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ABSTRACT

Social distancing measures, such as restricting occupancy at venues,

have been a primary intervention for controlling the spread of

COVID-19. However, these mobility restrictions place a signi�cant

economic burden on individuals and businesses. To balance these

competing demands, policymakers need analytical tools to assess

the costs and bene�ts of di�erent mobility reduction measures. In

this paper, we present our work motivated by our interactions with

the Virginia Department of Health on a decision-support tool that

utilizes large-scale data and epidemiological modeling to quantify

the impact of changes in mobility on infection rates. Our model

captures the spread of COVID-19 by using a �ne-grained, dynamic

mobility network that encodes the hourly movements of people

from neighborhoods to individual places, with over 3 billion hourly

edges. By perturbing the mobility network, we can simulate a wide

variety of reopening plans and forecast their impact in terms of

new infections and the loss in visits per sector. To deploy this model

in practice, we built a robust computational infrastructure to sup-

port running millions of model realizations, and we worked with

policymakers to develop an intuitive dashboard interface that com-

municates our model’s predictions for thousands of potential poli-

cies, tailored to their jurisdiction. The resulting decision-support

environment provides policymakers with much-needed analytical

machinery to assess the tradeo�s between future infections and

mobility restrictions.

1 INTRODUCTION

The COVID-19 pandemic has wreaked havoc on lives and liveli-

hoods across the globe. In an e�ort to contain the virus, policy-

makers have turned to non-pharmaceutical interventions, such as

restricting mobility, in order to limit contact and reduce disease

transmission between individuals. To this end, many US states and

local governments have closed or required reduced occupancy at

places such as restaurants and gyms [7]. However, these measures

come at a heavy cost to individuals and businesses: for example,

over 160,000 US businesses closed due to COVID-19 between March

and August 2020 [36].

The next few months will continue to pose challenges to public

health and economic activity. It is imperative during this time to pro-

vide policymakers with analytical tools that can help them develop

optimal solutions to minimize new COVID-19 infections while also

minimizing damage to businesses. They need a tool that can quan-

titatively assess, in near real-time, the tradeo�s between mobility

and new infections. Furthermore, this tool should be �ne-grained,

able to test out heterogeneous plans—for example, allowing one

level of mobility at essential retail, another level at retail, and yet

another at restaurants—so that policymakers can tailor restrictions

to the speci�c risks and needs of each sector. Despite this granular-

ity, the tool also needs to be scalable, supporting analyses for an

exponential number of potential policies so that policymakers can

select the best option among them for their jurisdiction.

To ful�ll these needs, we present a decision-support tool, which

we built based on interactions with the Virginia Department of

Health (VDH) to support their decision-making on mobility re-

duction policies. Our approach begins with our state-of-the-art

epidemiological model [8], which integrates large-scale mobility

and mask-wearing data to accurately capture the spread of COVID-

19. Our model overlays transmission dynamics on a time-varying

mobility network which encodes the hourly movements of indi-

viduals from neighborhoods to speci�c points of interest (POIs),

such as restaurants or grocery stores. Since we model infections

in tandem with mobility, our model can provide the multifaceted

analyses necessary to understand the costs and bene�ts of a policy;

for example, by quantifying predicted infections and the number

of POI visits lost per sector, which can serve as a proxy for eco-

nomic impact. By design, our model is �ne-grained, as it simulates

who is getting infected where and when down to the individual

POI and hour. Our model is also �exible, since we can modify any

one of its inputs—for example, modifying mobility for a subset of

POIs to re�ect a change in policy, or modifying transmission rates

per neighborhood to indicate vaccination e�ects—and straightfor-

wardly run the model with the new inputs to observe the e�ects of

the hypothetical change.

Finally, to scale our model, we build a robust infrastructure to

handle computational challenges. The mobility networks that we

model are large, with billions of hourly edges between POIs and

neighborhoods. Furthermore, the �exibility of our approach—for
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Figure 1: Illustration of our approach. We integrate data frommany sources to run, evaluate, and analyze our model. We build

a computational infrastructure to support millions of model realizations during themodel �tting and experiment steps of our

pipeline. Our UI design enables a smooth experience, so that policymakers can easily compare di�erent reopening policies.

example, being able to simulate di�erent POI categories at di�erent

levels of mobility—results in an exponential number of hypothetical

scenarios to test. In order to support predictions for thousands of

scenarios, we design a lightweight, vectorized implementation of

our model, and build a large-scale system to run hundreds of models

in parallel.1 By leveraging this system, we are able to compress 2

years of compute time into the span of a few days.

Advances in the current work. In building this tool, we have

greatly extended our epidemiological model since its original im-

plementation [8]. We have introduced new features including (1)

variation in mask-wearing over time; (2) a time-varying base trans-

mission rate; (3) a time-varying death detection rate; and (4) model

initialization based on historical reported deaths. These additions

allow us to accurately �t daily deaths in Virginia, and we also show

that the inclusion of our new features contribute substantially to-

ward reducing model loss (Section 3.1). Furthermore, whereas our

original work focused on the �rst two months of the pandemic

(March and April 2020), in this work we focus on recent months (No-

vember 2020 to January 2021), which are more relevant to current

policy-making. We have also �tted the model on new, smaller met-

ropolitan areas in Virginia. Importantly, the experimental results

in this work are consistent with and extend our original analyses,

showing that the high-level �ndings from our �rst work generalize

to new time periods and smaller regions. For example, we continue

to �nd that mobility patterns are predictive of disparities in infec-

tion rates between lower- and higher-income neighborhoods, and

that certain POI categories like restaurants are far more dangerous

to fully reopen than others (Section 3.2). Finally, to create a �nished

product that policymakers can directly use, we developed a new

dashboard that can communicate thousands of results from our

model. Our resulting interface includes multiple interactive pan-

els, where policymakers can select various proposed changes in

mobility, and observe how these changes would a�ect predicted

infections over time and losses in POI visits (Section 3.3).

1Our code is available at https://github.com/snap-stanford/covid-mobility-tool.

