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Abstract | Sensing, communication, computation and control technolo-

gies are the essential building blocks of a cyber-physical system (CPS). 

Wireless sensor networks (WSNs) are a way to support CPS as they pro-

vide fine-grained spatial-temporal sensing, communication and computa-

tion at a low premium of cost and power. In this article, we explore the 

fundamental concepts guiding the design and implementation of WSNs. 

We report the latest developments in WSN software and services for meet-

ing existing requirements and newer demands; particularly in the areas 

of: operating system, simulator and emulator, programming abstraction, 

virtualization, IP-based communication and security, time and location, 

and network monitoring and management. We also reflect on the ongoing 

efforts in providing dependable assurances for WSN-driven CPS. Finally, 

we report on its applicability with a case-study on smart buildings.
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1 Introduction
A cyber-physical system (CPS) refers to a tightly 
integrated system that is engineered with a col-
lection of technologies, and is designed to drive 
an application in a principled manner. For exam-
ple, consider the case of adaptive lighting in road 
tunnels—a critical requirement for tunnel man-
agement and safety.1 The goal, here, is to control 
the tunnel lighting levels in a manner that ensures 
continuity of light conditions from the outside to 
the inside (or vice-versa) such that drivers do not 
perceive the tunnel as too bright or dark. There 
are a number of possible solutions to this prob-
lem. It can, however, be simplified by designing a 
system that is able to account for the change in 
light intensity (i.e., detect physical conditions and 
interpret), and adjust the illumination levels of the 
tunnel lamps (i.e., respond) till a point along the 
length of the tunnel where this change is indis-
cernible to the drivers (i.e., reason and control in 
an optimal manner). Such a system embodies the 
principles of CPS.

CPS is built from the synergy of sensing, 
communication, computation, and control 
technologies.2–5 While the functional description 

for different components of a CPS design are spe-
cific to the application requirements, its architec-
tural abstraction remains the same (Figure 1). For 
example, consider the components of a proposed 
CPS architecture for adaptive tunnel lighting.1 The 
system consists of: (i) a wireless network of sensors 
to record light measurements inside the tunnel, 
and an external sensor to measure luminance at 
the tunnel entrance, (ii) a controller to interpret 
the luminance levels, apply control logic, and 
make decisions, (iii) actuators to adjust the inten-
sity of the tunnel lamp lights. The internal sensors 
wirelessly relay their measurements to a gateway, 
which then forwards it to the controller.

There are a range of application areas that can 
benefit from CPS. Zero-energy buildings, smart 
electric grid, smart transportation, extreme-yield 
agriculture and automation, patient and elderly 
care, smart medical technologies, safe evacuation 
from hazardous areas, search and rescue, firefight-
ing, etc., are a few such examples.3

While the basic idea of CPS-like systems have 
been in existence before,2 the information tech-
nology revolution of the last few decades has sig-
nificantly advanced their frontiers. These latest 
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developments can be used to drive CPS as dem-
onstrated by Ceriotti et al.1 for adaptive tunnel 
lighting. A wireless network of sensors, commonly 
referred as wireless sensor network (WSN), is one 
such technology that can be an essential compo-
nent of CPS.

A WSN is composed of low-cost and low-
power nodes of small form factor.6 Each node is an 
autonomous battery-powered device with inte-
grated sensing, on-board processing and wire-
less communication abilities. They are deployed 
in the region of interest to autonomously gather 
information from the environment, perform 
simple computations, and transfer only the 
required information to a remote device. Indi-
vidually, these nodes appear to be of little value; 
however, deploying and networking them on a 
large scale is effective in fine-grained interac-
tion with the physical space. WSNs are, therefore, 
a way to support CPS applications where, besides 
sensing, communication and computation may be 
necessary.

As with any emerging technology, the design 
of WSNs are not without technical challenges. 
These issues, predominately, arise due to the size, 
cost and power constraints of WSN platforms that 
translate to limited computing, communication, 

storage and energy resources.a Therefore, it is of 
utmost importance that each device makes very 
efficient use of its constrained resources, the impacts 
of which affect every aspect of design (from hard-
ware to software) and architecture (communica-
tion, network and data management) of WSN.

As mentioned before, CPS is evolving with a 
rising influx of new technologies. There is a grow-
ing optimism that CPS may lead towards an Inter-
net of physical objects, and this fascinating vision 
is being tagged as the Internet of Things (IoT). 
Therefore, CPS and IoT may not only transform 
the way people interact and control their physi-
cal surroundings, but also conduct and explore 
business opportunities. For example, consider the 
case of social media such as collaborative projects, 
blogs, content communities, social network-
ing sites, virtual game worlds, and virtual social 
worlds. They act as soft sensors, and create new 
types of sensed data for CPS/IoT coupling that 
expand the potentials of business. While the focus 
of past developments in WSN have been on funda-
mental design and energy issues, there are newer and 
increasing demands for supporting IoT by establish-
ing interoperability with heterogeneous devices and 
technologies.

To explore both these aspects of WSN with 
resource constrained devices, the rest of the article 
unfolds as follows.

• Section 2 and 3 explain the design guidelines 
of operating systems, simulators and emula-
tors with a case-study on Contiki and COOJA/
MSPsim.

• Section 4 explores the programming chal-
lenges and analyzes it within the context of 
makeSense, a recent programming framework.

• Section 5 argues for a software-based run-time 
control of application logic with virtualization 
on limited capability platforms.

• Section 6 explains the benefits of IP-based 
low-power wireless communication for 
achieving interoperability, and discusses the 
recently standardized IPv6 routing protocol 
RPL. It also explores the possible benefits of 
RESTful interactions, and platforms for cloud 
computing.

a For example, consider the case of a popular WSN platform 
such as TelosB.7 It has a IEEE 802.15.4 wireless radio trans-
ceiver with a (low) bit-rate of 250 kbit/s, a 16-bit microcontrol-
ler with a (limited) memory capacity of less than 50 kB of code 
memory and 10 kB of RAM, a 12-bit ADC for sensing; and uses 
a 3.3 V AA-size battery to power its hardware peripherals for 
different operations.

Figure 1. Top: Functional blocks of a cyber-phys-

ical system (CPS). Bottom: A wireless sensor net-

work (WSN)-based CPS architecture for adaptive 

tunnel lighting.1 While the functional description for 

different components of a CPS design is specific 

to the application requirement, its architectural 

abstraction remains the same.
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• Section 7 presents the design of an IP-based 
security service for interconnecting low-power 
networks with the IoT.

• Section 8 details the concepts and challenges 
in provisioning time and location services, and 
outlines their performance limits.

• Section 9 outlines the existing tools for net-
work monitoring and management.

• Section 10 crisply narrates the ongoing efforts 
in transcending WSN to be dependable.

• Section 11 demonstrates a WSN-driven CPS/
IoT with a case-study on smart buildings.

• Section 12, finally, concludes with a summary 
of the article.

Here, we primarily focus on the software and 
services for WSN, and refer our readers to the arti-
cle by Stankovic et al.8 for a condensed discussion 
on energy management techniques. We believe 
that gaining insights into the aspects above will 
motivate and guide researchers and engineers 
from various disciplines to adopt WSN for appli-
cations of CPS.

2  Operating Systems: A Case-Study  
on Contiki

The operating systems (OS) for WSN platforms 
differ significantly from those for general purpose 
computers, smart phones, and any other resource 
rich devices. They are designed to drive a single, 
dedicated application; and therefore, are more 
specialized, less complex, and consume limited 
system resources. Although these lean require-
ments translate to a smaller OS, provisioning it 
for memory constrained systems is a challenge. 
In spite of the difficulty, the concurrency models 
and abstractions provided by operating systems 
such as Contiki9 and TinyOS10 have successfully 
bridged this gap.

In this section, we briefly describe the major 
features of the Contiki OS. Contiki implements 
a lightweight process scheduler; and provides a 
set of libraries for memory management, sensor 
and communication abstractions, and low-power 
radio networking mechanisms. It is written in the 
C programming language, and can be compiled 
with any C99-compliant C compiler. It is designed 
to be easily portable, and runs on a variety of WSN 
platforms.

