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Abstract In the standard generative Model-driven Archi-

tecture (MDA), adapting the models of an existing system

requires re-generation and restarting of that system. This is

due to a strong separation between the modeling environment

and the runtime environment. Certain current approaches

remove this separation, allowing a system to be changed

smoothly when the model changes. These approaches are,

however, based on interpretation of modeling information

rather than on generation, as in MDA. This paper describes an

architecture that supports fine-grained evolution combined

with generative model-driven development. Fine-grained

changes are applied in a generative model-driven way to a

system that has itself been developed in this way. To achieve

this, model changes must be propagated correctly toward

impacted elements. The impact of a model change flows

along three dimensions: implementation, data (instances),

and modeled dependencies. These three dimensions are

explicitly represented in an integrated modeling-runtime

environment to enable traceability. This implies a fundamen-

tal rethinking of MDA.

Keywords Evolution · Model-driven development ·

Generative development · Interpretive development

Communicated by Dr. Betty Cheng.

T. D. Meijler (B)

SAP Research, CEC Dresden, Dresden, Germany

e-mail: theo.dirk.meijler@sap.com

J. P. Nytun · A. Prinz

Faculty of Engineering and Science,

University of Agder, Agder, Norway

H. Wortmann

Faculty of Management and Organization,

University of Groningen, Groningen, The Netherlands

1 Introduction

Modern system development introduces a higher abstrac-

tion level using models. Modeling is a form of software

description that is often closer to the domain expert than

code. The domain expert is able to describe concepts and

their relationships in a visual and intuitive form, for exam-

ple, by using UML or a domain-specific modeling language.

Development using models is called model-driven develop-

ment (MDD); OMG has defined its model-driven architec-

ture (MDA) [1] to support MDD. In various publications

[1,2], MDD is hailed as promising to allow mapping models

to different implementation platforms and to permit an eas-

ier adaptability of the models because of its higher abstrac-

tion level, thus improving model longevity when compared

to code, and producing better implementation independence

and a shorter time-to-market. Moreover, verification early

in the development process becomes possible [3]. Various

successes have been reported on the OMG website [4].

Apart from the higher level of abstraction, the evolution of

systems has become an important issue. Large systems, espe-

cially enterprise systems, must be able to evolve constantly

[5,6]. These systems must be adapted to changing circum-

stances, new products, new laws and changing organizational

structures.

One important form of system evolution is that supported

by reuse techniques where software components can be added

or replaced. Component-based approaches such as SOA [7]

use composition languages such as BPMN [8] or BPEL [9]

to support large-scale software evolution.

The question is, How can reuse-based evolution be com-

bined with the power of generative MDD [3]? The idea behind

this combination goes as follows: A model of a reusable part

of a system (a partial model) can be added or replaced such

that:
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• The impact of a replacement can be detected at the model

abstraction level of other parts of the system, which may

lead to other model changes

• The impacted part of the system’s realization that must

be re-generated can be kept as small as possible

• The impact on existing data instances, which are impor-

tant assets of enterprises in such large-scale systems, can

be detected

• The impact on instances that must correspondingly be

upgraded can be kept as small as possible.

This paper will focus specifically on adding or replacing

Model Classes, which are partial models that are at the gran-

ularity of classes (in the sense of Object-oriented systems),

and on evolving a system correspondingly. Making this a

possibility is the main contribution of this paper.

To support such fine-grained generative model-driven evo-

lution, this paper will assert that three dimensions of relations

must be explicitly maintained:

1. From model to realization: to trace the impact of models

on realization

2. From models to data instances: to trace the impact of

models on these instances

3. Between models, such that model dependencies can be

traced.

The solution presented in this paper is a new hybrid app-

roach to MDD, which combines certain essential ideas from

interpretive development (such as those described by Riehle

et al. [10] and Atkinson and Kuehne [11]) with generative

development. In this way, it combines the advantages of

interpretative development, supporting relative fine-grained

partial model changes, with the advantages of generative

development, supporting consistency checking and a more

efficient execution.

This approach has been realized and applied in a large

research project on MDD called “Nucleus,” which was a

research project of a large Enterprise Resource Provider

(ERP) vendor that started even before the MDA was pro-

posed [12]. Using this approach, two large beta applications

have been realized in an incremental model-driven fashion in

the area of product lifecycle management for airplane motors

and large paper factories, respectively (see also Sect. 5). This

paper can, therefore, be seen as describing some fundamen-

tal concepts of the Nucleus Modeling Framework (NMF)

resulting from this research project. However, the terminol-

ogy and explanation in this paper have been tailored to the

current MDA literature.

This paper is structured further as follows: In Sect. 2,

the meaning of generative development as in the MDA

will be explained further, and contrasted with interpretive

approaches. This is fundamental for the rest of the paper.

Furthermore, the advantages and disadvantages of both

approaches will be discussed to see why a hybrid approach

may improve both concepts. In Sect. 3, two simple use-

cases will be described, which correspond to the addition and

replacement of a model class. These will be used throughout

the paper to explain the NMF. From these use-cases, mini-

mal requirements will be derived as guidelines for carrying

out fine-grained evolution within generative model-driven

development. Section 3 will also detail known limitations of

the approach and define the scope of this paper. Section 4

will describe the main principles of the NMF. Section 5 will

describe how the NMF fits in the larger Nucleus project,

and will give a more detailed account of how the approach

has been applied. Section 6 will present a discussion. As

the NMF is radically different in some aspects from other

modeling approaches, the soundness of its principles will

be discussed. We will also discuss whether the requirements

derived in Sect. 3 have been fulfilled. In Sect. 7, related work

will be presented and discussed. In Sect. 8, a conclusion will

be given.

2 Setting the stage: generative versus interpretive

As an introduction to the rest of this paper, the intricate rela-

tionship between generative and interpretive approaches to

MDD needs to be explained. To compare generative develop-

ment with interpretive development, it is necessary to under-

stand the meaning of generative MDD; this issue will be taken

up in Sect. 2.1. Generative MDD itself builds upon inter-

pretive technologies at lower-level forms of abstraction (not

model-driven); this will also be treated in Sect. 2.1. Finally,

interpretive MDD is an alternative to generative MDD. In

Sect. 2.2 an explanation will be given as to why generative

MDD can potentially have important advantages as com-

pared with interpretive MDD.

2.1 Relating generative and interpretive approaches

Since the MDA is the de-facto standard of generative MDD,

we will discuss generative MDD by describing the MDA.

Figure 1c illustrates one of the main principles of the MDA:

An application is built by making a platform-independent

model (PIM). A PIM describes the high-level logical struc-

ture of the problem domain without concerning itself with

specific software platforms. When seen as a description, the

PIM exists in a modeling environment and conforms to a

supported language; for example, a PIM described in UML

is typically object-oriented and the behavior of objects might

be expressed in state charts.

The PIM is subsequently mapped to an application which

is runnable on a specific software platform. Since one of the
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major purposes of the MDA is to allow for relatively sim-

ple mappings to different software platforms, this mapping

is done in a series of transformation steps, from a PIM to a

Platform-specific Model (PSM) and on to code. Going from

a PIM to a platform is a realization/implementation of the

PIM; we call this the implementation dimension. In Fig. 1c

this dimension is modeled by a UML realization relationship

(see Fig. 1a, b for notation), which also implies a depen-

dency. The figure shows only one sequence from PIM to

“final” PSM—for instance, Java byte code–but for different

platforms different sequences can be followed in parallel.

Thus, Fig. 1c only shows parts of a possibly more complex

picture.

Figure 1d shows our approach: The PIM is called the

Conceptual Model; it is mapped to a more platform-

specific model called the Implementation Model. Java is our

target platform and the Implementation Model is mapped

to Java source code, which is compiled to Java byte code.

