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ABSTRACT 
In this paper we focus on the issue of transferring diverse kinds of 
information through information-centric networks (ICNs). We 
argue that the one request per packet mode of operation suggested 
in the early development of ICN applications is not a good fit for 
some types of traffic, such as media streams and real-time 
notifications. To efficiently deliver all kinds of information, we 
argue that an ICN should not only identify information by its 
name, it should also be aware of the nature of its traffic. We 
classify information traffic types based on two characteristics: a) 
reliable vs. unreliable transfer and b) real-time vs. on-demand 
delivery. The combination of these two characteristics leads to 
three broad categories: a) channels, b) on-demand documents and 
c) real-time documents. To handle all traffic types, we propose 
two extensions to the CCN architecture: Persistent Interests and 
Reliable Notifications. We describe how these additions, together 
with a careful selection of information names, can efficiently 
support these three categories of information traffic types.   

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design - Packet-switching networks. 

General Terms 
Design. 

Keywords 
Information-centric networks, network layer design, information 
traffic types. 

1. INTRODUCTION 
Information-centric networks (ICNs) have gained the attention of 
the research community as a new paradigm in networking that can 
better address user needs in a networked world. Proponents of 
ICNs argue that placing information at the heart of an 
internetworking architecture allows the network to apply a set of 
mechanisms and algorithms to increase the users’ perceived 

satisfaction in terms of application performance and secure access 
to information [1, 2, 3, 4, 5, 6].   

From a technical viewpoint, the core abstraction in an ICN is 
named data instead of the named hosts of the Internet. Instead of 
identifying the source and destination host, the header of a 
network layer packet contains an identifier for the data carried. 
The primitive actions at the network layer follow a receiver-
driven approach: to receive a packet of named data, a user must 
first request it by its name. This is in stark contrast to IP where a 
user may freely send packets to recipient hosts. An ICN’s 
responsibility is to route requests for information to the best 
available location holding the desired data (best being subject to 
various metrics, such as hop count, latency or security) and then 
deliver the data back to the requestor.   

Although the core abstraction at the internetwork layer –
requesting and receiving named data – is radically different than 
that of the TCP/IP based Internet, ICNs do not necessarily violate 
the design choices that led to the success of the Internet. We 
believe that the design of an ICN should embrace the End-to-End 
argument [7] by keeping the network core as simple as possible 
and pushing functionalities at the edges. At the network layer, 
packets are statistically multiplexed and are susceptible to loss 
either due to failures in the link layer or due to congestion. Hence, 
the network layer of an ICN should provide users with an 
unreliable, best effort, information delivery service.  

Early work on transport over ICNs [8, 9] showcased how media 
streams, specifically voice conversations, can be supported in an 
ICN. Both papers apply the same logic: a voice conversation 
between two points is decomposed into two unidirectional streams 
of named data. For each stream, the communication end points 
(sender and receiver) use the same algorithmic function to 
generate names for each data packet in the stream. The receiving 
side issues a series of requests, one per named packet.  

Based on these applications, we argue that sending a request for 
each packet in a media stream may lead to inefficiencies as a) 
bandwidth is wasted for control messages, b) network elements in 
the core are overloaded by the large number of requests and c) if a 
request is lost and fails to reach the data source, the corresponding 
data packet will not be forwarded to the receiver. 

Points (a) and (b) could be tackled via batch requests: a single 
request carrying the names of many data packets. In this manner 
the number of requests issued by the receiver can be drastically 
reduced, saving bandwidth and unloading intermediate network 
elements. However, batch requests do not address point (c). If the 
uplink path suffers from relatively high packet error rates 
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(perhaps due to congestion), requests will be lost and thus data 
packets will not be forwarded to the receiver. The situation is 
even worse if batch requests are lost; not only one, but many data 
packets will not be forwarded. In essence, if information is to be 
requested at a packet granularity, then the conditions of the uplink 
path will affect the perceived quality of service, regardless of the 
conditions in the downlink path. 

