World Scientific

International Journal of Pattern Recognition \\p
www.worldscientific.com

and Artificial Intelligence
Vol. 20, No. 4 (2006) 585-607
© World Scientific Publishing Company

SUPPORTING DEVELOPMENT OF CONTEXT-AWARE
APPLICATIONS USING SEMANTIC SPACE TOOLKIT

DAQING ZHANG*

Context-Aware Systems Department
Institute for Infocomm Research, Singapore
*daqing @i2r.a-star.edu.sg

ZHIWEN YU

School of Computer Science
Northwestern Polytechnical University, P. R. China
zhiwenyu@nwpu. edu.cn

XIAOHANG WANG

School of Computing, National University of Singapore, Singapore
zwang@nus.edu.sg

MATTHEW Y. MA

IPVALUE Management, Inc., USA
mattma@ieee.org

In order to facilitate rapid development of context-aware applications, there is a need for
architectural support in the entire context processing flow, and improved programming
abstractions that ease the prototyping. In this paper, a toolkit called Semantic Space,
is proposed to support rapid prototyping of context-aware applications via a set of
programming abstractions on context processing. The functionality encapsulated in the
toolkit handles the common, time-consuming and low-level details in context acquisition,
aggregation, storage and inference. Architectural design and implementation issues of
the Semantic Space toolkit are discussed in detail. Finally, a case study on building a
mobile situation aware phone is described to illustrate the validity of our approach and
usability of the toolkit.

Keywords: Context-awareness; ontology-based context modeling; context middleware;
context toolkit; mobile applications.
1. Introduction

With the recent convergence of ubiquitous computing and context-aware comput-
ing, there has been a considerable rise in interest in context-aware applications.
These applications exploit various contexts to offer services, present information,
tailor application behavior and trigger adaptation.

585

586 D. Zhang et al.

However, due to the lack of generic mechanisms for supporting context-
awareness, context-aware applications remain difficult to build. Developers must
often deal with a wide range of details related to the processing of context, which
include context representation, aggregation, storage, reasoning and query.'? These
tedious tasks are of much distraction for developers to concentrate on building
an application’s functionalities. Therefore, there is a need for improving program-
ming abstractions that can ease prototyping of applications. To allow developers
build ubiquitous computing applications in a simple and efficient manner, we need
to provide system-level support for context representation, acquisition, inference,
delivery and usage. Particularly, we envision a simple and systematic application
development process in using a context toolkit.

This paper attempts to build a new context toolkit, called Semantic Space,2?
for the rapid prototyping of context-aware applications. The Semantic Space is
an architecture that hides the low-level context processing details from the user.
It offers high-level programming abstractions that provide application designers
with a flexible mechanism to build sensor wrappers and context-aware applica-
tions. One of Semantic Space’s novelties is the utilization of Semantic Web? tech-
nologies for explicit representation, expressive querying and flexible reasoning of
contexts in smart spaces. Via the use of Semantic Web technologies, we present a
novel modeling approach that allows context to be explicitly described. In order
to achieve interoperability between heterogeneous data sources and applications,
Web Ontology Language (OWL!7) is adopted as the representation language. With
Semantic Space, application designers can concentrate on the development of appli-
cation logic, whereas only minimal effort is required to access and manipulate
context.

The rest of this paper is organized as follows. In Sec. 2, we describe related work
in context toolkit and highlight the distinctive aspects of our approach. In Sec. 3,
the design and implementation details of Semantic Space are presented following the
requirement analysis of context toolkit. Section 4 proposes a four-step development
process for context-aware applications leveraging Semantic Space. A context-aware
mobile application, called SituAwarePhone, is presented as a case study to illustrate
the development process. Finally, Sec. 5 concludes our paper.

2. Related Work

Quite a number of systems have been developed in the past to provide generic
architectural support for efficient development and deployment of context-aware
applications. In a broad sense, those systems fall into two categories: context pro-
cessing oriented and service-oriented architecture.

Context processing oriented systems focus more on the context processing pro-
cess and mechanisms. They usually provide programming abstractions that separate
the different context processing stages. For instance, the Context Toolkit® provides
application developers a set of programming abstractions that separate context

Development of Context-Aware Applications Using Semantic Space Toolkit 587

acquisition from actual context processing and usage, it uses the simple name-
value pair to model context. The Solar system® also adopts the simple name value
pair as the context model, but it develops a graph-based programming abstraction
for context aggregation and dissemination. Both Gaia?® and CoBrA* use Ontol-
ogy based approach to model context, they can thus leverage on the techniques in
Semantic Web to process context. The difference of the two systems is that Gaia
adopts a middleware architecture to manage ubiquitous resources whereas CoBrA
proposes an agent based architecture to support context-aware applications. The
European Smart-Its project presents a programming abstraction for raw data sens-
ing, feature extraction (cues), and high-level context abstraction from cues.® Harter
et al. proposed a three-tier context architecture,!' which consists of location con-
text sensing, an Oracle database for context storage, update and query. Although
all the abovementioned systems provide certain level of context processing support,
none of them provides a complete solution for dynamic discovery of context sources,
efficient context inference, expressive context query and scalability.

Service-oriented context-aware systems emphasize mainly on separating context
processing and usage. They usually use service as the abstraction unit to represent
each functional module and facilitate development of context-processing service and
context-aware applications. For example, the Context Fabric'? provides two fun-
damental built-in services, namely event service and query service, to support the
acquisition and retrieval of context data. Judd and SteenKiste!'® introduced a Con-
textual Information Service (CIS) that enables the dynamic composition of context
query results via a virtual database. Grimm et al. presented a system architecture
with discovery and migration services, called one.world,” which provides an inte-
grated and comprehensive framework for building pervasive applications that can
be adapted to context change. Some other interesting context-aware systems and
context-processing methods can be found in Refs. 1, 7, 15, 16 and 22.

Our work falls into the category of context processing oriented systems and it
overcomes the drawbacks in previous work in several aspects. Firstly, by adopt-
ing the Semantic Web technologies for context representation, aggregation, infer-
ence and query, we developed a toolkit with a generic mechanism for querying
contexts using a declarative language and inferring higher-level contexts based on
predefined rules or opportunistic events.2! This facilitates developers’ work because
they can realize expressive context querying and flexible context reasoning without
programming. Unlike Gaia?? and CoBrA* which are also leveraging the Semantic
Web, we support automatic discovery of new context sources in the context toolkit
and adopt an open-standard based service framework, which makes the toolkit
and context-aware application development flexible and scalable. Secondly, while
existing work does not elaborate on the detailed design process of context-aware
applications, we propose a four-step development process for building context-
aware applications leveraging Semantic Space, and use a concrete example to illus-
trate the usability of our context-aware toolkit for building a mobile application
prototype.

