The authors are very grateful to IONA Technologies plc
for their generous support and to Tim Walsh and ‘Tricia
Garvey for lending us their mobile phones.

References

PI

PI

PI

WI

[51

031

VI

PI

PI

Oguz Angin, Andrew T. Campbell, Michael E.
Kounavis, and Raymond R.-F. Liao. The Mobiware
Toolkit: Programmable Support for Adaptive Mo-
bile Networking. IEEE Personal Communications

Magazine, August 1998.

C. Perkins (editor). RFC 2002: IP Mobility Sup-
port. Technical report, IBM, October 1996.

Ad Astra Engineering. Jumping Beans White Pa-
per. http://www.jumpingbeans.com/, December

1998.

Peter Kemp et. al. Design of MASE V2
http://www.sics.se/-onthemove/docs/OTM_d33.doc,

1996.

Robert Fowler. Decentralized Object Finding Us-
ing Fonuarding Addresses. PhD thesis, University

of Washington, Seattle, Washington 98195, Decem-
ber 1985. Technical Report 85-12-1.

Object Management Group. Supporting Wireless
Access and Mobility in CORBA, Request For Pro-
posal. (OMG telecom/98-06-04), June 1998.

Object Management Group. The Common Ob-
ject Request Broker: Architecture and Specification,
V2.2. Object Management Group, February 1998.

IONA. IIOP Engine Programming Guide. IONA
Technologies plc, 1997.

P. Reynolds and R. Brangeon. Service Machine De-
velopment for an Open Long-term Mobile and Fixed
Network Environment. Project deliverable, DOL-
MEN Consortium, December 1996.

47