Supporting public health decision-making. Our group has been

supporting various federal, state and local public health authorities

for over a year now as they respond to the pandemic. The need

for such a tool became clear to us during the course of sustained

response e�orts. This tool was designed to ful�ll public health o�-

cials’ desire to have a quantitative and comprehensive analysis of a

range of reopening policies. VDH reviewed a prototype of the tool

and provided valuable feedback on how best to present the data to

maximize clarity and applicability from a public health perspective.

This guidance was integral to the �nal design of the dashboard

presented in this paper. While we focus on the state of Virginia for

illustrative purposes, the tool can be generalized and used in other

states as well.

2 OUR APPROACH

In this section, we break down our approach: the datasets that

we use (Section 2.1), our epidemiological model (Section 2.2), and

the computational infrastructure that we developed to produce

predictions at scale (Section 2.3). Figure 1 also provides a summary

of our process, illustrating the main steps of our approach and

where di�erent data sources are integrated along the way.

2.1 Large-scale data

Fine-grained mobility data (SafeGraph). Mobility data capture

important changes in population behavior over time: for example,

in Figure 2, we see that mobility fell dramatically in March 2020,

then slowly climbed back up during the following months until re-

ceding again near the end of the year. These patterns re�ect where

and when individuals may have been coming into contact with one

another, and thus inform our understanding of transmission risks

and how to mitigate them. We use data from SafeGraph, a com-

pany that anonymizes and aggregates location data from mobile

apps. SafeGraph’s Places2 and Weekly Patterns3 datasets provide

2https://docs.safegraph.com/v4.0/docs/places-schema.
3https://docs.safegraph.com/v4.0/docs/weekly-patterns.
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Figure 2: Three time-varying data sources – mobility, mask

use, and daily COVID-19 deaths – shown for theWashington

DC MSA. The highlighted regions indicate the periods that

we test formodel validation, one from the�rst wave and one

from the second wave of infections (Section 3.1). There is an

18-day o�set between the highlighted regions for input data

(mobility, mask use) and deaths, due to the modeled delay

between becoming infectious and date of death (Section 2.2).

detailed information about millions of points of interest (POIs),

which are non-residential locations that people can visit. For each

POI, SafeGraph provides estimates of its hourly visit counts, as

well as weekly estimates of which census block groups the visi-

tors are coming from. In addition, SafeGraph provides each POI’s

North American industry classi�cation systems (NAICS) category,

its physical area in square feet, and its median visit duration in min-

utes (the “dwell time”). We also use SafeGraph’s Social Distancing

Metrics4 dataset, which contains daily estimates of the proportion

of people staying at home in each CBG.

In this work, we focus on three of the largest metropolitan statis-

tical areas (MSAs) in Virginia: Washington-Arlington-Alexandria,

DC-VA-MD-WV (hereby referred to as the “Washington DC” MSA),

Virginia Beach-Norfolk-Newport News, VA-NC (“Eastern”), and

Richmond, VA (“Richmond”). Across these MSAs, we model 63,744

POIs and 7,609 census block groups (CBGs) in total, with over 3

billion hourly edges between them (Table 1).

Mask-wearing data (IHME). We use mask-wearing data from the

Institute for Health Metrics and Evaluation (IHME) website,5 which

provides daily estimates at the state level of the percentage of the

population wearing masks. In Virginia, we see the most dramatic

change in mask-wearing near the beginning of the pandemic, from

4https://docs.safegraph.com/v4.0/docs/social-distancing-metrics.
5https://covid19.healthdata.org/united-states-of-america/virginia?view=mask-use.

MSA POIs CBGs Modeled pop. Hourly edges

Washington DC 40,467 4,904 9,200,384 2,095,359,467

Richmond 9,917 1,098 2,048,200 516,647,719

Eastern 13,360 1,607 2,854,769 786,389,095

Total 63,744 7,609 14,103,353 3,398,396,281

Table 1: Summary of mobility networks. Modeled pop. in-

dicates the total population living in the modeled CBGs.

Hourly edges counts the number of non-zero edge weights

in themobility network from 12amNovember 1 to 11pmDe-

cember 31, 2020 (the second wave period that we �t).

0% of the population wearing masks in mid-March to 60% by the

end of May 2020 (Figure 2).

COVID-19 deaths (New York Times). To calibrate our model,

we compare its predicted death counts to data on reported deaths.

We use The New York Times’ COVID-19 dataset,6 which contains

daily reported deaths per US county. For each MSA that we model,

we sum over the county-level counts to produce overall counts for

the entire MSA. As shown in Figure 2, Washington DC—along with

much of the US—experienced two major waves of infections, one

in the spring of 2020 and the second near the end of the year.

Demographic data (US Census). We utilize data about each CBG

from the American Community Survey (ACS) of the US Census

Bureau. We use the 5-year ACS data (2013–2017) to extract the me-

dian household income, the proportion of white residents, and the

proportion of Black residents of each CBG. For the total population

of each CBG, we use the most-recent one-year estimates (2018);

one-year estimates are noisier, but we wanted to minimize system-

atic downward bias (due to population growth) by making them

as recent as possible. The model uses CBG populations as input,

but it does not use income or race during the simulation. Instead,

we use income and race data to analyze the model’s output; for

example, to compare the predicted infection rates of lower-income

and higher-income CBGs (Section 3.2).

2.2 Epidemiological model

Mobility network. We overlay a disease transmission model on

a dynamic mobility network, which is represented as a complete

undirected bipartite graph G = (V, E) with time-varying edges.

The nodesV are partitioned into two disjoint sets C = {21, · · · , 2<},

representing< CBGs, and P = {?1, · · · , ?=}, representing = POIs.

The weightF
(C )
8 9 on an edge (28 , ? 9 ) indicates the number of people

from CBG 28 who visited POI ? 9 in hour C ; we refer the reader to

Chang et al. [8] for the details of how we derive the hourly edge

weights from SafeGraph data. From US Census data, each CBG 28
is labeled with its population #28 , and from SafeGraph data, each

POI ? 9 is labeled with its area 0? 9 and median dwell time 3? 9 .

Model dynamics. We assume that every individual is in one of

four disease states at any given time: susceptible ((), exposed (⇢),

infectious (� ), or removed ('). Susceptible individuals can acquire

the virus through contact with infectious individuals. They then

enter the exposed state, during which they have been infected but

6https://github.com/nytimes/covid-19-data.
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are not yet infectious. Individuals transition from exposed to infec-

tious at a rate inversely proportional to the mean latency period.

