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Abstract 

CORBA, the Common Object Request Broker Archi- 
tecture, defines a framework for developing object-ori- 
ented distributed applications. Unfortunately, current 
implementations of CORBA have not been designed 
with support for mobile computers in mind. Using 

CORBA in a mobile environment raises a number of 
problems due to hardware mobility and the character- 
istics of wireless networks. This paper identifies and 
discusses these problems and presents the design and 
implementation of our Architecture for Location Inde- 
pendent CORBA Environments (ALICE). ALICE allows 
CORBA objects running on mobile devices to inter- 
act transparently with objects hosted by off-the-shelf 
CORBA implementations. Importantly, ALICE allows 
server as well as client objects to reside on mobile hosts 
without relying on a centralised location register to keep 
track of their whereabouts. 

1 introduction 

CORBA, the Common Object Request Broker Archi- 
tecture [7], from the Object Management Group (OMG), 
defines a framework for developing object-oriented dis- 
tributed applications. CORBA is based on the client- 
server paradigm and the most important component in 
the architecture is the Object Request Broker (ORB) 
which is responsible for relaying object invocations from 

clients to server objects. 
Initially, the CORBA standard made no provision 

for interoperability between ORBS supplied by differ- 
ent vendors. Later versions of the standard addressed 
this issue by defining a standard protocol for inter-ORB 
communication which is known as the General Inter- 
ORB Protocol (GIOP) [7, Chapter 131 and which can 
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be mapped onto different underlying transports. The 
OMG also defined a mapping of GIOP onto TCP/IP 
known as the Internet Inter-ORB Protocol (IIOP) [7, 
Chapter 131. IIOP enables invocations to be relayed 
between different ORBS over TCP/IP and must be sup- 

ported by all CORBA 2 compliant ORBS. 
Current CORBA technology, including the IIOP pro- 

tocol, is not designed for use in a mobile computing 
environment. Using CORBA in such an environment 
raises a number of problems due to hardware mobility 
and the characteristics of wireless networks that have 
yet to be addressed by the OMG [6]. This paper identi- 
fies and discusses the problems of mobile CORBA and 
presents the design and implementation of our Architec- 
ture for Location Independent CORBA Environments 
(ALICE) which all ows CORBA applications running on 

mobile devices to communicate transparently with stan- 
dard CORBA applications (such as those supported by 
off-the-shelf ORBS) using IIOP. The architecture allows 
server as well as client objects to reside on mobile hosts 
without relying on a centralised location register to keep 
track of their whereabouts. IIOP clients and servers re- 
siding on mobile hosts are able to interact with IIOP 
servers and clients on the wired network using stan- 
dard IPv4 and without requiring the wired clients and 
servers to know that they are interacting with clients 
and servers on a mobile host. In particular, no support 
for Mobile IP [2] is required. 

The Mobile Environment 

Current state-of-the-art mobile computers-laptops and 
personal digital assistants (PDAs) such as Windows CE 
devices and the Palm Pilot-are often equipped with 
several communication interfaces. Common types in- 
clude wired and wireless LANs, digital and analogue 
modems, infrared links, and serial lines. Most mobile 
computers support two or more of these and use them 
at various times depending on the user’s preferences as 
well as on his or her work and movement patterns. A 
common characteristic of these interfaces is that they of- 



fer low bandwidth and/or low quality connections com- 
pared to traditional wired networks. In addition, the 
difference in cost of using the various interfaces may 
vary dramatically. For example, the expense of using a 
GSM phone is substantially higher than that of using 
a corporate LAN. Sometimes, a mobile device does not 
connect directly to a LAN but to another host that has 
a permanent LAN connection. A common example is 
a PDA connected to a desktop computer via a docking 
cradle. At other times, a mobile device may be directly 
connected to the LAN via its own network interface. A 
mobile host may be connected to different desktop com- 
puters and different LANs at different points in time. 

In short, the networking options for a mobile host 
are more complex than those of a fixed host. For dis- 
tributed applications designed with more static network 
conditions in mind (such as CORBA middleware), this 
environment poses a substantial challenge. The extra 
functionality required to deal with this environment can 
either take the form of mobility-enhanced applications 
or of special mobility support on the mobile hosts, or 
both. 

Another problem is that the processing power and 
memory resources available on many mobile devices are 
limited in comparison to those of typical desktop ma- 
chines. This restricts the user of a mobile device in that 

only a limited number of applications may be available. 
Moreover, the functionality of available applications is 
often limited. These limitations also affect the applica- 
tion developer, as the onus is on him/her to maximise 
the use of the available resources. 

A third problem, associated with mobility rather 
than network connectivity or hardware limitations, is 
how to locate mobile devices. A mobile device may be 
moving from one point of attachment to another, while 
a host on the wired network is attempting to send data 
to the old point of attachment. This problem is ad- 
dressed in Mobile IP but not in IPv4. 

Where to Address Mobility 

The problems caused by mobility can be solved on dif- 
ferent levels in the protocol stack. ALICE uses a ses- 
sion layer type approach in conjunction with applica- 
tion support. Another approach, adopted in Mobile IP, 
is to solve the problem at the transport layer by extend- 
ing the transport protocol. There are advantages and 
disadvantages to both approaches. 

Solving the problems at the transport layer hides 
mobility from higher layers. This is a general and at- 
tractive solution because all applications running on 
mobile devices can benefit from it. The primary dis- 
advantage of changing the transport protocol is that 
it requires all the involved parties to use the modified 
transport protocol. Solving the problem on a higher 
level (such as the session layer) is a less general solution 

because it requires applications to use the session layer 
instead of the transport layer. The advantage is that 
no modifications to the transport protocol are required. 

