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ABSTRACT 
Although researchers have begun to explicitly support end-user 
programmers’ debugging by providing information to help them 
find bugs, there is little research addressing the right content to 
communicate to these users. The specific semantic content of 
these debugging communications matters because, if the users are 
not actually seeking the information the system is providing, they 
are not likely to attend to it. This paper reports a formative em-
pirical study that sheds light on what end users actually want to 
know in the course of debugging a spreadsheet, given the avail-
ability of a set of interactive visual testing and debugging fea-
tures. Our results provide insights into end-user debuggers’ in-
formation gaps, and further suggest opportunities to improve end-
user debugging systems’ support for the things end-user debug-
gers actually want to know. 

Categories and Subject Descriptors 
D.1.7 [Programming Techniques]: Visual Programming; D.2.5 
[Software Engineering]: Testing and Debugging-Debugging Aids; 
D.2.6 [Software Engineering]: Programming Environments-
Interactive environments; H.1.2 [Information Systems]: 
User/Machine Systems—Software psychology; H.4.1 [Informa-
tion Systems Applications]: Office Automation—Spreadsheets; 
H.5.2 [Information Interfaces and Presentation) —User Interfaces 
(D.2.2, H.1.2, I.3.6). 

General Terms 
Design, Reliability, Human Factors 

Keywords 
End-user software engineering, end-user programming, end-user 
development, end-user debugging, online help. 

1. INTRODUCTION  
Research on end-user programming has, in the past, concentrated 
primarily on supporting end users’ creation of new programs. But 
recently, researchers have begun to consider how to assist end 
users in debugging these programs (e.g., [1, 7, 14, 17, 22, 23]).  

Support for end users in debugging tasks is often problem-
oriented; the system tries to discover candidate bugs, communi-
cate these to the users, and provide user interaction mechanisms 
to explore and correct the bugs. The communication about the 
bugs may be delivered through diagrams, color highlighting, or 
similar devices.  
Because the user may not understand how to respond to such 
information displays, a debugging support system may also pro-
vide feature-oriented information that explains how to interpret or 
use the debugging features. Feature-oriented information is typi-
cally provided by user interface mechanisms that are tied to the 
feature in question, such as pop-up tool tips, linked help pages, 
video demonstration snippets, and so on. In this paper, we refer to 
the collection of support communications, both problem-oriented 
and feature-oriented, as the system’s explanations. 
Some existing debugging explanation techniques for end-user 
programmers have been empirically linked to debugging success. 
However, many of these empirical results are so focused on the 
success of particular features, they do not provide much general 
guidance to future designers of end-user debugging support, such 
as what needs to be explained, when, and in what context.  
However, a few studies do provide some general guidance for 
end-user debugging explanations. Natural Programming studies 
for event-based Alice programs [9] revealed that 68% of the ques-
tions asked by the participants (HCI students with varying 
amounts of programming background) during debugging in that 
language were “why did” or “why didn’t” questions [14]. The 
Surprise-Explain-Reward strategy [25] has been studied in the 
spreadsheet paradigm; the work on this strategy provides general 
guidance regarding interruption styles for communicating about 
end-user debugging situations [21] as well as effective reward 
communications in these situations [22]. Finally, because end 
users may not have experience with debugging support tools, they 
may be forced to learn about these features as they work, suggest-
ing that studies of what online learners want to know may be 
helpful (e.g., [2, 20]).  
This paper builds upon these previous works to help fill a critical 
gap in what is known about end-user debugging support: the se-
mantic content of what should be explained to end users to sup-
port debugging.  

 
 
 
 Determining the semantic content needed by an end user when 

debugging might seem straightforward. For instance, a system 
could simply describe all visible features and feedback; this is a 
common approach to information system design. In our research 
prototype designed to support end-user debugging, explanations 
such as these have indeed been created for all visible features. We 
have put significant research into the semantic content of the ex-
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planations, refining them on the basis of both theory (the model of 
Attention Investment [6] and Minimalist Learning Theory [8]) 
and empirical work. Despite these efforts, it appears that the ex-
planations are not answering what users want to know. For exam-
ple, one user in a recent study commented as follows [4]:  

Interviewer: “Weren’t the tool tips helpful?” 
S3: “Yeah, they were good but sometimes I didn’t find the an-
swer that I wanted…I needed more answers than were pre-
sent.” 