Contiki has an event-driven kernel, and uses a 
single shared (memory) stack for all process execu-
tion. Programming with Contiki requires defining 
event handlers that describe the response of the 
system to events (for example, sending and receiv-
ing radio packets, reading sensors, or invoking 
internal timers). The execution of a program is 

triggered either by events dispatched by the ker-
nel or through the polling mechanism (for high 
priority events). Once an event is scheduled, the 
kernel does not preempt the event handler. There-
fore, event handlers are allowed to run until their 
completion. Polling is, typically, used by processes 
that operate near the hardware; e.g., to respond to 
interrupts. Poll events are scheduled in  between 
other events, wherein all processes that implement 
a poll handler are called in their priority order. 
Events are designed to be asynchronous in order to 
reduce the stack space requirements, as each invo-
cation of event handlers rewinds the stack.

Contiki processes provide a sequential flow 
of control on top of its event-based kernel by 
using a programming abstraction called Proto-
threads.11 They are extremely lightweight, stack-
less threads that provide conditional blocking 
through the PT_WAIT_UNTIL() wait statement. 
It is invoked within its body declared by the 
PT_BEGIN and PT_END statements (Figure 2). 
Protothreads combine the advantages of event  
driven (i.e., low memory usage) and multi-
threaded (i.e., good control flow with no explicit 
state machines by using the blocking wait seman-
tics) concurrency models. They are a memory-
efficient means of provisioning threads to run 
on a single, shared stack instead of allocating a 
different stack space to each thread, as required 
for ordinary threads. The stack rewinding mech-
anism helps in context switching between differ-
ent threads. Moreover, they do not require any 
machine  specific assembler code for executing. 
However, due to the local continuation method 
of implementation, protothreads do not save the 
stack context (i.e., call history and local varia-
bles) across a blocking call. Hence, it is advised 
not to use local variables inside a protothread, 
but rather to define their scope with the static 

Figure 2. Protothreads in Contiki can be seen as 

a combination of event-driven and multi-threaded 

concurrency models. With protothreads, event-

handlers can be made to block code execution 

while waiting for events to occur.
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keyword in order to ensure that the variables 
keep their values between thread invocations.

Contiki supports two forms of memory man-
agement: (i) memory block allocation, and (ii) 
managed memory allocation. In the former way, all 
memory is allocated statically at compile time, and 
is useful when programmers know the memory 
requirements of the application. In the latter form, 
memory can be dynamically allocated at runtime, 
but from a fixed single memory block whose size is 
predefined and cannot be altered at runtime. Once 
memory is deallocated, a compaction mechanism 
is performed on the available memory blocks to 
reduce the risk of fragmentation.

Contiki provides a number of hardware 
abstractions for different components such as 
radio, LEDs, EEPROM, flash ROM, SPI, UART, 
RS232,b watchdog timers, etc., and sensors such as 
temperature, humidity, light, sound, etc., that are 
commonly found on WSN platforms. It also pro-
vides four types of timers: (i) passive timers that 
keep track of their expiration time without any 
event-posting ability, (ii) active etimers that have 
the ability to post events, (iii) active ctimers that 
have the ability to schedule function calls, and (iv) 
real-time rtimer that can schedule a function call 
at an exact time.

In realization of the IoT vision to connect 
constrained devices to the Internet (that is IP-
based),c Contiki was the first WSN OS to provide 
low-power Internet communication12 with µIP, and 
later incorporated µIPv6.13 They are among the 
world’s smallest IPv4 and IPv6 network protocol 
stacks with a memory footprint of approximately 
5 kB and 11 kB respectively. Contiki’s comprehen-
sive IP stack includes standard IP protocols such 
as UDP, TCP and HTTP.d In addition, it supports 
new low-power IPv6 networking protocols such 
as 6LoWPAN (IPv6 over IEEE 802.15.4), RPL and 
CoAP.e It also provides protocol-independent radio 
networking with the Rime stack.14

Contiki supports dynamic loading and linking 
of modules at run-time,15 a useful feature if there 
is a need to change the application behavior after 
deployment. It also provides a fast and lightweight 

b LED: Light Emitting Diode—EEPROM: Electrically Eras-
able Programmable Read-Only Memory—ROM: Read Only 
Memory; SPI: Serial Peripheral Interface bus—UART: Univer-
sal Asynchronous Receiver/Transmitter.
c IP: Internet Protocol, where IPv4 is the current protocol ver-
sion whereas IPv6 is its successor.
d UDP: User Datagram Protocol—TCP: Transmission Control 
Protocol—HTTP: Hypertext Transfer Protocol.
e 6LoWPAN: IPv6 over Low power Wireless Personal Area 
Networks—RPL: IPv6 Routing Protocol—CoAP: Constrained 
Application Protocol.

flash file system called Coffee.16 For devices with an 
external flash memory, Coffee provides easy-to-
use file manipulation operations (e.g., open, read, 
write, append, close); and abstracts the low-level 
operation details (such as erasing before writ-
ing and flash wear-leveling) from the application 
program. Other useful features include an inter-
active command-line shell with a set of predefined 
commands that offer debugging convenience, 
software-based power profiling17 of the system for 
enabling energy-aware mechanisms, IPsec stack18 
for secure networking, and on  device database 
facility with Antelope.19 We refer our readers to the 
Contiki wiki20 for latest information and updates.

3  Simulators and Emulators: A  
Case-Study on COOJA and MSPsim

Developing and testing WSNs can be a difficult 
task because of the inherent traits of resource-
constrained devices. Such typical traits include a 
lack of memory management units (MMUs) to 
catch system faults, highly constrained energy and 
power consumption, and low capacity to store 
software and run-time state. The latter trait some-
times require the software to be optimized for size 
rather than readability, which makes it more time-
consuming to find and correct errors.

Simulators provide the means of capturing a 
large number of errors before deploying and using 
WSN devices. A plethora of simulation tools have 
been developed to this end, embodying differ-
ent capabilities and trade-offs for developers and 
researchers. At the abstract protocol simulation 
level, we find simulators such as OMNeT++21 and 
NS-3.22 Whilst such simulators have the advantage 
of high performance and provide the means for 
rapid prototyping, the abstraction level puts the 
system far away from the real environment.

TinyOS Simulator (TOSSIM) is a discrete-
event simulator that is able to execute unmodi-
fied TinyOS applications.23 This simulator aims 
to strike a balance between simulation detail and 
speed by providing emulations of abstract hard-
ware devices, and letting most of the code execute 
using native instructions. Multiple instances of 
a simulated node can form a network, for which 
TOSSIM manages the inter-node communication 
through the emulation of abstract radio devices. 
Different radio models give researchers the choice 
to achieve realism at different scales, with a trade-
off against the simplicity of setup and the simu-
lation speed. TOSSIM effectively attains high 
performance when simulating large networks of 
hundreds of nodes, but does not provide sufficient 
detail to develop and debug low-level protocols 
close to the hardware.
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COOJA/MSPsim (Figure 3) takes a different 
approach by emulating the nodes at a cycle-accurate 
level, while providing an abstract radio model in the 
same manner as TOSSIM.24 In this approach, the 
same system firmware that executes on real nodes can 
be executed in COOJA/MSPsim. Since it has full vis-
ibility into the system state, it is able to control mem-
ory accesses and detect system faults. This feature is 
especially important when developing software for 
resource-constrained devices, which typically lack a 
MMU. Moreover, the emulator is able to track the 
transitions between system states and show a live 
power profile based on this information.25

With the current emergence of the IoT and 
standard-based communication, system inter-
operability is becoming increasingly important. 
COOJA/MSPsim, due of its ability to emulate a full 
WSN device, enables interoperability26 testing of dif-
ferent operating systems and their communication 
stacks. The simulator is able to test interoperability 
not only on the network layer,27 but also on the link 
layer using different implementations of MACf pro-
tocols.28 COOJA/MSPsim also includes TimeLine, a 
tool that visualizes all radio-level events and allows 
the user to zoom in and inspect the behavior of a 
selected set of network nodes at any time. This tool 
leverages the combination of cycle-accurate hard-
ware emulation and network simulation, and makes 
it considerably simpler to develop and debug inter-
operable, timing-sensitive network protocols.24

f MAC: Medium Access Control.

