
Supporting Full-Text Information Retrieval

with a Persistent Object Store�
Eric W. Brown James P. Callan W. Bruce Croft

J. Eliot B. Moss

Technical Report 93–67

August 1993

Department of Computer Science

University of Massachusetts

Amherst, MA 01003

USA

Abstract

Full-text information retrieval systems have unusual and challenging data management requirements.

Attempts have been made to satisfy these requirements using traditional (e.g., relational) database

management systems. Those attempts, however, have produced rather discouraging results. Instead,

information retrieval systems typically use custom data management facilities that require significant

development effort and usually do not provide all of the services available from a standard database

management system. Advanced data management systems, such as object-oriented database management

systems and persistent object stores, offer a reasonable alternative to the two previous approaches. We

have taken an existing information retrieval system (INQUERY) and substituted a persistent object store

(Mneme) for the portion of the custom data management system that manages an inverted file index.

The result is an improvement in performance and significant opportunities for the information retrieval

system to take advantage of the standard data management services provided by the persistent object

store. We describe our implementation, present performance results on a variety of document collections,

and discuss the advantages of using a persistent object store to support information retrieval.�This work is supported by the National Science Foundation Center for Intelligent Information Retrieval at

the University of Massachusetts. The authors can be reached via Internet addresses fbrown, callan, croft,

mossg@cs.umass.edu.



1 Introduction

The task of a full-text information retrieval (IR) system is to satisfy a user’s information need by

identifying the documents in a collection of documents that contain the desired information. This identifi-

cation process requires that we have a means of locating documents based on their content. A well known

mechanism for providing such means is the inverted file index [14].

An inverted file index consists of a record, or inverted list, for each term that appears in the document

collection. A term’s record contains an entry for every occurrence of the term in the document collection,

identifying the document and possibly giving the location of the occurrence or a weight associated with the

occurrence. Using this index we can quickly determine the set of documents that contain a given term.

Managing an inverted file index is a challenging problem, particularly when we consider that some

commercial systems contain millions of full-text documents, occupying gigabytes of disk space. An inverted

file index for such a collection will contain hundreds of thousands of records, ranging in size from just a few

bytes to millions of bytes.

Typically, an IR system that makes use of an inverted file index will have a custom data management

facility built from scratch to support the index. The advantage of this approach is that the data management

facility is designed specifically to meet the requirements of the particular information retrieval strategy used

in the system. The disadvantage is that building a custom data management facility is difficult and tedious,

particularly if the facility is to provide sophisticated features such as concurrency control or recovery.

Instead, we propose using an “off-the-shelf” data management facility, in the form of a persistent object

store, to provide the inverted file index service. We have taken the INQUERY full-text retrieval system [19,

2], which originally used a custom B-tree package to provide the inverted file index support, and replaced the

B-tree package with the Mneme persistent object store [13]. The result is a system that reaps the benefits of

using an existing data management facility without sacrificing performance or functionality. The integrated

system actually demonstrates a performance improvement, and the features of the persistent object store

offer potential solutions to some of the difficult problems associated with inverted list management.

In the next section we take a closer look at the characteristics of inverted file indices in an IR environment

that make them difficult to support. Next, we describe the integrated software architecture, including details

of INQUERY and Mneme. Following that, we present a performance evaluation of the integrated system and

discuss the results. In the last two sections we review previous and related work, and offer some concluding

remarks. The principle contribution of our work is a demonstration that data management facilities for

IR systems need not be custom built in order to obtain superior performance. Additionally, we show how

the size distribution characteristics of records in an inverted file index, along with the characteristics of

inverted file record access during query processing, can be used to guide decisions regarding persistent store

organization and buffer management policy selection.

2 Inverted File Indices

There are basically three operations performed on an inverted file index: creation, lookup, and modifica-

tion. The operation performed most often is lookup. As the IR system processes queries a lookup is typically

performed at least once for each term in the query. Modifications occur less frequently as new documents

are added to the collection and old or irrelevant documents are retired from the collection. Creation occurs

once when a document collection is first indexed by the IR system, although it may be considered a special

case of modification where a number of document additions are batched together.