Herein lies the problem. Little is known about what information 
end-user debuggers such as S3 actually want to know. This paper 
sets out to provide this kind of information. 
In this paper, we analyze information gap instances—utterances 
expressing an absence of information—expressed by end-user 
programmers working on spreadsheet debugging tasks. Partici-
pants interacted with a spreadsheet environment that contained 
visual features providing problem-oriented debugging information 
(e.g., visual colorings of cells that need testing), but that provided 
no feature-oriented explanations to help users make profitable use 
of them. Within this debugging context, we investigated the fol-
lowing research question: 

When debugging, what do end-user programmers want to know? 

2. EXPERIMENT  
The experiment procedure was a think-aloud using pairs of par-
ticipants. The goal was to allow the participants at least a possibil-
ity of succeeding at their spreadsheet debugging, so that they 
would stay motivated, but without including explanations that 
might bias the content of the participants’ information gaps. 
To achieve this balance, we removed all feature-oriented informa-
tion about how the debugging features worked, as we have al-
ready mentioned. We administered a tutorial to give just enough 
instruction to our participants to be able to perform basic func-
tions in the particular environment (a research spreadsheet sys-
tem). Finally, when the participants began their tasks, we re-
moved the only remaining source of support from the room, the 

researcher himself. The participants were recorded (video and 
audio) and their screen state was continuously captured along 
with all instant messenger dialogue (explained below). Figure 1 
shows what the researcher observed remotely. 
With so little information, participants could have become 
“stuck,” at which time their think-aloud verbalizations would 
cease to be useful. To avert this situation, we provided mecha-
nisms for the participants to obtain information. Although they 
had both received the same training, the most accessible informa-
tion to a participant was his or her partner. This encouraged them 
to keep talking to each other, which turned out to be the primary 
way they worked through their information gaps.  
A slightly less accessible, but potentially more valuable, source 
was an instant messenger dialogue between the pair and the re-
searcher, with which the participants could ask questions. Since 
the researcher was out of the room, the questioner had to include 
relevant context information, avoiding simple “What’s that?” 
questions. The cost of waiting for the researcher to answer this 
sort of question (typically 10 seconds), made discussion between 
the pairs less costly than using the instant messenger, in terms of 
time and effort. Researcher responses were restricted to the set of 
feature-oriented explanations that had been removed from the 
environment for purposes of the experiment. The researcher could 
also send a hint if the participants expressed confusion about a 
particular feature and refused to move on. Pairs typically received 
one such hint. The participants also had three “wild cards,” which 
could be used as a last resort, to bring the researcher back into the 
room to provide a hint on how to make progress. (The participants 
rarely used the wild cards and only occasionally used the instant 
messenger.)  

2.1 Participants  
We chose the pair think-aloud protocol because it is particularly 
well suited to eliciting participants’ verbalizations of problem-
solving thoughts. This set-up also creates a different social con-
text than for individuals working alone, but since collaborative 
debugging among spreadsheet users is extremely common [18], it 
does not introduce validity concerns. Because we wanted partici-
pants to feel comfortable talking together, we recruited only pairs 
of participants. This mechanism ensured that each pair already 
knew each other.  

 

Eleven of the fourteen participants were business majors. The 
other three were in education, industrial engineering, and nutri-
tion, none of whom were paired with each other. None of the 
participants had programming experience beyond a first level 
programming course. Gender was distributed equally, with two 
male-male, two female-female, and three male-female pairs.  

2.2 Environment  
The debugging features that were present in this experiment were 
a subset of WYSIWYT (“What You See Is What You Test”). 
WYSIWYT is a collection of testing and debugging features that 
allow users to incrementally “check off” or “X out” values that 
are correct or incorrect, respectively [7]. In WYSIWYT, untested 
cells have red borders. Whenever users notice a correct value, 
they can place a checkmark (√) in the decision box at the corner 
of the cell they observe to be correct. As a cell becomes more 
tested, the cell’s border becomes more blue. (Figure 1 includes 
many cells partially or fully tested.) 