4  Wireless Sensor Network 
Programming: A Case-Study  
on makeSense

Application development is still one of the main 
hurdles to a wide adoption of WSN technology. 
In current real-world WSN deployments, pro-
gramming is typically carried out very close to 
the operating system, therefore requiring the pro-
grammer to focus on low-level system issues. This 
not only distracts the programmer from the appli-
cation logic, but also requires a technical back-
ground rarely found among application domain 
experts. The need for appropriate high-level pro-
gramming abstractions, capable of simplifying the 
programming chore without sacrificing efficiency, 
has been long recognized and several solutions 
have been hitherto proposed, which differ along 
many dimensions.

Nonetheless, the problem is challenging: on 
one hand, existing approaches provide a wide 
and diverse set of functionality and, on the other 
hand, WSN applications have widely different 
characteristics and requirements. Choosing the 
best platform for a given application demands 
a clear understanding of the application needs 
and of the basic differences among programming 
approaches.

In the following, we start with a brief over-
view on the state of the art, and then proceed by 
analyzing a recent proposal whose goal is to blend 
existing solutions in a coherent and extensible 
programming framework.

4.1 State of the art

In WSN programming, the characterizing dimen-
sion that initially received some attention is the 
one of node-centric programming vs. macro-
programming.30 The former generally refers to 
programming abstractions used to express the 
application processing from the point of view of 
the individual nodes. The overall system behavior 
must therefore be described in terms of pairwise 
interactions between nodes within radio range. 
Macroprogramming solutions, instead, are usu-
ally characterized by higher-level abstractions that 
focus mainly on the behavior of the entire net-
work, rather than on the individual nodes.

Nonetheless, under many respects the above 
distinction falls short of expectation in capturing 
the essence of currently available programming 
approaches. As a result, solutions offering radically 
different abstraction levels are considered under 
the same umbrella, ultimately rendering the dis-
tinction ineffective. For instance, both TinyDB31 
and Kairos30 are commonly regarded as macropro-
gramming solutions. However, the former provides 

Figure 3. A COOJA/MSPsim simulation of a 

network of nodes running Contiki with IPv6. This 

simulation environment combines cycle-accurate 

emulation with an abstract radio model, enabling 

developers and researchers to test the same 

system firmware as would be used on real CPS 

devices.
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an SQL-like interface where the entire network is 
abstracted as a relational table. Therefore, inter-
node interactions are completely hidden from the 
programmer. The latter, on the other hand, is an 
imperative programming language where con-
structs are provided to iterate through the neigh-
bors of a given node and communication occurs 
by reading or writing shared variables at specific 
nodes. Therefore, unlike TinyDB, in Kairos the 
application processing is still mostly expressed as 
pairwise interactions between neighboring nodes. 

Mottola et al.29 classify existing systems accord-
ing to two macro dimensions: language and archi-
tecture. Language aspects analyze the primitives 
that programmers can use to express communi-
cation and computation as well as the peculiari-
ties of the programming model, while architecture 
aspects consider the programming solutions that 
analyze features such as their intended use, their 
reach into the low-level layers of the architec-
ture and their execution environment. We briefly 
describe the relevant dimensions, and mention 
some representative systems along the way.

4.1.1 Language aspects

The taxonomy for language aspects is shown in 
Figure 4. Communication issues play a fundamen-
tal role, and therefore they can be divided further 
into sub-dimensions. The scope of communication 

is defined as the set of nodes that exchange data to 
accomplish a given application processing. The sim-
plest form of scope is called physical neighborhood 
and refers to those cases where the constructs avail-
able to the programmer enable communication 
only among nodes within radio range. An example 
is Active Messages.32 At the other extreme, system-
wide scope refers to systems where constructs are 
such that all the nodes in the WSN are possibly 
involved in communication. This is for instance 
the case of TinyDB.31 Between these extremes, sev-
eral systems determine the communication scope 
based on a multi-hop group. The multi-hop group 
is connected if any two nodes in communication are 
connected via nodes belonging to the group; oth-
erwise is non-connected. EnviroSuite33 is an exam-
ple of the former, while Logical Neighborhoods34,35 
is an example of the latter.

Further dimensions of communication are 
addressing and awareness. Addressing defines how 
the nodes involved in the communication are 
identified. Existing programming frameworks use 
either physical or logical addressing. The former 
relies on statically-assigned identifiers, while the 
latter uses application-level properties to identify 
the target nodes. Active Messages is an instance 
of the former class, while Logical Neighborhoods 
belongs to the latter. Awareness, on the other 
hand, is concerned with the extent to which the 

Figure 4: A taxonomy of language aspects in WSN programming abstractions (from29).
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programmer, through the available constructs, is 
made aware of communication itself. In systems 
where awareness is explicit, the programmers 
deal directly with issues like message buffering, 
serialization, parsing, and sometimes even the 
scheduling of transmissions. When implicit com-
munication is provided, instead, programmers 
are shielded from all these details, and in some 
cases cannot even discern precisely when and how 
data is exchanged among nodes. Active Messages 
is a representative of explicit communication, 
while Abstract Regions36 is an example of implicit 
communication.

Computation goes hand-in-hand with com-
munication, and WSNs are no exception. The 
computation scope defines the set of nodes directly 
affected by the execution of a single instruction 
in the program. If the scope is local, as in nesC,37 
an instruction involves only the node where it is 
executed. At the other extreme, an instruction that 
can influence the entire network is said to have a 
global scope, as in the case of TinyDB. Finally, in 
systems that determine the scope of computation 
based on the notion of group, the execution of a 
single instruction involves only a subset of the 
WSN nodes, as in the case of Regiment.38

Existing solutions provide different abstrac-
tions embodying a data access model. The related 
choices heavily influence the way programmers deal 
with both communication and computation; and 
therefore, significantly impacts the development 
process. Some systems rely on a database model, 
where the entire network is treated as a relational 
database and programmers interact with it using 
an SQL-like language. TinyDB is arguably the most 
popular in this category. In data sharing systems, 
instead, programmers can access the information 
shared by the remote nodes by means of dedicated 
constructs that read and write data elements—
variables as in the case of Kairos,30 or tuples as in 
the case of TeenyLIME.39 In systems that rely on 
mobile code, data is accessed locally in a node by 
moving specific instructions to the remote node 
where data is avalaible, as in Agilla.40 DSWare41 is, 
instead, a representative of systems relying on mes-
sage passing, where data is accessed through mes-
sages exchanged among the nodes involved.

Finally, the programming paradigm determines 
the abstractions used to represent the individual 
elements of a program. In imperative languages, the 
programmer explicitly defines, through the pro-
vided constructs, how the program state changes. 
This is by far the most common case, and it can be 
further classified into sequential (e.g., Kairos) and 
event-driven (e.g., nesC). Declarative languages, 
instead, define the goal of an application task 

without defining how it should be accomplished, 
as in TinyDB. ATaG42 is, instead, a hybrid where 
the local behavior is described with an imperative 
language, while a declarative, graphical one is used 
to define the interaction among nodes.

4.1.2 Architectural aspects

The taxonomy of architectural aspects is shown 
in Figure 5. The dimension of programming sup-
port is concerned with whether a programming 
abstraction is designed to be used alone or, on the 
contrary, together with other solutions. TinyDB 
is an example of the former class of systems pro-
viding holistic programming support. Instead, 
generic role assignment (GRA)43,44 and Hood45 
are examples of the latter class of building block 
approaches.

Instead, the layer focus is concerned with which 
architectural layers are the main focus of the sys-
tem at hand. If the latter can be used across layers 
of the stack (e.g., to implement routing, time syn-
chronization, localization, and possibly even MAC 
protocols) then the focus is vertical. This is the 
case for TeenyLIME and Hood. Instead, TinyDB is 
a representative of systems that are designed to be 
used only with an application focus.

In WSNs, cross-layer interactions often play 
a key role. However, these require the ability to 
access low-level configuration details of the run-
time from the language constructs. Unfortunately, 
most systems provide only a fixed configuration 
that can be changed only at compile time. MiLAN46 
is one of the few systems that explicitly provide an 
interface empowering programmers with access to 
the lowest layers at runtime.