Finally, they transition from the infectious state to the removed

state at a rate inversely proportional to the mean infectious period.

In the removed state, they can no longer infect others or become

infected again (e.g., because they have recovered or died).

In our model, each CBG maintains its own SEIR states, with (
(C )
28 ,

⇢
(C )
28 , �

(C )
28 , and '

(C )
28 representing how many individuals in CBG 28

are in each disease state at hour C , and #28 = (
(C )
28 +⇢

(C )
28 + �

(C )
28 +'

(C )
28 .

At each hour C , we sample the transitions between states as follows:

#
(C )
(28!⇢28

⇠ Pois

 

(
(C )
28

#28

=’

9=1

_
(C )
? 9

F
(C )
8 9

!

|                         {z                         }

new infections from visiting POIs

+ Binom
⇣

(
(C )
28 , _

(C )
28

⌘

|                 {z                 }

base rate of new CBG infections

(1)

#
(C )
⇢28!�28

⇠ Binom
⇣

⇢
(C )
28 , 1/X⇢

⌘

, (2)

#
(C )
�28!'28

⇠ Binom
⇣

�
(C )
28 , 1/X�

⌘

, (3)

where _
(C )
? 9

is the rate of infection at POI ? 9 at hour C ; _
(C )
28 is the

base rate of infection that is independent of visiting POIs; X⇢ is the

mean latency period; and X� is the mean infectious period.

The number of new exposures, #
(C )
(28!⇢28

. We assume that any

susceptible visitor to POI ? 9 at hour C has the same independent

probability _
(C )
? 9

of being infected. Since there are F
(C )
8 9 visitors

from CBG 28 to POI ? 9 at hour C , and we assume that a (
(C )
28 /#28

fraction of them are susceptible, the number of new infections

among these visitors is distributed as Binom(F
(C )
8 9 (

(C )
28 /#28 , _

(C )
? 9

) ⇡

Pois(_
(C )
? 9

F
(C )
8 9 (

(C )
28 /#28 ). The number of new infections among all

outgoing visitors from CBG 28 is therefore distributed as the sum of

the above expression over all POIs, Pois
�

((
(C )
28 /#28 )

Õ=
9=1 _

(C )
? 9

F
(C )
8 9

�

.

We de�ne the infection rate _
(C )
? 9

at POI ? 9 at hour C as the product

of three time-varying factors: (1) the transmission rate V
(C )
? 9

; (2) the

density of infectious visitors �
(C )
? 9

/+
(C )
? 9

; (3) a mask-wearing factor

(1�nc (C ) )2 [12], where n 2 [0, 1] represents mask e�cacy and c (C )

indicates the proportion of the MSA population wearing a mask at

hour C (see Section A.1.2 for details).

_
(C )
? 9

= (1 � nc (C ) )2V
(C )
? 9

�
(C )
? 9

+
(C )
? 9

. (4)

The transmission rate is V
(C )
? 9

:= k32? 9
(+

(C )
? 9

/0? 9 ), wherek is a trans-

mission constant (shared across all POIs) that we �t to data, the

dwell time 3? 9 2 [0, 1] is the average fraction of an hour a visitor

spends at ? 9 , and 0? 9 is the physical area of ? 9 .

In addition to new infections from POIs, wemodel a CBG-speci�c

base rate of new infections that is independent of POI visit activity.

This captures other sources of infections, e.g., household infections

or infections at POIs that are absent from the SafeGraph data. At

each hour C , every susceptible individual in CBG 28 has a base

probability _
(C )
28 of becoming infected, where

_
(C )
28 := (1 � nc (C ) )2V

(C )
base

�
(C )
28

#28

(5)

is the product of the mask-wearing scaling factor, the base trans-

mission rate V
(C )
base

, and the proportion of infectious individuals in 28 .

We parameterize Vbase by de�ning a starting point V
(0)

base
and ratio

AV , so that Vbase updates linearly from V
(0)

base
to AVVbase. V

(0)

base
and

AV are free parameters, shared across all CBGs, which we �t to data.

We allow Vbase to vary over time to capture changes in behavior

outside of POIs (e.g., if home gatherings increase). However, we

restrict the amount that it can vary by using a conservative range

for AV , allowing Vbase to change up to 30% (in either direction) over

the 2-month periods that we simulate.

The number of reported deaths. We assume that a time-varying

proportion of infections A
(C )
deaths

will result in reported deaths, and

that they will be reported exactly Xdeaths = 432 hours (18 days)

after the individual became infectious.7 From these assumptions,

the predicted number of newly reported deaths from CBG 28 on

day 3 is

#̂
(day 3)
deaths,28

=

243�Xdeaths’

g=24(3�1)+1�Xdeaths

A
(g)
deaths

#
(g)
⇢28!�28

, (6)

where we de�ne #
(g)
⇢28!�28

to be 0when g < 1. This conversion from

(⇢�' states to reported deaths allows us to �t our models on daily

reported deaths, which we describe in the following section, as well

as to initialize the (⇢�' states at the beginning of the simulation

based on historical reported deaths (Section A.1.3).

The time-varying reported death rate A
(C )
deaths

is the product of

three factors: (1) the initial infection fatality rate IFR0 = 0.0068 [24];

(2) the relative reduction in the infection fatality rate A
(C )
IFR

over time;

(3) the proportion of COVID-19 deaths that are detected A
(C )
detect

. We

use existing estimates of A
(C )
IFR

, which, based on hospital fatality rates,

estimate that the infection fatality rate was nearly halved by the

summer of 2020 [15]. To estimate A
(C )
detect

, we compute the weekly

ratio of reported COVID-19 deaths in the US, from The New York

Times, over weekly select-cause excess deaths, as estimated by the

National Center for Health Statistics (NCHS).8 The NCHS provides,

for select causes of deaths determined to be related to COVID-19

(e.g., pneumonia, heart failure), the expected (based on 2015-2019)

and actual numbers of deaths due to these causes for each week

since the pandemic began; the weekly excess select-cause deaths

are the di�erence between the expected and actual (or 0, if the

expected exceeds the actual). If we assume that all select-cause

excess deaths can be attributed to COVID-19, then we �nd that

the death detection rate A
(C )
detect

increased from around 20% at the

beginning of the pandemic to 60%-80% after June 2020.