In the coming discussions it will not be necessary to con-

sider all the elements of Fig. 1d; Fig. 1e shows a simplified

view where source and object code together are seen as the

implementation (i.e., the developer does not edit Java byte

code). Because realization is transitive, we have in some

cases simplified further and only used the elements shown

in Fig. 1f. The stereotypes given in Fig. 1b match the ele-

ments of Fig. 1e and will be used in later figures.

The mappings from PIM to PSM and from one PSM to

another PSM are steps that generate models and software.

Consequently, the MDA approach is essentially generative,

but generated code other than machine code must still be

interpreted by some virtual machine; thus interpretive tech-

nologies are also applied here.

In a situation as described in Fig. 1c, the internals of the

interpreter are typically not the concern of the developer

and hence the developer sees the interpreter as being able to

understand the PSM (e.g., Java byte code). The interpreter,

in our case a JVM, in a sense defines where the job of the

developer “stops” and the runtime environment “takes over”;

the JVM appears as a black box.

The level of abstraction provided by a virtual machine to

provide further generation steps is fundamentally an arbitrary

choice. One might imagine a VM that interprets Java source
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Fig. 2 Interpretative (a) Generative, (b) and (c) a hybrid approach

code “directly,” and one might argue that such an interpreter

is more interpretive than the standard JVM, since it operates

at a higher level of abstraction.

When referring to an interpretive approach in this paper,

we will limit ourselves to an approach where the PIM is

interpreted and there is no additional execution language;

in effect, the modeling language is the execution language.

Interpretive approaches are described by Riehle et. al. [10],

Atkinson and Kühne [11], Mellor and Balcer [13] and others.

In contrast, a generative approach involves at least one

generative step. Figure 2b gives a typical example: The model

(e.g., a PIM) is mapped to source code which can be adjusted

by the developer; source code is compiled to object code and

the developer must start or restart the application to experi-

ence the changes.

Figure 2a shows the situation for an interpretive approach

where the modeling and runtime environment are the same.

An object-oriented modeling language typically offers a way

to model classes and instances of the classes; this is dem-

onstrated in Fig. 2a (the instances of the classes constitute

the data). Since the modeling and runtime environment are

the same, both classes and class instances are explicitly or

implicitly manipulated at runtime; in this respect, it is related

to meta-programming [14].

Figure 2b shows the generative approach where the devel-

oper relates two languages: the modeling language (e.g.,

UML) and the programming language. The developer does

not edit the target code of the compilation, and debuggers

communicate with the developer on the level of the pro-

gramming language. In the subsequent section, these two

approaches will be compared.

The approach presented in this paper is a hybrid app-

roach in which certain essential ideas from interpretive app-

roaches have been combined with generative development.

Figure 2c shows that in this approach modeling and runtime

environment are also integrated, where modeled classes are

explicitly represented, and actual data objects can be directly

related to their modeled classes through the «logical-

InstanceOf» relation.

2.2 Comparing generative and interpretive approaches

When comparing generative and interpretive approaches, the

following observations can be made:

• Since an interpreter executes statements line by line, inter-

preters principally make the replacement of any set of

lines possible, and thus, they allow a system to be adapted

as long as none of these lines is currently being executed.

In other words, interpreters fundamentally support evo-

lution in the sense that even a small model change is

immediately visible.

• The advantage of generative approaches is that they can

lead to faster execution [15,16] and better error preven-

tion (e.g., if statically typed [17]). Moreover, in the gen-

eration step, an optimal target language can be selected,

for instance, a language for process execution (such as

BPEL), or a language for query execution such as SQL.

• Related to that, interpreted approaches tend to use their

own data storage, for example, tables consisting of tuples

for each property value, including minimally the prop-

erty type and property value [18]. This is more inefficient

with respect to storage space, since for generated types

all single-valued property values can be stored in one

tuple. Moreover, tables can only be queried from within

the interpreter environment.

• A modeling language interpreter may itself be imple-

mented in some programming language (e.g., Java, Lisp)

that offers an execution platform. By contrast, in a gener-

ative approach, the set of used target languages together

forms the execution platform. The execution platform

of an interpreter can be adapted by porting the inter-

preter to a different execution platform, for instance, port-

ing the interpreter from a Java implementation to a C#

implementation. The execution platform of a generative

approach can be adapted by selecting a different genera-

tor. Moreover, new platforms can be supported by adding

new generators; this is often less laborious than porting

an interpreter to a new platform. Thus, with respect to

portability to different execution platforms, the genera-

tive approach is potentially simpler and less error-prone

than the interpretive approach.

Since generative approaches distinguish between the

programming language and the execution language, a dis-

tinction in granularity will appear between the changed state-

ments in the programming language and the generatively

changed statements in the execution language. In modeling
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environments, this can even lead to “big-bang” development

approaches where replacement of some model parts can lead

to the full replacement of a runtime system or a component.

In interpreted approaches, changes can be applied ad hoc,

easily leading to errors due to dependencies. For example,

when removing a certain method, runtime errors can occur

when a dependent class still invokes such a method. A gen-

eration or compilation step can be used to detect such errors.

Given this comparison, a hybrid approach is warranted

that combines the advantages of the execution efficiency, por-

tability support, and inconsistency checking of generative

approaches with the possibility of fine-grained partial model

replacement (and thus better support for evolution) of inter-

pretive approaches.

The hybrid approach presented in this paper is similar to

an interpreted approach in the sense that it supports fine-

grained replacements. It is generative in the sense that the

replacement corresponds to class models and their generated

code. Figure 2c shows that the presented hybrid approach

integrates the modeling environment and runtime environ-

ment as in interpretive approaches. From this figure it can be

seen that the improved support for fine-grained evolution will

come at a price: the approach includes a preferred runtime

(in our case Java-based) platform in which the integrated

environment is realized. The possibility to generate differ-

ent software platforms from one model, as explained for the

MDA, is in principle still possible; however, by generating a

platform other than the preferred one, fine-grained evolution

will no longer be supported.

3 Use-cases, requirements and limitations

In this section, requirements for fine-grained generative

model-driven evolution will be derived using two simple

use-cases which correspond to the addition and replacement

of a class model. One such use-case comprises the addition

of a model class; another use-case comprises the replace-

ment of a model class by another model class. The idea is

that these are the most essential “change operations” that

are urgently needed. Many larger system-restructuring oper-

ations are based on these essential operations. Larger sys-

tem-restructuring operations that include class removals or

other fundamental changes, such as class merges, require

more advanced mechanisms, since there is no straightfor-

ward (automatable) way to associate existing instances with

a fundamentally new set of classes. Such advanced mecha-

nisms are the subject of further study.

3.1 Use-cases

Suppose a company has purchased a brand-new system for

handling their customer relations. This system features

a model-driven approach that allows for continuous exten-

sion by adding new classes. In the initial system, relatively

general concepts were modeled and implemented, such as

Customer. The initial system was implemented in Java.

3.1.1 Terminology

Since the subject of this paper is evolutionary MDD, partial

models of the system and the corresponding reality, such

as the model of the class Customer plus its corresponding

implementation, are of interest. Since we will be distinguish-

ing explicitly between a partial model of a single class and the

implementation of that class in the runtime system in what

follows, we will use the terms “model class” and “implemen-

tation class” for these, respectively. A distinction will also be

made between a model class that is closer to a model of the

concept (such asCustomer) and a model class that is closer

to a model of the implementation. This distinction is similar

to the PIM/PSM distinction for single modeled classes. The

first modeled class will be called the Conceptual Model Class

(CMC), the second the Implementation Model Class (IMC)

(see stereotypes in Fig. 1b).

If one considers a type to be “a specification of the general

structure and behavior of a domain of objects without pro-

viding a physical implementation,” [19], then what we call

a CMC starts out as a type (which cannot be instantiated)

and is made a class by adding an implementation that allows

instantiation.