We believe that these problems reflect a wider issue for ICNs: a 
mismatch in the traffic nature of continuous media and the one 
request per packet mode of operation. Although a user should 
receive information only if she has requested it, the efficient 
dissemination of continuous media requires more flexible 
mechanisms than separately requesting each data packet. 

In this paper we argue that the efficient dissemination of 
information requires different routing and forwarding mechanisms 
depending on the underlying traffic type. Looking back at the 
TCP/IP protocol stack, concerns regarding information transfer 
are left to the transport and application layer. However, in a 
network built around information, these concerns have to be 
addressed at the network layer. Initial ICN architectures [3, 4] 
propose to route and forward packets based solely on the 
requested information name. We argue that an ICN should not 
only recognize information by its name, but also by its traffic 
nature. Specifically, we propose that information dissemination 
should be classified by two characteristics: a) reliable vs. 
unreliable transfer b) real-time vs. on-demand delivery. The 
combination of these characteristics leads to three broad traffic 
types: a) channels, b) on-demand documents and c) real-time 
documents. We then focus on CCN [4], for which we propose two 
extensions to its routing and forwarding scheme. Our concepts are 
however also applicable to the PSIRP/PURSUIT architecture [6]. 
We discuss how these extensions along with careful name 
selection can efficiently support the dissemination of the three 
identified traffic types. 

2. DISSEMINATING INFORMATION IN 
THE INTERNET 
To identify the various forms of information dissemination, we 
start by examining how information is disseminated in the 
Internet today. If we take a bottom-up look through the TCP/IP 
protocol stack, we see that the characteristics of information 
dissemination are not a concern until we reach the application 
layer. At the network layer, IP provides an unreliable, best effort 
packet delivery service. Although the IP header includes some 
type of service fields, in practice IP is unaware of what sort of 
information is carried in a packet. Transport protocols, namely 
UDP and TCP, are also oblivious to this information: even though 
they are used to provide end-to-end transport, their operation 
remains the same regardless of the kind of information carried. 
For example, the TCP implementation in a host applies the same 
flow and congestion control, whether the data carried represent a 
web page, a twitter update or a fragment of a voice conversation. 
Likewise, UDP operation at the end hosts is not faster or less 
prone to packet loss if it is used to carry streaming video rather 
than data for online games. 

Internet applications and application layer protocols however are 
designed based on the kind of information they are meant to 
disseminate. At a first glance, most Internet applications care 
about reliable transfer (FTP, HTTP, SSH, SMTP, P2P to name a 
few). The majority of them transfer data over TCP, which 

provides error control and in order delivery. There are a few cases 
where applications avoid TCP due to the delays of TCP’s flow 
and congestion control. Such applications resort to data transfer 
over UDP, applying error control and packet ordering themselves. 
On the other hand, delay sensitive, real-time media are tolerant to 
packet loss and thus do not require reliable transfer. For streaming 
media applications, UDP is again the primary choice. If an 
application requires a reliable channel for control signaling, e.g. 
RTCP, then an out-of-band TCP connection is usually 
established. Therefore, one classification of information 
dissemination is whether it requires reliable or unreliable transfer. 

Information dissemination can be further classified by whether 
transfers are made in real time or on demand. By real time we 
denote information that is instantly transmitted by data sources at 
the moment it is generated. Users receiving real-time information 
are implicitly synchronized in the sense that they receive the same 
information simultaneously, regardless of the point in time they 
expressed interest for it. Continuous media applications like live 
TV and web radio are some examples of real-time traffic. In terms 
of IP, the optimal solution for delivering real-time information is 
to forward data over IP multicast. However, disseminating real-
time information is not limited to live media streaming. Real-time 
information includes applications such as online gaming, twitter, 
chat rooms, emergency alerts, sensor network measurements etc. 
These are all applications where information has to be reliably 
and simultaneously delivered to a set of synchronized users. 
Ideally, these applications should be implemented on top of a 
reliable multicast transport protocol (e.g. [10, 11, 12, 13]). 
However, neither IP multicast nor reliable multicast transport 
protocols ever achieved wide deployment. In practice, reliable 
transport of real-time information is either implemented by 
multiple unicast connections (each user directly connected with 
the data source) or via an overlay multicast scheme. 