Model �tting. Most of our model parameters can either be es-

timated from data or taken from prior work (see Table A1 for a

7It is simplifying to assume that the delay is �xed, but we performed sensitivity analyses
in the original work that showed that model predictions would remain essentially
identical if delays were sampled stochastically from a distribution.
8https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm.
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summary). This leaves 3 model parameters that we need to cali-

brate with data: the POI transmission constant,k , and the starting

point and ratio for the base transmission rate, V
(0)

base
and AV . We cali-

brate these parameters per MSA by �tting to published numbers of

con�rmed deaths, as reported by The New York Times (NYT). NYT

data provides the daily cumulative number of COVID-19 deaths

per county, so �rst we sum over county-level counts to produce

cumulative death counts for the MSA. Then, we convert this to the

daily number of new deaths and apply two-week averaging to the

raw daily counts to smooth over weekly e�ects (e.g., not reporting

on weekends) and other sources of noise. We measure model �t

based on new deaths per day (i.e., incident deaths), since model

error and uncertainty can be severely underestimated when the �t

is evaluated on cumulative curves [19].

Let#
(day 3)
deaths

represent the (smoothed) number of reported deaths

on day 3 in the MSA, and let #̂
(3)
deaths

represent the model’s pre-

diction for this quantity, which we compute by summing over

the model’s CBG-level predictions (Equation 6). We compare our

model predictions to the actual counts by computing the root-mean-

squared-error (RMSE) between each of the⇡ days of our simulation:

RMSE =

vu
t

1

⇡

⇡’

3=1

⇣

#
(day 3)
deaths

� #̂
(day 3)
deaths

⌘2

. (7)

For each parameter set, we quantify model �t by running 30 sto-

chastic realizations and averaging their RMSE.

Throughout this paper, we report aggregate predictions from

the best-�tting parameter sets. For each MSA, we:

(1) Grid-search over 1,050 combinations ofk , V
(0)

base
, and AV .

(2) Find the best-�t parameter set with the lowest average RMSE.

(3) Select all parameter sets that achieve an RMSE within 20%

of the RMSE of the best-�t parameter set.

(4) Pool together all predictions across those parameter sets and

all of their stochastic realizations, and report their mean and

2.5th/97.5th percentiles.

This procedure captures uncertainty from two sources: (1) stochas-

tic variability between model runs with the same parameters, and

(2) uncertainty in the model parameters. In Table 2, we describe the

selected parameters for each of the MSAs that we model.

2.3 Large-scale implementation

In this section, we describe computational challenges that arise from

implementing this system at scale, and discuss how we addressed

them with engineering solutions.

Handling large mobility networks. The hourly POI-CBG net-

works store large amounts of data; for example, across the three

Virginia MSAs we focus on in this work, their networks contain 3.4

billion hourly edges from November to December 2020 (Table 1). In

order to reduce computation time, we run our network inference

algorithm ahead of any disease modeling, and save the inferred

edge weights so that they can be loaded later on. For each network,

we save the weights separately per hour (as sparse matrices), so

that the model only needs to load as many hours of data as neces-

sary for the current simulation. The model dynamics bring their

own challenges: in every hour, we need to estimate the infection

rate per POI (Equation 4), and the base infection rate per CBG

(Equation 5). However, because each POI’s hourly infection rate is

conditionally independent of the other POIs’ infection rates (given

the current (⇢�' states for each CBG), we can parallelize the hourly

computations across POIs; for similar reasons, we can parallelize

across CBGs and random seeds (i.e., stochastic realizations). These

strategies greatly reduce simulation time; for instance, bringing the

average runtime for a 2-month multi-seed simulation with Wash-

ington DC down to 5.5 minutes, even as each simulation requires

computing 1.78 billion hourly, seed-speci�c POI infection rates and

215 million hourly, seed-speci�c CBG infection rates.

Scaling model experiments. One of the strengths of our ap-

proach is �exibility: for example, our dashboard allows policymak-

ers to test any combination of opening 5 di�erent POI categories

to 4 di�erent levels of mobility (Section 3.3). However, this �exi-

bility also creates an exponential number of scenarios to simulate

(45 = 1, 024). Furthermore, for each scenario, we run 30 stochastic

realizations for every parameter set; thus, with 9 parameter sets

(Table 2), we need to run nearly 300,000 model realizations. As

described above, part of the solution lies in our model implemen-

tation, which runs the stochastic realizations per parameter set in

parallel. However, the key to completing these experiments is that

we distribute the work across multiple computers, with collectively

288 cores. This allows us to run hundreds of simulations in parallel,

compressing 2 years of compute time into a few days.

3 RESULTS

3.1 Model validation

First, we calibratedmodels for each of the three VirginiaMSAs using

input data from November 1 to December 31, 2020 and reported

deaths from November 19 to January 18, 2021 (there is a 18-day

o�set between these ranges due to the lag from becoming infectious

to date of death, X2 ). In Figure 3b–d, we show that our models

are able to accurately �t daily deaths for these MSAs during this

time period. The �t is especially good for Washington DC, with a

normalized RMSE of 7.2% (Table 2). The normalized RMSEs for the

Richmond and Eastern MSAs are slightly higher at 11.5% and 17.3%,

respectively; these regions were more challenging to �t during

this time period due to the large amount of noise relative to their

single-digit reported daily deaths (Figure 3d).

To further test our model, we conduct a series of extended analy-

ses withWashington DC as our case study.We focus onWashington

DC because its daily death counts are less noisy than the counts

for the other two MSAs, due to its substantially larger size (it is 4⇥

their sizes, and in fact the 6th largest MSA in the US). In addition

to the November to January period that we �tted above, we �t

our model using input data from March 15 to May 14, 2020 and

reported deaths from April 2 to June 1, 2020.9 We choose these

two periods since they overlap with the �rst and second waves of

infection, and because they re�ect vastly di�erent points in the

pandemic, with di�erent distancing behaviors, proportions of peo-

ple infected, weather conditions, and so on. For each time period,

9We choose two contrasting periods to �t, instead of �tting the entire time period
from March 2020 to January 2021, because �tting the entire time period would have
required loading over 8,000 hourly mobility network weights, which would be around
100GB.
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(a) (b) (c) (d)

Figure 3:Model�t with “full” (non-ablation)model.We calibratemodels for each of the threeMSAs for the secondwave period

(b–d) and a model for Washington DC in the �rst wave (a). We apply 2-week averaging to the raw counts for daily reported

deaths (grey) to smooth over weekly e�ects and noise. We �t the model to the smoothed daily deaths (orange). The shaded

regions indicate the 2.5th to 97.5th percentiles over model parameters and stochastic realizations.