If we optimize for the common case, lookup should be given the most careful consideration. Providing

an efficient lookup operation requires information about the size distribution of the records in the file and

a characterization of the record access patterns. The size of an inverted list depends on the number of

1



0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06

C
u
m

u
la

ti
v
e
 %

Inverted List Record Size (bytes)

% of Records
% of File Size

Figure 1: Cumulative distribution of inverted list sizes for the Legal collection, in terms of both total number

of records and total file size.

occurrences of the associated term in the document collection. Zipf [22] observed that if the terms in a

document collection are ranked by decreasing number of occurrences (i.e., starting with the term that occurs

most frequently), there is a constant for the collection that is approximately equal to the product of any given

term’s size and rank order number. The implication of this is that nearly half of the terms have only one or

two occurrences, while some terms occur very many times. Figure 1 shows the distribution of inverted list

sizes for the Legal document collection used in our performance evaluation below (note that the x axis is

in log scale). The same plots for the other collections used in the performance evaluation (not shown here)

have similar shapes. Table 1 gives the vital statistics for the Legal collection.

Collection Number of Collection Inverted File Index

Documents Size # of Records B-Tree Size Mneme Size

CACM 3204 2136 5944 641 556

Legal 11953 290529 142721 65840 71296

TIPSTER 1 510887 1225712 627078 460836 476904

TIPSTER 742358 2103574 846331 768406 789344

Table 1: Document collection statistics. All sizes are in Kbytes.

It is more difficult to characterize the inverted list access patterns during query processing. Figure 2

shows the frequency of use of terms with different inverted list sizes for Legal Query Set 2 used in our

performance evaluation (note that the x axis is log scale). Plots for the other query sets used in the evaluation

(not shown here) have similar shape. One can see from these plots that the small inverted lists are accessed

rarely. Unfortunately, as Figure 1 shows, these rarely accessed records represent less than 1% of the total

file size for the larger collections and only 5% of the total file size for the smallest collection. Therefore, we

2



0

2

4

6

8

10

10 100 1000 10000 100000 1e+06

N
u
m

b
e
r 

o
f 

U
s
e
s

Inverted List Record Size (bytes)

Figure 2: Frequency of use of different inverted list record sizes for Legal Query Set 2.

must be prepared to provide efficient access to the majority of the raw data in the file.

We also observe that there is significant repetition of the terms used from query to query. This can be

expected for two reasons. First, a user of an IR system may iteratively refine a query to obtain the desired set

of documents. As the query is refined to more precisely represent the user’s information need, terms from

earlier queries will reappear in later queries. Second, IR systems are often used on specialized collections

where every document is related to a particular subject. In this case, there will be terms that are common to

a large number of queries, even across multiple users.

Supporting modification of inverted lists is made difficult by the format and size of the inverted lists.

The entries in an inverted list are sorted by document identifier, and as we have already noted, the lists range

in size from less than 8 bytes to over 2 Mbytes in large collections. When a new document is added to the

collection, the inverted list for each term that occurs in the document must be obtained to insert an entry

for the document in the appropriate location. This poses a space management problem in the file as we

attempt to insert items in the middle of potentially quite large objects. A similar problem arises for document

deletion, except that we are deleting entries for every term in the document, creating holes in the inverted

lists.

In the INQUERY system, as well as in other IR systems, document collections are currently viewed as

archival and modification is considered a rare event. Therefore, addition or deletion of a single document

to or from an existing collection is not directly supported and requires the entire document collection to be

re-indexed. Indexing a large collection can be very expensive because it is dominated by a sorting problem,

where the inverted list entries for every term appearance in the collection are sorted by term identifier and

document identifier.

3



3 Architecture

In this section we describe the software architecture that resulted when the B-tree package of INQUERY

was replaced by Mneme. We begin with a description of INQUERY, followed by a brief overview of Mneme,

and conclude with a discussion of the issues addressed during integration of the two systems.

3.1 INQUERY

INQUERY is a probabilistic information retrieval system based upon a Bayesian inference network

model [19, 2]. The power of the inference network model is the consistent formalism it provides for

reasoning about evidence of differing types. Extensive testing on standard and private IR test collections

has shown INQUERY to be one of the best IR systems, as measured by the standard IR metrics of recall

and precision [9]. INQUERY is fast, scales well to large document collections, and can be embedded in

specialized applications.

The bottlenecks in IR are retrieving and ranking the documents that match a query. Retrieval identifies

the (possibly large) subset of the collection that may be relevant to the query. Document ranking assigns an

ordering to the documents so that a user can examine first those documents that are most likely to satisfy the

information need. In INQUERY, document ranking is a sorting problem, because the Bayesian method of

combining belief assigns a numeric value to each document. Other functionality, for example sophisticated

query processing and presentation of results, generally does not affect the speed of the system.