Finally, WSN implementations are gener-
ally difficult to port. Therefore, programmers 
must often consider carefully the hardware plat-
forms explicitly supported by the programming 

Figure 5. A taxonomy of architectural aspects in 

WSN programming abstractions (from29).
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platform. Interestingly, of the 28 systems surveyed 
by Mottola and Picco,29 only 13 have actually been 
implemented on WSN hardware: the others have 
been evaluated only through simulation. Moreover, 
to the best of our knowledge, TeenyLIME is the 
only system that has been used in a real-world 
deployment.47

4.2  makeSense macroprogramming 

language

The purpose of the makeSense programming 
language48 is not to propose another macropro-
gramming language. Rather, it is to provide a 
framework where the abstractions contributing to 
the language are decoupled, leverage on existing 
implementations, and can be changed or extended 
easily to suit specific application needs.

This goal influenced the entire language 
design. To properly identify the units of function-
ality, reuse, and extensions makeSense defines the 
notion of meta-abstraction, implemented through 
different “concrete” abstractions, as described 
later. Abstractions provide the key concepts ena-
bling interaction with the WSN. However, their 
composition can be achieved by using common 
control flow statements, provided by a core lan-
guage that serves as the “glue” among macropro-
gramming abstractions. The core language is, in 
this case, a stripped-down version of Java tailored 
for WSNs.

Figure 6 shows a UML meta-model for the 
meta-abstractions provided by the makeSense 
macroprogramming language. It focuses on the 
notion of action, a task executed by one or more 
WSN nodes. Actions are separated into local, 
whose effect is limited to the node where the 
action is invoked (e.g., acquiring a reading from 

the on-board temperature sensor), and distrib-
uted, whose effect instead spans multiple nodes.

Distributed actions are further divided into 
tell, report, and collective actions. The former two 
represent the one-to-many and many-to-one 
interaction patterns commonly used in WSNs to 
enable communication between the node (the 
“one”) issuing the action and a set of nodes (the 
“many”) where the latter is executed. A tell action 
enables a node to request the execution of a set 
of actions on other nodes, e.g., to issue actuation 
commands or to trigger reconfiguration of system 
parameters such as the sampling rate. A report 
action enables a node to gather data from other 
nodes. Event-based abstractions and periodic, 
continuous queries both fall in this category. Data 
acquisition occurring on each target node is speci-
fied by a local action given as input to the report 
action. The output of the local action is returned 
to the report one. Collective actions, in contrast 
to tell and report ones, do not focus on a special 
node where the action starts or ends. They ena-
ble a global network behavior and are executed 
cooperatively by the entire WSN through many-
to-many communication. An example are dis-
tributed assertions,49 where programmers specify 
a (global) property monitored collectively by the 
WSN nodes.

Distributed actions may optionally have modi-
fiers associated with them, “customizing” their 
behavior. The makeSense language defines two 
modifiers, target and data operator. For exam-
ple, an automatic ventilation system for buildings 
requires both CO

2
 and presence sensors. Program-

mers must be able to map actions to the set of 
nodes of interest. A target identifies a set of nodes 
satisfying application constraints, and gives the 

Figure 6: A model for the meta-abstractions of the makeSense macroprogramming language.
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ability to apply a distributed action to the nodes 
in this set. Instead, a report action may have a data 
operator, specifying processing performed on the 
results after gathering and before they are returned 
to the caller, e.g., to filter or aggregate the data.

To create an instance of a meta-abstraction, a 
class implementing its interface must be defined 
in the core language. As abstraction implemen-
tations, typically, closely interact with the oper-
ating system, methods of abstraction classes are 
implemented in C using a native code interface 
provided by the core language. Some abstractions 
require extensive configuration, for example, 
a target needs to define a set of nodes based on 
their properties.35 To simplify such configuration, 
the core language supports the concept of embed-
ded languages, code snippets formulated in the 
declarative configuration language provided by 
an abstraction. These are compiled by appropriate 
compiler plugins, instead of being interpreted at 
runtime.

5 Virtualization
Traditionally, resource-constrained devices have 
been programmed using low-level languages. 
Applications execute in a run-time environment 
that provides a simple set of system services, 
and there are essentially no restriction placed on 
individual applications on how they can access 
and modify system resources. For instance, Con-
tiki applications are written in C, and operate on 
devices that do not provide memory protection. 
TinyOS applications are written in nesC, which 
provides some extensions to C for the manage-
ment of components and event-based program-
ming, but the applications still have the ability to 
access arbitrary parts of the system as in Contiki.

The need to ameliorate such problems has 
spurred the development of virtual machines and 
other related solutions for software-based run-
time control of applications. A virtual machine 
can provide support for high-level programming 
languages and safe execution environments at the 
cost of slower execution speed. Applications that 
depend on intensive calculations (e.g., an encryp-
tion algorithm) may experience severe perform-
ance problems if executed in a virtual machine. 
WSN applications, however, are typically event-
driven (i.e., sleeping most of the time and wak-
ing up momentarily to process incoming packets, 
send queued packets, or gather sensor samples); 
therefore, they are feasible to execute in a virtual 
machine.

One of the earliest virtual machines for WSN 
devices is Maté,50 which has a core instruction set 
of the most common operations. For individual 

applications, certain high-level operations that 
require many instructions may be expressed more 
succinctly if the virtual machine can be augmented 
with instructions for these operations. Hence, Maté 
enables developers to add such instructions that 
are implemented natively in the virtual machine. 
Unlike Maté, which does not support a high-level 
language, Darjeeling51 and TakaTuka52 are virtual 
machines that support different subsets of the Java 
programming language. Figure 7 shows an exam-
ple of a virtual machine architecture, which pro-
vides programming abstractions on a higher level 
than the underlying OS, and run-time support for 
convenient features such as garbage collection and 
preemptive threads.

The t-kernel53 protects systems from malfunc-
tioning applications, and extend the run-time 
services by providing virtual memory and preemp-
tive threading. Unlike the aforementioned virtual 
machines, the t-kernel executes applications in 
native machine code, but it has to be translated 
into binary before execution. This binary transla-
tion inserts additional instructions, which force the 
application to jump into the t-kernel for control 
whenever it is executing code that can potentially 
cause harm, e.g., writing to a memory address. 
Whilst the execution overhead of this method is 
50%–200% compared to a native application, the 
CPU is still idle more than 92% of the time in the 
applications tested. This further emphasizes that 
WSN applications are in general not CPU-inten-
sive, and can indeed draw advantage from the fea-
tures and safety provided by virtual machines.

6 IP-Based Networking
To include WSN in CPS, there is need to connect 
heterogeneous devices and technologies: sen-
sors, actuators, and the controller. To this end, 
an appealing approach is to rely on IP, the pro-
tocol suite of the Internet. Doing so, devices can 

Figure 7: An example virtual machine architec-

ture for WSN devices.
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interoperate, and be connected to existing infra-
structures and to the Internet. Through a common 
network-layer protocol, IP-based CPS enables 
interoperability at the levels: (i) among heteroge-
neous link-layer technologies such as IEEE 802.11, 
IEEE 802.15.4, Bluetooth or Powerline Commu-
nication (PLC); and (ii) among heterogeneous 
applications such as web-based configuration 
systems, publish-subscribe protocols, etc.,. This 
section reviews the different layers involved in IP-
based low-power WSN, as well as research related 
to this area.