Figure 1: Experiment data capture example. Instead of noticing that a cell’s value is correct, the user might 



notice that the value is incorrect. In this case, instead of checking 
off the value, the user can X-out the value. X-marks trigger fault 
likelihood calculations, which cause the interior of cells suspected 
of containing faults to be colored in shades along a yellow-orange 
continuum.  
In addition, arrows that allow users to see the dataflow relation-
ships between cells also reflect WYSIWYT “testedness” status at 
a finer level of detail. The optional dataflow arrows are colored to 
reflect testedness of specific relationships between cells and 
subexpressions. In Figure 1, the participant has turned on the ar-
rows for the Min_Quiz1_Quiz2 and the Exam_Avg cells. 

2.3 Tutorial  
The goals of the tutorial were to familiarize the participants with 
the think-aloud procedure, explain pair-programming guidelines, 
and to familiarize participants with the environment enough to 
proceed with their debugging task.  
The tutorial began with a think-aloud practice where the pair ver-
balized a task that they had recently worked on together, namely 
finding their way to the experiment. The researcher also provided 
basic pair-programming guidelines. Specifically, the participants 
were told they would switch between two roles: the driver, con-
trolling the mouse and keyboard, and the reviewer, who contrib-
utes actively to problem solving. In the experiment, they switched 
roles every ten minutes. 
The brief tutorial on the environment was hands-on, with the pair 
working on a sample spreadsheet problem together at the same 
machine. Participants learned mechanics of changing input values 
and editing formulas, as well as mechanics of the unique actions 
available in the environment: namely, placing checkmarks, plac-
ing X-marks, and turning arrows on and off. For example, partici-
pants were instructed to “middle-click” on a cell to bring up the 
cell’s arrows. However, the tutorial did not explain how to inter-
pret the visual feedback they received as a result.  

2.4 Tasks  
We asked participants to test two spreadsheets, Gradebook and 
Payroll. We replicated the spreadsheets and the seeded faults 
of [5].  
Participants had time limits of 20 and 40 minutes for Grade-
book and Payroll respectively. These simulated the time con-
straints that often govern real-world computing tasks, and also 
prevented potential confounds, such as participants spending too 
much time on the first task or not enough time on the second task. 
The participants were given more time on the Payroll task 
because it was the more difficult of the two due to its larger size, 
greater length of dataflow chains, intertwined dataflow relation-
ships, and more difficult faults. All participants performed the 
(easier) Gradebook task first to allow a gradual introduction to 
the environment before the more challenging Payroll task. 
The participants were instructed, “Test the … spreadsheet to see if 
it works correctly and correct any errors you find.” 

3. METHODOLOGY  
The methodology we adopted consisted of four main activities: 
the segmentation of the data into topic-related units of utterances, 
the development of a coding scheme through a bottom-up organi-
zation of the units, the application of the codes to the data, and the 
calculation of agreement measures to evaluate the stability and 

robustness of the resulting coding scheme. 

3.1 Segmentation of the Data  
The primary data were audio recordings of participants’ utter-
ances, synchronized with video recordings of their physical be-
havior and screen states. To create an integrated data record, the 
audio recordings were transcribed and supplemented with context 
obtained from the video and screen data (e.g., gestures and ac-
tions). Because a single utterance alone does not allow an analysis 
to be sensitive to common context and thread of discussion, the 
transcripts were segmented into stanzas [12]. A stanza, typically 
about 8-15 lines, is a unit of utterances that occurs between shifts 
of topic (see Figure 2 for an example).  

F. Let’s change everything. [tries changing formula]  
E. Yeah, but we got the right answer. 
F. Did that change the answer at all? 
F. Oh wait, did I change the symbol? [changes the formula] 
F. Oh, now we’re down to 30 percent tested. 
F. I wonder if I go like that- [changes the formula back] 
F. Oh no, crazy.  
F. Oh, I guess now it’s just this again. [checks off cells that 

changed] 
F. I don’t get how you get to 100%, it’s like a test you can’t 

pass. Every time I do this it gets lower. 
E. Yeah, I don’t know. 
F. Well, that’s confusing. (.) 
Switch places. 
Figure 2: A stanza in which participants E and F discuss the 

debugging strategy of “changing everything”. Notation: 
[actions] denote actions taken, (.) a pause in speaking, and 
italics the researcher’s instant message to the participants.  