Using these terms, the initial system encompasses the

model class and implementation class Customer. The

example encompasses two use-cases.

3.1.2 Use-case 1: extension

The company has a need to extend the system to include

the extra classPremium Customer. A premium customer

has specific rights, such as buying goods on credit and obtain-

ing special discounts. Moreover, special information is main-

tained about a premium customer, such as a description of

his/her main interests.

Enabling evolution means that the company is enabled to

model this new Premium Customer class and to develop

the corresponding implementation without touching the rest

of the system. The company leads the model class through

a development process; this includes adding further details

about the corresponding class, such as possibly adding hand-

written Java code. Thus, an implementation class is created

for this Premium Customer model class, which can be

separately compiled and added to the existing system.

Figure 3 describes a generative extension in the form

of a picture story. Picture (1) of the figure presents the

Customer model class, the corresponding implementation

class, and the possible instances; for example, data about
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Fig. 3 Picture story of generative extension

specific customers in the existing system in model-driven

terms. The relationships displayed imply that the implemen-

tation and the instance data are considered to be dependent

on the model class.

Picture (2) of the figure presents a modeled extension

of the system. A new class for Premium Customer is

modeled. The Premium Customer model class models

a subclass relationship with the Customer model class.

The Premium Customermodel class may introduce new

properties and behavior such as the propertymain inter-

est. The fact that the existing instances of the class

Customer are grayed out indicates that these instances are

not impacted by the extension with a new model class.

Picture (3) of the figure presents the generation of the

implementation class Premium Customer. This gener-

ated implementation class has to be related to the other imple-

mentation artifacts in the existing system. In particular, it

needs to become a subclass of the implementation class

Customer.

Picture (4) of the figure represents the situation

where, after the extension with the new class Premium

Customer, new instances for this class may be instantiated.

The given example conforms to the open/closed principle

as first introduced by Bertrand Meyer [20]: software entities

(e.g., classes, modules, and functions) should be open for

extension but closed for modification. In our case, the exten-

sion is done by modeling a new subclass and only the newly

modeled subclass needs to be considered (e.g., tested).

Use-case 1 is called an extension. In model-driven evo-

lution, not every addition of modeled information with a
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InstanceOf»Model of 

Premium Customer

Instances’ (Data)

Model of Customer’
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Fig. 4 A simple use-case of generative adaptation

corresponding adaptation of the implementation is regarded

as an extension. It is only an extension when the rest of the

implemented system is not impacted. Here no other model

classes or implementation classes are impacted, nor are any

existing instances impacted. The addition of new properties

or behaviors to an existing class is, therefore, not considered

as an extension but as an adaptation. This will be treated in

the subsequent use-case.

3.1.3 Use-case 2: adaptation and replacement

Figure 4 characterizes a use-case of model-driven genera-

tive adaptation and corresponding replacement. The use-case

starts at the final state of the use-case just described. In this

second use-case, the property main interest has been

added to the Customer model class. As a result, the cor-

responding implementation class and the existing customer

instances must be updated. To prevent a double implementa-

tion the developer may also want to remove this property in

the Premium Customermodel class and implementation

class.1 Note that the impact is recursive: the change in the

model of the dependent class may again have an impact on its

implementation class, instances, and dependent classes (this

is not explicitly shown in the figure).

Figure 4, moreover, shows how adaptation leads to repla-

cement. The new Customer model class (Customer’)

with the new modeled property main interest replaces

the old Customer model class. The implementation class

Customer’ Classwill replace the implementation class

Customer Class. Similarly, the new instances (Instan-

ces’) of the Customer’ Class – with the main interest

property now filled in—will replace the old instances. Con-

ceptually, the values of other properties in the new instances

will be the same as in the old instances although the imple-

mentation could be changed. Also, the new model class of

Premium Customer i.e., Premium Customer’ will

replace the old model class. This will again lead to replace-

ment of the corresponding implementation class, data, and

dependent model classes (when available). Thus, the replace-

ment process is recursive along the lines of dependency.

1 As will be detailed in Sect. 3.3, no special support is offered to the

developer so that he/she will know what the impact of the change of the

Customer Model class will be on the Premium Customer Model

class.
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3.2 Deriving requirements

In this section a set of requirements will be derived for

enabling fine-grained evolution, as inspired by the use-cases

of Sect. 3.1. These use-cases introduce major starting points

that will be used throughout this paper:

• Extending upon or improving upon a model of a certain

enterprise system can be seen as introducing a new model

class or replacing a model class by a new partial model.

Removing a model class will not be covered.

• Any system change is seen as a change in a set of model

classes and their corresponding implementation classes.

Even independently defined behavior, such as an activity,

is identified through a model class and a class [21]. Thus,

a change is modeled as a replacement of certain model

classes. Changes such as data storage and the user inter-

face are regarded as secondary, since they will be based

on the changes in the model classes and implementation

classes. The same can be true for component interfaces

[22] where each class is mapped to a software component.

The principle of viewing changes in terms of changes to

classes corresponds to describing and implementing systems

in terms of objects [23]. The principle of viewing adaptation

as replacement is consistent with the way change is han-

dled in version management systems [24]. Replacement can,

therefore, be viewed as going from an older version to a

newer version. Such replacement will lead to an impact that

must be managed and that may also lead to newer versions

of other entities (model classes, implementation classes and

instances).

As will be seen in the following, the requirements that

enable adaptation through replacement encompass the

requirements enabling extension. To derive these require-

ments, Use-case 2 will first be described in abstract terms,

ignoring the precise names of the classes and their relation-

ships.

Figure 5 presents Use-case 2 in abstract terms. It can be

described as follows:

• Let Mc denote a model class that is replaced by model

class Mc’ (e.g., adding a property).

• The corresponding implementation class is called Ic;

after the replacement of Mc, Ic will be replaced by Ic’.

• Mc itself models the reuse or specialization of another

model class Ms. The implementation class Is is the

implementation of Ms. Ic’ must again inherit from Is.

• Corresponding toMc andIc are the data objectsDc. Each

data object Dc must be replaced by Dc’.

• The model class Md models a dependency with Mc; thus,

Md has to be replaced by Md’. This replacement will be

’cI’cM

Dc’

Ms Is

Mc Ic

Dc

Md

Md’

«logical�

InstanceOf»

«logical�

InstanceOf»

Fig. 5 Abstract characterization of generative adaptation

done for all dependent partial models. This is a recursive

process, proceeding with the replacement of Md by Md’,

Id by Id’ and Dd with Dd’, and so on.

In order to support this abstract use-case of the adaptation

of Mc to Mc’, the following requirements must be fulfilled:

(a) Being able to replace the implementation class Ic by

the implementation class Ic’ and hook up Ic’ with

the implementation of the rest of the system. This means

that Ic’ must faithfully implement its (inheritance)

relationship to Is (as indicated in Fig. 5 by an arrow

from Ic’ to Is).

(b) Enable the runtime system to start using and, especially,

to instantiate the new/ replaced class.

(c) Being able to find the instances (data objects) Dc and

replace them by Dc’.

(d) Being able to find the dependent model classes Md and

replace them by Md’.

In a case where Mc’ does not replace Mc but Mc’ is newly

introduced, we speak of extension. In that case, only Require-

ments (a) and (b) above are relevant. Thus, the requirements

enabling adaptation through replacement do encompass the

requirements enabling extension.

The Requirements (a), (b), (c), and (d) can be summarized

as follows. To enable the generative replacement of model

classes, impact management of such replacement must be

supported along three dimensions:

• Along the implementation dimension: as covered by

Requirements (a) and (b).

• Along the instantiation dimension: as covered by Require-

ment (c).