Two of INQUERY’s data storage facilities do affect the speed of retrieval: a hash dictionary, and an

inverted file index. INQUERY uses an open-chaining hash dictionary to map text strings (words) to unique

integers called term ids. The hash dictionary also stores summary statistics for each string and resides

entirely in main memory during query processing.

The inverted file index is organized as a keyed file, using term ids as keys and a B-tree index. There

is one record per term. A record has a header containing summary statistics about the term, followed by

a listing of the documents, and the locations within each document, where the term occurs. The record is

stored as a vector of integers in a compressed format. The average compression rate for the four collections

in Table 1 is about 60%.

During retrieval, INQUERY performs ‘term-at-a-time’ processing of evidence. That is, it reads the

complete record for one term, and merges the evidence from that term with the evidence it is accumulating

for each document. Then it processes the next term. This approach is fast. However, it requires large

amounts of memory for large collections, because several inverted list records must be kept in memory

simultaneously. A ‘document-at-a-time’ approach, which gathered all of the evidence for one document

before proceeding to the next, might scale better to large collections. However, it would be cumbersome

with the current custom B-tree package.

3.2 Mneme

The Mneme persistent object store [13] was designed to be efficient and extensible. The basic services

provided by Mneme are storage and retrieval of objects, where an object is a chunk of contiguous bytes that

has been assigned a unique identifier. Mneme has no notion of type or class for objects. The only structure

Mneme is aware of is that objects may contain the identifiers of other objects, resulting in inter-object

references.

Objects are grouped into files supported by the operating system. An object’s identifier is unique only

within the object’s file. Multiple files may be open simultaneously, however, so object identifiers are mapped

to globally unique identifiers when the objects are accessed. This allows a potentially unlimited number of

objects to be created by allocating a new file when the previous file’s object identifiers have been exhausted.

4



The number of objects that may be accessed simultaneously is bounded by the number of globally unique

identifiers (currently 228).
Objects are physically grouped into physical segments within a file. A physical segment is the unit of

transfer between disk and main memory and is of arbitrary size. Objects are also logically grouped into

pools, where a pool defines a number of management policies for the objects contained in the pool, such

as how large the physical segments are, how the objects are laid out in a physical segment, how objects

are located within a file, and how objects are created. Note that physical segments are not shared between

pools. Pools are also required to locate for Mneme any identifiers stored in the objects managed by the

pool. This would be necessary, for instance, during garbage collection of the persistent store. Since the pool

provides the interface between Mneme and the contents of an object, object format is determined by the

pool, allowing objects to be stored in the format required by the application that uses the objects (modulo

any translation that may be required for persistent storage, such as conversion of main memory pointers to

object identifiers). Pools provide the primary extensibility mechanism in Mneme. By implementing new

pool routines, the system can be significantly customized.

The base system provides a number of fundamental mechanisms and tools for building pool routines,

including a suite of standard pool routines for file and auxiliary table management. Object lookup is facilitated

by logical segments, which contain 255 objects logically grouped together to assist in identification, indexing,

and location. A hash table is provided which takes an object identifier and efficiently determines if the object

is resident in main memory. Support for sophisticated buffer management is provided by an extensible

buffering mechanism. Buffers may be defined by supplying a number of standard buffer operations (e.g.,

allocate and free) in a system defined format. How these operations are implemented determines the policies

used to manage the buffer. A pool attaches to a buffer in order to make use of the buffer. Mneme then maps

the standard buffer operation calls made by the pool to the specific routines supplied by the attached buffer.

Additionally, the pool is required to provide a number of “call-back” routines, such as a modified segment

save routine, which may be called by a buffer routine.

3.3 The Integrated System

The Mneme version of the inverted index was created by allocating an object for each inverted list record

in the B-tree file. The Mneme identifier assigned to the object was stored in the INQUERY hash dictionary

entry for the associated term. When the inverted list for a term is needed by the query processor, the object

identifier for the list is retrieved from the hash dictionary and used to obtain the desired object.

Based on the analysis in Section 2 and the features of Mneme, we observed three distinct groups of

inverted list objects. First, in all of the test collections, approximately 50% of the inverted lists are 12 bytes

or less. By allocating a 16 byte object (4 bytes for a size field) for every inverted list less than or equal to

12 bytes, we can conveniently fit a whole logical segment (255 objects) in one 4 Kbyte physical segment.

This greatly simplifies both the indexing strategy used to locate these objects in the file and the buffer

management strategy for these segments. Inverted lists in this category were allocated in a small object pool.