Recently, HTTP was proposed as the thin layer in an ICN [14]. 
HTTP was selected due to its content-centric nature and its 
compatibility with firewalls and NAT boxes. HTTP transfers data 
over TCP, therefore HTTP transfers are reliable. Authors in [14], 
recognizing the inability of HTTP to support real-time 
information, introduce a new HTTP method, the Subscribe-GET 
(S-GET). When an HTTP client sends S-GET requests to a web 
server, the underlying TCP connection between the server and 
client is kept alive, unlike in the standard protocol where requests 
are served and then the connection is closed. When new 
information is published to the web server via HTTP PUT 
messages, the server immediately forwards it to all connected 
clients, thus delivering information in real time (Figure 1). 

S-GET

S-GET

PUT

 

Figure 1. HTTP clients send S-GET requests (solid arrows). 
TCP connections with the web server are kept active. New 

information is delivered to clients in real time (dashed 
arrows). 
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Our thinking follows the same rationale. A user’s request for 
information should specify both the information name and the 
dissemination pattern. In terms of HTTP, this is denoted by the 
resource name and the selected HTTP method, GET or S-GET. 
However, HTTP’s reliance on TCP makes it inappropriate for 
disseminating live media content. We propose instead a general 
purpose, packet switched, ICN architecture that can efficiently 
deliver all kinds of traffic, including the loss tolerant but delay 
sensitive media streams. 

3. INFORMATION DISSEMINATION 
TYPES 
In this section we present a more formal categorization of 
information dissemination types. The axes of classification as 
described in Section 2 are a) the requirement for reliable transfer 
and b) the requirement for real-time delivery. 

3.1 Documents and Channels 
We consider pieces of information that must be reliably 
transferred as belonging to documents. To obtain a document 
over an unreliable information delivery service, the user at the 
edge of the network must perform some kind of error control, e.g. 
a retransmission scheme as in TCP. This can be achieved by 
dividing a large document to named packets and then requesting 
each packet by name. If a packet is lost, the receiver will re-
request the packet, in contrast to the sender-driven approach of 
TCP where retransmission occurs upon the sender’s initiative. 

We consider instead loss tolerant pieces of information as 
belonging to channels. As discussed in Section 1, requesting each 
packet in a streaming channel is inefficient. To receive channel 
information, a user should subscribe to the channel once and then 
the network should forward each network packet belonging to the 
channel, until the user’s interest seizes to exist. 

3.2 Real-time and On-demand Dissemination 
The second axis of classification regards the timing constraints of 
information dissemination. We consider as real-time any 
information transmitted to users at the moment it is generated, i.e. 
on the sender’s initiative. Real-time information includes both 
continuous media (live TV, web radio) and real-time notifications 
(chat rooms, twitter updates, emergency alerts, etc). The 
fundamental difference between continuous media and real-time 
notifications is that continuous media are tolerant to packet losses 
(channels) while real-time notifications require reliable transfer 
(documents). When receiving real-time information, receivers are 
implicitly synchronized; they receive the same data at the same 
time, regardless of the when they expressed their interest in it. As 
discussed in Section 2, disseminating information in real time 
applies to both channels (live TV, web radio) and documents 
(chat rooms, twitter updates, emergency alerts, etc). 

On-demand information dissemination on the other hand includes 
transferring archived data (e.g. files) and point-to-point 
conversations (e.g. transactions, personalized content). Users 
receiving information on demand cannot be implicitly 
synchronized by the network. For example, if two users request 
the same file from a file server at different times, then at a certain 
point in time they are receiving different network layer packets, 
even if the two transfers are interleaved in time. To increase 
performance, an application could explicitly synchronize the 
receivers or implement an asynchronous multicast scheme 
through caching [15].  