3.2 Deriving the Codes  
The goal of the codes was to support analysis of participants’ 
information gaps. We considered an information gap to have oc-
curred when a participant asked a question, stated a tentative hy-
pothesis, expressed surprise, made a judgment about whether an 
information gap was present, or provided an explanation to his or 
her partner (implying that the partner had an information gap). 
We refer to such utterances as information gap instances.  
The research literature does not report coding schemes that are 
directly applicable to the information gaps experienced by end-
user debuggers. Most studies of information gaps focus on users 
in learning or tutorial situations (e.g., [2, 20]). In contrast, we are 
interested in the just-in-time learning users undergo to enhance 
their productivity, i.e., to make progress in solving a problem; we 
will return to the relationships between our coding scheme and 
others’ in Section 5. In trying to increase productivity, the user 
must balance the costs of learning a new technique—which may 
or may not be relevant to a task—against its potential benefits for 
task performance. In these circumstances, learning may be just 
one of a set of competing goals.  
To develop a coding scheme that matched our aims, we first 
grouped stanzas from two of the transcripts into an affinity dia-
gram1, adjusting the concepts and relations as we progressed. 
                                                                 
1 A group decision-making technique designed to sort a large 

number of items into “related” groups, from the perspective of 
those doing the sorting. 



Table 1: The coding scheme.  

This grouping process focused us on types of information gaps, as 
we compared and organized information gap instances according 
to their semantic content such as a question about what might be a 
suitable strategy. As types of information gaps were identified, 
descriptions and example utterances for each candidate coding 
category were collated. The coding scheme was applied to one 
transcript repeatedly with different coders each time. The codes 
were refined to be less ambiguous after each application until we 
achieved acceptable agreement (above 80%, see below for calcu-
lation of agreement) across coders. The 10 codes we identified in 
this fashion are described in Table 1. 

3.3 Application and Agreement  
Two of the authors independently coded all of the transcripts. 
Multiple codes were allowed per stanza, as there may have been 
multiple information gap instances contained in a group of related 
utterances. The coders discussed their initial coding decisions and 
made changes if they agreed that a code had been inadvertently 
overlooked or misapplied. 
A widely used rule of thumb is that 80% agreement or higher 
between coders indicates a reasonably robust coding scheme. 
Because more than one code could be placed on a stanza, the 
calculation of agreement for a particular stanza required compar-
ing two sets of codes (one from each coder). The percentage of 
agreement for a stanza was calculated by dividing the size of the 
intersection by the size of the union. For example, if one rater 
coded a stanza {Help, Self-Judgment} and the second coded it 
{Strategy Hypothesis, Self-Judgment}, then the agreement for 
that stanza would be |{Strategy Hypothesis, Self-Judgment}  ∩  
{Help, Self-Judgment}| / |{Strategy Hypothesis, Self-Judgment} 
∪ {Help, Self-Judgment}| = 1/3 = 33%. The average of all 425 
coded stanzas resulted in 90% agreement. 

4. RESULTS  
Table 2 lists the frequencies of each type of information gap 
found in the 425 stanzas, and Figure 3 shows the distribution over 
time. (One pair was excluded from the time graphs, since their 
overall time was considerably less than that the others’.)   

4.1 Questions and Explanations about  
Features and Feedback  

A widely used approach to introducing users to a new interface is 
to provide information about the meaning of features: both user 
actions available, such as options user can select, and feedback 
items they might receive, such as red underlines under misspelled 
words. This information is often contained in tool tips and/or 
online help systems organized by feature. 
In our study, the information gaps that are satisfied by this kind of 
explanation were observed as questions participants asked about 
what specific features mean, such as “What does the purple bor-
der mean?” (type Feature/Feedback), and as explanations of a 
specific feature’s meaning by one participant to the other, such as 
“I think the purple means it’s wrong” (type Explanation). (Expla-
nations suggest an information gap because they imply that one 
participant thinks the other is lacking this information.) 
As Figure 3 indicates, feature-oriented gaps were highest at the 
end of the experiment. Still, as can be seen in Table 2, the com-
bined percentage of feature-oriented information gaps was a sur-
prisingly low 16%. Recall that, as advanced business students, the 
participants had fixed bugs in spreadsheets before, seemingly 
leaving only orientation to the unfamiliar interface as a barrier. 
Yet, few of their information gaps were about the interface, de-
spite our removal of feature-oriented support. 
Practical implications: End-user debugging explanation ap-

Code Description Examples 

Feature/  
Feedback 

Question or statement expressing general lack of understanding of the 
meaning of a specific visual feedback or action item, but with no goal 
stated.  

