
Supporting Diverse Traffic Types in Information Centric
Networks

Christos Tsilopoulos and George Xylomenos
Mobile Multimedia Laboratory

Athens University of Economics and Business
Patision 76, Athens, 10434, Greece

+302108203693

{tsilochr, xgeorge}@aueb.gr

ABSTRACT
In this paper we focus on the issue of transferring diverse kinds of
information through information-centric networks (ICNs). We
argue that the one request per packet mode of operation suggested
in the early development of ICN applications is not a good fit for
some types of traffic, such as media streams and real-time
notifications. To efficiently deliver all kinds of information, we
argue that an ICN should not only identify information by its
name, it should also be aware of the nature of its traffic. We
classify information traffic types based on two characteristics: a)
reliable vs. unreliable transfer and b) real-time vs. on-demand
delivery. The combination of these two characteristics leads to
three broad categories: a) channels, b) on-demand documents and
c) real-time documents. To handle all traffic types, we propose
two extensions to the CCN architecture: Persistent Interests and
Reliable Notifications. We describe how these additions, together
with a careful selection of information names, can efficiently
support these three categories of information traffic types.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design - Packet-switching networks.

General Terms
Design.

Keywords
Information-centric networks, network layer design, information
traffic types.

1. INTRODUCTION
Information-centric networks (ICNs) have gained the attention of
the research community as a new paradigm in networking that can
better address user needs in a networked world. Proponents of
ICNs argue that placing information at the heart of an
internetworking architecture allows the network to apply a set of
mechanisms and algorithms to increase the users’ perceived

satisfaction in terms of application performance and secure access
to information [1, 2, 3, 4, 5, 6].

From a technical viewpoint, the core abstraction in an ICN is
named data instead of the named hosts of the Internet. Instead of
identifying the source and destination host, the header of a
network layer packet contains an identifier for the data carried.
The primitive actions at the network layer follow a receiver-
driven approach: to receive a packet of named data, a user must
first request it by its name. This is in stark contrast to IP where a
user may freely send packets to recipient hosts. An ICN’s
responsibility is to route requests for information to the best
available location holding the desired data (best being subject to
various metrics, such as hop count, latency or security) and then
deliver the data back to the requestor.

Although the core abstraction at the internetwork layer –
requesting and receiving named data – is radically different than
that of the TCP/IP based Internet, ICNs do not necessarily violate
the design choices that led to the success of the Internet. We
believe that the design of an ICN should embrace the End-to-End
argument [7] by keeping the network core as simple as possible
and pushing functionalities at the edges. At the network layer,
packets are statistically multiplexed and are susceptible to loss
either due to failures in the link layer or due to congestion. Hence,
the network layer of an ICN should provide users with an
unreliable, best effort, information delivery service.

Early work on transport over ICNs [8, 9] showcased how media
streams, specifically voice conversations, can be supported in an
ICN. Both papers apply the same logic: a voice conversation
between two points is decomposed into two unidirectional streams
of named data. For each stream, the communication end points
(sender and receiver) use the same algorithmic function to
generate names for each data packet in the stream. The receiving
side issues a series of requests, one per named packet.

Based on these applications, we argue that sending a request for
each packet in a media stream may lead to inefficiencies as a)
bandwidth is wasted for control messages, b) network elements in
the core are overloaded by the large number of requests and c) if a
request is lost and fails to reach the data source, the corresponding
data packet will not be forwarded to the receiver.

Points (a) and (b) could be tackled via batch requests: a single
request carrying the names of many data packets. In this manner
the number of requests issued by the receiver can be drastically
reduced, saving bandwidth and unloading intermediate network
elements. However, batch requests do not address point (c). If the
uplink path suffers from relatively high packet error rates

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICN’11, August 19, 2011, Toronto, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0801-4/11/08...$10.00.

13

(perhaps due to congestion), requests will be lost and thus data
packets will not be forwarded to the receiver. The situation is
even worse if batch requests are lost; not only one, but many data
packets will not be forwarded. In essence, if information is to be
requested at a packet granularity, then the conditions of the uplink
path will affect the perceived quality of service, regardless of the
conditions in the downlink path.

We believe that these problems reflect a wider issue for ICNs: a
mismatch in the traffic nature of continuous media and the one
request per packet mode of operation. Although a user should
receive information only if she has requested it, the efficient
dissemination of continuous media requires more flexible
mechanisms than separately requesting each data packet.