IIOP as Mobile CORBA 

In a CORBA context, objects running on mobile hard- 
ware move along with the hardware. A CORBA object 
is typically hosted by an ORB but current ORBS are 
generally too big and cumbersome to run on the full 
range of current mobile devices. A better way of let- 

ting mobile applications use CORBA technology is to 
bring only a subset of ORB functionality onto the mo- 
bile host. The IIOP protocol is an example of such a 
subset. IIOP implements the minimum ORB function- 
ality required for objects running on a mobile device to 

interact with remote objects. 
IIOP is a client-server based protocol. The client 

connects to the server, sends requests and receives replies 
whereafter the connection is closed. A common mis- 
conception is that servers are always large and complex 
pieces of software which would rarely need to reside on 

a mobile host. In practice, however, typical distributed 
applications often consist of many objects, each being 
a client as well as a server. Therefore, it is important 
to support servers as well as clients on mobile devices. 

Unfortunately, like most existing CORBA standards, 
IIOP is designed for a fairly static environment and us- 
ing it in a mobile setting is not straightforward. Our 
work on mobile CORBA has revealed a number of prob- 
lems, some of which are related to mobility and some 
to the characteristics of wireless networks and mobile 
devices. 

It is assumed that IIOP servers rarely (or never) 
change their transport connection endpoints, i.e., 
DNS names and IP addresses. 

Both IIOP and transport connections are assumed 
to break very rarely. IIOP is heavily connection- 
oriented but has no support for resuming a broken 
IIOP connection over a different transport connec- 
tion. When a transport connection breaks, the 
IIOP connection’s state is irrevocably lost. This 
will typically result in the states of the client and 
server becoming inconsistent. 

Because IIOP assumes a single underlying trans- 
port connection for the lifetime of an IIOP con- 
nection, there is no means of changing network 
interface (e.g., from GSM to Ethernet) during an 
IIOP connection without breaking it. 

Transport connections are assumed to have a rela- 
tively high bandwidth. As pointed out by [9], the 
IIOP encoding format is designed to be easy to use 
rather than to optimise bandwidth utilisation. 
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Figure 1: Communications in the ALICE Environment 

The rest of this paper describes our Architecture for 
Location Independent CORBA Environments (ALICE) 
that addresses the above problems. The architecture 
differs from previous work such as [4] and [9] in that it 
supports mobile servers without relying on a centralised 

service to keep track of their current locations. 
We proceed as follows. First, section 2 gives an 

overview of the architecture. Then, sections 3 to 5 de- 
scribe the operation and design of the three central com- 
ponents of the architecture in detail. Section 6 presents 
the results obtained with the implementation and sec- 
tion 7 discusses related work. Finally, section 8 con- 
cludes. 

2 Overview 

This section gives an overview of the ALICE architec- 
ture. Though specific to IIOP, the ALICE architecture 
itself is an instance of a more general architecture which 
can be used for a variety of protocols. Work on this ar- 
chitecture is currently ongoing and ALICE, being the 
first in a series of implementations, has been our test 
case. We begin by describing the physical environment 
assumed by our work before presenting the software 
components that constitute ALICE. 

2.1 The ALICE Environment 

Figure 1 gives an overview of communications in the 
ALICE architecture. Mobile hosts are connected to mo- 
bility gateways via wireless links (or low-speed wired 
links such as serial lines) shown with dashed lines. The 
mobility gateway has several roles, one of which is to act 
as a proxy for a mobile host, relaying incoming and out- 

going communications over wired connections as shown 
with the solid lines. Another role is to perform address 
translation and redirection for the higher layers, as ex- 

plained in section 5. 
A mobile host can change mobility gateway as it 

moves, causing a handoff from the old to the new mo- 
bility gateway, as shown to the left in the figure. This 
involves transferring state information from the old to 
the new mobility gateway and tunneling open connec- 
tions for the remainder of their lifetime. Handoff, a 
fairly complicated procedure, is explained in detail in 
section 4.2. 

2.2 Software Architecture 

Figure 2 gives an overview of the ALICE architecture. 
The layers in the figure are shown in the traditional 
manner, such that layers at the same level communi- 
cate which each other via the layers below them. The 
TCP/IP Layer represents any implementation of the 
well-known protocol. Note that there is no requirement 
for Mobile IP to be available on the various hosts. 

Apart from TCP/IP, the architecture consists of three 
other layers. Of these, the Mobility Layer (ML) provides 
mobility support that is independent of both CORBA 
and IIOP and that can also be used to support other 
protocols such as HTTP. The IIOP Layer implements 
the IIOP protocol independently of mobility and can 
be layered either above a standard implementation of 
TCP/IP for use in a traditional Internet environment, 
or above the ML for use in a mobile environment sup- 
porting client objects on mobile devices, or above the 
S/IIOP layer where both client and server objects are to 
be hosted on mobile devices. The Swizzling or S/IIOP 
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Figure 2: Overview of the ALICE Architecture 

Layer provides the IIOP support that is required specif- 
ically in mobile environments where server objects are 

to be hosted on mobile devices. 
The ML plays several roles in the architecture. First, 

it hides broken TCP connections from the layer above 
it by performing transparent reconnection attempts. In 
an IIOP context, this assures at-most-once invocation 

semantics even in the presence of broken wireless con- 
nections. Second, the ML on the mobile host lets the 
layer above it allocate TCP/IP ports on the mobility 
gateway for incoming connection attempts. This is nec- 
essary to allow clients on the wired network to create 
TCP connections to the mobile device. Such connection 
attempts are sent to the mobility gateway which creates 
corresponding logical connections to the mobile device. 
Third, it performs handoff between mobility gateways, 
in case the mobile host moves from one gateway to an- 

other. Finally, it can (optionally) notify higher layers 

about the current network connection point. In paxtic- 
ular, this information is used by the S/IIOP layer to 
perform the object reference translation described be- 
low. The interface exported by the ML is a superset 
of the well-known Berkeley sockets interface providing 
extensions to support mobile-aware clients while still 
being backwards compatible with applications that use 
a standard sockets interface. 