“So with the border, does purple mean it’s 
straight-up right and blue means it’s not 
right?” 

Explanation 
Explanation to help partner overcome an information gap. The expla-
nation may be right or wrong.  

“<border color> just has to do with how much 
you’ve been messing around with it.”  

Whoa 
Exclamation of surprise or of being overwhelmed by the system’s 
behavior.  

“Whoa.”  

Help Question or statement explicitly about the need for additional help.  “Help.” 

Self-Judgment 
Question or statement containing the words “I” or “we,” explicitly 
judging the participant or the pair’s mastery of the environment or 
task.  

“I’m not sure if we’re qualified to do this prob-
lem.” 

Oracle/  
Specification 

Question or statement reasoning about a value and/or a formula. “Divided by 10? I don’t know...I guess it should 
be times 10.”  

Concept Question about an abstract concept, as opposed to a question about a 
concrete feature/feedback item on the screen. 

“What does ‘tested’ mean?” 

Strategy  
Question 

Explicitly asks about what would be a suitable process or what to do 
next. 

“What should we do now” 

How Goal 
Asks how to accomplish an explicitly stated goal or desired action. (An 
instance of Norman’s Gulf of Execution [19].)  

“How do you get 100%?”  

Strategy  
Hypothesis 

Suggests a hypothesized suitable strategy or next step to their partner.  “Let’s type it in, see what happens.”



proaches that center mainly on the meaning of the system’s fea-
tures and feedback—a common strategy in online explanation 
systems—would address only a fraction of what our participants 
wanted to know.  

4.2 Big Information Gaps: Whoa! Help! 
“Whoa!” Approximately 2% of the responses expressed surprise 
and confusion at feedback that had just occurred on the screen. 
Information gaps of type Whoa were often in response to several 
visible changes occurring at once, such as turning on dataflow 
arrows (Figure 1). Another 3% of the information gaps explicitly 
expressed a general need for help (coded Help), implying that 
there was a need for more information to even be able to verbalize 
a more specific question. Both of these types expressed a lack of 
clues about the current situation or what to do about it. These 
results are good reminders that sometimes when a user needs 
explanations, a more specific question does not readily occur to 
them. In our study, this happened 5% of the time. 
Practical implications: A look at the timing of the Whoa and 
Help instances provides some guidance as to how a debugging 
explanation system might address this type of information gap. 
First, note in Figure 4 that the general requests for information 

(type Help) were greatest at the beginning of the first task when 
little was known about the environment and task, and at the 50-
minute point (30 minutes into the more difficult spreadsheet). 
This timing suggests that end-user debuggers may need more 
broad-based support at the beginning of the task and in moments 
of particular difficulty, such as suggesting ideas to help the users 
(re-)connect to features or strategies that may help them. 

Table 2: Code frequencies. 

Second, as Figure 4 shows, type Whoa occurred mostly in the 
middle of the experiment. At this time participants had enough 
experience to form an early mental model of how the environment 
worked. However, the application of this model during the more 
difficult task pointed out a serious misconception. According to 
research into the psychology of curiosity [16], moments of sur-
prise such as these are opportune times for explanations, as people 
curious about such surprises seek to satisfy the information gap 
that led to the surprise. An explanation system that kept track of 
the amount the user has used the features and the amount of re-
cent feedback may be able to determine whether a generic “help!” 
button push is more likely to be the result of a type Help versus a 
type Whoa information gap. In our study, for the Whoa type of 
information gap, a look at the system state sometimes revealed the 
likely cause of confusion. In these cases, a context-sensitive ex-
planation system might successfully respond to Whoa requests by 
providing assistance on the most recent feedback. 