In this paper we argue that the efficient dissemination of
information requires different routing and forwarding mechanisms
depending on the underlying traffic type. Looking back at the
TCP/IP protocol stack, concerns regarding information transfer
are left to the transport and application layer. However, in a
network built around information, these concerns have to be
addressed at the network layer. Initial ICN architectures [3, 4]
propose to route and forward packets based solely on the
requested information name. We argue that an ICN should not
only recognize information by its name, but also by its traffic
nature. Specifically, we propose that information dissemination
should be classified by two characteristics: a) reliable vs.
unreliable transfer b) real-time vs. on-demand delivery. The
combination of these characteristics leads to three broad traffic
types: a) channels, b) on-demand documents and c) real-time
documents. We then focus on CCN [4], for which we propose two
extensions to its routing and forwarding scheme. Our concepts are
however also applicable to the PSIRP/PURSUIT architecture [6].
We discuss how these extensions along with careful name
selection can efficiently support the dissemination of the three
identified traffic types.

2. DISSEMINATING INFORMATION IN
THE INTERNET
To identify the various forms of information dissemination, we
start by examining how information is disseminated in the
Internet today. If we take a bottom-up look through the TCP/IP
protocol stack, we see that the characteristics of information
dissemination are not a concern until we reach the application
layer. At the network layer, IP provides an unreliable, best effort
packet delivery service. Although the IP header includes some
type of service fields, in practice IP is unaware of what sort of
information is carried in a packet. Transport protocols, namely
UDP and TCP, are also oblivious to this information: even though
they are used to provide end-to-end transport, their operation
remains the same regardless of the kind of information carried.
For example, the TCP implementation in a host applies the same
flow and congestion control, whether the data carried represent a
web page, a twitter update or a fragment of a voice conversation.
Likewise, UDP operation at the end hosts is not faster or less
prone to packet loss if it is used to carry streaming video rather
than data for online games.

Internet applications and application layer protocols however are
designed based on the kind of information they are meant to
disseminate. At a first glance, most Internet applications care
about reliable transfer (FTP, HTTP, SSH, SMTP, P2P to name a
few). The majority of them transfer data over TCP, which

provides error control and in order delivery. There are a few cases
where applications avoid TCP due to the delays of TCP’s flow
and congestion control. Such applications resort to data transfer
over UDP, applying error control and packet ordering themselves.
On the other hand, delay sensitive, real-time media are tolerant to
packet loss and thus do not require reliable transfer. For streaming
media applications, UDP is again the primary choice. If an
application requires a reliable channel for control signaling, e.g.
RTCP, then an out-of-band TCP connection is usually
established. Therefore, one classification of information
dissemination is whether it requires reliable or unreliable transfer.

Information dissemination can be further classified by whether
transfers are made in real time or on demand. By real time we
denote information that is instantly transmitted by data sources at
the moment it is generated. Users receiving real-time information
are implicitly synchronized in the sense that they receive the same
information simultaneously, regardless of the point in time they
expressed interest for it. Continuous media applications like live
TV and web radio are some examples of real-time traffic. In terms
of IP, the optimal solution for delivering real-time information is
to forward data over IP multicast. However, disseminating real-
time information is not limited to live media streaming. Real-time
information includes applications such as online gaming, twitter,
chat rooms, emergency alerts, sensor network measurements etc.
These are all applications where information has to be reliably
and simultaneously delivered to a set of synchronized users.
Ideally, these applications should be implemented on top of a
reliable multicast transport protocol (e.g. [10, 11, 12, 13]).
However, neither IP multicast nor reliable multicast transport
protocols ever achieved wide deployment. In practice, reliable
transport of real-time information is either implemented by
multiple unicast connections (each user directly connected with
the data source) or via an overlay multicast scheme.

Recently, HTTP was proposed as the thin layer in an ICN [14].
HTTP was selected due to its content-centric nature and its
compatibility with firewalls and NAT boxes. HTTP transfers data
over TCP, therefore HTTP transfers are reliable. Authors in [14],
recognizing the inability of HTTP to support real-time
information, introduce a new HTTP method, the Subscribe-GET
(S-GET). When an HTTP client sends S-GET requests to a web
server, the underlying TCP connection between the server and
client is kept alive, unlike in the standard protocol where requests
are served and then the connection is closed. When new
information is published to the web server via HTTP PUT
messages, the server immediately forwards it to all connected
clients, thus delivering information in real time (Figure 1).