• Along the modeled dependency dimension: as covered

by Requirement (d).
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3.3 Scoping issues and limitations of this paper

As mentioned in the introduction, this paper focuses on the

(technical) replacement of model classes in an existing model

of a system. One limitation of our approach is that it treats

only those forms of evolution where the class structure is not

broken; thus, class removal is not supported. This is espe-

cially due to Requirement (c) in Sect. 3.2, since re-assigning

existing instances to classes in case of removal is not straight-

forward, and therefore no solution is offered for this situation.

Many aspects that are also of relevance to model-driven

software evolution, and software evolution in general in a

wider sense, are beyond the scope of this paper, but could

be used in combination with our approach. These are aspects

such as

• How to go from changed use-cases to adapted models

(see e.g., [25]).

• How to re-engineer a system [26] and even how to pre-

cisely determine the impact of a change, given that an

infrastructure as described is available.

This paper (as is the case for NMF) focuses on func-

tional and non-crosscutting changes. These are changes for

non-crosscutting concerns, which can be contrasted with

crosscutting concerns as defined in the literature on aspect

orientation [27]. Crosscutting concerns can only be realized

across the normal modular implementation of software sys-

tems. An example of what is not covered in this paper is

the introduction of an improved form of caching, such that

database retrieval can be minimized.

Furthermore, this paper focuses on enabling the identifi-

cation of impacted elements and their replacement and not

on determining the precise impact of the change on these ele-

ments. As shown in Use-case 2, what is covered is the poten-

tial impact of the addition of a property to the model class

Customer on the model class Premium Customer.

What is not covered for this use-case is the explicit support

indicating that the addition of the property main inter-

est may lead to a removal of the same property on the

Premium Customermodel class. This is covered by other

approaches [28,29]. Again, such approaches could be com-

bined with ours.

A scope limitation of this paper is related to meta-

modeling. Meta-models are used in order to formally describe

the model structures and relationships allowed in a modeling

environment. Meta-modeling plays an important role in the

NMF, because it is used to describe how relationships—and

thus tracing—between models, and between models and the

rest of the system, can be realized. However, due to size lim-

itations, meta-modeling has not been covered in full in this

paper.

Large-scale enterprise systems are often built as decou-

pled multi-tier architectures [30], for example, consisting of

a UI tier, a business logic tier and a data persistence tier. Each

of the tiers uses different technologies. For instance, a front

tier may use an XML-based browser technology. A business

logic tier may use process modeling and execution, and busi-

ness objects implemented using programming languages. In

the data persistency tier data are stored and accessed using

database technology. In such a multi-tier architecture a model

can be used to keep the different layers consistent [30]. This

same principle has been used in Nucleus. Again, this part of

the NMF cannot be discussed here due to space limitations.

Given such a three-tiered approach, three different imple-

mentation aspects will be generated from a Conceptual

Model: the logic aspect, the user interface aspect, and the

data persistence aspect. This paper will only focus on the

relationship between the conceptual model and one specific

implementation aspect, namely the business logic. This paper

does not cover mapping to component approaches, such as

service-oriented architecture.

Finally, the scope of modeling in the NMF software is

worth mentioning here. In the NMF, the conceptual model

plays a central role and it generates to Java. However, the

system is not completely described by models. The main

elements of the system, such as its classes, attributes, and

relationships, are modeled. For some behavioral aspects,

namely workflow activities, so-called “visitors”2 and code

generators themselves, Domain-Specific Modeling Langua-

ges (DSMLs) are successfully applied [31], but, for other

forms of behavior, Java methods are implemented by hand.

The underlying reasoning is that creating a DSML only pays

off when there are sufficient occurrences where it can be

applied and if and when these occurrences lend themselves to

expression in some language due to their similarities. Using

modeling instead of Java for all other behavior descriptions

requires behavioral models at a level of detail that makes the

models just as complex as the code and, therefore, does not

contribute to programming productivity.

4 Principles of the nucleus modeling framework

This section will summarize the basic principles of the

Nucleus Modeling Framework (NMF). As based on the

requirements described in Sect. 3.2, the NMF is based on

adding or replacing model classes and, from there, supports

traceability across three dimensions: Implementation, Instan-

tiation and Model Dependency. This starting point is charac-

terized in Fig. 6 by placing a main Conceptual Model Class

(CMC) as the corner of the three dimensions of the NMF;

2 Models of visitor [38] behavior are somewhat similar to behavior

specifications used in attribute grammars.
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Instantiation

Implementation

Dependencies

CMC

Fig. 6 The conceptual model class (CMC) and the three dimensions

of traceability

subsequent subsections will extend this picture. In the follow-

ing subsections, the support for identification and replace-

ment along these dimensions will be detailed further.

4.1 Representing the model class as an object

Tracing replacements of partial models (model classes) with

the corresponding partial replacements of the implementa-

tion and of the instances in the runtime system (i.e., traceabil-

ity along the Implementation and Instantiation dimensions)

implies that replacements of the partial models are, so to

speak, shadowed in the runtime system. Riehle et. al. [10] call

this kind of shadowing “causal connectedness” between the

modeling environment and the runtime environment.3 This

must clearly lead to some form of integration between the

modeling environment and the runtime environment [10,11,

32]. The NMF carries out a full integration, in the sense that

all model classes are represented as runtime objects. This

full integration is especially useful in supporting traceabil-

ity along the instantiation dimension between model class

and instance, in order to fulfill requirement c) in Sect. 3.2.

Thus, the CMC in Fig. 6 is really represented as an “object”

corresponding to standard object-oriented principles [33].

We will introduce some basic terminology before we dis-

cuss in further detail the representation of model classes as

objects. An “object” is—corresponding to standard object-

oriented principles [33]—an entity in a computer information

system with behavior that can be invoked through messages,

leading to method invocations. Methods can be invoked to

access an object’s state information and adapt it. Moreover,

3 Causal connectedness has been defined by D. Riehle et. al. [10] as

follows: “A modeling level is causally connected with the next higher

modeling level, if the lower level conforms to the higher level and if

changes in the higher lead to according changes in the lower level.” The

runtime system is seen as Level 0, the modeling system as Level 1.

special-purpose methods can be invoked; for example, for a

customer object, a method can be invoked to ask for the

customer’s closest branch office or shop.

An object can have one or more descriptive entities called

classes. The object will have an instantiation relationship

with the class from which it was instantiated. This relation-

ship is often called instanceOf (the instanceOf relationship

comes in several flavors [34]).

Representing a model class as a runtime object means

several things:

• The model class object represents the modeling informa-

tion, for instance, details of the PremiumCustomer

class.

• The model class object can be accessed and modified

in order to develop a complete model. The model class

object may understand method invocations such as “check

model” and “generate code.”

A model class describes different aspects of its instances

such as the properties and relationships, but also its behavior

implementations. That a model class can be represented by

an object is best shown with two UML representations of the

model class in the NMF. In Fig. 7 the CMC forCustomer is

represented as a class diagram; in Fig. 8 this same information

is represented as an instance (or object) diagram. The model

class contains various stereotypes, for example, «concep-

tual» and «property» and tagged values such as

{implementationModel = CustomerImpl}. The

precise meaning of these stereotypes is not of relevance at

this point.

Setting aside the precise semantics of the aforementioned

stereotypes, a comparison of Figs. 7 and 8 shows how stereo-

types are being used [35]. A stereotype in the class diagram

in Fig. 7 corresponds to the type of the corresponding object

in Fig. 8. For example, the stereotypes «conceptual»

and «property» correspond to the implementation clas-

ses CConceptual and CProperty of the corresponding

objects in Fig. 8.4 Not all details of Fig. 7 are represented in

Fig. 8, to prevent clutter; the tagged values and the parameters

of the buyProduct operations, for instance, are omitted.