6.1 The 6LoWPAN adaptation layer

The number of Internet-connected devices is 
continuously growing, and already exceeds the 
number of possible IPv4 addresses. To facilitate 
network management and scale to dozens or 
hundreds or billions of connected devices, IPv6 
is commonly considered as an appealing option. 
To make IPv6 suitable for IEEE 802.15.4 networks, 
the IETFg has standardized a network adaptation 
layer, 6LoWPAN.54 It defines compression and 
fragmentation of IPv6 packets so that they can fit 
into the IEEE 802.15.4 frames (of size 127 bytes). 
6LoWPAN is currently supported in the two 
mainstream operating systems for WSN: Contiki 
with µIPv655 and TinyOS with Berkeley Low-power 
IP stack (BLIP).56

The operating principle of 6LoWPAN is to 
compress header fields in a flexible manner, 
assuming commonly used values. For instance, 
the IPv6 addresses that, normally, take up 16 bytes 
can be either ‘carried inline’ (uncompressed) with 
their prefix elided (if the prefix is among the set 
of common prefixes), and/or have their interface 
identifier elided (if it can be derived from the MAC 
address). In the best case, the IPv6 header can be 
compressed from 40 bytes down to 2 bytes.54

6LoWPAN and IP assume wireless communi-
cation links to be always-on. In low-power WSN, it 
is typically achieved through asynchronous radio 
duty cycling, such as low-power listening (sender-
initiated, e.g., X-MAC57 or ContikiMAC58) or low-
power probing (receiver-initiated, e.g., RI-MAC59 
or A-MAC60). These solutions share the same 
design goal: spend most of the time with the radio 
chip idle (typically more than 99% of the time), and 
wake up periodically to check for pending com-
munication. This results in significant reduction 
in energy consumption, but increases the end-to-
end latency and link capacity. Recent results have 
shown that standard TCP traffic can be carried over 
a multi-hop duty cycled IEEE 802.15.4 network in 

g IETF: Internet Engineering Task Force.

a reliable manner with an end-to-end goodput of 
approximately 6 kB/s61 by forwarding data in large 
chunks at the MAC layer (‘Burst Forwarding’).

6.2 The RPL routing protocol

The IETF ROLL working group has recently 
focused on developing standards for interoperable 
routing over low-power IPv6 networks. In March 
2012, it standardized RPL: IPv6 Routing Protocol 
for Low-power and Lossy Networks.62

The design of RPL is largely based on the Col-
lection Tree Protocol (CTP),63 the reference data 
collection protocol for WSNs. The RPL topology 
is a Destination-Oriented Directed Acyclic Graph 
(DODAG) built in direction of the root, typically 
an access point to the Internet. RPL is capable of 
routing IPv6 traffic between any node pair in the 
network, and in both directions between individ-
ual nodes and Internet hosts.

An RPL topology is built using periodic bea-
coning, where nodes advertise their logical dis-
tance to the sink. Nodes join the DODAG upon 
receiving such beacons, and configure their global 
prefix so that they can communicate with exter-
nal networks. The same topology is used in the 
up direction (routing towards the root) as in the 
down direction (routing away from the sink).

RPL provides the following two modes of 
operation.

a. Storing mode: In this mode, each node main-
tains a routing table to reach all nodes in their 
sub-DODAG. Any-to-any traffic is supported 
by first routing upwards until a common 
ancestor of the destination and the source is 
found, and then downwards by following the 
nodes’ routing table (Figure 8).

b. Non-storing mode:  To reduce the memory 
requirements on RPL nodes, it also provides 
a non-storing mode in which nodes do not 
store a routing table. Instead, they always route 
upwards, towards the root. The root gathers 
global knowledge of the network topology, 
and performs source routing (by including the 
multi-hop path in the packet header).

RPL is a generic and extensible protocol, and can 
be used with various so-called Objective functions 
that define the criteria for the routing topology. 
RPL also allows to run multiple logical instances on 
the same physical network, which makes it possi-
ble to maintain topologies that maximize different 
metrics and follow different constraints. A typical 
example would be an energy-efficient topology for 
background traffic along with a low-latency topol-
ogy for delay-sensitive alarms.
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6.3 RESTful interaction

The primary benefit of IP-based WSN and CPS is 
interoperability among heterogeneous devices. At 
the application layer, an interesting solution is to 
build a distributed system of services by using a 
RESTful architecture. In a RESTful system, serv-
ers provide a set of resources that can be easily 
composed and browsed through hypermedia (i.e., 
a generalization of hypertext). Each resource is 
accessed using the traditional RESTful verbs: GET, 
PUT, POST and DELETE. Doing so, operations 
are explicitly classified as safe (GET, with no side 
effect) or unsafe (PUT, POST, or DELETE that 
affect the server-side state); and make it possible 
to cache content and scale to larger networks.

In RESTful WSN, every node runs a tiny web 
server64,65 that exposes the device’s basic sensing 
and actuation capabilities in an application-agnos-
tic way. Applications can be built on top of such 
a RESTful architecture by simply combining the 
resources of various devices. For instance, a node 
may give access to its temperature sensor through:

GET /sensors/temperature

and to its door lock actuator through:

PUT /sensors/doorlock [lock|unlock]

This approach makes it easy both to use 
the system in an interactive way, or to script 
interactions.

To bring RESTful resources to the most con-
strained devices, the IETF CoRE working group 
is currently defining the CoAP.66 In contrast to 
HTTP, CoAP uses UDP as the transport layer, 
which results in lightweight and efficient imple-
mentation of embedded RESTful servers.67 CoAP 
also supports natively push notification and multi-
cast communication—two operation that are noto-
riously difficult to support with HTTP over TCP.

6.4 Connecting to the cloud

Cloud computing refers to Internet servers that 
provide services in a scalable way. In this cloud-
centric CPS/IoT vision, all devices are connected 
to the cloud where most of the application logic 
resides. IP-connected devices and CPS/IoT can 
benefit in interoperability, flexibility, and effi-
ciency from Cloud connectivity. This makes it 
easy to use heterogeneous devices for the same 
application, update the application logic, and also 
allows offloading of heavy computation from con-
strained devices to elastic cloud platforms.

A number of cloud platforms following this 
architecture are being developed. Cosm (https://
cosm.com/), Evrythng (http://www.evrythng.
com/), Sense (http://open.sen.se/), and Sicsth-
Sense (http://sense.sics.se) are a few such examples. 
These platforms provide storage space for sensor 
readings, possibility to set triggers, share resources, 
and visualize data. Figure 9 shows an example of 
the data feed visualization in SicsthSense.

Figure 8: In RPL, the network topology (a DODAG) 

is anchored at the network root. Nodes are placed 

in the topology according to their rank, which 

reflects a logical distance to the root. In storing 

mode, all traffic is routed first upwards until reach-

ing a common ancestor, and then downwards to 

the destination. For instance, node #2 can send to 

node #8 through the path: #2, Root, #3, #6, #8.

Figure 9: SicsthSense offers a centralized place 

to manage and share RESTful resources, gather 

and visualize data, and script actuation.
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On the cloud side, it is comparatively easy to 
develop and maintain flexible applications. For 
example, Actinium68 is a RESTful engine that runs 
Javascript programs on an application server. It 
provides a simple application program interface 
(API) to interact with CoAP resources that make 
it possible to get data from a device, interpret and 
make decisions, and send actuation commands. 
This logic resides on the server and is imple-
mented as a script that makes it easy to maintain 
and share, and is open to interactions with other 
networks and external services.

7 IP-Based Security
Providing security in WSNs is challenging as 
sensor nodes are mostly resource-constrained, 
are deployed in unattended environments, the 
communication links are lossy, and there is an 
extremely diverse set of potential application 
scenarios. In case of the IP-based WSNs (as part 
of IoT), shown in Figure 10, the problem of ena-
bling security is even more challenging because 
of global connectivity of sensing devices and of 
potential applications where humans are directly 
or indirectly an integral part of the system. How-
ever, unlike typical WSN where security is mostly 
ignored, security is one of the main requirements 
in the IoT.69–71 Furthermore, in order to provide 
interoperability with the IP-networks, we require 
compatibility to existing Internet standards.

Table 1 shows a protocol stack of IoT devices 
inside a 6LoWPAN network and the correspond-
ing standard-based security solutions at each level. 
There are multiple options to secure IoT devices 
and each of these has its own pros and cons. One 
can choose an option based on the application’s 

security requirements: end-to-end (E2E) between 
source and destination, or per-hop between two 
neighboring devices.