S-GET

S-GET

PUT

Figure 1. HTTP clients send S-GET requests (solid arrows).
TCP connections with the web server are kept active. New

information is delivered to clients in real time (dashed
arrows).

14

Our thinking follows the same rationale. A user’s request for
information should specify both the information name and the
dissemination pattern. In terms of HTTP, this is denoted by the
resource name and the selected HTTP method, GET or S-GET.
However, HTTP’s reliance on TCP makes it inappropriate for
disseminating live media content. We propose instead a general
purpose, packet switched, ICN architecture that can efficiently
deliver all kinds of traffic, including the loss tolerant but delay
sensitive media streams.

3. INFORMATION DISSEMINATION
TYPES
In this section we present a more formal categorization of
information dissemination types. The axes of classification as
described in Section 2 are a) the requirement for reliable transfer
and b) the requirement for real-time delivery.

3.1 Documents and Channels
We consider pieces of information that must be reliably
transferred as belonging to documents. To obtain a document
over an unreliable information delivery service, the user at the
edge of the network must perform some kind of error control, e.g.
a retransmission scheme as in TCP. This can be achieved by
dividing a large document to named packets and then requesting
each packet by name. If a packet is lost, the receiver will re-
request the packet, in contrast to the sender-driven approach of
TCP where retransmission occurs upon the sender’s initiative.

We consider instead loss tolerant pieces of information as
belonging to channels. As discussed in Section 1, requesting each
packet in a streaming channel is inefficient. To receive channel
information, a user should subscribe to the channel once and then
the network should forward each network packet belonging to the
channel, until the user’s interest seizes to exist.

3.2 Real-time and On-demand Dissemination
The second axis of classification regards the timing constraints of
information dissemination. We consider as real-time any
information transmitted to users at the moment it is generated, i.e.
on the sender’s initiative. Real-time information includes both
continuous media (live TV, web radio) and real-time notifications
(chat rooms, twitter updates, emergency alerts, etc). The
fundamental difference between continuous media and real-time
notifications is that continuous media are tolerant to packet losses
(channels) while real-time notifications require reliable transfer
(documents). When receiving real-time information, receivers are
implicitly synchronized; they receive the same data at the same
time, regardless of the when they expressed their interest in it. As
discussed in Section 2, disseminating information in real time
applies to both channels (live TV, web radio) and documents
(chat rooms, twitter updates, emergency alerts, etc).

On-demand information dissemination on the other hand includes
transferring archived data (e.g. files) and point-to-point
conversations (e.g. transactions, personalized content). Users
receiving information on demand cannot be implicitly
synchronized by the network. For example, if two users request
the same file from a file server at different times, then at a certain
point in time they are receiving different network layer packets,
even if the two transfers are interleaved in time. To increase
performance, an application could explicitly synchronize the
receivers or implement an asynchronous multicast scheme
through caching [15].

3.3 The Three Traffic Types
Based on the above, we propose that information dissemination
should be classified as a) channels, b) on-demand documents and
c) real-time documents. Table 1 presents a sample of applications
classified according to their traffic type. Note that channels
constitute a single category. This is because information
represented as a channel requires the same routing and forwarding
schemes, regardless of whether its dissemination is real-time (live
media streaming) or on-demand (unreliable transmission of
archived data). Details for the routing and forwarding channels
follow in Section 4.3. Also note that YouTube is classified as an
on-demand document application. YouTube videos are archived
data stored in the service’ servers, transmitted reliably over TCP
on-demand (a transfer starts when a user explicitly requests a
video). Therefore, YouTube videos are classified as on-demand
documents.

Table 1. Applications classified according to the traffic type

 Channels Documents

Real-time Twitter updates, online
gaming, chat rooms,
emergency alerts

On demand

Live TV,

Web radio,

VoIP,

Skype

File download, email,
YouTube

4. EXTENSIONS TO CCN
In this section we turn our focus on CCN [4]. We discuss how
CCN’s basic model can efficiently transfer on-demand documents
but faces problems when it comes to channels and real-time
documents. We then propose two extensions to CCN to overcome
these issues.