The S/IIOP layer is the mobility-aware component 
of the IIOP implementation and is used in tandem with 
the IIOP layer to support server objects on the mobile 
host. The S/IIOP layer is used by the IIOP layer to 
perform operations which are affected by mobility, es- 

pecially publication and encoding of object references. 
In CORBA, each server object has its own object refer- 

ence, called an Interoperable Object Reference (IOR), 
that uniquely identifies and locates the object. At least 

one (hostname, PC&#) pair is part of the IOR. When an 
IOR is created on a mobile host, the (hostname, port#) 
pair of the mobile host is replaced by that of the mobil- 
ity gateway. Such an IOR is said to be swizzled. S/IIOP 
on the mobile host uses the underlying ML to obtain in- 

formation about the current network connection point 
in order to perform this swizzling of 10%. This allows a 
client on the fixed network to contact the mobility gate- 

way instead of the mobile host. S/IIOP on the mobility 
gateway is in turn configured to forward incoming re- 
quests to the server object on the mobile host. S/IIOP 
exports a traditional sockets-like interface to the layer 
above as well as operations to create and destroy object 
references. 

The IIOP layer is our implementation of the IIOP 

protocol. It allows the layer above it to communicate 
with other CORBA applications, such as those sup- 
ported by CORBA 2 compliant ORBS or other IIOP im- 
plementations, e.g., IONA’s IIOP Engine [8]. The im- 
plementation expects a standard sockets interface from 

the layer below and can be supported directly above 
TCP/IP, the ML or S/IIOP layer as required. 

3 The IIOP Layer 

IIOP defines the minimum protocol necessary to trans- 
fer invocations between ORBS. IIOP makes a distinc- 
tion between clients and servers in a request/reply in- 
teraction. A client creates an IIOP connection to a 
server and sends request messages to which the server 
typically responds with a corresponding reply message. 
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The client is prohibited from sending reply messages as 
is the server from sending request messages. The server 

may act as a client by opening a different connection to 
another server. 

IIOP specifies eight message types that provide the 
capability to transparently locate and invoke the meth- 
ods of a server object. A method is invoked using an 
IIOP Request message. The Request message identifies 
the object being invoked and also contains the symbolic 
name of the method. In addition, the Request message 
contains any parameters passed to the method. Any 
results from the invocation are returned in an IIOP 
Reply message. A client can cancel an outstanding 
request by sending a CancelRequest message to the 
server. In case the server object no longer resides at 
the location specified in the IOR, the server can return 
a LOCATION-FORWARD reply containing a new IOR for 
the server object. 

IIOP also provides a LocateRequest message which 
can be used to check an object’s location before pro 
ceeding to invoke its methods. The server replies with 
a LocateReply message containing the current location 
of the object in the form of a new IOR. 

IIOP messages are transmitted using a well-defined 
transfer syntax called the Common Data Representa- 
tion (CDR). CDR maps data types into a low-level rep- 
resentation for “on the wire” transfer between clients 
and servers. Simple as well as complex data types (in- 
cluding IORs) can be marshalled into CDR format. 
1OR.s can also be sttingified, meaning marshalled into a 
string form. A stringified IOR can be transmitted via 
non-CORBA means such as being written to a file, sent 
by email or published on a web page. 

3.1 Interface 

Although the OMG has defined IIOP as its standard 
protocol for ORB interoperability, there is no standard 
API for IIOP implementations. A primary design con- 
sideration for our IIOP layer was to provide a consis- 
tent, object-oriented and easy-to-use API. Despite the 
fact that there are only eight IIOP messages, there is a 
fair amount of complexity (such as sequence numbering 
and data alignment) involved in creating and handling 
messages. Our API hides a lot of that complexity from 
the application without impairing the functionality of 
the protocol. 

We first wrote the IIOP API in OMG’s Interface 
Definition Language (IDL) and then mapped it to a set 
of C++ classes which were subsequently implemented. 
The API is based on the concepts of messages and end- 
points described below. 

Messages can be client messages (sent by clients to 
servers) or server messages (vice versa). Some 

IIOP messages can be sent both ways and there- 
fore belong to both groups. Some IIOP messages 

can be used to carry data and therefore have mar- 
shalling and unmarshalling functions. 

Endpoints fall into two groups: client endpoints (owned 
by clients) and server endpoints (owned by servers). 
A client uses a client endpoint to send client mes- 
sages and receive server messages. Analogusly, a 
server uses a server endpoint to receive client mes- 
sages and send server messages. An IIOP connec- 
tion always has one endpoint of each type. 

3.2 Design 

The design of the IIOP layer can be broken into four sec- 
tions: message representation, data marshalling, trans- 
port classes, and communication endpoints. Each sec- 
tion is discussed below. 

Message Representation 

A C++ class is used to represent each IIOP message. 
These classes inherit from either a client message or a 
server message class. This prevents an application, act- 
ing as a server, from sending IIOP messages which are 
specific to clients and a client application from send- 
ing server messages. Two of the eight IIOP messages 

(MessageError and Fragment) can be sent by clients as 
well as servers and therefore inherit from both classes. 