4.2 Representing the implementation dimension

A partial model replacement must lead to a corresponding

replacement of the implementation. This is the first part of

Requirement a), found in Sect. 3.2. This is supported by the

implementation dimension as will be discussed in this sub-

section. As mentioned in Sect. 3.3, this section only treats the

4 These classes are implementations for certain metamodel classes:

Conceptual Model Class and Property.
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Fig. 7 Model presentation

of a CMC

Fig. 8 Object representation

of a CMC

relationship between a CMC and the “logic” implementation

aspect. Other implementation aspects that are also derived

from a CMC are the user interface and the data persistence

aspects.

The implementation dimension for each implementation

aspect, specifically the logic aspect as described in this paper,

is represented by three kinds of elements (see Fig. 9). The first

element is the CMC (e.g., Premium Customer CMC)

which is an implementation-independent model, similar to a

“Platform-independent Model” (PIM) in the MDA [1]. This

CMC is the basis for the other implementation aspects as

well and includes those aspects of a class that are common to

those different implementation aspects. The second element

is the Implementation Model Class IMC (which is similar

to a “Platform-specific Model” [PSM] in the MDA), which

Instantiation

Implementation

Dependencies

ICCMC IMC

Fig. 9 The implementation dimension
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Fig. 10 IMC of

PremiumCustomer for Java

models specific information about the corresponding imple-

mentation class. In principle, this could be done in multiple

stages of refinement, corresponding to different degrees of

platform dependence or independence (see also [36]), but for

simplicity’s sake only one refinement stage has been used

in Nucleus. For mapping to a Java platform, such an IMC

describes fields and methods of Java classes. The last ele-

ment of the implementation dimension is the implementation

class itself, which, in the case of a Java platform, consists of

a Java class and a Java interface. For classes that are under

development, both the Java code will be available and, after

compilation, the byte code as well. In certain cases, namely

when reusing classes developed by third parties, code may

not be available but only binaries (Java byte code).

As represented by the thin line in Fig. 9, the implemen-

tation traceability in the NMF is realized through forward

references: from CMC to IMC and from IMC to IC. Using

these forward references, a replacement of the CMC will

lead to a corresponding replacement of the IMC and, subse-

quently, of the implementation class. This will be discussed

in further detail using the use-case example.

Figure 7 presents the CMC of the class Premium Cus-

tomer as indicated by the stereotype «conceptual».

Properties of premium customers arepremiumPoints and

mainInterest as indicated by the stereotype «prop-

erty» (similar to the property concept for EJB applications

[37]). Properties can either allow the reading of a property

value only, or both the reading and writing of a property

value. The UML readOnly property-string is used to indi-

cate this (see Fig. 7); if omitted, then both read and write are

allowed. The value of the premiumPoints property can

only be read. The CMC does not indicate how such proper-

ties will be implemented. The CMC refers to the IMC using

the tagged value{implementationModel = Premi-

umCustomerImpl}.

Figure 10 presents an IMC PremiumCustomerImpl

for the implementation class Premium Customer. This

model is again represented as a runtime object, describing

the implementation of the class Premium Customer as a

Java-class implementation. For each property of the

CMCPremium Customer (e.g., the propertypremium-

Points as presented in Fig. 7) a corresponding Java field is

defined and, where appropriate, also a setter and getter will

be defined. In our case the getter getPremiumPoints

is defined since the property premiumPoints has been

defined as readable in the CMC. The IMC can, in large part,

be generated from the CMC.

The IMC is used in two ways in the NMF:

• It offers mapping information on how CMCs must be

mapped to an implementation. This is needed since there

is no default mapping from names of CMCs to names

and locations of implementation classes. For example, the

tags implementation, implementation Int-

erface and package are used to refer to the imple-

mentation class name, interface name and package. This

information must be added by hand by a developer.

• It offers information about which generator to use when

an implementation class is to be generated. The IMC for

Premium Customer as presented in Fig. 10 has the

tag{generator = JavaGenerator}, which indi-

cates that the Java-class generation will be applied.

Figure 11 presents one page of a Java class that may be

generated from the PremiumCustomerImplmodel class

as presented in Fig. 10. The Java-class file may be further

filled in by a developer to implement specific logic; in this

page no specific code has been added.

An important function of this forward reference is that the

replacement of a CMC leads also to the replacement of the
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Fig. 11 One Page of the CPremiumCustomer Java Class

IMC, and to a replacement of the corresponding implemen-

tation class. This is the first step towards fulfilling Require-

ment a) in Sect. 3.2: a partial model replacement can lead to

a corresponding replacement of a specific part of the imple-

mentation. It should be noted that forward references are

possible due to the concept of a preferred implementation

platform as already mentioned in Sect. 2.2: the referred IMC

corresponds to this preferred platform (i.e., it is that imple-

mentation platform in which the modeling environment itself

is implemented).

4.3 Representing the instantiation dimension

In the instantiation dimension, two main requirements, as dis-

cussed in Sect. 3.2, are relevant: How to instantiate (create

new data objects) for newly modeled classes (Requirement

(b)); and how to keep track of the relationship between a data

object and the model class that created it, such that impacted

data objects (i.e., the instances) can be identified when the

model class is changed (Requirement (c)). The two principles

that support these requirements in the NMF will be discussed

in the subsections that follow.

4.3.1 Instantiation: the CMC object as a factory

According to Sect. 4.2, a CMC refers to a single IMC, which

again refers to an Implementation Class. Thus, indirectly,

once the complete development process for such a model

has been completed, for a CMC (of a class) the correspond-

ing implementation class is known. This is used to enable

the use of the CMC as a factory object. The CMC object

can be requested to create instances. Note that the factory

pattern is used [38]. A CMC object will create an instance

by finding out through the corresponding IMC which class

must be instantiated. Thus, by instantiating the CMC object

Premium Customer, an object will be an instance of the

implementation class CPremiumCustomer due to the fact

that the IMC of Premium Customer refers to the imple-

mentation class CPremiumCustomer.

Through this factory mechanism, a CMC can be added or

replaced, and subsequently used and instantiated in the run-

time system. In other words, Requirement b) of Sect. 3.2 can

be fulfilled. The set of CMC objects for which an implemen-

tation has been generated represents the catalogue of classes

that can be instantiated.

4.3.2 Logical vs. physical instantiation

When instantiating the CMC a data object is created as des-

cribed in the previous subsection. In principle, this object

is now both an instance of the CMC and of the Implemen-

tation Class. To enable the traceability between CMC and

its instances as demanded by Requirement c) of Sect. 3.2,

the instantiation relationship between the data object and the

CMC object is explicitly represented as an object-to-object

relationship.

The result is a double instantiation as is symbolically pre-

sented in Fig. 12, by means of the thin arrows from DO

to CMC and from DO to IC. Figure 13 presents the dou-

ble instantiation for the example. In agreement with [11,32],

these two relationships are called logical instantiation and

physical instantiation (in the other figures, this relationship

is shown without any stereotype). The relationship between

the instance and its CMC is a logical instantiation relation-

ship, since the CMC logically describes the instance. The

generated implementation class is “physically” used to carry

out the instantiation and, consequently, there is a physical

instantiation relationship between this class and the instance.
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Instantiation

Implementation

Dependencies

ICCMC

D0

Fig. 12 The instantiation dimension: The data object (DO)

Since the CMC is represented as an object (as also shown in

Fig. 13) the logical relationship can be explicitly represented.

4.4 Representing the modeled dependency dimension

In the modeled dependency dimension, we will consider a

dependent CMC (dCMC), which is dependent on the CMC.

In a similar way, its generated class dIMC and dIC also

depend on IMC and IC, respectively, as indicated in Fig. 14.