588 D. Zhang et al.

3. Semantic Space Toolkit
3.1. Toolkit requirement

Context toolkit is designed to provide application developers with mechanisms sup-
porting context-awareness. By analyzing the context processing flow and application
developer’s needs, we establish a generic set of architecture requirements for sup-
porting context-aware application development. These requirements include:

e R1: Context Capture — The first step to use context is to capture context from
the contextual environment. This requires the support of a wide variety of context
sensed from both physical and virtual worlds. Physical context includes anything
that can be sensed by hardware devices such as Radio Frequency (RF) devices
or environment sensors. Virtual context refers to context obtained through the
use of software components, for example, monitoring keyboard activity, device
status or processor load.

e R2: FExplicit Representation — Raw context obtained from disparity sources
comes in heterogeneous formats, which cannot be used by applications with-
out prior knowledge of its representation. Therefore, to support interoperability,
context’s meanings (or semantics) need to be explicitly represented so that inde-
pendently developed applications can easily understand them.

e R3: Context Inference — For applications to successfully utilize context in a
meaningful way, inference of higher-level context is required. Higher-level con-
text (e.g. What is the user doing? What is the activity in the room?) augments
context-aware applications by providing summarized descriptions about a user’s
state and surroundings. As sensor devices cannot directly recognize such con-
text, the context toolkit should provide a support for applications to infer this
information from basic sensed context.

e R4: Expressive Query — Whereas the contextual environments maintain a large
amount of context, a particular context-aware application may only need to selec-
tively access a subset of the context. The context toolkit should be able to answer
expressive queries that can well specify application’s context need — for exam-
ple, “Who is in the room with the user?”, “When will the meeting the user is
attending end?”. A query mechanism involves application developers defining
their context need using declarative query specification.

e R5: Continuous Delivery — In a highly dynamic ubiquitous computing envi-
ronment, the delivery of context based on request-response mode is not able to
continuously feed applications with up-to-date context; application developers
have to handle this problem by polling context sources in an ad hoc manner.
To advance this matter, the context toolkit should support continuous context
delivery mechanism in which an application registers query specifications, and a
continuous query engine filters the query result to deliver streaming context to
the application.

e R6: Dynamic Discovery — The dynamism of ubiquitous computing environment
calls for the need to support discovery and configuration of context sources

Development of Context-Aware Applications Using Semantic Space Toolkit 589

(or their software wrappers). When a new context source joins the contextual
environment, the context toolkit and applications should be able to locate and
access it, and when the context source leaves the contextual environment, appli-
cations should be aware of its unavailability to avoid stale information.

e R7: Persistent Storage — Exploiting context requires persistently gathering use-
ful information from the contextual environment and storing it for later retrieval.
Consider a tour guide application, location of users can be persistently stored and
later utilized to determine the popular sites within the city and information that
is often requested at those sites.

e R8: Programming Abstraction — Context-aware applications must be able to uti-
lize a wide range of computing devices, communications and sensing technologies
and implement their own functionalities irrespective of the underlying toolkit.
To ease the development work, a system support for context-awareness needs
a set of programming abstractions to decouple enabling mechanisms from an
application’s functionality. These programming abstractions allow developers to
implement context-aware applications and to integrate sensor components in a
simple way without worrying about the low-level processing.

3.2. Toolkit design

The above-mentioned requirements are identified for supporting context-aware
applications within ubiquitous computing environment. To address these require-
ments, we design a toolkit called Semantic Space.?* Semantic Space provides a
generic architecture support which allows context to be represented as semantic
markups, enables applications to access context using queries, and supports the
inference of higher-level context from basic context using logic rules.

Semantic Space toolkit consists of several components, as shown in Fig. 1.
Context Wrappers obtain raw data from software and hardware sensors, and
transform this information into semantic representation. When wrappers are
instantiated, they announce their availability and publish context such that other
components can select and subscribe to the wrappers with required context. Con-
text Aggregator discovers distributed wrappers, gathers context from them and
updates Context Knowledge Base (KB) asynchronously. Context KB dynamically
links context into a single coherent data model, and provides interfaces for Con-
text Reasoner and Context Query Engine to manipulate stored context. Context
Reasoner is a rule-based inference engine that can infer higher-level context from
stored context. Context Query Engine is responsible for handling queries about
both stored context and inferred, higher-level context.

There are two basic approaches an application can use in order to retrieve
context they need. Applications which make use of context with simple form can
directly contact wrapper(s) using subscription-based interface. In this way, applica-
tions should specify their contextual interests in the form of triple patterns, based

590 D. Zhang et al.

n Context-aware
B application

. Lnn:iti:‘n “:11::{
\ly, ---c [RCEIMEXER Context | [| 50 =
:@‘/z L.LLLE IGnnlext query CLLLLLD Weather Web Services
engine
i] S
™ [Enviranment Activity @
T context H context <3---—--
wrapper wrapper Outlook Web
Access Service
=
Device Context Semantic annotations
context |- aggregator — fs{:\ (user profile,
wrapper restaurant menus)
—L>
Smart space Semantic Space Semantic Weh

Fig. 1. Semantic space architecture.

on which pattern matching is performed to select the appropriate wrapper. Alterna-
tively, applications with complex context needs, such as the expressive query about
correlated context and inference of higher-level context, may access the functionality
provided by the Semantic Space toolkit by registering inference-enabled continuous
query and receiving updated query result from the Semantic Space asynchronously.

With Semantic Space, most of the context processing and management tasks
are incorporated into the toolkit. It allows context-aware applications to run on
thin mobile clients effectively.

3.2.1. Context wrapper

Context wrappers obtain raw context information from various sources such as
physical devices and software programs and transform them into context markups.
Physical context wrappers involve hardware sensors deployed in the smart space.
They include the location context wrapper (which reports user or device location
through GPS or RFID), the environment context wrapper (which gathers environ-
mental information such as temperature, noise and light from embedded sensors),
and the door status context wrapper (which reports the open or closed status of
doors in each room). Software-based context wrappers include the activity context
wrapper, which extracts schedule information from Microsoft’s Outlook 2000; the
application context wrapper, which monitors the status (idle, busy, closed) of appli-
cations such as JBuilder, Microsoft Word, and RealPlayer from their CPU usage;
and the weather context wrapper, which periodically queries a Weather Web Service
(www.xmethods.com) to gather local weather information.