3.3 The Three Traffic Types 
Based on the above, we propose that information dissemination 
should be classified as a) channels, b) on-demand documents and 
c) real-time documents. Table 1 presents a sample of applications 
classified according to their traffic type. Note that channels 
constitute a single category. This is because information 
represented as a channel requires the same routing and forwarding 
schemes, regardless of whether its dissemination is real-time (live 
media streaming) or on-demand (unreliable transmission of 
archived data). Details for the routing and forwarding channels 
follow in Section 4.3. Also note that YouTube is classified as an 
on-demand document application. YouTube videos are archived 
data stored in the service’ servers, transmitted reliably over TCP 
on-demand (a transfer starts when a user explicitly requests a 
video). Therefore, YouTube videos are classified as on-demand 
documents. 

 

Table 1. Applications classified according to the traffic type 

 Channels  Documents 

Real-time Twitter updates, online 
gaming, chat rooms, 
emergency alerts 

On demand 

Live TV, 

Web radio, 

VoIP, 

Skype  

 

File download, email, 
YouTube 

 
4. EXTENSIONS TO CCN 
In this section we turn our focus on CCN [4]. We discuss how 
CCN’s basic model can efficiently transfer on-demand documents 
but faces problems when it comes to channels and real-time 
documents. We then propose two extensions to CCN to overcome 
these issues. 

4.1 CCN Overview 
Content Centric Networking (CCN) is an ICN architecture 
proposed by Van Jacobson et al. [4] that places data at the thin 
waist of the network stack. In CCN, data names have a 
hierarchical structure, similar to file system pathnames, e.g. 
“/christos/pictures/summer.jpg”. CCN users request named data 
packets by issuing Interest packets. Interests are forwarded by 
CCN routers in a hop-by-hop manner. Upon receiving an Interest, 
a router first looks in its local cache and if a copy of the requested 
data packet is found, it instantly sends it back. Otherwise the 
router performs a longest prefix match on its Forwarding 
Information Base (FIB) and forwards the interest to the next hop 
towards the data source (Figure 2a). Routers keep track of each 
forwarded Interest in a data structure called Pending Interest 
Table (PIT), as shown in Table 2. 

When the Interest reaches a data source, the requested data packet 
is forwarded along the reverse path. At each hop, routers check 
their PIT for Interests whose name is an exact match of the data 
name. If a match is found, the data packet is forwarded and a copy 
of the packet is kept in a local cache for future use (Figure 2b). 

Incoming data packets that do not have a match at the PIT are 
considered as unwanted traffic and are discarded. After a data 
packet is forwarded, the router assumes that the Interest is 
satisfied and deletes its entry from the PIT. This way CCN 
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ensures that a user receives at most one data packet per issued 
Interest. As we will describe in Sections 4.3 and 4.4, we need to 
relax this constraint in order to efficiently support channels and 
real-time documents. 

R1

R2

R3

(a)

R3/christos/

Next HopData name

R3/christos/

Next HopData name

R1

R2

R3

(b)

U3

U2

U1

U3

U2

U1

 

Figure 2. CCN users send interest messages for 
“/christos/pictures/summer.jpg”. (a) CCN routers propagate 

the interest towards the data store. (b) Data packets are 
forwarded following the reverse path. 

 

Table 2: Pending Interest Table at router R3 

Interest name  Forward to 

“/christos/pictures/summer.jpg” R1, R2 

 

4.2 On-demand Documents 
Reliable end-to-end data transfer over an unreliable network 
requires some form of error control. Usually this takes the form of 
either an Automatic Repeat Request (ARQ) or a Forward Error 
Correction (FEC) scheme implemented by the application. CCN’s 
basic model of one interest per data packet can easily support 
both schemes, provided that they are implemented in a receiver-
driven fashion. For example, consider a pull-based variant of Stop 
and Wait ARQ. Let R be a receiver that wishes to download 
document O. If O is too large to fit in a single network layer 
packet, O is split in n packets, each one with its own name, O1…n. 
R initiates the transfer by requesting O1 and then waits until the 
network delivers the corresponding data packet or a timer expires. 
If the timer expires, R re-requests O1. Once the data packet for O1 

arrives, R proceeds to O2 and resets the timer. The operation 
continues until R receives all packets comprising O. Note that R 
does not directly address the host to where the requests are sent 
and the network may route each request to a different location. To 
increase performance, R may implement Selective Repeat ARQ 
by pipelining requests. The scheme can be further extended to 

support some kind of flow and congestion control (a la TCP) by 
controlling the rate of sending the requests. 