4.3 Self-Judgments: Am I smart enough to 
succeed at this task?  

Of the participants’ information gap instances, 9% were self-
judgments of their own mastery of the system or of the debugging 
task, suggesting that self-judgment was a significant factor in 
their cognitive processing as they worked on the bugs. These self-
judgments are instances of metacognition, in which a learner 
monitors the success of his or her own learning processes [11]. 
Metacognitive activity is well-established as an important influ-
ence on learning and understanding [24]. 
These judgments also provide a view of the participants’ self-
efficacy. Self-efficacy is a person’s belief that they will succeed 
at accomplishing a specific task, even in the face of obstacles [3]. 
According to self-efficacy theory, the amount of effort put forth is 
impacted by a person’s self-efficacy. In our own work with self-
efficacy, we have seen it have a significant effect on end users’ 
willingness to use advanced debugging features [5]. In that work, 
some users’ self-efficacy was much lower than warranted, par-
ticularly among females. In previous studies as well as in the 
current one, we have also observed examples of participants over-
rating their own performance, saying things like “We did it right” 
when in fact they had not. Both overrating and underrating per-
formance may point to failures of the system to provide accurate 
feedback regarding the users’ debugging progress. 
Practical implications: An effective explanation system that suc-
ceeds at fulfilling end-user debuggers’ information gaps may also 
improve the accuracy of users’ self-judgments. Due to the effects 
of self-efficacy and metacognition, this in turn may help increase 
debugging success simply by helping users persist in their efforts.  

4.4 Oracle and Specification Questions: Is this 
the right value/formula?  

In debugging a spreadsheet, it may not always be clear to users 
whether or not a value is correct. In software engineering, diffi-

Code Count (Percent of Total) 
Features/Feedback: 
 Feature/Feedback (questions) 77 (10%) 
 Explanation 48 (6%) 
 

Big Information Gap: 
 Whoa 14 (2%) 
 Help 23 (3%) 
 

Self-Judgment 67 (9%) 
 

Oracle/Specification 316 (40%) 
 

Strategy: 
 Concept 8 (1%) 
 Strategy Question 39 (5%) 
 How Goal 20 (2%) 
 Strategy Hypothesis 169 (22%) 
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Figure 3: Code frequency within each 10-minute interval. 
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Figure 4: Frequency of Help and Whoa codes within each 10-

minute interval. 



culty determining whether a value is right or wrong is called the 
“oracle problem.” The oracle problem is important because its 
presence weakens many of the user’s problem-solving devices 
such as the power of immediate visual feedback, user tinkering, 
and testing behaviors. After all, these behaviors are not helpful 
when the user cannot tell whether the result is right or wrong.  
“How do we know if that’s right or not?” This information gap 
instance not only shows one example of the oracle problem occur-
ring, it also expresses a request for information about how to de-
cide whether a value is right. A closely related problem that arises 
in debugging is whether the formula (“source code”) correctly 
implements the specifications or, if the user has already deter-
mined that it does not, how to make it do so: “So the average, 
why is it divided by 3?”  
In our study, 40% of the information gap instances fell into the 
Oracle/Specification category. Note that this large fraction of the 
total set of questions is about the task (debugging), not about the 
features or the system. This is consistent with Carroll and Ros-
son’s description of the “active user” [8], who focuses much more 
on the task at hand than on the availability of potentially interest-
ing user interface features.  
Practical implications: Some information gap instances of this 
type centered on a particular cell, such as “We need some more 
money for this…we’re missing $300.” Such instances may be 
well served by an explanation that suggests changes to a spread-
sheet to produce a desired output, such as the direction of Abra-
ham and Erwig’s goal-based debugging suggestions [1], or by an 
approach that explicitly supports investigation into the reason for 
a specific value or event, as with Ko and Myers’s Whyline work 
[14]. Other information gap instances encompassed a larger sub-
set of the spreadsheet, such as “Where is it getting the wrong 
math here?” One possible solution to this type of question might 
be to remind the user of narrowing-down techniques such as 
WYSIWYT with fault localization [7].  

4.5 Strategy: What should we do?  
Fully 30% of the information gap instances pertained to strategy 
issues. There were four codes relating to strategy: Concept, Strat-
egy Question, How Goal, and Strategy Hypothesis. The primary 
type in this group at every time period was Strategy Hypothesis 
(Figure 5), in which participants actively hypothesized strategies, 
which they usually proceeded to try out. This again calls to mind 
the active user—one who seeks mainly information directly perti-
nent to their goal. Type Strategy Hypothesis alone accounted for 
22% of the information gap instances.  
Practical implications: Most of the strategy information gap in-
stances were global in nature, rather than being about a particular 