7.1 End-to-end security

In E2E security, confidentiality and integrity pro-
tection and authenticity of messages is provided 
between the source and destination devices. E2E 
security is achieved by enabling security at the 
application, transport, or network layer. There 
are no standard based application layer security 
protocols that are applicable in multiple applica-
tions scenarios. For example, there exists Secure/
MIME (S/MINE) but can be used for MIME 
messages only.72 The typical security solution at 
the application layer is the use of username and 
password which does not cryptographically pro-
tect the communication, but rather provides a 
supplement to authenticate and grant access to 
resources. Commonly used and standardized 
E2E security protocols for the UDP/IP networks 
(and hence for the IoT) are IPsec18 and DTLSh.73,74 
Here, by IPsec we only mean the IPsec in transport 
mode as the tunnel mode is unfeasible for con-
strained devices. On one hand, IPSec is manda-
tory in IPv6 protocol; which means that all IPv6 
ready devices (by default) should have IPsec sup-
port that may be enabled at any time. This is a 
flexible solution for the IoT as it can work with 
any transport protocol, such as TCP or UDP, and 
it can protect the IP header as well. On the other 
hand, IPsec security services are shared among all 
applications running on a particular machine. In 
case IKEv275 is not used, it is cumbersome for a 

h TLS is most common in the TCP/IP networks.

Figure 10: A secure loT setup showing interconnection of a 6LoWPAN network and conventional Internet 

with novel loT and traditional Internet technologies.
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end  user to enable multiple sessions and manually 
set the IPsec keys and security policies. However, 
we believe that IPsec is one of the most applicable 
security options for the IoT as mostly only one 
single application runs on a tiny device and the 
default security policies are enough for such sce-
narios. Furthermore, IPsec is provisioned at the 
network layer, and therefore, application develop-
ers require little effort to enable it. In our previous 
work, we have designed, implemented and evalu-
ated a lightweight 6LoWPAN compressed IPsec 
for the IoT.76

Although, IPsec can be used in the IoT, it is 
not primarily designed for web protocols such as 
HTTP or CoAP. For web protocols, TLS or DTLS 
are common security solutions. However, since 
CoAP is the protocol envisioned to enable the 
Web-of-Things on top of IoT, DTLS is used in the 
CoAP-enabled IoT. DTLS guarantees E2E security 
of different applications on a single machine by 
operating between the transport and application 
layers. A secure version of CoAP (CoAPs) that 
uses DTLS as the underlying security protocol is 
already being standardized.74 A web resource on 
an IoT device can then be accessed securely via 
CoAPs protocol as:
coaps://myIPv6 Address:port/MyResource.xml

7.2 Per-hop security

Hop-by-hop, or rather End-to-Middle security can 
be used to protect a communication link between 
two neighboring devices, and protect the network 
against unauthorized access and resource mis-
use.77 For the IoT, the standard based RPL security 
or IEEE 802.15.4 security can be used to provide 
hop-by-hop security. RPL’s security feature only 
protects RPL-based routing messages and not the 
application data, whereas IEEE 802.15.4 security 
is flexible enough to protect and work with any 
network, transport, and application layer proto-
col. The per-hop security helps to protect against 
data modification attacks on each hop unlike E2E 
where modified packets traverse the entire path up 

to the destination to be detected. In our previous 
work, we have implemented and evaluated IEEE 
802.15.4 security and compared its overhead with 
IPsec.76

In both, RPL and IEEE 802.15.4 security, all 
devices in a 6LoWPAN network share a common 
security key. In case an attacker compromises one 
device in the network, it gains access to the key; 
and hence, the security of the whole network is 
compromised. Therefore, in the case of the IoT we 
recommend that E2E security should be enabled 
between a device in a 6LoWPAN network and a 
host on the Internet. In addition, per-hop security 
with at least integrity protection should be used to 
prevent unauthorized access to network’s resources 
and to defend against effortless attacks launched 
to waste constrained resources. In case of CoAP-
based web applications in the IoT, we recommend 
to use CoAPs rather than IPsec as it enables seam-
less secure access to web resources. Also, small-scale 
sensor devices (as used in WSN) are easy to capture 
and clone to recover their secret contents. There-
fore, in addition to communication security, the 
IoT should be protected with an intrusion detection 
system (IDS),78 and stored secrets inside the sensor 
devices79 should be protected by encryption.

8 Time and Location
Time and location play an important role in sen-
sor network applications, since they provide valu-
able context (‘when and where it happened ?’) in 
interpreting sensed data (‘what happened ?’).

8.1 Time

The clock synchronization problem is to maintain 
a common notion of time among the constituent 
parts (i.e., nodes) of a distributed system (i.e., net-
work of nodes).80 Having such a notion of time is 
important for (temporal) message ordering, data 
fusion (to assemble distributed information in a 
coherent manner), intra-network coordination 
among sensor nodes for data consistency, security 
and communication protocols, localization, etc.,.

Each node has a (hardware) clocking system 
that consist of a counter that counts time steps, 
and is incremented at a rate provided by an oscil-
lator. It is said to be linear if the clock rate remains 
constant with time; however, they experience 
variable drift due to changes in supply voltage, 
temperature, etc.,. WSN devices usually contain 
non-expensive oscillators that, typically, drift in 
the range of 10–100 ppm.i Nodes must, therefore, 
synchronize their drifting hardware clocks by 

i ppm: parts-per-million, 10−6. A clock drift of 100 ppm cor-
responds to a drift of 100 µs in one second.

Table 1: IoT stack with standardized security 

solutions.

loT Layer
loT 
Protocol

Security 
Protocol Scope

Application CoAP, HTTP User-defined E2E

Transport UDP, TCP DTLS, TLS E2E

Network IP IPsec E2E

Routing RPL RPL security Per-hop

6LoWPAN 6LoWPAN None None

Data-link IEEE 
802.15.4

802.15.4 
security

Per-hop
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exchanging information about their current state. 
Nevertheless, there is also a variable delay in this 
operation of sensing and receiving messages.

It is assumed that a node can only read its 
hardware clock (and not modify it). Therefore, 
a logical (software) clock is maintained in each 
node whose value depends on its hardware clock 
and the information received from its neighbor-
ing nodes. When clocks are linear, they can be 
described by their skew (rate) and offset. A clock 
synchronization algorithm, therefore, adapts the 
logical clock value in a optimal manner that mini-
mizes the clock skew between any two nodes in the 
network, regardless of their relative distance.

There is a large literature on clock synchroni-
zation in distributed systems, which mostly focus 
on bounding the internode clock skews. Some of 
the prominent algorithms (ordered by publica-
tion date) are listed in Table 2 along with their 
respective synchronization accuracies. We refer 
our readers to the review articles by Romer et al.85 
and Lenzen et al.80 for more detailed information 
on their underlying assumptions and implemen-
tation techniques. Glossy has reported the lowest 
time synchronization error in WSN. It was pri-
marily designed for fast and reliable (> 99.99%) 
network flooding for which it exploits construc-
tive interference of IEEE 802.15.4 symbols. Its 
synchronization accuracy of 0.5 µs is, infact, nec-
essary to make concurrent transmissions of the 
same packet interfere constructively. Glossy is now 
a part of the Contiki codebase.

8.2 Location

The localization problem is to determine the cur-
rent location of the nodes in the network within a 
given coordinate system. Location information 
assists in network management tasks, such as 
routing (for geographical algorithms),86,87 network 
connectivity adjustment (i.e., topology control) 
for energy saving88 and security.89 Besides, the loca-
tion itself is often the data that needs to be sensed, 

and is extremely useful for the self-localization of 
the sensor nodes, if it is accurate enough.90

Localization consists of two-phases: first, 
measurement that estimates inter-node location 
specific signal metrics, and second, positioning 
that utilizes the measured information to com-
pute their (absolute or relative) location coordi-
nates. An adjunct calibration step is included in 
the measurement phase to compensate for errors 
due to manufacturing differences in the hardware 
or changing environmental conditions. Depend-
ing on the sensed modality, measurement tech-
niques can be classified into range-based, motion 
dynamics, and range-free.