4.1 CCN Overview
Content Centric Networking (CCN) is an ICN architecture
proposed by Van Jacobson et al. [4] that places data at the thin
waist of the network stack. In CCN, data names have a
hierarchical structure, similar to file system pathnames, e.g.
“/christos/pictures/summer.jpg”. CCN users request named data
packets by issuing Interest packets. Interests are forwarded by
CCN routers in a hop-by-hop manner. Upon receiving an Interest,
a router first looks in its local cache and if a copy of the requested
data packet is found, it instantly sends it back. Otherwise the
router performs a longest prefix match on its Forwarding
Information Base (FIB) and forwards the interest to the next hop
towards the data source (Figure 2a). Routers keep track of each
forwarded Interest in a data structure called Pending Interest
Table (PIT), as shown in Table 2.

When the Interest reaches a data source, the requested data packet
is forwarded along the reverse path. At each hop, routers check
their PIT for Interests whose name is an exact match of the data
name. If a match is found, the data packet is forwarded and a copy
of the packet is kept in a local cache for future use (Figure 2b).

Incoming data packets that do not have a match at the PIT are
considered as unwanted traffic and are discarded. After a data
packet is forwarded, the router assumes that the Interest is
satisfied and deletes its entry from the PIT. This way CCN

15

ensures that a user receives at most one data packet per issued
Interest. As we will describe in Sections 4.3 and 4.4, we need to
relax this constraint in order to efficiently support channels and
real-time documents.

R1

R2

R3

(a)

R3/christos/

Next HopData name

R3/christos/

Next HopData name

R1

R2

R3

(b)

U3

U2

U1

U3

U2

U1

Figure 2. CCN users send interest messages for
“/christos/pictures/summer.jpg”. (a) CCN routers propagate

the interest towards the data store. (b) Data packets are
forwarded following the reverse path.

Table 2: Pending Interest Table at router R3

Interest name Forward to

“/christos/pictures/summer.jpg” R1, R2

4.2 On-demand Documents
Reliable end-to-end data transfer over an unreliable network
requires some form of error control. Usually this takes the form of
either an Automatic Repeat Request (ARQ) or a Forward Error
Correction (FEC) scheme implemented by the application. CCN’s
basic model of one interest per data packet can easily support
both schemes, provided that they are implemented in a receiver-
driven fashion. For example, consider a pull-based variant of Stop
and Wait ARQ. Let R be a receiver that wishes to download
document O. If O is too large to fit in a single network layer
packet, O is split in n packets, each one with its own name, O1…n.
R initiates the transfer by requesting O1 and then waits until the
network delivers the corresponding data packet or a timer expires.
If the timer expires, R re-requests O1. Once the data packet for O1

arrives, R proceeds to O2 and resets the timer. The operation
continues until R receives all packets comprising O. Note that R
does not directly address the host to where the requests are sent
and the network may route each request to a different location. To
increase performance, R may implement Selective Repeat ARQ
by pipelining requests. The scheme can be further extended to

support some kind of flow and congestion control (a la TCP) by
controlling the rate of sending the requests.

4.3 Channels
VoCCN [8] applied CCN’s one interest per data packet scheme to
the transfer of real-time voice streams. To minimize the end-to-
end delays caused by this step-wise request-response process, at
the beginning each receiver issues a number of pipelined
Interests. Each Interest is routed to the channel source and
remains there in a pending state. When a new data packet is
generated, it is immediately forwarded to the receiver, consuming
the correspondent Interest in intermediate CCN routers. Whenever
a data packet is received, the end point issues a new Interest to
replenish the consumed one.

As argued in Section 1, explicitly requesting each packet in a
media steam is inefficient. Sending an Interest for each data
packet in a stream wastes uplink bandwidth and burdens routers
with a large number of PIT entries. Furthermore, if an Interest is
lost, the corresponding data packet will not be forwarded,
therefore reducing the perceived quality of service.

To overcome these issues, we propose an extension to CCN
routing and forwarding: Persistent Interests (PIs). In contrast to
plain Interests, CCN routers store PIs in their PIT for a period of
time. PIs are not deleted after a matching data packet is
forwarded; instead, they remain in the PIT until users explicitly
unsubscribe from a channel or their lifetime expires. Users issue
PIs periodically so that state in routers is refreshed. PIs that have
not been refreshed for a while are discarded as stale.