Specialization is a special case of dependency (see also

Requirement a) of Sect. 3.2). This can be used to further

explain Fig. 15 by taking specialization as an example. The

following rule applies for specialization. When a CMC

(e.g., Premium Customer) is a specialization and, there-

fore, dependent on another CMC (i.e., Customer), then

this specialization must be translated according to the Imple-

mentation (i.e., the Implementation CPremiumCustomer

must be a specialization of CCustomer).

For the NMF, we have identified the four basic modeled

dependencies possible between CMCs:

1. Generalization/specialization relationships as described

above.

2. Modeled Associations which must be translated into

associations of the corresponding implementation clas-

ses.

3. The “Instantiates” dependency. Sometimes instances of

a CMC A can create instances of another CMC B, for

example, if A is a composition of B. This dependency is

explicitly represented as a relationship between CMCs.

At runtime the CMC B is indeed requested to instantiate

itself, such that instantiation of B is model-driven and

not pre-fixed in the code.

4. Finally, there can be a “used model class” dependency.

This relationship corresponds to those interactions bet-

ween objects through method invocations that are not

already represented in Point 2 above. In Java such depen-

dencies will be translated to imports.

By explicitly representing these dependencies, not only

Requirement (a) of Sect. 3.2 can be fulfilled, but also Require-

ment (d). The dependencies mentioned above can be used to

trace model classes that are impacted by a replacement.

4.5 Managing the development process: the CMC object

lifecycle

Another essential feature for supporting fine-grained evolu-

tion in the NMF is the lifecycle. In Nucleus each CMC Object

has a so-called “lifecycle.” This lifecycle defines a (prin-

cipally progressive) set of states that a CMC Object goes

through on its way to having an implementation class and

thus being “in production,” that is, such that it can be used

and instantiated in the running system. This lifecycle has the

following main functions:

• It guides the developer through the steps that must be

taken to get the CMC into production. State transitions

can be guarded by checks, for example, checking that

a CMC has been correctly defined (e.g., that there are

no specialization cycles). State transitions also include

actions such as code generation or compilation and link-

ing.

• It guards against potential inconsistencies between the

CMC and corresponding instances. At the maturity stage

of its lifecycle, a CMC has been taken into production and

it will have instances in the running system. The state in

Fig. 13 Physical instantiation

vs. logical instantiation in the

NMF
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Fig. 14 The dependency dimension and the implementation dimen-

sion

Fig. 15 The subclass relationship of CMCs is generated into the sub-

class relationship of the implementation classes

the lifecycle enforces the fact that such a CMC cannot be

changed any more, since that will corrupt the instances.

The only way to adapt the CMC is to create a new ver-

sion of it (see Sect. 3.2). Instances of the old version can

be moved to the new version once the new version is in

production; in fact, this involves creating new versions of

the instances as well. The lifecycle also includes a state in

the development process in which a CMC can be tested;

in this life-state the CMC can have instances, but can still

be changed without requiring a new version. If the CMC

is changed in this state it goes backwards in its lifecycle

and its current (test) instances are removed.

• It guards against potential inconsistencies between the

CMC and the implementation class. Similar to the above,

the blocking of the model class in its production state

ensures that the CMC cannot become inconsistent with its

implementation class. During the testing phase, changes

can be applied by bringing the CMC back to an earlier

state of its lifecycle. In such a “backward” state transition,

the current implementation class will be removed, and in

a subsequent forward state transition the new implemen-

tation class will again be written.

Platform
(hand coded)

Nucleus Modeling Framework (NMF)
(self-descriptive models, code partially generated)

Enterprise Foundation Concepts
(code generated)

Product Lifecycle Management

App App App App App App

Fig. 16 Overview of Nucleus

5 Implementation of the NMF in nucleus

Figure 16 gives an overview of Nucleus in the form of a

layering of subsystems that build on top of each other. This

layering encompasses both runtime layering where one layer

reuses another at runtime, as well as static reuse where one

layer specializes another. These layers will be discussed from

bottom to top. The bottom platform layer offers the func-

tionality essential for supporting fine-grained evolution as

described in this paper. In the subsequent layers function-

ality is added. This is done in model-driven fashion; thus

the principles of this paper are applied. At the end of this

section some further quantitative information will be given

about Nucleus and the application of the three traceability

dimensions.

One essential part of the platform layer is the persis-

tence subsystem. The Nucleus persistence subsystem stores

objects in a relational database using an object-to-relational

mapping. All CMCs and IMCs (modeling information), and

instances are stored here. This includes all traceability infor-

mation such as the logical instantiation relationship between

classes and instances. The persistence subsystem also pro-

vides essential support for the versioning (mentioned in

Sect. 3.2) both of classes and of instances. The adaptabil-

ity described in this paper is based on dynamic class load-

ing in Java [39]. In the persistence subsystem a special Java

class loader is used. It is used to retrieve the runtime imple-

mentation class of an instance stored in the database, such

that the retrieved instance can indeed be associated with the

right physical and logical class. For this purpose, the persis-

tence subsystem stores these associations. When a CMC is

replaced by means of a new version, it gets its own associated

implementation class.

The platform provides support for browser-based user

interfaces in which CMCs and instances alike can be edited.

Figure 17 gives a screenshot of the Enterprise Application

Modeler. The screenshot presents some of the many CMCs

and their relationships. Note that Nucleus uses one user inter-

face to represent and manipulate both CMCs and instances.

The Nucleus modeling framework (NMF), which is the

second layer in Fig. 16, builds on top of the platform to
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Fig. 17 Screenshot from the

enterprise application modeler

define essential aspects of models in a model-driven fashion.

The NMF includes a self-descriptive meta-model that defines

how CMCs and IMCs are modeled in Nucleus. This meta-

model thus consists of meta-CMCs and IMCs that define,

for instance, the existence of a lifecycle for each CMC (see

Sect. 4.5). The meta-model of Nucleus also defines how rela-

tionships between CMCs are specified. Nucleus allows for

n:m association relationships where modeled relationships

are represented as CMCs themselves. Due to such5 n:m asso-

ciation relationships, instances can play various roles in a

relationship; therefore, also roles are modeled as represented

by CMCs. Details of this meta-model are beyond the scope

of this paper.

Enterprise foundation concepts (EFCs) (the next layer up

in Fig. 16) are those CMCs, and groups of CMCs and their

relationships, that are essential for creating large Enterprise

Applications. The screenshot of Fig. 17 presents a subset of

the EFCs that were created. Examples of EFCs are (shown

as XxType6 in the figure):

5 In Nucleus the term “type” was used instead of Model Class.

• Enterprise

• Person (can be a legal or a natural person)

• Human

• Position

Examples of modeled relationships are (shown as YyRe-

lationshipType6 in the figure):

• Human holds Position Relationshipmodel

class

• Position supervises Position model class

Examples of modeled roles are (shown as ZzRoleType6 in

the figure):

• Employee Role model class

• Employer Role model class

In the figure a window is moreover shown that represents

details for the CMC Human (Shown as HumanType) with its

possible roles.
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Product Lifecycle6 Management (abbreviated as e-PLM)

was the first application domain of the Nucleus stack. It spe-

cializes the various EFC concepts so as to create model clas-

ses that are specific to the area of managing the lifecycle of

large (physical) products.

Applications further specialize the application domain for

specific customer usage. Nucleus has been successfully

applied in two beta applications. One application supported

the full product data management of airplane motors; this

included all possible configurations and the corresponding

product change management. Another supported the collab-

orative project management for large machines for paper pro-

duction.