Period MSA # parameter sets k V
(0)

base
AV nRMSE

1st wave Washington DC 3 4452.89 (3051.76-6204.30) 0.013 (0.009-0.016) 0.733 (0.700-0.800) 0.053

2nd wave Washington DC 3 4817.52 (628.32-9006.72) 0.027 (0.015-0.039) 1.133 (1.100-1.200) 0.072

2nd wave Richmond 5 4817.52 (628.32-9006.72) 0.023 (0.009-0.039) 1.100 (1.000-1.200) 0.115

2nd wave Virginia Beach 13 7932.57 (628.32-11799.52) 0.017 (0.003-0.045) 0.962 (0.700-1.300) 0.173

Table 2: Quantitative results frommodel �tting. For each model, we keep all parameter sets that achieve an RMSE within 20%

of the RMSE of the best-�t parameter set. Here, we report the number of parameter sets kept per model, and the mean and

range over the values for each parameter. nRMSE indicates the normalized RMSE, i.e., the RMSE divided by the MSA’s mean

daily reported deaths over this period; we normalize in order to facilitate comparison across periods and MSAs. Note that the

four rows in this table correspond to the four visualizations in the �gure above.

we also conduct ablation studies to test the importance of several

model features. In the �rst ablation, we remove mobility data by

�xingk , the POI transmission constant, to 0, and allow the model

to search over a wider and �ner grid for the base transmission rate,

V
(0)

base
. In the second ablation, we remove mask-wearing data by

�xing the mask-wearing proportion c to 0, but we search over the

same grids as in the original model since c was not a free parameter.

The third ablation keeps Vbase constant for the entire time period,

instead of allowing it to vary slightly over time. To do this, we �x

AV to 1, and search over a wider and �ner grid for V
(0)

base
.

First, we �nd that our model can also accurately �t the non-linear

daily deaths curve from the �rst wave (Figure 3a), with a normalized

RMSE of 5% (Table 2). Furthermore, the model outperforms its

ablations in both periods, although the impact of removing any

feature is substantially larger in the �rst wave than the second, due

to the larger changes in behavior early on. For example, removing

mask-wearing data results in a severe increase in the model’s RMSE

(+591%) during the �rst wave, where the increase in mask-wearing

allowed the model to capture the downward trend in deaths in May

2020, even as mobility began to slightly climb during this period

(Figure 2). Removing mobility during this time period also has a

large e�ect, nearly doubling the model’s RMSE, and �xing Vbase
over time results in a 74% increase. In the second wave, the impacts

are more subtle: removing mobility data, removing mask-wearing

data, and �xing Vbase over time result in 14%, 13%, and 5% increases

in the model’s RMSE, respectively (Table A2).

3.2 Use cases

Our �tted model can be applied to a wide variety of use cases,

including retrospective analyses investigating who was infected

where and when, and forward-facing experiments that modify the

model’s inputs to test hypothetical changes in policy or behavior

in the near future. In this section, we provide a few examples that

demonstrate the retrospective and forward-facing capabilities of our

model, and highlight the usefulness of our �ne-grained approach

in capturing heterogeneity in risk across POIs and CBGs.

Analyzing disparities in infection rates. Our �rst use case is an

example of retrospective analysis. After �tting the model, we might

be interested in studyingwhat themodel learned about the infection

rates for lower-income versus higher-income CBGs, since it is well-

reported in the real world that lower-income neighborhoods have

been impacted more severely by COVID-19 [34]. To analyze this,

we stratify CBGs by median household income and compare the

cumulative infection rates over time (anyone in ⇢, � , or ') of the

CBGs in the bottom income decile versus top income decile. We

�nd that the model correctly predicts a large disparity between the

bottom and top income deciles in Washington DC [30] (Figure 4).

This gap is especially striking in the �rst wave period: from March

15 to May 14, cumulative predicted infections per 100,000 increased

around 60% more for the bottom income decile than the top income

decile (9,900 versus 6000). This di�erence can only be attributed

to di�ering mobility patterns, since the CBGs were initialized to

very similar levels of infection at the beginning of the simulation
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Figure 4: Retrospective analysis of disparities in infection

rates, comparingWashington DC CBGs in the bottom decile

(purple) vs. top decile (gold) of median household income.

The overall population (blue) is also shown. The shaded re-

gions indicate the 2.5th to 97.5th percentiles over model pa-

rameters and stochastic realizations.

and all other exogenous model parameters are shared across CBGs.

This matches our �rst wave �ndings from the original work [8],

where we found across 10 of the largest MSAs in the US (including

Washington DC), CBGs in the bottom income decile always had

a higher infection rate by the end of the simulation than the top

income decile. What we found in the mobility data that explained

this di�erence was that lower-income CBGs could not reduce their

mobility as much and, even within the same POI category, the POIs

that they visited tended to be more crowded and thus higher-risk.

In the second period, the bottom income decile begins at a dis-

advantage, re�ecting actual cumulative deaths by the beginning

of November 2020 (see Section A.1.3 for how we initialized (⇢�'

states using historical reported deaths). However, the disparity con-

tinues to grow: by the end of December 2020, predicted cumulative

infections per 100,000 increased 30% more for the bottom income

decile than the top income decile (8,900 versus 6,800). This di�er-

ence can be partially attributed to mobility patterns, but also to the

self-compounding nature of the virus. Since lower-income CBGs

begin with a larger number of infectious individuals, those individu-

als will generate more infectious people, exacerbating the disparity.

Our model can capture these self-compounding dynamics, as well

as demonstrate how mobility contributes to—but could also be used

to mitigate—these health disparities.