All context wrappers are self-contained and self-configured components that
support a unified interface for obtaining context from sensors and providing con-
text markups to applications and aggregator. We implemented these wrappers as

Development of Context-Aware Applications Using Semantic Space Toolkit 591

Universal Plug and Play (UPnP)?3 services that can dynamically join a local net-
work, advertise their presences and allowed actions, discover devices/sensors and
other services. Context wrappers can publish context, and applications can register
to be notified of context changes detected by the wrapper.

The use of context wrapper provides programming abstraction for context acqui-
sition — it helps to (i) hide the specifics of physical sensors and information pro-
cessing from the application developer; (ii) allow changes with minimal impact on
applications; and (iii) provide reusable building blocks. Besides the abstract pro-
gramming model, the role of context wrapper in transforming raw context into
semantic markups is crucial in that independently developed applications are able
to understand and process context based on its semantics.

Location and other spatial-temporal attributes of people or devices are impor-
tant in intelligent mobile context-aware applications. Bluetooth mobile phone track-
ing system and RFID user tracking system can be deployed as context wrapper to
provide such context.

3.2.2. Context Aggregator

Context Aggregator discovers context wrappers and gathers context markups from
them. The need for aggregation comes partially from the distributed nature of con-
text, as context must often be retrieved from distributed sensors via software com-
ponents. Rather than each individual context-aware application having to access
multiple distributed wrappers, aggregator gathers all context markups thus dis-
tributed context is made available within a single point. The use of aggregator pro-
vides an additional separation of concerns between context acquisition and actual
context use. In addition, context aggregation is critical for supporting knowledge-
based management and processing tasks, such as expressive query and logic infer-
ence of context.

We implemented the Context Aggregator as an UPnP control point that inherits
the capability to discover wrappers and subscribe to context changes. Once a new
wrapper is attached to the smart space, aggregator will discover it and register to
published context. Whenever a wrapper detects the change of context, aggregator
is notified and then asserts updated context markups into Context KB.

3.2.3. Context Knowledge Base

Context KB provides support for scalable storage and knowledge management of
context. A Context KB stores the extended context ontology for that particular
contextual environment and context markups that are either provided by users
or gathered from distributed wrappers. It dynamically links context ontology and
context markups into a single semantic model and provides an interface for the
query engine and reasoner to manipulate correlated context.

It is important to note that Context Knowledge Base is different from a
relational database that purely supports storage and query. From a knowledge

592 D. Zhang et al.

management perspective, “data” of context is low-level facts provided by input
sources. When data is connected based on relations, it can answer the “who”,
“when”, “what”, “where” questions of context, for example, “where is the user”,
“who is in the room”, “when will the activity begin”. The Context Knowledge Base
allows the inference of implicit information from the explicit one, for example, if
the Context KB (coupled with inference engine) knows “the user is in the meeting
location” and “the current time is within the meeting’s scheduled interval”, it can
deduce that “the user is at the meeting”.

Contexts in ubiquitous computing environment exhibit high degree of dynamics,
so the Context Aggregator must regularly update the Context KB with up-to-date
values. The scope of contexts that the Context KB manages also changes depend-
ing on the availability of wrappers. Application developers can add a new wrapper
to expand the scope of context in a contextual environment or remove an exist-
ing wrapper when the contexts it provides are no longer needed. The aggregator
monitors the wrappers’ availability and manages the scope of contexts in the Con-
text KB. When a Context Wrapper joins the smart space, the Context Aggregator
adds the provided context to the Context KB, and when the wrapper leaves, the
aggregator deletes the contexts it supplied to avoid stale information.

3.2.4. Context Reasoner

The Context Reasoner is responsible for inferring higher-level contexts from basic
sensed contexts stored in the Context KB. Because Semantic Space explicitly rep-
resents context, existing general-purpose reasoning engines can directly process this
information. This makes it easy for developers to realize application-specific infer-
ences simply by defining heuristic rules. The use of Context Reasoner helps to
separate the implementation of context inference from individual applications, thus
frees application developers from writing code to perform reasoning.

A most important feature of ubiquitous computing applications is customizabil-
ity. In the same smart space, different applications may define dissimilar (sometimes
conflicting) rules for inferring a given type of higher-level context. Since application-
specific rules may generate conflicting results, the Context Reasoner does not assert
inferred contexts into the Context KB, thus avoiding conflict in the coherent model.
When an application needs certain higher-level context, it submits a set of rules to
the Context Reasoner, which applies them to infer higher-level context on the appli-
cation’s behalf, then keeps the newly inferred context in a temporary model without
storing them in the Context KB. The temporary model can be accessed by the Con-
text Query Engine to provide higher-level context to the requesting application.

Our current system applies Jena2? to support forward-chaining reasoning over
the OWL-represented context. To perform context inference, an application devel-
oper needs to provide horn-logic rules for a particular application based on its needs.
The Context Reasoner is responsible for interpreting rules, connecting to Context
KB, evaluating rules against stored context, and providing interface for the query

Development of Context-Aware Applications Using Semantic Space Toolkit 593

engine to access inferred result. For example, developers can define application-
specific rules to infer a user’s likely situation based on the context about the user,
activity and location. The following rule examines whether a given person is cur-
rently engaged in a meeting on the basis of location and schedule. If the person is
in the meeting location and the current time (returned by currentDateTime()) is
within the meeting’s scheduled interval, he is likely to be at the meeting.

type(7user,User) A type(7event,Meeting) A location(7event,?room)
A locatedIn(?user,?room) A startDateTime(7event,?tl)

A endDateTime(7event,?t2) A lessThan(?tl,currentDateTime())

A greaterThan(7t2,currentDateTime())=>situation(?user,AtMeeting)

3.2.5. Context Query Engine

Context Query Engine is responsible for handling expressive queries from applica-
tions and updating applications with up-to-date query result on a continuous basis.
Unlike request-response paradigm where an application poses a query and a query
engine generates a finite result set, Context Query Engine allows applications to
register logical specifications of interest over changing context and receive streaming
results asynchronously.

Furthermore, an application may seek higher-level context (e.g. user situation,
room activity) that is not directly available in Context KB. In this case, Context
Query Engine interfaces with Context Reasoner to derive higher-level context. For
instance, an application seeking user’s situation context needs to provide Context
Query Engine with two parameters — the query statement specifying application’s
contextual interests and the logic rules defining the desired way to derive user
situation. Upon request, Context Query Engine will add the application’s request
in its registration table. To answer the query, the engine first triggers Context
Reasoner to generate the inferred result, from which it extracts user situation by
query processing.

In Semantic Space, we name the above-described support as Inference-enabled
continuous query, which provides a federated support for expressive query, contin-
uous delivery and context inference.