Data Marshalling 

The data-carrying IIOP messages (Request, Reply, Lo- 
cateReply and Fragment) implement marshalling meth- 
ods that insert the various data types into an inter- 
nally managed buffer according to the data alignment 
requirements of IIOP. This buffer can then be sent over 
a transport connection. When an IIOP message is re- 
ceived, corresponding unmarshalling methods can be 
used to extract data from the IIOP message. Message 
classes inherit marshalling operations from a class called 
CDR. 

Transport Classes 

Endpoints are implemented as an abstract base class 
from which the subclasses TcpEndpoint, MobileEnd- 
point and SwizzleEndpoint inherit. The TcpEndpoint 
class uses the underlying TCP/IP layer while Swizzle- 
Endpoint and MobileEndpoint use the ML. The ma- 
jority of methods of the SwizzleEndpoint class fall 
through to the MobileEndpoint class with the excep- 
tion of the Listen0 method that implements the sock- 
ets listen0 call, as discussed in section 5.2. Distin- 
guishing between the underlying transport layer in this 
way makes it potentially possible to switch dynamically 
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between using the ML and the TCP/IP layer. This re- 
quires that state information is transferred from one 
layer to another (obviously non-trivial) and is currently 
being investigated. 

Communication Endpoints 

Client endpoints are implemented by the ClientEnd- 
point class which has three public methods: Connect 0, 
Send0 and ReceiveO. The first of these takes an in- 
stance of the IOR class as a parameter and uses the 
addressing information contained in it to create an un- 
derlying connection to the server object. The Send0 
method is used to send IIOP client messages to the 
server after the connection has been obtained. The 
Receive0 method is used to receive an IIOP server 
message from the underlying connection and return a 
corresponding server message object to the caller. 

Similar to the ClientEndpoint class, the Server- 

Endpoint class also has methods to send and receive 
IIOP mesages. Again the server is prevented from send- 
ing IIOP client messages because of the inheritance 
rules. In addition, the ServerEndpoint class provides 
a method to block on the currently open connections, 
waiting for an IIOP message to be received. 

4 The Mobility Layer 

From the point of view of higher layers, the ML per- 
forms four important functions. 

It shields the IIOP layer from the inherent unreli- 
ablity of wireless media by transparently reestab- 
lishing broken transport connections either via the 
same, or a different, mobility gateway. 

It lets the IIOP layer on the mobile host allocate 
TCP ports on the mobility gateway to accept in- 
coming connections. 

It offers mobility information to the S/IIOP layer 

on both the mobile host and the mobility gateway, 
so that address translation and request forwarding 
can be performed. 

It performs handoff between mobility gateways, 
in particular tunnelling the open transport con- 
nections between fixed hosts and the old mobility 
gateway for the remainder of their lifetime. 

The following sections describe the ML interface and 
its implementation in detail. 

4.1 Interface 

In order to make its functionality available to applica- 
tions in an easily usable manner, the ML implements 
a sockets-like API known as sockets+. This API offers 

all the conventional sockets calls in addition to two new 
ones. The semantics one of the standard calls have been 
modified slightly because the ML cannot make the same 
guarantees with regards to interface and port allocation 
that an ordinary TCP implementation can. 

Callbacks 

The sockets+ API introduces two new operations to 
provide mobility information to higher layers by regis- 
tration and deregistration of callback functions. When 
a mobile host changes mobility gateways, all registered 
callback functions are invoked by the ML on both the 
mobile host and the two mobility gateways. The API 
for registering and deregistering callback functions is: 

typedef void (*CBF) 
(int fd, char *new-mg-name. int new-port); 

int add-callbackcint fd, CBF cbf); 
int delete-callbackcint fd); 

Callbacks are only used for server sockets. A typical 
server application (such as our IIOP layer when used to 
implement a CORBA server) will invoke socket 0 fol- 
lowed by bindO, listen0 and accept 0 when start- 
ing to wait for client connections. When using the sock- 
ets+ API, the server should also register a callback func- 
tion between invoking bind0 and listeno. This will 

cause it to receive a callback in case the mobility gate- 
way changes. The thread that is listening will not be 
interrupted. The S/IIOP layer uses this functionality 
to maintain up-to-date information about the mobile 
host’s current connection point. 

Changed Sockets Semantics 

A minor modification to the standard sockets seman- 
tics was required because the ML cannot (and should 
not) make the same guarantees concerning interface and 
port allocation as a normal implementation of TCP/IP. 
A server-type application using sockets typically uses 
the bind0 operation to specify the interface and port 
number on which it wants to receive client connections. 
For example, a web-server would typically bind to port 
80, because this is the port generally used by HTTP 
servers. 

When an application on the mobile host performs a 
bind0 using the ML, the operation is in reality per- 
formed on the mobility gateway rather than the mobile 
host. Consequently, it is impossible for the ML to hon- 
our a request for a specific local interface and a spe- 
cific port. In addition, the endpoint actually obtained 
will change if the mobile host changes mobility gate- 
way. Thus, endpoints are not only unpredictable but 
also short-lived. 

For these reasons, the ML silently ignores any re- 
quests for particular interfaces and ports specified in the 
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bind0 operation. This means that a m&e server may 
not be running at the interface and port number that it 
expects. This may seem like a drastic change at a first 
glance. However, because physical mobility requires the 

mobile host to change its IP address there is no way 
around this problem save for extending the IP proto- 
co1.l In the solution described here, a mobile-aware 

server (such as the IIOP implementation described in 
section 3) may use the callback functions to obtain the 
actual endpoint obtained. 