Opening POI categories to di�erent degrees. Our second use

case is an example of a forward-facing experiment. One common

strategy by policymakers has been to implement varying restric-

tions on di�erent business sectors [7], so here we explore the e�ects

of opening POI categories to di�ering levels of mobility. To test

this, we run a simulation starting from November 1, 2020, using the

models that we already calibrated (Section 3.1). Then, we modify

the mobility networks starting on January 1, 2021, and run the

model forward with the modi�ed mobility network for four weeks.

During those four weeks, each POI category either maintains its

current levels of mobility, or we specify it to have a certain fraction

of its “normal” mobility levels, based on SafeGraph data from Jan-

uary 2019. We perform this experiment with 5 POI categories: (1)

Restaurants; (2) Essential Retail (grocery stores, convenience stores,

drug stores); (3) Gyms; (4) Religious Organizations; and (5) Retail

(clothing stores, hardware stores, book stores, pet stores, etc.). For

each category, we consider 4 possible mobility settings: maintaining

the current mobility level, or keeping 0%, 50%, or 100% of 2019 mo-

bility. In order to provide a wide array of options to policymakers,

we test every combination of POI category and mobility setting

(1,024 options per MSA).

These experiments allow us to quantify the trade-o� between

visits and infections. For example, if every POI continued at current

levels of mobility, our model predicts that the Washington DC

MSA would experience around 267,000 new infections (2.9% of

the population) in January 2021. If, instead, the Restaurant POIs

returned to 2019 levels of mobility starting on January 1, we would

see a 34% increase in POI visits, but also a 179% increase in predicted

new infections. In contrast, if the Essential Retail POIs returned to

2019 levels of mobility, we would only see a 4% increase in POI visits

and a 8% increase in predicted new infections. These di�erences are

partially because there are far more Restaurant than Essential Retail

POIs in the Washington DC MSA (10,545 versus 1,606), but also

because Restaurant POIs saw a larger drop in mobility during the

pandemic, so returning them to “normal” levels of mobility would

have a larger impact. Testing every combination of category and

mobility also allows us to inspect interactions between categories.

For example, if we returned Restaurant and Essential Retail POIs

to 2019 mobility levels, we see a 198% increase in predicted new

infections; this is higher than the sum of the predicted infections

from opening each one on its own (which would be 187% = 179%

+ 8%). This result highlights why we simulate each combination

of mobility levels instead of adding individual impacts, since the

whole impact of a policy can be greater than the sum of its parts.

3.3 Dashboard

Our dashboard provides an interface to our model results which

public health o�cials can use to assess the impact of mobility on

COVID-19 transmission. We designed our dashboard through itera-

tive meetings with VDH, where they provided valuable feedback

on how the interface could be made more intuitive and which vi-

sualizations would be most e�ective in conveying the impact of

changing mobility levels. The resulting layout is divided into �ve

parts, as shown in Figure 5; we discuss each part in detail below.

Visits to Points of Interest Navigation Bar. The POI Navigation

Bar is the control center of the tool. From here, users can either

view current mobility levels by POI category or use sliders to set

“target” mobility levels to 0%, 50% or 100%, indicating the fraction

of 2019 mobility levels to use. For each category, we have a cur-

rent mobility ratio associated with each POI (i.e., how their current

mobility compares to their mobility levels from 2019); to commu-

nicate heterogeneity in current mobility ratios across POIs within

each category, we show each category’s median and interquartile

range of current mobility ratios as yellow markers on the slider

axes. When the application loads, the selected region defaults to

Virginia, and the current mobility levels displayed are the average

of the mobility levels for the three MSAs.

Map Panel. As the user changes target mobility on the POI Naviga-

tion Bar, the colors of each MSA region on the map also change to
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Figure 5: Our dashboard is divided into 5 parts: the POI Navigation Bar (left); the Map Panel (upper right); the Chart Panel

(lower center); the Data Panel (lower right). and the Mobility History Panel (popup).

re�ect increases (more red) or decreases (more blue) in the number

of predicted infections. This provides a visual indicator of where a

mobility change is likely to have the greatest impact; to get more

precise measurements, the user can hover the mouse over eachMSA

to display predicted infections at current and target mobility levels,

as well as the percent di�erence between them. Model predictions

can be viewed at 1, 2, 3, or 4 weeks following the “intervention date”

(in this case, January 1, 2021). We provide this option because the

impact of the change in mobility on predicted infections can evolve

over time, typically accumulating in magnitude. For example, rela-

tive to maintaining current levels of mobility, setting Restaurant

POIs in Washington DC to 100% of 2019 mobility levels results in a

76% increase in predicted infections after 2 weeks, a 136% increase

after 3 weeks, and, as mentioned in the previous section, a 179%

increase after 4 weeks. The user can also click on a speci�c MSA to

select it; this updates the POI Navigation Bar with current mobility

levels for the selected MSA, and the Chart Panel with predictions

associated with the selection. The user can click on the “Reset to

Virginia” button to return to the three MSAs as a collective unit.

Chart Panel. While the Map Panel displays the cumulative impact

of the target mobility change for one weekly period at a time, the

Chart Panel displays the time series for cumulative predicted infec-

tions at current and target mobility levels across the full four-week

period along with their 95% con�dence intervals over model param-

eters and stochastic realizations. This makes it easier to visualize

how much predicted infections at target mobility are expected to

deviate from predictions at the current mobility level.

Data Table Panel. The Data Table shows the di�erence between

predicted infections given current and target mobility levels. It is

responsive to the selection of di�erent target mobility levels on the

POI Navigation Bar, as well as the selected week on the Map Panel.

This feature allows the user to conveniently assess the quantitative

impact of changing mobility levels, both at the MSA and overall

Virginia levels.

Mobility History. The Mobility History Panel is revealed upon

selection of the “Mobility History” button on the POI Navigation

Bar. This report provides a history from January 2019 to present

day of weekly POI visits, aggregated by MSA and POI categories,

which helps policy health experts better contextualize the target

mobility levels in the POI Navigation Bar. We provide a screenshot

from and additional details about this panel in Section A.2.