3.3. Context model

We use ontologies to model contexts in Semantic Space. Within the domain of
knowledge representation, the term ontology refers to the formal and explicit
description of domain concepts, which are often conceived as a set of entities, rela-
tions, instances, functions, and axioms.®

In Semantic Space, we have defined the Upper Level Context Ontologies (ULCO)
to provide a set of basic concepts commonly across different smart space envi-
ronments. By taking an object-oriented modeling approach, we have identified

three classes of physical entities (user, location, computing entity) and one class

594 D. Zhang et al.

Upper-Level Context Ontology Extended Context Ontology

5 Indoor m Scheduled
(Common e omion Y+ Foom)
A A = i
Location !
7S

Interview
v
Context Entity .
- :

Room "
. AdHoc Kitchen
Actvity) . CT:
Activity v
7 cheduled Agent iV RoomiHcme)d—(BedRoom)d—(MasterBR)
B Activity

—~ Device \l— t_‘ DiningRoom)L(GuestBR)
omputing gk B
Entit Network SmartHome

E Domain : BathRoom

subclassOf <¢— Glass ()

Room_Office ki LabRoom

a

|

MeetingRoom

Workplace

7 PrintingRoom
Domain H

—(Scheduled

Fig. 2. Context ontology in semantic space.

of conceptual entity (activity) that play a critical role in characterizing a ubiqui-
tous computing environment (see Fig. 2). Properties of these entities, as well as
the relationships between them, form the skeleton of a general contextual environ-
ment. Furthermore, primitive contextual entities can provide indices into associated
context, for example, given a location, we can acquire related context such as the
temperature and noise level of it, people and activity inside it, and so on. The
identification of primary contextual entities forms the basis for our ontology-based
context model.

To let developers customize the context model for a particular ubiquitous
computing environment, ULCO allow the definition of new concepts in terms of
subclasses to complement the upper-level classes. A new application that needs
additional classes can obtain them by inheriting from the ULCO classes, and form-
ing an Extended Context Ontology, as shown in Fig. 2. This allows application
developers to easily build detailed context models for a new contextual environ-
ment. Moreover, by providing shared terms and definitions for context, an ULCO
supports better interoperability among extended ontologies.

We use OWL (Web Ontology Language)!” to express ontologies of the con-
text model. Using the context model, we represent context as ontology instances
and associated properties (context markups), which applications can semantically
understand and process.

Context often originates from diverse sources, leading to dissimilar approaches
to generating context markups. Static context such as a person’s name and sched-
uled seminar time have relatively slow change rates, and users often supply this
information. We have developed a Web-based application that let users create
online profiles based on the ontology class User defined in the context model.
The following context markup describes static context about user John. Each
OWL instance has a unique URI, and context markups can link to external defi-
nitions that are not directly included through these URIs. For example, the URI
www.12r.a-star.edu.sg/SemanticSpace #John refers to the user we just defined,

Development of Context-Aware Applications Using Semantic Space Toolkit 595

and the URI www.i2r.a-star.edu. sg/SemanticSpace#Room209 refers to a specific
room defined elsewhere.

<User rdf:about=“John”>
<name>John</name>
<mbox>john@i2r.org.sg</mbox>
<homepage rdf:resource=“www.i2r.org.sg/~john” />
<office rdf:resource=“#Room209”/>
<mobilePhone>6789</mobilePhone>
<supervisorOf rdf:resource=#George”/>
<supervisorOf rdf:resource=#Mary”’/>

<!--More properties not shown in this example-->
</User>

3.4. Implementation

The Semantic Space consists of a set of well-defined APIs for supporting the inte-
gration of sensors and the development of context-aware applications.

In the Semantic Space implementation, the classes are grouped into three cate-
gories: classes for context wrappers, classes for server architecture, and classes for
context-aware applications. Components therefore are grouped into three packages:
(i) org.xyz.semanticspace.wrapper, (ii) org.xyz.semanticspace.server and
(iii) org.xyz.semanticspace.application. Among them, package wrapper con-
sists of API for implementing software wrapper that automatically integrates con-
text sources into Semantic Space; package server contains server-side components
that provide essential context functionalities (aggregation, storage, inference, query,
etc.) together with APT used to interact with wrappers and applications; package
application consists of APIs that enable distributed applications to access server
architecture and wrappers. These components make up the programming abstrac-
tion for context-aware application development, allowing developers to think of
building context-aware applications in terms of independent logical blocks.

We adopt OSGi (Open Service Gateway Initiative)'? based service framework to
implement Semantic Space toolkit. OSGi defines a lightweight framework for deliv-
ering and executing service-oriented applications. It also delineates API standards
for the execution environment of services. These APIs address service life cycle
management, inter-service dependencies, data management, device management,
resource management and security.

The OSGi service platform is composed of two key components: service frame-
work and service bundles. Service framework provides a service-hosting environment
as well as a set of common APIs to develop application bundles. The Semantic Space
components and context-aware applications were constructed as independent bun-
dles on top of the OSGi framework. In the OSGi environment, bundles are the
entities for deploying Java-based applications. A bundle is a Java Archive (JAR)
file that comprises Java classes and other resources.

596 D. Zhang et al.

3.4.1. Wrapper

Wrappers acquire captured data from context sources, transform them into semantic
markups and publish them for distributed components to access. Applications can
search for particular wrappers based on their contextual interests, subscribe to the
wrappers and get updated context information asynchronously. This approach can
avoid explicit binding of the application to a particular underlying context sources
technology.

To support explicit representation of context, wrappers need to transform sensor
data into context markups based on shared ontologies. In Semantic Space, context
markups are described in ontology instances, and are published in the form of
triples. For example, a piece of context markup expressing the weather forecast of
a city is serialized into triple format as follows:

(<http://...#CityZ> <http://...#highTemperature> "36")
(<http://...#CityZ> <http://...#lowTemperature> "28")
(<http://...#CityZ> <http://...#weatherType> <http://...#Sunny>)

Other components can search for wrappers based on the matching of triple
patterns. A triple pattern is in the form of (subject, predicate, object) that is
comprised of named variables and Resource Description Framework (RDF) values
(URIs and literals).'* To explicitly describe a wrapper’s capability, each wrapper is
associated with one or more triple patterns to specify the types of provided context.
These triple patterns will be used as service description in wrapper advertisement
and discovery. For example, the weather wrapper can be specified by multiple triple
patterns as below:

(7city, <http://...#highTemperature>, 7high temp)
(7city, <http://...#lowTemperature>, 7low_temp)
(7city, <http://...#weatherType> 7weather_type)

Once a wrapper is started, it periodically sends advertisement message (with
triple patterns) on the local network. Due to multicast and the periodic messages,
applications are notified about the presence of a wrapper, followed by the process
of triple pattern matching and context subscription.