4.3 Channels 
VoCCN [8] applied CCN’s one interest per data packet scheme to 
the transfer of real-time voice streams. To minimize the end-to-
end delays caused by this step-wise request-response process, at 
the beginning each receiver issues a number of pipelined 
Interests. Each Interest is routed to the channel source and 
remains there in a pending state. When a new data packet is 
generated, it is immediately forwarded to the receiver, consuming 
the correspondent Interest in intermediate CCN routers. Whenever 
a data packet is received, the end point issues a new Interest to 
replenish the consumed one.  

As argued in Section 1, explicitly requesting each packet in a 
media steam is inefficient. Sending an Interest for each data 
packet in a stream wastes uplink bandwidth and burdens routers 
with a large number of PIT entries. Furthermore, if an Interest is 
lost, the corresponding data packet will not be forwarded, 
therefore reducing the perceived quality of service. 

To overcome these issues, we propose an extension to CCN 
routing and forwarding: Persistent Interests (PIs). In contrast to 
plain Interests, CCN routers store PIs in their PIT for a period of 
time. PIs are not deleted after a matching data packet is 
forwarded; instead, they remain in the PIT until users explicitly 
unsubscribe from a channel or their lifetime expires. Users issue 
PIs periodically so that state in routers is refreshed. PIs that have 
not been refreshed for a while are discarded as stale.  

In the data plane, each data packet in a channel still has its own 
name, in order to distinguish data packets, but they all share a 
common prefix, the channel name. For example, if a channel is 
named “SportsTV”, its data packets could be called 
“SportsTV/Packet1”, “SportsTV/Packet2” and so on. Channel 
data packets are specially marked so that forwarding is performed 
based only on the channel name and not on the packet’s full 
name. When CCN routers receive data packets belonging to 
channels, they extract the channel name from the packet name and 
search their PIT for a matching PI. Once the match is found, the 
data packet is forwarded and the PI is kept in place. 

The dissemination of real-time channel information is fairly easy. 
An application registers a name for the channel and advertises it 
to users. In practice, the name must be carefully selected so that 
CCN routers will propagate the PI to the right content provider. If 
multiple users send PIs for the same channel, CCN can implicitly 
group all users into a single multicast tree and forward the same 
data packets simultaneously to the subscribed users. 

Apart from real-time channels, PIs can be used for disseminating 
on-demand channels as well. An example of an on-demand 
channel would be a content provider that unreliably streams 
prerecorded media on user demand. In this case, the application 
must be careful in naming these channels; otherwise users will 
receive invalid data. For example, user U1 in Figure 2 may ask for 
last night’s soccer game by sending a PI for “Soccer match, April 
2nd”. A few moments later, user U3 may also ask for last night’s 
soccer game, sending a PI for the same channel name. When the 
PI sent from U3 reaches R3, R3 will match it with the previous PI 
sent by U1 and will not push it to the data source. In addition to 
that, R3 will aggregate the PI into its existing PIT entry and 
forward upcoming data packets towards both users. As a result, 
U3 will have just missed the first minutes of the soccer game. 
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To avoid such confusions, disseminating on-demand channels can 
be achieved by creating new channel names on demand, e.g., 
“Soccer match, April 2nd, ordered by Bob” and “Soccer match, 
April 2nd, ordered by Alice”. Users willing to receive information 
represented as on-demand channels must first negotiate with the 
content provider a customized channel name, exchange the name 
through an out of band mechanism and then subscribe to their 
custom named channel. In this manner, different channels will be 
created and data packets will not be correlated by CCN routers. 
Of course, the provider can group multiple such requests together 
so as to offer a near video on-demand service via multicast. 