4 RELATED WORK

Mobility and COVID-19 modeling. The COVID-19 pandemic

and its corresponding social distancing measures have drastically

a�ected human mobility patterns [13, 16]. To accurately capture the

dynamics of COVID-19 transmission and infection, epidemiological

models must account for these changes in mobility. Many such mod-

els have been proposed in the last year: for example, it is common

for models to use some aggregate measure of real-time mobility

to modulate transmission rates [9, 17, 20]. Others have focused

on using historical data to model the initial spread of the disease

before social distancing measures were put into place [21, 29], or
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on using synthetic data for analytical purposes [5, 18]. In this work,

we extend the model from Chang et al. [8], as it uses mobility data

that is both �ne-grained (e.g., at the individual POI and CBG level)

and up-to-date, which enables us to predict the e�ects of di�erent

mobility restriction measures at the level of granularity required

for policy-making [4, 6].

COVID-19 tools for policymakers. Recently, there has been an

intense interest in developing easy-to-use interfaces to support

computational infectious diseases epidemiology. Much of the e�ort

is focused on providing surveillance information [11, 28]; for ex-

ample, several apps have been built to monitor trends in cases over

time [35], tracking their growth rate [1] or aiming to detect clusters

[14]. Other modeling tools that are being used for the COVID-19

pandemic include EpiC and Gleamviz [32], for global mobility and

epidemic simulations; DiCon, for optimization and control prob-

lems related to epidemic dynamics [25]; and, most related to our

tool, FRED [26] and GAIA [27], which are open source systems that

support research in networked epidemiology. Our team has also

been developing epidemiological applications in support of policy-

makers for over 15 years, including SIBEL, an epidemic modeling

tool that allows users to experiment with �ne-grained interventions

[2, 3, 10, 22, 23], and EpiViewer, a tool for visualizing epidemic time

series [31]. What sets the tool described in this paper apart from the

others is the way it incorporates �ne-grained mobility data with

the SEIR model, enabling a more detailed ability to create and test

interventions. Our tool also focuses on near real-time response;

this marks a crucial evolution from earlier e�orts that were largely

used for planning studies.

5 CONCLUSION

We have introduced a decision-support tool that allows policy-

makers to inspect the predicted impacts of thousands of di�erent

policies, speci�c to their jurisdictions. Our tool utilizes large-scale

data and epidemiological modeling to simulate the e�ects of �ne-

grained changes in mobility on infection rates, and leverages a

robust computational infrastructure to run model experiments at

scale. As policymakers face di�cult challenges ahead, our tool will

provide them with much-needed analytical machinery to assess

tradeo�s between future infections and mobility restrictions.

Our approach is not without its limitations, which we have dis-

cussed with policymakers. For instance, our mobility data from

SafeGraph does not cover all POIs or populations (e.g., children),

and our model makes necessary but simplifying assumptions about

the dynamics of disease transmission. Furthermore, we specialize in

modeling the e�ects of changes in mobility on infection rates, but

not all of the mobility policies that we analyze are directly action-

able; for example, changing current mobility levels to 50% of 2019

mobility. Further work is required to analyze how to lever tools in

policymakers’ toolbox to actually reach target levels of mobility.

Despite these limitations, our approach captures a valuable piece

of the puzzle, as we provide policymakers with a quantitative and

comprehensive near real-time analysis of the e�ects of mobility on

transmission. As we move forward, we will build dashboards for

other US states and regions, and continue developing new use cases

and technical advances for our model so that we can best support

the needs of policymakers around the country.
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A APPENDIX

A.1 Details to our approach

A.1.1 POI and CBG inclusion criteria. Since we model one MSA

at a time, we need to de�ne �ltering criteria to determine which

POIs and CBGs to include in the model. First, we include all POIs

that meet the following requirements: (1) the POI is located in the

MSA; (2) SafeGraph has visit data for this POI for every hour from

12am on September 1 2020 to 11pm on November 30 202010; (3)

SafeGraph has recorded this POI’s median dwell time and visitors’

home CBGs for at least one week from January to October 2020; (4)

SafeGraph provides this POI’s area in square feet; (5) this POI is not

a “parent”11 POI. After determining the set of included POIs, we

keep the union of CBGs that are located in the MSA and those that

had at least one recorded visit to at least 100 of the kept POIs; this

means that CBGs from outside the MSA may be included if they

visit this MSA frequently enough.

A.1.2 Derivation for mask-wearing. Here, we explain how we in-

corporated mask-wearing into our model dynamics. First, note that

without mask-wearing, both infection rate equations (4 and 5) can

be written in the generalized form V�/# , where V is the transmis-

sion rate, � is the number of infectious individuals present, and # is

the total number of individuals present. Furthermore, the expected

number of new infections is ( (V�/# ), where ( is the number of

10We use this range because we want to ensure that the POI was recently active, and
we �x this range even as we model periods from both the �rst and second wave of
infections because we want to keep the set of POIs �xed across experiments.
11Parent POIs consist of a small fraction of POIs that overlap with and include visits
from their “children” POIs (for example, malls). To avoid double-counting visits, we
remove all parent POIs from the dataset.

susceptible individuals present. Following Eikenberry et al. [12], let

c 2 [0, 1] represent the fraction of the population wearing a mask.

We can divide the infectious and susceptible populations into the

infectious-unmasked group, �* := (1 � c)� ; the infectious-masked

group, �" := c� ; the susceptible-unmasked group, (* := (1 � c)( ;

and the susceptible-masked group, (" := c( . Let the random vari-

able -* represent the number of unmasked susceptible visitors

who become infected, and let -" represent the number of masked

susceptible visitors who become infected. Then, we can derive the

expected values of these variables by separating the cases where

they become infected by an unmasked infectious person versus by

a masked infectious person:

E[-* ] = (* V (
�*

#
+ (1 � n> )

�"

#
), (8)

E[-" ] = ("V ((1 � n8 )
�*

#
+ (1 � n8 ) (1 � n> )

�"

#
), (9)

where n> 2 [0, 1] is the “outward” e�ciency of the mask (how

much it prevents a masked infectious person from transmitting)

and n8 2 [0, 1] is the “inward” e�ciency (how much the mask

protects a masked susceptible person from catching the disease).