Range-based techniques predominately depend 
on probing with a physical signal (of known char-
acteristics) to estimate a ranging parameter. For 
example, received signal strength (RSS) is esti-
mated by measuring the attenuation of the physi-
cal signal (transmitted at a known power level) at 
the receiver node, and is used with a path-loss and 
shadowing model to compute the distance. Dis-
tance measurements of higher accuracy can be 
obtained by estimating the travel time of the phys-
ical signal (RF/acoustic), and this forms the basis 
of time-of-arrival (TOA), time-difference-of-ar-
rival (TDOA) (and angle-of-arrival AOA for angle 
measurements), round-trip time (RTT), elapsed 
time between two time-of-arrivals (ETOA). RSS 
estimators exhibit large uncertainty due to shad-
owing and multipath reflections from the envi-
ronment and ground. Time delay-based signal 
metrics are susceptible to errors due to obstruc-
tions between the transmitter-receiver node pair 
leading to non-line-of-sight (NLOS) conditions, 
noise, interference, multipath, clock drifts, etc.,. 
Acoustic signals deliver higher accuracy91,92 than 
RF due to better compensation of timing errors 
derived from their slower propagation speed; 
but have limited range and coverage.93 They are, 
moreover, affected by other physical factors such 
as air density variations caused by thermal effects 
leading to differences in sound speed, and propa-
gation effects caused by non-uniformity in the 
atmosphere (due to wind and turbulence).

The challenges faced by range-based tech-
niques can be overcome by measuring the motion 
dynamics (such as velocity, acceleration and orien-
tation) using inertial and magnetic units (IMU). 
While this mode of measurement is obvious for 
a network of mobile sensors, motion dynamics 
in static cases can also be recorded by deploy-
ment personnel carrying embedded devices with 
IMU. IMUs are immune to ambient noise, and 
are free of LOS requirements. However, they suf-
fer from drift since errors in measured dynamics 

Table 2: Accuracy of time synchronization 

algorithms for WSN.

Algorithm
Avg. Accuracy (µs) 
(Single Hop)

RBS81 29.10

TPSN82 16.90

FTSP83 1.48

Glossy84 0.50

Reference Broadcast Synchronization (RBS)

Timing-Sync Protocol for Sensor Networks (TPSN)

Flooding Time Synchronization Protocol (FTSP)
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accumulate when integrated over time. While 
inertial units remain unaffected by electromag-
netic interference, the performance of magnetic 
units (e.g., magnetic compass) is severely affected 
by stray magnetic fields caused by various electri-
cal equipment or ferrous metals in the environ-
ment, typical of indoor environments.

Range-free techniques, on the other hand, pro-
vide course location estimates by utilizing proximity 
(with respect to one-hop anchors)94 or connectiv-
ity information (with neighboring objects to build 
hop-based virtual distance)95 by measuring the 
RSS. Hence, they are affected by the error sources 
for RSS where the measurement uncertainty fur-
ther intensifies when the communication range is 
large or the connectivity of the network is low.

Measured data can be of various types, but dif-
ferent measurement methods can deduce similar 
information. For example: RSS can be translated 
into distance, proximity or connectivity status; 
time-delay and step-counter (from IMU-ac-
celerometer) can be transformed into distance, 
while time-difference and orientation (from 
IMU-gyroscope/compass) result in angle. Every 
measurement modality has a different set of error 
sources that are mostly orthogonal to each other, 
and have different performance levels. Therefore, 
combining several such measurement methods 
can benefit the final position result.96 Based on the 
algorithm that generates the location coordinates 
in the positioning phase, the process of location 
estimation can be categorized into: anchor-based 
and anchor-free, and can be executed in an incre-
mental or concurrent manner.97

The anchor-based method requires provi-
sioning a set of (fixed/mobile) reference points 
(also referred to as anchors or landmarks) with 
known location coordinates. The measured dis-
tances (and/or angles) to the target node from 
these anchors and the anchor locations are used 
to obtain the target position within the selected 
coordinate system using geographical calcula-
tions/mathematical computations such as trian-
gulation, multilateration, etc.,. If the anchors are 
moving, they should follow a predefined trajec-
tory so that their coordinates can be determined 
at any given instance.

In the anchor-free mechanism, the location of 
the target nodes are determined by using only the 
knowledge of their separation distances without 
the support of anchors. The underlying algorithm 
searches the defined coordinate space to find the 
optimal coordinates for the nodes that satisfy 
the measured distance constraints. However, the 
uniqueness of the solution cannot be guaranteed 
since the coordinate assignment continues to be 

valid under translation and rotation97 without vio-
lating any of the distance constraints. Therefore, 
this method of localization, eventually, becomes 
difficult due to the absence of anchors.

Assuming that the target nodes have to be 
localized in a two-dimensional plane with anchors, 
their positions (consisting of two unknown vari-
ables x and y) can be unambiguously determined 
by solving a system of two linearly independ-
ent equations for each target node. Relying on 
distances only, the necessary equation system 
requires three distance measurements from three 
anchors to determine the position of a target node 
(Figure 11(a)). The angle information between the 
anchors and the target node benefits in obtaining 
an unambiguous solution to the problem with 
only two anchors (Figure 11(b)). Nevertheless, its 
position can also be uniquely determined by solv-
ing a single equation that combines a single dis-
tance and angle measurement to a single anchor 
node (Figure 11(c)).

Therefore, the minimum number of anchors 
that are required to determine the position of the 
target node can be limited (i.e., from three to one) 
depending on the measurement capabilities (i.e., 
distance/angle) of the nodes. However, measure-
ments to additional anchor nodes with multi-
ple ranging parameters improve the positioning 
accuracy.

In the broader context of (higher capabil-
ity) devices in the IoT, there exist a wide range of 
sensing modalities (such as microphone, camera, 
GPS, accelerometer, gyro, digital compass, and/or 
infra-red) and wireless communication interfaces 
(such as 3G, GSM, WiFi, Bluetooth) that can be 
used for location sensing (Table 3). Many of the 
core WSN concepts covered in the section are 
also valid for ranging and positioning with these 
devices. Despite significant progress in this field, 
the resources required for signal detection are a 
deciding factor for the cost, power, size and weight 
of the sensing platform, and this essentially strikes 
a trade-off between localization accuracy/coverage 
range and energy efficiency. In regards to closing 
this gap, the emerging technology of sparse rep-
resentation/compressive sensing based location sys-
tems are being investigated.98,99

9 Network Monitoring and Management
Deploying and managing a WSN is a tedious task. 
Resource constrained embedded devices, typically 
used in WSNs, can experience problems during 
(and after) deployment due to hardware, soft-
ware or environment conditions. These anoma-
lies coupled with the ambitious targets of long 
term deployment (over several years), large scale 
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(comprising of several hundreds of nodes), and 
performance guarantees make it necessary to have 
network monitoring and management services100 
for network health checks, fault-detection and 
debugging, etc.,.

Several tools have been developed for this 
purpose, both for testbeds and live deployments 
of WSNs. For live networks, systems such as Sym-
pathy101 are able to reason about node failures, 
SNMS102 and Memento103 provide state inspec-
tion facilities, while EnviroLog104 assists in log-
ging function calls that can later be replayed to 

replicate the node behavior. A recent addition to 
this set of WSN monitoring and management 
tools is the 6PANview,105 a SNMPj-based system 
for 6LoWPAN/RPL networks. There also exist 
tools such as LiveNet106 and Multihop Network 
Tomography (MNT)107 that are able to reconstruct 
and recover the network dynamics (such as rout-
ing paths, network topology, bandwidth usage, 
etc.,) by simply observing the packets.

10 Making WSNs Dependable
Albeit significant advancements in the field of 
WSN (as narrated in the previous sections), its 
widespread adoption by the industryk for support-
ing CPS applications of safety-critical nature110 is 
still not apparent. Among different factors, this 
reluctance stems primarily from the current “best 
effort” communication nature of WSN protocols 
that cannot provide guarantees1 in reliability, 
latency and capacity. Therefore, the established 
designs of dependable distributed systems cannot 
be applied to CPS.

The Internet based on the IP communication 
stack is a best effort network architecture. While 
such an architecture suits the needs of many WSN 
applications, CPS often need dependable assur-
ances. In this regard, both the MAC and the trans-
port layers play an important role. In the Internet, 
TCP is the standard transport-layer protocol for 
reliable communication. Although, TCP is known 
to perform sub-optimally in multi-hop wireless 
scenarios, it has been shown recently to be suit-
able for reliable, energy-efficient communication 
in IP-based WSN61 when running atop a reliable, 
asynchronous duty-cycled MAC. Other options, 
higher in the protocol stack, include the CoAP 
protocol and its confirmable requests that imple-
ment reliability on top of UDP.