In the data plane, each data packet in a channel still has its own
name, in order to distinguish data packets, but they all share a
common prefix, the channel name. For example, if a channel is
named “SportsTV”, its data packets could be called
“SportsTV/Packet1”, “SportsTV/Packet2” and so on. Channel
data packets are specially marked so that forwarding is performed
based only on the channel name and not on the packet’s full
name. When CCN routers receive data packets belonging to
channels, they extract the channel name from the packet name and
search their PIT for a matching PI. Once the match is found, the
data packet is forwarded and the PI is kept in place.

The dissemination of real-time channel information is fairly easy.
An application registers a name for the channel and advertises it
to users. In practice, the name must be carefully selected so that
CCN routers will propagate the PI to the right content provider. If
multiple users send PIs for the same channel, CCN can implicitly
group all users into a single multicast tree and forward the same
data packets simultaneously to the subscribed users.

Apart from real-time channels, PIs can be used for disseminating
on-demand channels as well. An example of an on-demand
channel would be a content provider that unreliably streams
prerecorded media on user demand. In this case, the application
must be careful in naming these channels; otherwise users will
receive invalid data. For example, user U1 in Figure 2 may ask for
last night’s soccer game by sending a PI for “Soccer match, April
2nd”. A few moments later, user U3 may also ask for last night’s
soccer game, sending a PI for the same channel name. When the
PI sent from U3 reaches R3, R3 will match it with the previous PI
sent by U1 and will not push it to the data source. In addition to
that, R3 will aggregate the PI into its existing PIT entry and
forward upcoming data packets towards both users. As a result,
U3 will have just missed the first minutes of the soccer game.

16

To avoid such confusions, disseminating on-demand channels can
be achieved by creating new channel names on demand, e.g.,
“Soccer match, April 2nd, ordered by Bob” and “Soccer match,
April 2nd, ordered by Alice”. Users willing to receive information
represented as on-demand channels must first negotiate with the
content provider a customized channel name, exchange the name
through an out of band mechanism and then subscribe to their
custom named channel. In this manner, different channels will be
created and data packets will not be correlated by CCN routers.
Of course, the provider can group multiple such requests together
so as to offer a near video on-demand service via multicast.

4.4 Real-time Documents
The last traffic type is real-time documents. In this category, users
want to reliably receive information generated in real time. Real-
time documents can be viewed as a synthesis of (real-time)
channels and error control applied at the end hosts. The ACK
implosion problem [10, 11, 12, 13] faced by many reliable
multicast protocols is not an issue in CCN, since lost packets can
be retrieved from caches in intermediate routers. In this sense,
ICNs provide an ideal communication substrate for reliable
multicast transport.

The problem with real-time documents is how to notify the
receivers that new information is available, so that they may
request it. We can illustrate this with an example. Consider a fire
alert application where a fire detector signals alarms over the
network. Fire alerts must be reliably delivered to interested users,
e.g. the fire service, the police, the local hospital etc. Assume that
the fire alert is represented by only a few bytes and fits into a
single network packet. In case of fire, the sensor creates a single
data packet and pushes it to the network. If the fire alert is lost in
a congested link, there is no way for the receivers behind that link
to identify the loss and re-request the data packet in time (Figure
3). Receivers could bypass this by issuing periodic requests, but
this solution suffers from two weaknesses: a) repeated requests
will cause extra network overhead and b) if information is
generated right after a periodic request and the packet is lost, it
will only be recovered after the next periodic request.

Looking at how the Internet delivers real-time information, brings
the sender back to the center of attention. Real-time information is
actually sender-driven: the data source sends packets and awaits
receivers to acknowledge the proper reception of data; otherwise
the sender takes the initiative to retransmit unacknowledged
packets. How could this be emulated in a receiver-driven way? In
CCN, data sources are unaware of receivers and cannot take the
initiative of retransmitting packets.

R1

R2

R3

U3

U2

U1

X

Figure 3: Real-time information fits in a single data packet. If
the packet is lost in the link R1-R3, receivers U1 and U2

cannot identify the loss.

To solve this problem, we propose the use of Reliable
Notifications (RNs). RNs are special data packets sent by data
producers to notify receivers that real-time information is
available. RNs are hop-by-hop reliably propagated to receivers.
When a router receives an RN, it immediately sends an
acknowledgement to the previous hop. RNs that are not
acknowledged in time are retransmitted. Once a receiver gets an
RN, it waits for new data to arrive. If no packets arrive, or
individual packets are lost, the receiver issues interests for the
missing data.