4.2 Design 

The ML consists of two components, one on the mobile 
host and one on the mobility gateway. The two com- 
ponents communicate via a single transport layer con- 
nection. All data exchanged by the two halves of the 
ML is sent on this connection in the form of ML PDUs. 
In the following, we describe the different PDU types 
and explain when they are used. When we are talking 
about the mobile host or the mobility gateway we re- 
ally mean the ML on each respective side. PDUs have 
sequence numbers and are acknowledged by the other 
side upon receipt. Unacknowledged PDUs are cached 
on both sides such that they can be retransmitted if 
necessary. 

Mobile Host as a Client 

When a higher layer calls the connect 0 sockets func- 
tion, to create a connection to a host on the wired net- 
work, the connect 0 call and associated information is 
cached in the ML. The connect () call returns indicat- 
ing that the connection has been established. 

When a client attempts to send or receive data for 
the first time using the send0 and recv() functions 
over what appears to it to be a TCP connection, the ML 
on the mobile host sets up a logical connection to the 
ML on the mobility gateway, passing the server name 
and port number, cached by the connect (> call, to the 
ML on the mobility gateway. The latter uses the server 
name and port number to create a TCP connection to 
the required host on the wired network. The ML on 
the mobility gateway responds with a logical connection 
identifier (LCID) that uniquely identifies the connection 
between the mobility gateway and the host on the wired 
network. 

Data Transmission 

The ML on the mobile host will assign a unique identi- 
fier to data passed to it for transmission. The ML caches 
the data, unique identifier and LCID before transmit- 
ting them to the mobility gateway. The ML on the 
mobility gateway acknowledges the sent items, caching 

‘This solution is adopted in Mobile IP. [2] 

the acknowledgement, and transmits the data on the 
TCP connection associated with the LCID to the fixed 
host. 

Connection Reestablishment 

The ML on the mobile host will detect when the un- 
derlying TCP connection is broken and is responsible 

for reestablishing the connection between the mobile 
host and the mobility gateway. This relieves the mo- 
bility gateway from having to know what interfaces are 

available on each mobile host and allows the ML on the 
mobile host to choose which interface it wishes to use to 
reestablish communication. Picking the most suitable 
interface in a given situation is non-trivial. Interfaces 
could for example be given priorities according to cost, 
reliability, bandwidth, connection setup time or power 
consumption. In practise, however, the ‘best’ interface 
would probably be defined by a combination of several 
such factors subject to variations according to the cur- 
rent state of the mobile device (e.g., connectivity and 
battery life) and to user preferences. In this case, pick- 

ing the most suitable interface would involve querying 
a user profile and examining available system resources. 

If the ML on the mobile host connects to the same 
mobility gateway, existing connections are merely re- 
sumed. We call this reconnection. In caSe the ML 
connects to a different mobility gateway, a handoff (de- 
scribed below) between the two mobility gateways takes 
place. In the former case, the ML on the mobile host 

sends a Reconnect message, including a unique identifier 
and the LCID, to the ML on the mobility gateway. The 
ML on the mobility gateway acknowledges the Recon- 
nect message, and any unacknowledged data that was 
sent over the lost connection is retransmitted over the 
new TCP connection. 

Connection Shutdown 

Higher layers on the mobile host invoke the ML’s close 0 
function to close down a logical connection. Both halves 
of the ML retransmit any unacknowledged data until 
all data is acknowledged. The ML on the mobile host 
then sends a shutdown logical connection message to 
the mobility gateway. The ML on the mobility gateway 
removes all data associated with the logical connection 
and acknowledges the shut,down message. On receipt 
of the shutdown acknowledgement, the ML on the mo- 
bile host removes all data associated with the logical 
connection. 

Mobile Host as a Server 

When the ML bind0 function is called on the mo- 
bile host, specifying an address and port number to 
which to bind, the ML caches the address and port 
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number. This is again done to minimise the use of the 
wireless link. When the listen0 function is subse- 
quently called on the mobile host, followed by a call 
to accept 0 or select 0, the ML on the mobile host 
sends a message to the ML on the mobility gateway, 
to start listening for connection attempts. The ML on 
the mobility gateway dynamically allocates a port and 
acknowledges the previous message, passing back the 
port number and the address of the mobility gateway. 
The ML on the mobile host takes the dynamically allo- 
cated port and proceeds to invoke any registered call- 
back functions associated with this logical connection. 

When a client on the fixed network attempts to set- 
up a connection with the server application on the mo- 
bile host, it must possess the @&name, port#) pair 
of the mobility gateway. The ML on the mobility gate- 
way relays connection attempts to the ML on the mo- 
bile host. The ML on the mobile host acknowledges 
the connection attempt and un-blocks the first caller of 
the accept0 or select0 functions (assuming there 
was one). The connection attempt between the mo- 
bility gateway and the mobile host includes the LCID 
already allocated along with a new LCID for the con- 
nection between the mobility gateway and the client on 
the fixed network. 

Handoff 

As described above, a mobile host reconnecting to the 
same mobility gateway causes the ML on the mobile 
host to send a Reconnect message. In case the mobility 
gateway is not the same, the ML on the mobile host 
initiates a handoff between the old and new mobility 
gateways by sending a Handoff Request message to the 
ML on the new mobility gateway. This request includes 
the address of the old mobility gateway and the identi- 
fiers of any logical connections that existed between the 
mobile host and the old mobility gateway. 

The ML on the new mobility gateway acknowledges 
the handoff request and proceeds to request handoffs for 
each logical connection by setting up TCP connections 
over the fixed network to the old mobility gateway. The 
ML on the old mobility gateway updates the ML cache 
on the new mobility gateway, sending all sent but un- 
acknowledged data (including their unique identifiers), 
any acknowledgements received and any data that has 
not yet been sent to the ML on the mobile host. 