The org.xyz.semanticspace.wrapper package provides a set of classes and
abstract interface that can be used by application developers to implement a
wrapper in a highly-structured, object-oriented way. The Class Wrapper repre-
sents the key object to construct a wrapper. A Wrapper object instance is asso-
ciated with a set of ContextTriple objects specifying the provided context and an
UpdateHandler object implementing actions for context update. Because Wrapper
is designed as a subclass from standard Universal Plug and Play service, it auto-
matically inherits the communication and discovery functionalities, and is therefore
able to support the advertisement and removal of wrappers from the network.

For applications to access a wrapper, it first needs to be located.
org.xyz.semanticspace.application package provides the Class Discoverer

Development of Context-Aware Applications Using Semantic Space Toolkit 597

which enables applications to discover context wrappers without requiring a priori
knowledge about the wrapper’s existence. This class inherits the functionality of
UPnP control point to listen for the advertisement message sent by context wrap-
pers and perform matchmaking on triple patterns to find required context triples.
The discovery of context is based on context triples. There are two ways to search for
context triple: a specific context triple or all context triples. Typically, an individual
application uses the method searchContextTriple() to search for specific triples
that match its context needs. Similar to the specification of context triples, appli-
cation’s context needs is also specified by triple pattern, type of subject and type
of object. Because the server architecture needs to find all context within the con-
textual environment, this class provides the method searchAllContextTriples()
for the Context Aggregator to discover all available context triples. Upon success-
ful discovery, method getUpdatedTripleProxy() is called to retrieve the latest
context triple provided by the identified wrapper.

3.4.2. Semantic Space server

The server architecture supports rich functionality, including context aggregation,
persistent storage, context inference, expressive query and continuous delivery, to
complement individual wrappers. It consists of four collaborating components: Con-
text Aggregator, Context Knowledge Base, Context Reasoner and Context Query
Engine.

The interface between applications and server is query based. To give the details
of the support for inference-enabled continuous query, we describe the typical pro-
cess for an application asking for higher-level context from the server (see Fig. 3).
The example application (SituationQueryer) needs to be notified when the situa-
tion of UserX changes. It expresses this context needs as the RDQL'® statement
and a set of inference rules. One of the rules examines whether a given person is
engaged in a meeting on the basis of location and meeting schedule — if a person
is in the meeting location and the current time is within the meeting’s scheduled
interval, she is likely to be at the meeting.

The following lists the interaction between the example application and differ-
ent components. (1) To utilize server functionality, the application first registers
the query specification with the server architecture. (2) When a relevant wrap-
per (e.g. the location wrapper) has new incoming data from the sensor system,
for example, “UserX is present at the meeting location Room233”, it updates the
context triple that represents this sensor data. (3) The wrapper then notifies all
subscribing components (Context Aggregator and individual applications) with the
updated context triple. (4) When Context Aggregator receives the location change,
it submits this information to Context KB for update. (5) Once Context KB finishes
the location update in its persistent storage, it notifies Context Query Engine with
a KB update event. (6) Because the application needs higher-level context, query
engine calls Context Reasoner to apply context inference. (7) Context Reasoner

598 D. Zhang et al.

SituationQueryer (Application)

(1) query & rule {10} filtered result

registration update
| (6) Inference
‘ Query Engine |—- Triggefing
& * [
(5) KB Update (8) Inference {9) Query Reasoner

Notification Finish Notification Execution
| | ¥ (7} Inference
‘ Context Knowledge Base |‘ Exsoution—

(4) KB Update
|

| Context Aggregator |

Server

(3) Context triplef update

‘ Location ‘ ” ‘
\Wrapper i
(2) Sensor data update
RFID Location oftware
System Calendar

Fig. 3. Process for inference-enabled continuous query.

Activity |
Wrapper
r

evaluates the application-supplied rule set to generate an inferred result, and keeps
it in a temporary KB model. In this case, the situation of user UserX is determined
to be AtMeeting. (8) Context Query Engine will be notified when the inference
finishes. (9) It then extracts the desired context (UserX’s situation) by querying
the temporary KB model. It is also responsible for destructing the temporary KB
model after the query finishes. (10) Finally, Context Query Engine compares the
new result with the old one, and only sends the changed query result back to the
application.

Semantic Space logically encapsulates underlying processes into a single archi-
tecture and provides applications with a simple interface to access server function-
ality. An application uses the method submitQuery(Query query) to register a
query with server. Class Query is used to specify the application’s context needs.
Semantic Space supports two distinct query modes: synchronous mode is used to
extract context from server in a query-response manner; and asynchronous mode
(or inference-enabled continuous query) is used for server to push streaming results
to the application on a continuous basis.

The Semantic Space server architecture provides a level of programming abstrac-
tion and flexibility to application developers; therefore, reduce the burden of devel-
opers from dealing with context. It also supports the following features: to facilitate
the inference of higher-level context, to selectively access context using expressive
query, and to support multiple applications accessing the server simultaneously.

Development of Context-Aware Applications Using Semantic Space Toolkit 599

3.4.3. Application

As described earlier, the org.xyz.semanticspace.application package offers
complementary programming abstractions for applications to use context — triple
subscription at the wrapper, and query registration at the server. Typically, the
application with simple context needs may discover and subscribe to appropriate
triples published by individual wrappers. If the application deals with expressive
query or higher-level inference, it can contact the server architecture to uti-
lize inference-enabled continuous query. We have implemented two set of Java
APTs (wrapper access API and server access API) to support the two program-
ming abstractions respectively, such that application programmers can prototype a
context-aware application in a highly-structured way. The details are illustrated in
the next section.

4. Context-Aware Mobile Application Development

This section illustrates how the context model and Semantic Space toolkit described
in the previous chapters can be used to author a novel prototype context-aware
application. Firstly, we will present a general process for context-aware application
development using Semantic Space. Then, we will show, step-by-step, how a real
context-aware mobile application, called SituAwarePhone, is built.

4.1. Application development process using Semantic Space

Given that Semantic Space is deployed, the process of developing context-aware
applications is as simple as four general steps (see Fig. 4).

e Step 1: The development process begins by determining the collection of con-
text that is required by the context-aware application to fulfill its functionality.
If the Upper-Level Context Ontology (ULCO) in the Semantic Space Context
Model is not sufficient to model all features of the required context, the applica-
tion developer can extend ULCO with application-specific ontology to model the
features.

e Step 2: Context wrappers, if any, are built for generating the required context
from the various physical and software sensors. Wrapper creation comes in two
stages: defining context triples and building wrapper using the provided APIs.

e Step 3: Queries for the required contexts are specified and connection chan-
nels are established. Triple patterns are specified for discovery and subscription

Step 1: Step 2: Step 3: Step 4: Context-
Determining Required Creating Specifying Context Developing Aware
Context Wrapper Queries and Applications Application
Connection Channels

Fig. 4. Context-aware application development process using Semantic Space toolkit.