The mechanisms of fine-grained model-driven evolution,

as subdivided into the three dimensions, have been applied

as follows:

• The extension mechanism, which represents the model

to model dimension, has been applied to build EFCs on

top of NMF, ePLM on top of EFCs, and, once again, the

definition of applications on top of ePLM include more

application-specific CMCs reusing existing CMCs. From

the authors’ point of view, this was essential in order to

create multiple real, large-scale software systems such as

the two beta applications. To give an idea of the size, 218

Java classes and 262 interfaces were generated from the

NMF CMCs, and IMCs. From the EFCs, 191 Java classes

and 212 interfaces were generated. In the latest version of

Nucleus, identifying modeled dependencies is possible,

since all dependencies in Nucleus are explicitly modeled

and explicitly represented, but no specific proactive sup-

port is provided for this.

• The model to implementation dimension has been used

extensively in order to enable implementations to be

replaced in a fine granular manner.

• Relating a model replacement (a new version of a model)

to a corresponding upgrade of the instances, again in

terms of new versions of these instances, has become

possible, but is not widely used.

In spite of this, the Nucleus approach has never lived up to

its full promise. The project was discontinued 7 years after it

began. As a result of this discontinuation, the software is no

longer available. There are several reasons for this discontin-

uation: Building the platform itself was a large undertaking

which took about 100 man-years of effort; the incremental

modeling of Nucleus could only function in a complete plat-

form, with the promise that it might lead to an ever-acceler-

ating development speed. But once the platform was able to

6 The term lifecycle should not be confused with the lifecycle of model

class objects introduced earlier.

be used in this way, the project was bought by another orga-

nization that was not able to integrate it into its portfolio.

As a result of this effort, the Nucleus product consists, in

a large part, of a proprietary platform, with a correspond-

ing burden for maintenance. This is another reason why it

has not been continued. Nucleus has been mentioned by

Forrester [12].7

6 Discussion

The principles introduced in this paper raise various issues:

1. Strict meta-modeling [40] is often regarded as an impor-

tant principle of MDD. It allows for only one way of

instantiation. How can the fact that an instance has mul-

tiple ways of instantiation, a logical way and a physical

way, relate to this?

2. One of the important targets of MDD in general and

the MDA in particular is to allow for implementation-

independent modeling, enabling models to be mapped

to different implementation platforms. Given that this

architecture requires that the modeling tool and the run-

time tool be implemented in one and the same runtime

platform, can implementation independence still be

maintained?

3. Can the requirements of Sect. 3.2 be fulfilled and to what

extent?

These issues will be discussed in more detail below.

6.1 Strict meta-modeling

In [40] Atkinson and Kuhne define strict meta-modeling as

follows:

“In an n-level modeling architecture, M0, M1 . . . Mn−1,

every element of an Mm-level model must be an instance-of

exactly one element of an Mm + 1-level model, for all m <

n − 1, and any relationship other than the instance-of rela-

tionship between two elements X and Y implies that level(X)=

level(Y).”

Due to the two ways of instantiation, the approach pre-

sented in this paper seems to depart from that approach. How-

ever, in the paper by Atkinson and Kühne [11] it is shown that

a logical instantiation and a physical instantiation represent

different (basically orthogonal) concerns, since any logical

model class can theoretically still have various different pos-

sible realizations. Any instance can have both a logical and a

7 It is mentioned under the name “Xebic,” which is the spin-off

company of the research project that started the development.
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physical class. Thus, the strict meta-modeling principle does

not cover the fact that different modeling elements can repre-

sent different aspects that allow for multiple types. A relevant

clue for this is that the classes will complement each other

and will not contradict. A generated class is the refinement

of the other.

It may be considered even more critical that in the NMF

the levels are mixed: model classes are all represented as

objects and thus model classes of different meta-levels all

live in the same environment. However, this situation does

not fundamentally break the rule: each and every model class

can be related to one level such that the strict situation can

be reached again.

6.2 Implementation independence

As indicated by the MDA user’s guide [1], one of the major

targets is to enable PIM-like models to be mapped to differ-

ent implementation platforms. Thus, implementation inde-

pendence is one important goal of the MDA. Evolution in

the NMF is only supported for the preferred platform, that

is, when code generation is done for classes and instances

that live in the same platform as the (as objects represented)

model classes. This has been shown to be relevant for the

NMF principles described in Sects. 4.2 and 4.3. Thus, NMF

seems to jeopardize implementation independence.

The following counterpoints can be made to this argument:

1. The NMF environment itself can be (and has been) ported

to different execution platforms. Thus, fine-grained evo-

lution can be supported on all execution platforms on

which the NMF has been implemented.8

2. Generation to platforms in which NMF has not been

implemented is still possible; for such platforms the fea-

ture of fine-grained evolution is merely lost.

3. Another possibility of the NMF is to use special “proxy

objects” that can execute method requests on behalf of

normal objects and to translate these requests to some

other runtime environment, as, for example, translating

requests to webservice invocations.

Still, it is true that in this respect the NMF is closer to inter-

preted approaches and has the corresponding portability

problems, as mentioned in Sect. 2.2, as “normal” gener-

ative approaches do. It turns out that there is a trade-off

between requirements with respect to fine-grained evolution

and requirements with respect to ease of portability.

8 The NMF implementation has been ported from a Java environment

to a C# environment in half a man year.

6.3 Fulfilling the requirements and improving

on interpreted approaches

The NMF fulfills the requirements of Sect. 3.2 in the follow-

ing ways:

• Requirement a): Section 4.2 describes how a model class

for which the development process has been finished

refers to its class. Sect. 4.4 describes how modeled depen-

dencies are translated to corresponding relationships in

the implementation. Together these mechanisms ensure

that the class of a new or replaced model class will be

correctly hooked up with the other pre-existing classes,

thus with the implementation of the rest of the system.

• Requirement b): Through the mechanism described in

Sect. 4.1, a model class is represented in runtime as an

object; in fact, the modeling environment and runtime

environment are integrated, similar to interpreted

approaches. Moreover, as described in Sect. 4.2, the

model class will also refer to its implementation once

the development process is finished. As a result, a newly

introduced and developed model class is a factory object

which can be instantiated.

• Requirement c): Through the runtime representation of

model classes as objects and the explicit representation

of the relationship between a model-class object and its

instances (the logical instance of relationship) as

described in Sect. 4.3, dependent data objects, i.e.

instances, can be traced.

• Requirement d): Model classes are explicitly represented

as objects; relationships between model classes are also

explicitly represented. Thus, tracing dependencies is

supported in principle. This is, however, clearly not an

outstanding property of the NMF. Any modeling envi-

ronment will use some form of explicit internal repre-

sentation of modeling elements and support some form

of traceability in this dimension. Of course, such trace-

ability requires representing dependencies (e.g., invoca-

tion relationships between model classes) as explicitly as

possible.

7 Related work

7.1 Integrating component-based development

with model-based development

In their paper, Tongren et. al. [3] describe how model-driven

development (MDD) and component-based development

(CBD) are complementary and need each other. One example

of such an integration is where components have been devel-

oped through MDD, but are glued together with CBD. On

the other hand, gluing together components requires mod-

els. According to them, a complete integration must still be
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achieved. The NMF provides a contribution here, since it

supports the model-driven maintenance of a complete sys-

tem, mapping each business type of the NMF to one small

component (see also [41]), but other mappings are also possi-

ble, see [22]. Interestingly, models in the NMF use a similar

versioning to that of components [42] and thus reflect the

versioning of components.

7.2 Interpreted approaches

Interpreted model-driven approaches are described, among

others, by Riehle et. al. [10], and Atkinson and Kühne [11,

32]. As described in Sects. 2.1 and 2.2, interpreted model-

driven approaches support direct adaptations of the models,

leading to corresponding direct adaptation of the runtime

system and are, in this respect, closer to adaptive MDD than

generative approaches. Still, as also described in Sect. 2.2,

these approaches do not support evolution very well, due to

the resulting brittleness where all kinds of dependencies are

easily corrupted. The NMF addresses such brittleness as a

result of its explicit versioning and its use of a lifecycle that

blocks direct adaptation once instances have been created.