When the ML on the old mobility gateway has fin- 
ished updating the cache on the new mobility gateway, 
it clears it owns cache and sends a Finished Handoff 
message to the ML on the new mobility gateway. It 
then invokes any registered callback functions (e.g., to 
update its S/IIOP layer), specifying the new mobility 
gateway address. The ML on the new mobility gate- 
way sends a Finished Handoff message to the ML on 
the mobile host, which is then acknowledged. 

At this stage, there may be a number of open trans- 
port connections between fixed hosts and the old mo- 
bility gateway. Each of these connections will be tun- 
nelled between the old and new mobility gateways for 
the remainder of its lifetime. It is therefore possible 
that a chain of mobility gateways could exist if a mo- 
bile host moves frequently and a logical connection has 
a long lifetime. New connections are not tunnelled but 
refused by the old mobility gateway’s ML. The old mo- 
bility gateway’s swizzling layer, however, may redirect 
clients as described in section 5. 

5 Swizzling Layer 

The Swizzling Layer for IIOP (S/IIOP) is the mobile- 
aware part of the IIOP implementation and is necessary 
to support mobile servers. The S/IIOP layer is invoked 
by the application to perform operations that have to do 
with IORs. The S/IIOP layer uses the callback mech- 
anism of the ML to keep track of the current mobility 
gateway and uses this information to swizzle IORs and 

keep existing ones up to date. 

Swizzling IORs 

An IOR contains a number of profiles, each specifying a 
location (for IIOP profiles, a hostname or address and a 
port number) at which the object can be reached. Each 
profile also contains an object lsey (in form of a string) 
identifying the object within the server at the given 
location. A CORBA server creating an IOR typically 
adds one profile to it for each endpoint at which the 
object can be reached. A client opening a connection 
to a server should try the profiles of the server’s IOR 
one at a time until one succeeds. 

Swizzling an IOR occurs when a new IOR is to be 
created and the mobile host is connected to a mobil- 
ity gateway. In this case, each profile referring to a 
local interface is removed from the IOR, saved for later 
unswizzling and replaced by a profile for the S/IIOP 
layer on the current mobility gateway. The S/IIOP 
layer on the mobility gateway listens on a default port, 
which is known to the S/IIOP layer on the mobile host, 
thereby allowing swizzling to take place on the mobile 
host. 

When the server starts listening on an IOR, a logical 
connection between the mobile host and the S/IIOP 
layer on the mobility gateway is set up. This allows 
connection attempts that arrive at the S/IIOP layer 
on the mobility gateway to be forwarded to the server 
application on the mobile host. 

Reswizzling an IOR occurs when a mobile host moves 
from one mobility gateway to another. In this case, the 
S/IIOP layer on the mobile host receives a callback from 
the ML that the mobility gateway address has changed. 
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The S/IIOP layer reswizzles an IOR by replacing all 
profiles referring to the S/IIOP layer on the old mobility 
gateway with profiles referring to the S/IIOP layer on 
the new mobility gateway. 

Unswizzling an IOR occurs if mobility support is re- 
moved from the protocol stack, for example in case the 
mobile host gets a direct connection to a LAN. In this 
case, all IORs known to the S/IIOP layer are unswiz- 
zled. For each IOR, the profiles referring to the S/IIOP 
layer on the mobility gateway are replaced by the local 

profiles that were saved during swizzling. Any profiles 
referring to remote interfaces are unchanged. 

Invoking a Mobile Server 

A client may hold a swizzled IOR identifying a server 

object that resides on a mobile host. Because the IOR is 
swizzled, it will contain one or more profiles identifying 
the S/IIOP layer on a mobility gateway rather than the 

mobile device itself. A client attempting to invoke an 
object with a swizzled IOR will go through the following 

steps. 

1. Attempt to connect to the (address,port#) speci- 
fied in the first profile. This is the S/IIOP layer on 
the mobility gateway to which the mobile host was 
connected when the IOR was created. If the mo- 

bile host is still connected to this mobility gateway, 
the connection attempt will succeed and any IIOP 
messages will be forwarded to the mobile server. 

2. If the mobile host has moved and reconnected to 
a new mobility gateway (after a handoff between 
mobility gateways), the S/IIOP layer will redirect 
the client to the S/IIOP layer on the new mobility 
gateway. If the client sent a Request, the forward- 
ing is done with an IIOP LOCATION-FORWARD reply. 
If the client sent a LocateRequest, a LocateReply 
is used. The S/IIOP layer on the old mobility gate- 
way will already have been notified of the handoff 
by a callback from the ML on the old mobility 
gateway. 

3. If the mobile device has not reconnected and no 
handoff has taken place, the S/IIOP layer on the 
mobility gateway cannot redirect the client. In 
this case, the S/IIOP layer passes the incoming 
connection to the underlying ML which in turn 
waits for the mobile host to reconnect to this or 
another mobility gateway. The client is blocked 
until this happens.2 

The redirection message (in step 2) contains a new 
IOR for the object, containing a profile for the S/IIOP 

*Accepting connections while the mobile host is disconnected is a 
design decision which may change in the future. Another approach 
could be to refuse new connections. This may be a better approach 
for IIOP clients, if the IOR in question contains other profiles, some 
of which may be reachable. 
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layer on the new mobility gateway. In case the mobile 
device has already moved on again, the S/IIOP layer on 
the new mobility gateway will redirect the client again. 
No attempts are made to keep old mobility gateways 

up-to-date during handoff, except of course for the two 
mobility gateways involved in the handoff. 