600 D. Zhang et al.

of wrappers; RDQL queries and relevant application-specific inference rules are
generated for registering continuous query with Semantic Space server; Commu-
nication abstractions are provided to hide the complexity of wired or wireless
links between applications and the Semantic Space.

e Step 4: The application logic and interaction Ul are developed. Context-aware
behavior is implemented, with access to context through submitting queries to
the corresponding listeners.

4.2. Prototyping SituAwarePhone

Through the implementation details in prototyping SituAwarePhone application, we
provide insights into the fourth-step context-aware application development process
using Semantic Space, to illustrate the feasibility and usability of our toolkit.

4.2.1. SituAwarePhone overview

The widespread use of mobile phones makes voice communication available anytime,
anywhere. However, it also raises many social problems when, for example, phones
ring during meetings or important face-to-face conversations. Normally, users often
have to configure the settings of mobile phones according to their circumstances to
avoid inappropriate usage. Such manual configuration causes frequent interactions
with mobile phone, imposing significant user distractions. To advance this mat-
ter, we developed a context-aware application, SituAwarePhone (Situation-Aware
Phone), which automatically adapts mobile phone profiles to the changing situa-
tions. In this case, user’s situation is viewed as a form of higher-level context to
adapt the behavior of the mobile phone. For example, when a user is determined
to be in a meeting, the mobile phone is automatically switched to silent mode and
all incoming calls are diverted to voice mail.

To access the situation context, SituAwarePhone registers query with Semantic
Space toolkit, which in turn notifies the phone with the changes of user’s situation
on a continuous basis. SituAwarePhone may also query other types of context that
helps in adaptation. For example, it queries the end time of the meeting the user
is engaged in to schedule a callback to the caller.

One of the key requirements of SituAwarePhone is the support for user cus-
tomizability. Customizability is achieved not only by allowing the users to specify
how the mobile phone should respond to the incoming call in different situations,
but also by allowing them to define their own situation inference rule set for the
specific contextual environment and application scenarios.

4.2.2. Determining required context

SituAwarePhone prototype is currently designed for use in our workplace. As
a result, we need to add additional classes and properties to ULCO in order
to model our workplace contextual environment. As shown in the top right of

Development of Context-Aware Applications Using Semantic Space Toolkit 601

Fig. 2, the extended context ontology includes the following features. The class
Room is classified into detailed types including LabRoom, MeetingRoom, Lounge
and PrintingRoom. To describe typical activities that happen in our workplace,
the abstract class ScheduledActivity has concrete sub-classes such as Meeting,
WeeklyDiscussion, Seminar and Interview. Similarly, the class AdHocActivity is
sub-classed by MeetingSupervisor, AdHocDiscussion, TakingPhoneCall and so on.
To take into account the context about devices and utilities, we create sub-classes
of ComputingEntity, such as MobilePhone, FixedPhone, MS_PointPoint, MS_-Word
and Borland_JBuilder.

The hierarchical structure of ontologies makes it easy for developers to add
application-specific concepts into the context model. When the application evolves
and needs more context types, we can fulfill the application’s modeling requirement
by extending the abstract classes in ULCO.

4.2.3. Creating wrapper

There are several types of sensor systems that need to be integrated into Semantic
Space for providing the required context identified in Step 1. As shown in Fig. 5,
the deployed sensor systems in our workplace include X-10 door sensors, noise
sensors, Bluetooth mobile phone tracking system, and RFID user tracking system.
Accordingly we created context wrappers which transform sensor data into context
triples for Semantic Space toolkit and context-aware applications to use.

Semantic Space allows developers to use an efficient and highly-structured way
to write context wrappers via its wrapper APIs. Figure 6 shows a wrapper GUI used
by users to edit calendar event for providing activity-related context. The standard
wrapper APIs makes it very easy to change the underlying technology used in

A WLAN A
Point

nmant Sensors

]
por Sensgrs

|
(a) (b)

Fig. 5. Physical deployment of SituAwarePhone: (a) networked sensors and devices; (b) RFID
user tracking system.

602 D. Zhang et al.

£ Calendar (Activity) Simulator

hctivities
d Date 40913

40819 agd_interview
neetingd02
1200 |discussionl d Time 1300

Reninder Time 1200 Reminder Date 040811

[411 Day Reminder

Start Date

Start Time

Subject Introduction to the Semantic Space project of Conts | Edit

Location ‘Room7237
[hitp:ia comlontology#meeting001, hitp:ifa_cormfontology#End_Date, "408131300 =
[hitp:#fa_com/ontology#meeting001, hitp-ifa_comiontologw#Subject, "Introduction -
1 [»]

Fig. 6. GUI for supplying activity-related context.

context sensing. We were able to swap the implementation of the calendar wrapper
entirely from simulated software sensor to Outlook calendar service. This ability
allows us to easily evolve our systems and to prototype with a variety of sensors.

4.2.4. Specifying context queries and connection channels

The most important context used by SituAwarePhone is the situation of a user,
which is a higher-level context that has to be inferred from other basic context
obtained from sensors. In order to be notified with the changing situations, the
application needs to register an inference-enabled continuous query with Context
Query Engine, specifying the query statement, situation inference rule set, and
temporal information.

A simple specification language for developers to create inference-enhanced con-
tinuous query is defined in the following form:

{CREATE query}

[TRIGGER [rule 1] [rule 2]...[rule n]]
[START start]

[EVERY intervall]

[EXPIRE expiration]

Application developers can define such queries by combining an ordinary query
with the inference rule set and additional temporal annotations. The query will
become effective at the time given by start. The parameter interval indicates how
often the query is to be executed. If the value is zero, the inference and query
will be triggered whenever Context KB is updated. Queries will be deleted from

Development of Context-Aware Applications Using Semantic Space Toolkit 603

the Context Query Engine automatically after their expiration time indicated by
expiration. The query specification can be associated with logic rules (given by
TRIGGER) for inferring higher-level context based on the application’s need.