feature (e.g. “What should we do next?”). Due to the lack of a 
contextual tie, a feature-anchored explanation such as a tool tip 
seems a poor fit for this sort of information gap. Even so, some of 
the remarks, while global, still had ties to particular features. For 
example, “What’s testing?” (Concept) could, in our setting, be 
answered in explanations of the testing features, and “How do we 
get to 100%?” (How Goal) might be answered in explanations of 
the testing progress indicator (top of the spreadsheet environment 
in Figure 1).  
This group of information gaps presents a good opportunity for 
improvement in end-user debugging explanations. In some help 
systems, strategy is addressed in separate tutorials about a sys-
tem’s usage, but this seems an inappropriate solution given the 
active users our participants appear to be. The key may lie in 
linking feature-located and feature-centric explanations with 
broader explanations that tie the use of features into strategic 
goals. In [4] the use of broader help information in expandable 
tool tips, including some coverage of strategy, was proposed. This 
is an example of the “layered” approach to explanations recom-
mended by [10] for use in minimalist instruction aimed at active 
users; given our observations of participants’ active debugging 
style, this may be a step in the right direction.  

4.6 Implications of Co-occurrences  
Two code types co-occurred in the same stanza with certain other 
types an inordinate number of times: Self-Judgments, and Strat-
egy Hypotheses.  
A majority (64%) of the Self-Judgments occurred in stanzas also 
showing Oracle/Specification information gaps, as Figure 6 illus-
trates. Also, 47% co-occurred with Strategy Hypotheses. These 
were far ahead of the third most common co-occurrence, at only 
19%, with Features/Feedback, not shown in the figure. (The per-
centages exceed 100% because more than two codes sometimes 
occurred in a single stanza.) This suggests that the most appropri-
ate places for debugging explanations to attempt to improve us-
ers’ ability to self-judge will be in the context of problem-oriented 
communications and with strategy-oriented communications. In 
particular, it appears that a system’s feature explanations are not 
likely to be the right context for assisting users make more accu-
rate self-judgments of their performance.  
Furthermore, 70% of the Strategy Hypothesis instances co-
occurred with Oracle/Specification instances, implying that 
participants’ main interest in strategy was in applying it to the 
problem domain, as opposed to building it up with the features as 
a starting point. The second-ranked co-occurrence was with 
Features/Feedback at only 20% of the Strategy Hypotheses. 
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Figure 6: The top two code co-occurrences for (top) Self-
Judgments and (bottom) Strategy Hypotheses.  



However, the flip side of this runner-up was that 44% of the 
Feature/Feedback information gap instances included Strategy 
Hypotheses, implying that feature-centric “hooks” to strategy 
hints would be welcomed by users—but would not alone be 
enough, since they would still leave 80% of the Strategy 
Hypothesis gaps unfilled.  

5. COMPARISON TO OTHER WORK  
Researchers have developed coding schemes for users’ questions 
and comments in settings other than end-user debugging. To help 
understand what might be end users’ unique needs in the debug-
ging context, we first considered and now compare our coding 
scheme to several others.  
We searched the literature for work that coded some form of in-
formation gap. The most relevant works (Table 3) centered on 
questions people asked and barriers they experienced. Anthony et 
al. [2] analyzed the questions students directed to a simulated 
algebra tutor. Person and Graesser [20] summarized a number of 
studies examining human-human tutoring dialogs. Gordon and 
Gill [13] analyzed questions designed for knowledge elicitation 
from domain experts [13]. Ko and Myers [15] studied a usage 
context somewhat similar to our own—problems experienced by 
novices learning a programming language (Visual Basic.Net). 
To compare our coding scheme with these, we studied the cate-
gory description and illustrative examples for each question or 
comment category, to determine similarity to one or more of our 
codes. We used a relatively liberal decision rule in identifying 
overlap—if we could find multiple data instances from one of our 
own categories that would have been captured by a code in an-
other scheme, we labeled it as a “match.” 
Despite the variation in information and task context, we identi-
fied some overlap for all of our codes except two—Help and Ex-
planation. The lack of overlap for these codes may be partially 
due to our experimental set-up that reflected collaborative end-
user debugging: for example, working with a partner probably 
encourages users to offer explanations to one another.  
The codes having most overlap with other coding schemes were 
Feature/Feedback and How Goal. In fact, the How Goal code 
overlapped with multiple categories in three other schemes, point-
ing to users’ general need for goal-specific procedural informa-
tion. Recall, however, that this category was not very prevalent in 
our data (only 2%), suggesting that for our debugging task, the 
users either already knew how to perform many specific proce-