Providing latency and capacity guarantees is 
non-trivial to achieve in WSN due to the lossy 
nature of wireless links, and the complexity of 
multi-hop communication. Assuming planned 
communication patterns (e.g., network traffic 
with constant interval and payload), scheduled 
MAC layers offer predictable performance. Low-
Power Wireless Bus (LWB)111 is a recent best-
effort communication layer; which performs 
synchronous transmissions across the network, 
and exploits constructive interference to achieve 
robust and efficient communication with any 
traffic pattern. The same team of researchers also 

j SNMP: Simple Network Management Protocol.
k WirelessHART108 and ISA100109 are two existing IEEE 
802.15.4 standards that were introduced for promoting the 
adoption of WSNs in industrial control and automation.

Figure 11: Depending on the measurement 

capabilities of the WSN nodes, the minimal anchor 

count can be reduced from three to one. d and 

α, respectively, represent distance and angle 

measurements.

Table 3: Accuracy of positioning 

technologies.

Technology Avg. Accuracy

GPS 15 m

DGPS 5 m

Cellular ID 50 m–300 m

Wi-Fi 2 m–100 m

Bluetooth 2 m–10 m

Infrared 5 cm–10 m

RFID 5 cm–5 m

Vision 1 cm–1 m

Ultrawideband 10 cm–15 cm

Sound 1 cm–10 cm

Global Positioning System (GPS)

Differential GPS (DGPS)

Wireless-Fidelity (Wi-Fi)

Radio Frequency Identification (RFID)
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introduced VIRTUS,112 a virtually-synchronous 
messaging layer for resource-constrained WSN 
devices in CPS applications. VIRTUS provides 
atomic multi-cast and view management with a 
combination of dedicated techniques that build 
on LWB. Also, the recent IEEE 802.15.4e stand-
ard includes a time-scheduled channel-hoping 
MAC (TSCH) that aims to deliver more predict-
able performance in planned communication 
scenarios. It is currently being investigated by the 
IP-based WSN community at the IETF with the 
6TSCH working group (currently under defini-
tion). 6TSCH focuses on running the 6LoWPAN 
network stack on top of IEEE 802.15.4e TSCH, 
and is aimed towards deterministic IPv6 com-
munication in WSN. RELYonIT113 is another 
recent initiative in this direction. It aims to pro-
vide a systematic framework and toolchain that 
would account for all relevant environmental 
properties, and their impact on WSN platforms 
and protocols to enable dependable CPS/IoT 
applications.

11  Application: A Case-Study  
of WSN-Based CPS for Smart 
Buildings

There are many motivating factors behind making 
both new and existing buildings ‘smarter’ of which 
the important ones are energy efficiency, damage 
prevention, and increased comfort and control.

Energy efficiency. It is a key aspect that can 
break the rising trend of energy usage. A first step 
in this direction is to raise awareness about house-
hold energy consumption at the consumer level. 
Such a practice can be easily developed with the 
help of modern smart (power) meters and moni-
toring tools that record current consumption of 
individual appliances. Households and buildings 
can be further instrumented with a network of 
sensors (i.e., WSN) for monitoring temperature 
and light. Therefore, combining the above physi-
cal parameters can allow more fine-grained con-
trol over the energy consumption of electrical 
appliances for heating, ventilation and light.

While energy billing has been done with fixed 
energy fees for extended periods of time, we 
believe that flexible contracts will become more 
common in the future (with moving tariffs) fol-
lowing the fluctuations of the energy markets. 
This would create stronger incitements to adjust 
the energy consumption locally; for example, by 
shifting time independent consumption to out-
side of peak hours, and moving non-critical tasks 
to periods when the energy price is the lowest. 
This would lead to better load balancing at the 
power grid.

Damage prevention. The damage of buildings 
can be caused by many environmental/human 
factors. Dampness is one such cause, which is 
reported to cost close to 600 M  annually in Swe-
den114 for building repair. Building damage from 
these factors can be easily prevented by monitor-
ing them effectively. For example, damp sensors 
that report divergent moisture levels can help 
detect dampness or leakages before it becomes a 
problem.

Increased comfort and control. Several manu-
facturers of heat pumps already offer products to 
remotely control them by SMS. This allows house 
owners to heat up the building in advance before 
returning to the property. There also exist solu-
tions for remotely controlled alarms, and many 
custom made home control systems developed by 
enthusiasts. They can all offer accessibility services 
and increased comfort for the end users. However, 
in the current form, they are either provided as 
separate non-interoperable services, prohibitively 
expensive monolithic systems, or system requiring 
special installation and maintenance knowledge.

With the help of a WSN-driven CPS archi-
tecture for smart buildings/houses (Figure 12) 
and demo smart household (Figure 13), we show 
how these demands can be addressed by CPS and 
some of the concepts presented earlier in this arti-
cle. For our demo household, the CPS consists 
of: (i) a WSN to monitor temperature, humidity 
and illumination intensity inside the house, and 
power meters to record the current consumption 
of individual electrical appliances such as a fan, a 
room heater, and a light bulb; (ii) actuators (each 
dedicated to an appliance) to control the power 
supply and moderate the physical space inside 
the household, and (iii) a controller in the form 
of an energy gateway. The aggregated electricity 
consumption of the household is forwarded to the 
electricity provider/supplier, which reports back 
the current tariff. In the home, the energy gateway 
is the control point. It connects all monitored and/
or controllable household devices, receives pric-
ing updates and tariff reports from the electric-
ity provider/supplier, and regulates the household 
energy consumption according to the (consumer 
configurable) power policy, target energy saving 
and comfort level.

By using low power WSN devices, together with 
efficient radio duty cycling, resource consumption 
is kept minimal. This ensures that the benefit of 
an increased energy efficiency is not pulled back 
by increased energy spending. WSN devices fol-
low standard IP-based communication to connect 
and exchange information with the gateway. The 
collected data is forwarded to the service provider 
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through a data layer that handles subscriptions. It, 
therefore, ensures that only requested data is for-
warded in order to minimize network traffic. A 
trusted security service is required for the purpose 
of granting remote device access to building infra-
structure services or individual household appli-
ances. With an IPsec end-to-end solution in place, 
user authentication for access control and privacy 
of the generated data can be enforced.

This architecture and prototype illustrated a 
mechanism to efficiently use and manage energy. 
The damage prevention aspect with smart build-
ings was not demonstrated, but can be eas-
ily implemented by configuring a dampness 
sensor and defining safety rules for triggering a 
warning. However, in order to use the solutions 
from different vendors, there is a need to follow 

defined standards for creating a system that can 
be upgraded or extended with heterogeneous 
devices (as the need arises). For a manufacturer, it 
is tempting to stick to closed proprietary protocols 
as it allows them to retain control of the generated 
data. This limits the customers’ choices, and forces 
them to use the proprietary services only. There are 
a number of ongoing projects that are investigat-
ing as to how different metering devices could be 
made to cooperate.115 Besides the hardware related 
interoperability issues, standard compliance is also 
needed to build higher level services. This applies 
both to services for monitoring individual build-
ings; and to services for monitoring, control and 
optimization of heterogeneous power grids where 
multiple small and medium sized energy provid-
ers need to be incorporated.

With the readily available hardware and soft-
ware technologies, the described CPS for smart 
buildings/households supported by WSN can be 
used both for new constructions, and also, for cost 
efficient retrofitting of existing infrastructure.

12 A Final Note
The article outlined the basic building blocks of 
a cyber-physical system, and showed how a wire-
less sensor network could potentially fit within 
its scope to support CPS applications. It reflected 
on the existing requirements and newer demands 
of WSN; and subsequently, reported the latest 
developments in software and services (operat-
ing system, simulator, emulator, programming 
abstraction, visualization, IP-based communi-
cation and security, time and location, network 

Figure 12: Functional components of a WSN-based CPS architecture for application in Smart Building/

House.

Figure 13: A small scale model of a Smart House 

based on the architecture shown in Figure 12.
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monitoring and management, and dependable 
assurances) for designing WSNs that are in-line 
with the goals of CPS/IoT. Finally, the article revis-
ited some of the important concepts with a case-
study of WSN-driven CPS for smart buildings.
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