4.4 Real-time Documents 
The last traffic type is real-time documents. In this category, users 
want to reliably receive information generated in real time. Real-
time documents can be viewed as a synthesis of (real-time) 
channels and error control applied at the end hosts. The ACK 
implosion problem [10, 11, 12, 13] faced by many reliable 
multicast protocols is not an issue in CCN, since lost packets can 
be retrieved from caches in intermediate routers. In this sense, 
ICNs provide an ideal communication substrate for reliable 
multicast transport.  

The problem with real-time documents is how to notify the 
receivers that new information is available, so that they may 
request it. We can illustrate this with an example. Consider a fire 
alert application where a fire detector signals alarms over the 
network. Fire alerts must be reliably delivered to interested users, 
e.g. the fire service, the police, the local hospital etc. Assume that 
the fire alert is represented by only a few bytes and fits into a 
single network packet. In case of fire, the sensor creates a single 
data packet and pushes it to the network. If the fire alert is lost in 
a congested link, there is no way for the receivers behind that link 
to identify the loss and re-request the data packet in time (Figure 
3). Receivers could bypass this by issuing periodic requests, but 
this solution suffers from two weaknesses: a) repeated requests 
will cause extra network overhead and b) if information is 
generated right after a periodic request and the packet is lost, it 
will only be recovered after the next periodic request.  

Looking at how the Internet delivers real-time information, brings 
the sender back to the center of attention. Real-time information is 
actually sender-driven: the data source sends packets and awaits 
receivers to acknowledge the proper reception of data; otherwise 
the sender takes the initiative to retransmit unacknowledged 
packets. How could this be emulated in a receiver-driven way? In 
CCN, data sources are unaware of receivers and cannot take the 
initiative of retransmitting packets. 

R1

R2

R3

U3

U2

U1

X

 

Figure 3: Real-time information fits in a single data packet. If 
the packet is lost in the link R1-R3, receivers U1 and U2 

cannot identify the loss. 

To solve this problem, we propose the use of Reliable 
Notifications (RNs). RNs are special data packets sent by data 
producers to notify receivers that real-time information is 
available. RNs are hop-by-hop reliably propagated to receivers. 
When a router receives an RN, it immediately sends an 
acknowledgement to the previous hop. RNs that are not 
acknowledged in time are retransmitted. Once a receiver gets an 
RN, it waits for new data to arrive. If no packets arrive, or 
individual packets are lost, the receiver issues interests for the 
missing data.  

To receive documents in real time, users send Persistent Interests, 
just as in channels. When new information is generated, the data 
source first creates a reliable notification. The notification is 
named after the channel, carrying in its payload the pair <N, 
Name1> where N is the number of packets comprising the 
document and Name1 is the name of the first data packet. The 
notification is forwarded as a streaming packet, with the addition 
of hop-by-hop acknowledgments. Once a user receives a 
notification, she is aware that N packets are to follow, with the 
first packet named Name1.  

After transmitting the notification, the source transmits the data 
packets. As in channels, data packets are marked so that they are 
forwarded based on their channel name prefix. If the first or any 
subsequent data packet is lost, receivers request it explicitly via a 
plain Interest, using the packet’s full name. The Interest is routed 
towards the data source and is served either by a router’s local 
cache or the data source itself. 

5. CONCLUSIONS 
Early development on information-centric networks suggests that 
end-to-end information transfer is performed on a request per 
packet basis. However, this mode of operation does not fit all 
kinds of traffic. In the case of streaming, requesting information 
on the granularity of packets is inefficient as it wastes network 
resources and may reduce perceived quality of service. The 
efficient dissemination of information requires different routing 
and forwarding mechanisms. ICNs should address these issues in 
the design of their network layer rather than leaving them to upper 
layers. Efficient end-to-end transport requires that users request 
information not only by its name, but also by specifying the 
nature of the underlying traffic. We explored this concept in CCN 
and proposed two extensions to CCN’s routing and forwarding for 
disseminating information represented as channels and real-time 
documents. We believe that similar extensions would be valid and 
useful of other ICN architectures, including the publish/subscribe 
architecture advocated by PSIRP/PURSUIT. 
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