Still, the NMF reuses various concepts from these

approaches:

• The integration between modeling environment and run-

time environment, such that the modeled system main-

tains its own models;

• The representation of partial models as objects, as a con-

sequence;

• The distinction between logical and physical instantia-

tion.

Thus, the NMF can be seen as a hybrid approach, com-

bining essential aspects of these interpretive approaches with

code generation. The innovation of the NMF with respect to

these concepts is that it generates the class of a model class

“dynamically” instead of using a pre-fixed set of classes that

implement the interpreter.

Similar to the work of Riehle, as well as Atkinson and

Kühne, our work also has roots in original work on reflec-

tion, such as that by Pattie Maes [43]. Reflection is the ability

of a system to reason about and act upon itself by means of a

powerful self-representation. Clearly our approach is reflec-

tive in this sense. Again, however, the reflective approaches

we know of are interpretive by nature.

7.3 Model-driven program transformation

Gray et al. [44] describe another approach to supporting

model-driven evolution, which they call model-driven pro-

gram translation. In this approach, model evolution trans-

lates to changes in code transformation software. The code

transformation software processes the original source code.

This approach allows deltas to be mapped to deltas in the

final code. Similar to the approach presented in this paper,

certain model elements correspond to certain components in

the source. These components are much bigger than just sin-

gle classes, as presented in this paper. Their approach does

not cover the impact on instances, however, which is a rele-

vant part of the presented approach. Moreover, adding new

components does seem to be integrated in the transforma-

tional approach, since it processes existing components.

7.4 The type object pattern

There is a direct relationship between this work and the

so-called type object pattern [18,45]. The type object pattern

is also known as the adaptive object pattern. The integration

between modeling environment and runtime environment is

based on this pattern.

The work of Razavi et al. [46] is especially relevant, as

they have integrated the type object pattern into well-known

languages such as CLOS that support meta classes. This

approach may well improve on some of the disadvantages of

interpreted approaches such as those mentioned in Sect. 2.2,

especially with respect to non-functional aspects such as

performance and storage. However, the potential danger of

ad-hoc changes, and the portability problem seem to remain.

7.5 The virtual machine principle

Fine-grained evolution is not a new feature. In the Java virtual

machine especially, which is based on the Smalltalk virtual

machine, evolution is supported [47]. As in our approach,

in these approaches one can see that class relationships are

explicitly represented and can be mapped to byte-code rela-

tionships.

7.6 Formalization of incremental development

More fundamentally, this work can be seen as an application

of the theory on incremental computation [48], and the sup-

port for that through function caching [49]. Roughly stated,

the approach of [49] is to allow results of functions—in this

case the transformation function from source model to target

model or implementation—to be cached, so that new inputs

can be incrementally translated to the output. In this case,

the output of the translation of the new type is incrementally

added to the “cached” output of the previous translation.

7.7 Impact calculation

Work has been done on calculating both model to model

impact [28,29] (see also [50]), as well as calculating data
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impact [51]. In fact, that kind of work is complementary to

the work presented in this paper.

7.8 Generative programming and product lines

The approach of Czarnecki [52,53] which is pretty much

related to Generative Programming, is also relevant here. The

idea is to describe a product line instead of a single product

and provide code/instructions on how to assemble the pieces.

It does not, however, handle the issue of evolution. A similar

approach is GenVoca [54], which is an advanced architecture

providing lots of support for reuse and suchlike. It is based

on mathematics, and specifically geared towards software

changes. Nevertheless, all changes happen at the model level

and before the generation, everything is known.

7.9 Other approaches to model-driven evolution

Other authors have done work on supporting evolution

through MDD. Favre and NGuyen [55] theoretically discuss

and model all possible evolution steps in MDD. However,

their work is not explicitly directed at incorporating incre-

mental evolvability in the development process. Hearnden et

al. [56] also analyze dependencies in MDD. Again, a direct

link with tooling is not made. Birken [57,58] describes pat-

terns for enabling evolution, especially those based on trace-

ability. This approach is directed at improving the design

and design practices so as to improve evolvability; it is not

directed so much at offering technical solutions as part of the

modeling architecture itself.

7.10 Adaptive systems

Adaptive Systems is a wide area [57,58] that is related to this

paper. Adaptive Systems are defined as Systems that can be

adapted to accommodate resource variability, changing user-

needs and system faults [59]. Specific adaptive approaches

lie in the area of architectural adaptability [59,60] where

(architectural) models and generative approaches play a role.

Our approach combines generation with (instantiable) class

models, which is not covered by such approaches. Other

adaptation approaches enable adding new software

“patches”, e.g., function or function versions [61,62], but

these are changes at the code level, not at the model level;

moreover, the addition of properties and corresponding

impact on instances is not treated. In [57,58] an overview

of mechanisms is given for run-time (self-) adaptive sys-

tems. On basis of a set of fundamental topics a taxonomy of

mechanisms is provided. Of the described mechanisms, only

Aspect-oriented Programming is based on generative tech-

niques; however, the combination between generation and

(model-driven) abstraction is not mentioned in the paper.

8 Conclusion and further work

Evolving large-scale systems is a complex undertaking due

to the many dependencies [25]. It can be difficult, therefore,

to handle the impact of a change. Especially for large-scale

enterprise systems, evolvability is a very important quality,

due to the great dynamicity of the enterprises that must be

supported by these systems [6]. Model-driven approaches to

software development should, in principle, be very suitable

for supporting such evolvability, since models can precisely

and formally describe dependencies [25].

Standard environments for MDD, however, have a strong

separation between modeling environment and runtime envi-

ronment [10]. As a result, they are insufficiently directed

toward evolving very large-scale systems. Letting each model

change lead to a complete regeneration of a system is not fea-

sible and sometimes not even possible (i.e., reusing a mod-

eled component where code is not available). Regenerating

only smaller parts of a system (components or frameworks) in

isolation can cancel out the advantages of using MDD, since

the relationships with the rest of the system are not taken

into account. Moreover, due to the separation between mod-

eling environment and runtime environment, the impact of

model changes on existing data is difficult to support. How-

ever, these data are an essential part of the system, especially

in enterprise systems.

This paper describes an integrated modeling-runtime

environment that forms the basis for enabling fine-grained

evolution of large-scale enterprise systems using generative

techniques. This integration means that the runtime system

maintains its own models and can, therefore, be locally

adapted, without missing impact information. The integra-

tion between modeling and runtime, moreover, ensures that

all dimensions of possible impacts of a change can be traced:

(1) between models and dependent models; (2) between

models and implementation; and (3) between models and

instances, the data. The integration of modeling and runtime

comes at a cost, however, as it is traded off against a dimin-

ished support for platform independence. Fine-grained evo-

lution is only supported for the “preferred platform” in which

the integrated environment is realized, similar to interpretive

approaches that are more strongly bound to those platforms

for which an interpreter is available.

The NMF is a hybrid approach that combines code gener-

ation with certain ideas from interpreted approaches such as

those described by Riehle et al. [10], and Atkinson and Kühne

[11,32]. In comparison with these approaches, it adds the

dimension of implementation and generation, and removes

the brittleness that comes with the possibility of being able

to directly implement a change in the model. The NMF

embodies the main concepts of a large research project called

Nucleus. Since the NMF was originally developed in a com-

mercial setting, many other aspects surrounding the NMF
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must still be reported on, and this, therefore, constitutes future

work. Some examples of this are the evolution of database

schemas and the evolution of user interface aspects. The NMF

does not explicitly support the removal of model classes.

However, it does allow for replacing groups of model clas-

ses with corresponding new versions and, on top of this, a

mechanism may yet be offered to restructure the data corre-

spondingly. This will also be the subject of further study.
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