To receive documents in real time, users send Persistent Interests,
just as in channels. When new information is generated, the data
source first creates a reliable notification. The notification is
named after the channel, carrying in its payload the pair <N,
Name1> where N is the number of packets comprising the
document and Name1 is the name of the first data packet. The
notification is forwarded as a streaming packet, with the addition
of hop-by-hop acknowledgments. Once a user receives a
notification, she is aware that N packets are to follow, with the
first packet named Name1.

After transmitting the notification, the source transmits the data
packets. As in channels, data packets are marked so that they are
forwarded based on their channel name prefix. If the first or any
subsequent data packet is lost, receivers request it explicitly via a
plain Interest, using the packet’s full name. The Interest is routed
towards the data source and is served either by a router’s local
cache or the data source itself.

5. CONCLUSIONS
Early development on information-centric networks suggests that
end-to-end information transfer is performed on a request per
packet basis. However, this mode of operation does not fit all
kinds of traffic. In the case of streaming, requesting information
on the granularity of packets is inefficient as it wastes network
resources and may reduce perceived quality of service. The
efficient dissemination of information requires different routing
and forwarding mechanisms. ICNs should address these issues in
the design of their network layer rather than leaving them to upper
layers. Efficient end-to-end transport requires that users request
information not only by its name, but also by specifying the
nature of the underlying traffic. We explored this concept in CCN
and proposed two extensions to CCN’s routing and forwarding for
disseminating information represented as channels and real-time
documents. We believe that similar extensions would be valid and
useful of other ICN architectures, including the publish/subscribe
architecture advocated by PSIRP/PURSUIT.

6. ACKNOWLEDGMENTS
The work reported in this paper was supported by the FP7 ICT
project “Publish Subscribe Internet Technology” (PURSUIT),
under contract ICT-2010-257217. The authors would like to thank
Pantelis Frangoudis for his useful comments and remarks.

7. REFERENCES
[1] M. Gritter and D. R. Cheriton. An architecture for content

routing support in the Internet. In USENIX USITS, 2001.

[2] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S.
Shenker, I. Stoica and M. Walfish. A layered naming
architecture for the Internet. In ACM SIGCOMM, 2004.

17

[3] T. Koponen, M. Chawla, B. Chun, A. Ermolinskiy, K. H.
Kim, S. Shenker and I. Stoica. A data-oriented (and beyond)
network architecture. In ACM SIGCOMM, 2007.

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N.
H. Briggs, and R. L. Braynard. Networking Named Content.
In ACM CoNEXT, 2009.

[5] D. Trossen, M. Sarela and K. Sollins. Arguments for an
information-centric internetworking architecture. In ACM
Comput. Commun. Rev., 2010.

[6] N. Fotiou, D. Trossen and G.C. Polyzos. Illustrating a
publish-subscribe Internet architecture, In Springer
Telecommun. Syst., 2011.

[7] J. H. Saltzer, D. P. Reed and D. D. Clark. End-to-end
arguments in system design. In ACM Trans. Comput. Syst.,
1984.

[8] V. Jacobson, D. K. Smetters, N. H. Briggs, M. F. Plass, P.
Stewart, J. D. Thornton and Rebecca L. Braynard. VoCCN:
voice-over content-centric networks. In ACM ReArch, 2009.

[9] C. Stais, D. Diamantis, C. Aretha and G. Xylomenos. VoPSI:
Voice over a Publish-Subscribe Internetwork. In Future
Networks and Mobile Summit, 2011.

[10] J.C. Lin, S. Paul. RMTP: a reliable multicast transport
protocol. In IEEE INFOCOM, 1996.

[11] H. W. Holbrook and D. R. Cheriton. IP multicast channels:
EXPRESS support for large-scale single-source applications.
In ACM Comput. Commun. Rev., 1999.

[12] L. Rizzo. PGMCC: a TCP-friendly single-rate multicast
congestion control scheme. In ACM SIGCOMM, 2000.

[13] J. Gemmell, T. Montgomery, T. Speakman and J. Crowcroft.
The PGM reliable multicast protocol. In IEEE Network,
2003.

[14] L. Popa, A. Ghodsi and I. Stoica. HTTP as the narrow waist
of the future Internet. In ACM Hotnets, 2010.

[15] K. Katsaros, G. Xylomenos and G. C. Polyzos. MultiCache:
An overlay architecture for information-centric networking,
In Elsevier Comput. Netw., 2010.

18