Besides continuous query, SituAwarePhone also uses simple (synchronous)
queries to get other context that is useful in profile adaptation. For example, below
shows the query used to get the end time of the meeting the user is currently
engaged in:

SELECT (7endTime
WHERE (7event, <rdf:type>, <ss:Meeting>),

(7event, <ss:hasLocation>, ?room),

(<ss:UserX>), <ss:locatedIn>, ?room),

(7event, <ss:start>, 7startTime), (7event, <ss:end>, 7endTime)
AND} (startTime < currentDateTime() && endTime > currentDaytime())
USING} ss FOR} <http://www.xyz.org/semanticspace{\#}>,

rdf FOR} <http://www.w3.org/1999/02/22-rdf-syntax-ns{\#}>

As the SituAwarePhone connects to the Semantic Space through Bluetooth, we
develop a Mobile Device Widget (MDW) within the query engine of Semantic Space
and a Context-Aware Mobile Application API (CAMAPI) within mobile client, as
shown in Fig. 7. The MDW allows applications residing on the mobile phone (client)
to send context queries to the Semantic Space (server) using Bluetooth and receive
the required contexts whenever they are updated. The MDW is also responsible for
hiding the complexity of underlying communication protocols and multiple device
handling. Access to the Semantic Space through a MDW by mobile applications is
achieved by invoking CAMAPI on the client side. This API abstracts tasks such
as initiating/terminating connections and sending/receiving queries in the mobile
phone.

The CAMAPI together with the MDW in the Semantic Space provide the fol-
lowing tools to context-aware mobile application developers:

(1) A simplified version of the Java Bluetooth API (JSR-82) to connect to the
Semantic Space infrastructure.

Witelezs Link

Bluetooth
Server

Bluetooth

Fhone Client

Application

Semantic
Space

Fig. 7. Connection between mobile application and Semantic Space.

604 D. Zhang et al.

(2) A set of predefined queries for developers to obtain context information from
Semantic Space.

(3) A standard query and inference rule designing process that offers application
developers to design and publish their own queries for mobile applications
to use.

(4) Autonomous multiple mobile device handling capability.

4.2.5. Developing application

We are now ready to develop the SituAwarePhone application. Besides the applica-
tion logic that determines the functionalities of the SituAwarePhone, we emphasize
on the acquisition of context from Semantic Space.

SituAwarePhone acquires high-level situational context, such as user’s current
event, and activities in room, from the Semantic Space server. The implementation
of SituationQueryer (see Sec. 3.4.2) can be leveraged by SituAwarePhone to query
and acquire the user’s situation from Semantic Space. By making use of the situation
context acquired from Semantic Space, SituAwarePhone enables the mobile phone
to execute relevant situation-aware behavior. Mobile phone user can customize the
situation-aware behavior via interactive Ul. Figure 8 shows the snapshots of the
prototype implementation.

The implementation amounts to approximately 800 lines of Java code, most
of which deals with the MIDlet GUI and different response modes. Only about
20 lines of application-side code deal with contexts (to import libraries, issue queries,
perform reasoning, parse returned models and handle exceptions), some of which
are shown as follows:

SemanticSpace(String ServerURL) throws InstantiationException;

//Instantiate a client object of the context infrastructure

RDFModel SemanticSpace.ContextQueryEngine(String Query) throws
QueryException;

S

SituAwarePho! SituAiwarePhone SituAwarePhone “ciions SituAwarePhone
= B —— -

Ok F Custornize Profile Connected to Semantic Space | @ Profile will change
Cancel Chan Ring Volume i automatically to
Customize E 2 : Space ID : BuildingFLR1 ProfileAtMeeting in

i < Protocol : Bluetooth ey
Exit w User : Ray Allen Ceino npu
O AtRest __O!her_ Settings User : Ray Allen
O Qutdoors | B Vibrator Location Hierarchy

A & Send SHMS to caller Deduced Situation

O Programming % ? Building: [ING_— |
O QutToLunch e Voice mail d & AtMeeting ﬁ |
O OnThePhone i District : N | Asteep E
& AMeeting 4 £89308 Gy - O OnThePhone...

O Driving

‘ﬁm back to you later...)
Country : N

Fig. 8. Snapshots of SituAwarePhone running on Sony-Ericsson P900 mobile phone: (a, b) pro-
file customization for each situation; (c) connection establishment with Semantic Space toolkit;
(d) automatic profile adaptation in situation change.

Development of Context-Aware Applications Using Semantic Space Toolkit 605

//Query contexts from the context infrastructure using the statement defined in

Query

RDFModel SemanticSpace.ContextReasoner(String RuleSet) throws
ReasoningException

//Request Context Reasoner to perform inference using the rules defined in

RuleSet

The SituAwarePhone application ran on a Sony Ericsson P900 smart phone.
The application was developed following the Mobile Information Device Profile
(MIDP) provided by J2ME. The smart phone was connected to the Semantic Space
server through Bluetooth. The discovery and event notification mechanism was
implemented using Siemens UPnP SDK v1.01.

5. Conclusion

This paper proposes a toolkit approach for rapid development of context-aware
applications. The contribution of this paper is twofold: first, we present a novel
toolkit, called Semantic Space that leverages Semantic Web and component-based
programming model. It offers a unified interface for gathering context from sensors
and disseminating context to applications, which ease the development of context-
aware applications. Secondly, we show how rapid development of context-aware
applications can be achieved with the support of Semantic Space. Using a real
context-aware mobile application, namely SituAwarePhone, we demonstrate the
proposed four-step development process and the benefits offered by the Semantic
Space toolkit. The Java code for dealing with Semantic Space toolkit are only about
20 lines on the client side.

Even though our context toolkit Semantic Space leverages general requirements
of applications in smart spaces and supports the SituAwarePhone quite well, there
is still much work to do to develop more context-aware applications using the toolkit
and improve the design. We are developing different applications, e.g. healthcare,
entertainment, and e-learning, to understand the real needs and improve the user
interface of Semantic Space.

References

1. C. Becker, M. Handte, G. Schiele and K. Rothermel, PCOM — a component sys-
tem for pervasive computing, in Second IEEE Int. Conf. Pervasive Computing and
Communications (PerCom’04), Orlando, Florida (14-17 March, 2004), pp. 67-76.

2. T. Berners-Lee et al. The semantic web, Sci. Amer. 284(5) (2001) 34-43.

3. J. Carroll et al. Jena: implementing the semantic web recommendations, Proc. 13th
Int. Conf. World Wide Web. New York, USA (17-22 May, 2004), pp. 74-83.

4. H. Chen, T. Finin and A. Joshi, Semantic web in the context broker architecture,
Second IEEE Int. Conf. Pervasive Computing and Communications (PerCom’04),
Orlando, Florida (14-17 March, 2004), pp. 277-286.