The Validity of IORs 

A client invoking a server must have an IOR for the 
server. In practice, this IOR can be obtained either by 
CORBA means (e.g., from a naming service) or non- 
CORBA means (e.g., being read from a file in stringified 

form). Since a server’s IOR changes as it moves and we 
make no attempts to update IORs that have been pub- 
lished previously, clients may easily obtain IORs that 
are out of date. However, when invoking a server us- 
ing an outdated IOR, the client will be redirected to- 
wards the current location of the server by the S/IIOP 
layers on the intermediate mobility gateways. Hence, 
the IORs maintained on these mobility gateways effec- 
tively consitute a chain of forwarding references. Work 
on the maintenance (e.g., shortening) of these chains 
is currently in progress. One approach, developed for 
migrating objects, is described in [5]. 

5.1 Interface 

The S/IIOP layer on the mobile device has an API that 
is used by the IIOP layer above it and by the applica- 
tion. The S/IIOP layer on the mobility gateway does 
not have an API (it is the uppermost layer in the proto- 
col stack) and it is assumed to be already in place along 
with the ML on the mobility gateway. The S/IIOP layer 
on the mobility gateway registers a callback function 
with the ML, so that it is notified whenever handoff 
takes place. 

As can be seen from figure 2, the S/IIOP layer im- 
plements the sockets API. One of the reasons for the 
S/IIOP layer implementing a sockets-like API is to fa- 
cilitate dynamic configuration of the protocol stack. In 
addition, the S/IIOP layer also implements the SIOR 
class. The SIOR class is very similar to the IOR class 
except that it creates swizzled IORs. 

5.2 Design 

An IOR is swizzled on the mobile host by pre-pending 
the (hostname,port#) pair onto the object key in each 
profile of an IOR that refers to a local interface. All 
profiles that are not associated with local interfaces are 
left untouched. Figure 3 illustrates that state of an IOR, 
with just one local interface, before and after swizzling. 

It is important to notice that an IOR is constructed 
before the server starts to listen for connection attempts 
on the address specified within the IOR. This means 



IOR before swizzle 

hos tname = nmobile.host.comlS 
port = 1234 
object key = “grid” 

IOR after swizzle 

hostname = lWmobility.gateway.comlW 
port = 5004 
object key = *tmobile.host.com:1234:gridu 

Figure 3: Swizzling of IORs 

that the appropriate S/IIOP default port on the mo- 
bility gateway must be known at the time an IOR is 

created. 
Another approach could have been to use the ML 

listen0 function to dynamically allocate a port on the 
mobility gateway. The S/IIOP layer would then have 
to wait to receive a callback from the ML to obtain this 
dynamic port. However, this would cause the wireless 
link to be used unnecessarily when the application has 
only published the IOR and has not started to accept 
client connections. 

Since a default port approach is used, the listen0 
function exported by the S/IIOP layer needs to be over- 
ridden to prevent the dynamic allocation of a port on 
the mobility gateway by the ML listen0 function. 
The listen0 function of the S/IIOP layer creates a 
logical connection to the S/IIOP layer on the mobil- 
ity gateway passing it the mobile hostname and port 
number. 

When an IIOP message, containing the object key of 
a swizzled IOR, is sent to the S/IIOP layer on the mobil- 
ity gateway by a client on the fixed network, the S/IIOP 
layer on the mobility gateway strips off the hostname 
and port number from the object key. It then uses this 
hostname and port number to lookup the previously es- 
tablished logical connection and then forwards the IIOP 
message on this logical connection. If no correspond- 
ing logical connection can be found, the server on the 
mobile host is not yet ready to receive IIOP messages 
and the S/IIOP layer returns an error. When a hand- 
off occurs, the S/IIOP layer on the mobility gateway is 
notified by a callback from the ML and it proceeds to 
redirect any new IIOP messages for that connection. 

Windows NT and BSD sockets on Solaris. Work is still 
being done on the implementation and some features, 
for example handoff, are not completely implemented 
yet. 

This section describes and discusses the experiments 
conducted with the architecture. The approach is to 
test the IIOP Layer with various combinations of the 
ALICE layers (ML and S/IIOP) enabled. A total of 
three combinations were tried, each featuring a fixed 
and a mobile host. The mobile host was a Handheld 
PC (H/PC) running Windows CE and equipped with a 
credit card GSM adaptor connected to a GSM phone. 
The fixed host was a desktop PC running Windows NT 
and equipped with a standard 33.6 kbps modem con- 
nected to an ordinary phone line. The fixed host acted 
as mobility gateway in all scenarios. 

In each scenario, a client on one host invoked a server 
on the other by sending an IIOP request and receiving a 
reply of the same size as the request. This experiment 
was run for a number of different request/reply sizes 

(1, 128, 256, 384, 512, 640, 768, 896, 1024, 2048, 3072, 
4096, and 5120 bytes) and the invocation times were 
measured. Each of these invocations was performed 100 
times and the average invocation time was computed. 
In all scenarios, times were measured on the client side. 

The results of the experiments are shown in figure 4 
which gives invocation time as a function of request size. 
There are three plots, one for each configuration used: 

IIOP shows results from an experiment in which the 

IIOP layer was run directly on top of TCP/IP, i.e., 
without any mobility support whatsoever. In this 
case, the client resided on the mobile host and the 
server on the fixed host. 

IIOP+ML shows results from an experiment in which 
the IIOP layer was running on top of the ML, i.e., 
with mobility support but without server capabil- 
ities on the mobile host. Thus, the client resided 
on the mobile host. 