If we assume n> = n8 = n , as [12] do in their experiments, and

substitute back in the de�nitions of �* , �" , (* , and (" , we �nd

that the total expected number of infections - simpli�es to

E[- ] = E[-* ] + E[-" ] = (1 � nc)2(V
�

#
. (10)

In other words, we simply scale the original expected number of

new infections by a factor of (1 � nc)2. Plugging this general form

back into the POI and base infection rates yields equations 4 and 5.

A.1.3 Model initialization. We use the county-level death counts

from The New York Times to initialize the (⇢�' states at the be-

ginning of our simulations. For each county in the MSA, �rst we

convert its cumulative death counts to daily new deaths, and apply

2-week smoothing to the raw counts (as we did to the MSA-level

counts). For a county . , let #
(3)
deaths,.

represent its smoothed actual

number of new deaths on day 3 . Our goal is to use this timeseries

to estimate (
(B)
.

, ⇢
(B)
.

, �
(B)
.

, and '
(B)
.

, the number of people in the

county in each disease state for some simulation start hour B .

First, recall that our model assumes deaths are reported exactly

Xdeaths/24 = 18 days after the person becomes infectious, and that

on day 3 (B) = bB/24c, a fraction A
(B)
deaths

of the newly infectious

cases will eventually result in reported deaths. If we assume 1/24 of

the infections on day 3 (B) occurred at hour B , then the number of

individuals in county. who became newly infectious at hour B must

be #
(B)
⇢.!�.

= (1/24) (#
3 (B)+18
deaths,.

/A
(B)
deaths

). Furthermore, our model

assumes that exposed individuals always have a 1/X⇢ probability of

transitioning into the infectious state, so the maximum likelihood

estimate of ⇢
(B)
.

is X⇢ · #
(B)
⇢.!�.

. Since it takes on average X⇢ hours

for individuals to transition from exposed to infectious, then we

estimate �
(B)
.

= ⇢
(B�X⇢ )
.

. Similarly, since it takes on average X�
hours for people to transition from infectious to removed, we set

'
(B)
.

=

ÕB�X�
C=0 #

(C )
⇢.!�.

, where C = 0 represents the start of the

pandemic. In other words, by hour B , we assume everyone who

transitioned into � before hour B � X� has reached '. Finally, we

set (
(B)
.

= #. � ⇢
(B)
.

� �
(B)
.

� '
(B)
.

. We note that these are rough
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Supporting COVID-19 policy response with large-scale mobility-based modeling

Parameter Description Value (Source)

X⇢ mean latency period 96 hours [21]

X� mean infectious period 84 hours [21]

Xdeaths lag from becoming infectious to date of death 432 hours (18 days) [33]

Adeaths fraction of deaths reported at time C Variable (NCHS, NYT)

V
(0)

base
starting point for base transmission rate, Vbase Variable (Estimated)

AV ratio controlling how much Vbase will vary Variable (Estimated)

#28 population size of CBG 28 Variable (US Census)

k scaling factor for POI transmission Variable (Estimated)

0? 9 area of POI ? 9 in square feet Variable (SafeGraph)

F
(C )
8 9 # visitors from CBG 28 to POI ? 9 at time C Variable (SafeGraph)

c (C ) fraction of population wearing a mask at time C Variable (IHME)

n mask e�ciency 0.5 [12]

Table A1: Model parameters. If the parameter has a �xed value, we specify it under Value; otherwise, we write “Variable” to

indicate that it varies across CBG / POI / MSA. Eikenberry et al. [12] estimate that inward mask e�ciency could range from

20-80% for cloth masks, and outward e�ciency could range from 0-80%, with 50% perhaps typical; thus, we set n to 0.5.

Model 1st wave, RMSE 2nd wave, RMSE

full 2.238 1.486

no mobility 4.361 1.796

no mask 15.473 1.777

�xed Vbase 3.895 1.600

Table A2: Results from ablation studies.We tested theWash-

ington DC model in two time periods, comparing the full

model versus its ablations (Section 3). We �nd that the full

model achieves lower RMSEs than each of the ablations in

both time periods, and the impact of removing any feature

is substantially larger when �tting the �rst wave.

estimates, but the uncertainty captured by our parameter selection

and stochastic realizations should more than cover the uncertainty

carried in our initialization procedure. Furthermore, the estimates

produced by this method align with what we would expect: for

example, it predicts that by November 1, 2020, across all counties

in the US, the median county-level proportion of the population in

' was 19%, with an interquartile range of 9%–34%.

For a CBG 28 in county. , we set its initial states to match the pro-

portions of the county’s states; for example, '̂
(B)
28 = (#28 /#. )'

(B)
.

.

However, due to uncertainty in reported deaths and in our estima-

tion method, after setting initial estimates for all CBGs in the MSA,

we shrink each CBG’s estimate for every disease state toward the

mean over all CBGs. For example, ultimately we set

'
(B)
28 = (1 � U)'̂

(B)
28 + U (

1

<

<’

:=1

'̂
(B)
2: ), (11)

where< is the total number of CBGs in the MSA and U 2 [0, 1] is

a shrinkage parameter that controls how much we shrink toward

the mean. Shrinkage allows us to be more conservative about our

estimates, especially for CBGs with unusually high or low estimates

for any of the disease states. Since we have greater uncertainty in

reported deaths early in the pandemic, for the �rst wave period

Figure A1: This plot showing the relative change in foot traf-

�c per category over time is an example of the subreports

available from the dashboard’s Mobility History Panel.

that we model (March to May 2020), we set U = 0.5, and for second

wave period (November 2020 to January 2021), we set U = 0.1.

A.2 Dashboard’s Mobility History Panel

The Mobility History report is available upon selection of the “Mo-

bility History" button on the POI Navigation Bar. It provides aggre-

gated POI visits per MSA and POI category, based on SafeGraph

data, for every week from 2019 through the present time. In addi-

tion to providing raw data in tabular format, the report includes

di�erent visualizations of that data, including graphs of mobility

counts in 2019 and 2020; the proportion of 2020-2021 foot tra�c

vs. 2019-2020 foot tra�c by POI category, including bar graphs for

the most recent week in the set for easier visualization; and the

percent di�erence by POI category (Figure A1). This allows public

health experts to review mobility trends and compare them to other

COVID-19 indicators to make correlations and help inform them

as they plan their guidance.
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