5. G. Chen and D. Kotz, Design and implementation of a large-scale context fusion
network, in st Int. Conf. Mobile and Ubiquitous Systems: Networking and Services
(Mobiquitous’04), Boston, Massachusetts, USA (22-26 August, 2004), pp. 246-255.

606 D. Zhang et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.
24.

. A. K. Dey and G. D. Abowd, A conceptual framework and a toolkit for supporting

the rapid prototyping of context-aware applications, Human-Computer Interaction
(HCI) J. 16(2-4) (2001) 97-166.

C. Efstratiou, K. Cheverst, N. Davies and A. Friday, An architecture for the effective
support of adaptive context-aware applications, in Second Int. Conf. Mobile Data
Management (MDM2001), Hong Kong, China (January, 2001), pp. 15-26.

H. Gellersen, G. Kortuem, A. Schmidt and M. Beigl, Physical prototyping with
smart-its, IEEE Pervasive Comput. 3(3) (2004) 12-18.

R. Grimm, J. Davis, E. Lemar, A. Macbeth, S. Swanson, T. Anderson, B. Bershad,
G. Borriello, S. Gribble and D. Wetherall, System support for pervasive applications,
ACM Trans. Comput. Syst. 22(4) (2004) 421-486.

T. Gruber, A translation approach to portable ontology specifications, Knowl. Acqui-
sition 5(2) (1993) 199-220.

A. Harter, A. Hopper, P. Steggles, A. Ward and P. Webster, The anatomy of a context-
aware application, in Proc. MobiCom1999, Seattle, USA (August, 1999), pp. 59-68.
J. I. Hong and J. A. Landy, An infrastructure approach to context-aware computing,
Human-Computer Interaction (HCI) J. 16(2-4) (2001) 287-303.

G. Judd and P. Steenkiste, Providing contextual information to pervasive computing
applications, in First IEEE Int. Conf. Pervasive Computing and Communications
(PerCom’03), Fort Worth, Texas (23-26 March, 2003), pp. 133-142.

G. Klyne and J. Carroll (eds.), Resource description framework (RDF): concepts and
abstract syntax, W3C Recommendation (2004).

A. Kofod-Petersen and M. Mikalsen, Context: representation and reasoning — rep-
resenting and reasoning about context in a mobile environment, Revue d’Intelligence
Artificielle 19(3) (2005) 479-498.

H. Liu and P. Singh, ConceptNet: a practical commonsense reasoning toolkit, BT
Technol. J. 22(4) (2004) 211-226.

D. L. McGuinness and F. van Harmelen, OWL web ontology language overview, W3C
Recommendation (2004).

L. Miller, A. Seaborne and A. Reggiori, Three implementations of SquishQL, a simple
RDF query language, in Proc. 1st Int. Semantic Web Conf. (ISWC 2002), LNCS 2342,
Sardinia, Ttalia (9-12 June, 2002), pp. 423-435.

Open Service Gateway Initiative (OSGi), http://www.osgi.org.

M. Roman, C. Hess, R. Cerqueira, K. Nahrsted and R. H. Campbell, Gaia: A mid-
dleware infrastructure to enable active spaces, IEEE Pervasive Comput. 1(4) (2002)
74-83.

J. Tan, D. Zhang, X. Wang and H. Cheng, Enhancing semantic spaces with event-
driven context interpretation, in Third Int. Conf. Pervasive, LNCS 3468, Munich,
Germany (May, 2005), pp. 80-97.

H. Tokuda, K. Takashio, J. Nakazawa, K. Matsumiya, M. Ito and M. Saito, SF2:
smart furniture for creating ubiquitous applications, in 2004 Sym. Applications and
the Internet (SAINT 2004), Tokyo, Japan (26-30 January, 2004), pp. 423-429.
Universal Plug and Play (UPnP), http://www.upnp.org.

X. Wang, D. Zhang, J. Dong, C. Chin and S. R. Hettiarachchi, Semantic space: an
infrastructure for smart space, IEEE Pervasive Comput. 3(3) (2004) 32-39.

Development of Context-Aware Applications Using Semantic Space Toolkit 607

Daqing Zhang is a
Principal Investigator in
Context-Aware Infras-
tructure at the Institute
for Infocomm Research
(I2R) in Singapore. He
obtained his Ph.D. from
the University of Rome
“La Sapienza” and Uni-
versity of L’Aquila,

Italy in 1996.

Dr. Zhang was the Program Chair of First
International Conference of Smart Home and
Health Telematics (ICOST2003) in Paris,
France. He served as the General Co-Chair
of ICOST2004 (Singapore) and ICOST2005
(Canada), respectively. Dr. Zhang has been
a frequently invited speaker in various inter-
national events such as Net@Home, OSGi
World Congress, etc.

His research interests include perva-
sive computing, service-oriented computing,
context-aware systems and home networking.

Xiaohang Wang
received his B.S. in
computer science from
Huazhong University of
Science and Technology,
China. He obtained his
M.S. in computer sci-
ence at the National
University of Singapore.

His research inter-

ests include pervasive and context-aware
computing, the Semantic Web, and home net-
working.

Zhiwen Yu received
his Ph.D. in computer
science from Northwest-
ern Polytechnical Uni-
versity, P. R. China in
2005.

He is a member
of the IEEE. He has
joined Nagoya Univer-
sity, Japan as a post-
doctoral researcher since February 2006.

His research interests include context-

aware computing, intelligent information
technology, and personalization.

Matthew Y. Ma
received his Ph.D. in
electrical and computer
engineering at North-
eastern University,
Boston, Massachusetts.
His M.S. and B.S.
degrees are both in elec-
trical engineering from
State University of New
York at Buffalo and Tsinghua University,
Beijing, respectively. Dr. Ma recently joined
IPVALUE Management Inc. as a subject
matter expert in image science. Prior to that,
he worked as a Senior Scientist at Pana-
sonic R&D Company of America for 11 years,
where he managed a research group which
focused on Panasonic’s document and mobile
imaging business. Dr. Ma has 11 granted US
patents and is the author of several dozens
conference and journal publications. He is
also actively involved in the pattern recog-
nition community.

He is the associate editor of the Int. J.
Pattern Recognition and Artificial Intelli-
gence (IJPRAI). He currently serves as Demo
Program chair and program committee mem-
ber of the International Conf. of Pattern
Recognition 2006. Dr. Ma is an affiliated pro-
fessor at both Northeastern University and
Beijing Institute of Technology, China.

His primary research interests include
image analysis, pattern recognition and
natural language processing, and their appli-
cations in home networking and ambient
intelligence of smart appliances.