IIOP+S/IIOP+ML shows results from an experiment 
where the IIOP layer was running with full mo- 
bility support, i.e., both the ML and the S/IIOP 
layer. In this scenario, the server was run on the 
mobile host and the client on the fixed host. 

As can be seen from the figure, running the IIOP 
layer directly on top of TCP/IP generally gave bet- 

6 Evaluation 
ter performance than in the two other cases. In par- 
tic&r for small invocations (less than approximately 

ALICE was initially implemented on Windows NT 4.0 
using Visual C++ 5.0. It was then ported to Solaris 
using Spare Works C++ and to Windows CE using 
the Windows CE Toolkit for Visual C++. Network 
communication was achieved using WinSock sockets on 

2000 bytes) the cost of mobility support is substantial. 
One explanation of this could be that the MLs on both 
hosts spend resources multiplexing data onto a single 
transport connection. This involves some data copy- 
ing, sequence numbering and maintaining a cache of 
unacknowledged PDUs, all of which make demands to 
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Figure 4: Performance of IIOP over a Wireless Link (Windows CE) 

the mobile host’s limited memory and processing power. 
Another factor could be the current acknowledgement 
scheme, (described in section 4.2) where each invocation 
is given its own sequence number and is acknowledged 
individually. For small invocations, the acknowledge- 
ment will be comparatively large as will be the time 
taken to transmit it. For larger invocations, the time 
required to transmit the acknowledgement will be rela- 
tively small compared to that of transmitting the entire 
invocation. 

An interesting observation, which can be made from 
figure 4, is that the IIOP+ML and IIOP+S/IIOP+ML 
plots are very similar. Although using the ML intro- 
duces some overhead, it seems that little extra overhead 
is caused by also using the S/IIOP layer. A natural in- 
terpretation of this is that supporting mobile servers is 
an inexpensive addition to supporting mobile clients. It 
should be noted, however, that the overhead caused by 
the S/IIOP layer can be expected to increase as more 
handoffs occur and more time is spent swizzling and 
reswizzling IORs. 

7 Related Work 

This section describes related work done in the area 
of CORBA support on mobile devices. Two projects 
in particular, both supported by the European Union’s 
ACTS programme, have addressed this problem. 

DOLMEN 

The DOLMEN [9] project uses a model where mobile 
hosts communicate with fixed hosts via DPE bridges 
much like the approach described in this paper. Mobile 
devices can move between bridges without losing open 
connections. The protocol used is called Lightweight 
Inter-Orb Protocol (LW-IOP) and is an Enwironment- 
Specific Inter-Orb Protocol (ESIOP). LW-IOP is func- 
tionally equivalent to IIOP but is designed with mobile 
environments in mind. First, it employs caching of un- 
sent data combined with an acknowledgement scheme to 
deal with the unreliability of the wireless medium. Sec- 
ond, its object references contain not the actual names 
and addresses of machines (as do IORs) but references 
which are translated at runtime via a naming service. 

In this way, the DOLMEN approach supports servers 
on mobile hosts but relies on a register (the naming 
service) to maintain up-to-date information about the 
current location of a mobile host. 

OnTheMove 

Another project which solves the problem at the ses- 
sion layer is the OnTheMove [4] project. This project 
features an adaption of a commercial IIOP implemen- 
tation, IONA’s IIOP Engine [B], on top of a session 
layer. The session layer consists of two parts, one run- 
ning on the mobile device and one on a base station 
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called a mobility gateway. The mobility gateway talks 
to the mobile host via a wireless link and the rest of the 
world via a wired network. The session layer shields 
the IIOP implementation from the unreliability of the 
underlying network layer but does not support handoff 
between mobility gateways and does not perform ad- 
dress translation of IORs. Therefore, servers can reside 
on a mobile host but when it changes connection point, 
clients have no means of finding its new location. 

Other Projects 

Other projects which deal with CORBA and mobility 
are the Mobiware [l] project and the Jumping Beans [3] 
framework. Mobiware is a toolkit which “enables adap- 
tive mobile services to dynamically exploit the intrinsic 

scalable properties of mobile multimedia applications in 
response to time-varying mobile network conditions” [l] 
and is built on the CORBA distributed object model. 
Jumping Beans is a toolkit which lets CORBA server 
objects move between nodes in a network transparently 
to the clients. The approach is based on a centralised 

Jumping Beans server. When a CORBA server object 
moves, it first moves to the Jumping Beans server and 
then to its final destination. 

8 Conclusion 

This paper has identified and discussed the problems 
of mobile CORBA and presented the design and imple- 
mentation of our Architecture for Location Independent 
CORBA Environments (ALICE). We have explained 
how the architecture allows both client and server ob- 
jects to reside on mobile hosts and interact with stan- 
dard CORBA client and server objects which are un- 
aware that they are communicating with mobile peers. 
The paper has also explained why the architecture re- 
quires no mobility support from the transport layer 
(such as Mobile IP [2]) and how it avoids relying on 
a centralised location register to keep track of the mo- 
bile hosts. 

The architecture has been tested in a variety of con- 
figurations over a wireless link and the results have 
shown that there is a certain overhead in supporting 
mobile clients but that mobile servers, given client func- 
tionality, come at a very low additional cost. 

One particularly interesting feature of the architec- 
ture is its separation of the issues into those related 
to CORBA and those related to mobility. The latter 
are addressed in a general and CORBA-independent 
way by the ML, whereas the former are divided into 
a mobile-aware (S/IIOP) and a mobile-unaware (IIOP) 
part. This threefold structure is independent of CORBA 
and can be used as a general way of adding mobility 
support to some protocols (such as HTTP) in a similar 
fashion to the IIOP implementation described here. 
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