dures or did not even know enough to explicitly state a goal. 
Instead of asking about specific procedures, our users often 
seemed to operate at the more abstract level of goal-setting, such 
as asking about a suitable process to follow (Strategy Question) or 
making a goal-setting proposal to the partner (Strategy Hypothe-
sis). Together these two codes accounted for 27% of our data, but 
we found little overlap between these codes and the other 
schemes. The clearest case of overlap is with Ko and Myers [15], 
who created a “Design” code to classify novice programmer prob-
lems that are inherent to programming and distinct from language 
mechanisms. These researchers’ setting was similar to ours be-
cause it contained aspects likely to be unfamiliar to users while 
also being challenging enough that they sometimes needed help 
just to identify reasonable goals. 
Only one of the other schemes overlapped with the Self-Judgment 
code (a judgment about the mastery level of “I” or “we”). The 
importance of reflection about one’s own knowledge state (meta-
cognition) in learning and problem solving is well-established 
[11]. It is not yet clear what sorts of cognitive or social settings 
are most likely to evoke reflection about one’s capacities during 
problem-solving episodes. Perhaps collaborative work situations, 
as in our experiment, encourage self- or pair-evaluation as a sort 
of knowledge calibration mechanism; alternatively it may simply 
be that other researchers have been less attuned to metacognition 
and thus have made no analogous distinctions in their coding.  

6. CONCLUSION  
This paper has presented a pair think-aloud study aimed at captur-
ing the information gaps arising for end users in the course of 
debugging spreadsheets. While further investigation is needed to 
determine the generality of the results to other settings, there were 
several implications that seem applicable to a variety of end-user 
debugging systems. To summarize: 

• Unlike the practices in many software systems, debugging ex-
planations for end-user programmers should not be primarily 
focused on how the debugging features work. In our study, fea-
ture-oriented explanations would address only a fraction of 
what our participants wanted to know. 

• The greatest need for explanations fell in the Ora-
cle/Specifications category: figuring out whether a value was 
right or wrong, whether a particular snippet of code (formula) 
was right or wrong, and how to fix values and formulas that 
were wrong. The prevalence of this category points to a need 

Table 3: Overlap of our codes with others’ coding schemes. 

Our Codes Anthony et al. [2] Person/Graesser [20] Gordon/Gill [13] Ko/Myers [15] 
Goal: Find out what 
end-user debuggers 
want to know 

Goal: Design intelligent tutor 
based on student questions 

Goal: Design intelligent 
tutor based on human-
tutor dialogue 

Goal: Knowledge ac-
quisition from experts 
for information systems 

Goal: Describe barriers in 
learning a programming 
language 

Feature/Feedback Interface N/A Event, State Understanding  
Explanation N/A N/A N/A N/A 
Whoa  N/A N/A N/A Understanding 
Help N/A N/A N/A N/A 
Self-Judgment  N/A Meta-comment  N/A N/A 
Oracle/Specification  Answer-oriented  Problem-related  N/A N/A 
Concept Principle-oriented, Definition N/A Concepts N/A 
Strategy Question N/A N/A N/A Design  
How Goal Process-oriented, Interface  N/A Goal, Goal/Action Use, Selection, Coordination 
Strategy Hypothesis  N/A Reminding example N/A N/A 



for more research on how to support it. 

• The second most common category was Strategy. Strategy 
information gaps outnumbered feature-oriented information 
gaps by a 2:1 ratio. To date, there has been almost no research 
on supporting information gaps of this type. 

• Debugging explanations should focus not only on local infor-
mation gaps, (e.g., pertaining to one cell), but also on global in-
formation gaps (e.g., pertaining to an entire spreadsheet).  

• When a generic “help” request is made, an explanation system 
might be able to figure out, from the system state and from the 
timing of the request, if it is a (re-)connect question as versus a 
feedback-oriented surprise. 

• Debugging explanations should strive to fulfill users’ needs to 
self-judge their progress. This category contributed a surprising 
9% of the information gaps. Accurate self-judgment matters to 
debugging effectiveness for both its self-efficacy and its meta-
cognitive implications.  

The above results have specific implications for designers of de-
bugging support for end-user programmers, and also identify 
some open research questions in this area. We hope that following 
up on these results will help to fill end-user programmers’ critical 
information gaps that currently serve as barriers to the genuine 
effectiveness of end-user programming. 
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