Second, a number of inverted lists are so large, it is not reasonable to cluster them with other objects in

the same physical segment. Instead, these lists are allocated in their own physical segment. All inverted lists

larger than 4 Kbytes were allocated in this fashion in a large object pool. The remaining inverted lists form

the third group of objects and were allocated in a medium object pool. These objects are packed into 8 Kbyte

physical segments. The physical segment size is based on the disk I/O block size and a desire to keep the

segments relatively small so as to reduce the number of unused objects retrieved with each segment.

This partitioning of the objects allows the indexing and buffer management strategies for each group to

be customized. Each object pool was attached to a separate buffer, allowing the global buffer space to be

divided between the object pools based on expected access patterns and memory requirements. The buffer

replacement policy used for each of the three pools is least recently used (LRU) with a slight optimization.

5



As queries are parsed by INQUERY, a tree is constructed that represents the query in an internal form.

Before the query tree is processed, we quickly scan the tree and “reserve” any objects required by the query

that are already resident, potentially avoiding a bad replacement choice.

With the above partitioning, the large object pool will still contain a huge range of object sizes. We

experimented with further partitioning the large object buffer, but found the best hit rates were achieved with

a single buffer of the same total size.

4 Performance Evaluation

We evaluated the persistent object store based INQUERY system by comparing its performance with the

performance of the original system. Traditionally, IR system performance has been measured in terms of

recall and precision. The portion of the system that determines those factors is fixed across the two systems

we are comparing. Instead, we are concerned with execution time, which we measured on a variety of

document collections and query sets. Below we describe the execution environment, the experiments, and

the results.

4.1 Platform

All of the experiments were run in single user mode on a DECstation 5000/240 (MIPS R3000 CPU1
clocked at 40 MHz) running ULTRIX2 V4.2A. The machine was configured with 64 Mbytes of main memory,

a 426 Mbyte RZ25 SCSI disk, and a 1.35 Gbyte RZ58 SCSI disk. The machine mounts many of its bin files

from another host via NFS, and so could not be isolated from the network. In fact, the INQUERY system

executables were stored on a remote host, although all of the data files accessed during the experiments were

stored locally on the 1.35 Gbyte disk. The INQUERY system was compiled with the GNU C compiler (gcc)

version 2.3.2 at optimization level 2.

4.2 Experiments

For our experiments, we measured the execution time of both systems on a number of query sets using

the document collections described in Table 1. The documents in CACM [7] are abstracts and titles of

articles that appeared in Communications of the ACM from 1958 to 1979. The first two query sets used with

this collection are different boolean representations of the same 50 queries. The third query set contains

the same queries as the first two sets, but with manually-selected words and manually-selected phrases.

TIPSTER comes from parts 1 and 2 of the TIPSTER distribution, a collection of full-text news articles

and abstracts on a variety of topics from news wire services, newspapers, Federal Register announcements,

and magazines. The query set was generated locally from TIPSTER topics 51-100 using automatic and

semi-automatic methods. TIPSTER 1 consists of part 1 only and uses the same query set. Both TIPSTER

and CACM are standard test collections in the IR community. Legal is a privately obtained collection of

legal case descriptions. The first query set for the Legal collection was supplied with the collection. The

second query set was generated locally by supplementing the first query set with dictionary terms, phrases,

and weights. In all cases the query sets are designed to evaluate an IR system’s recall and precision and are

representative of queries that would be asked by real users.

Each query set was processed by the two versions of INQUERY in batch mode, using appropriate

relevance and stop words files. A relevance file lists the documents that should have been retrieved for each1MIPS and R3000 are trademarks of MIPS Computer Systems.2DECstation and ULTRIX are registered trademarks of Digital Equipment Corporation.

6



Collection Object Buffer Sizes

Small Medium Large

CACM 12.7 24.4 24

Legal 12.7 97.7 1098

TIPSTER 1 12.7 341.8 4596

TIPSTER 12.7 702.5 7806

Table 2: Mneme buffer sizes for the different collections. All sizes are in Kbytes.

query and is required for determining recall and precision. A stop words file lists words that are not worth

indexing on because they occur so frequently or are not significantly meaningful.

Since the B-tree version of INQUERY does no user space main memory caching of inverted list records

across record accesses, we measured the Mneme based version of INQUERY both with and without inverted

list record caching. For the version with caching, the main memory buffer sizes are shown in Table 2 and

were determined for each collection as follows. The large object buffer size was 3 times the size of the largest

inverted list in the collection. This heuristic was meant to allocate a reasonable amount of buffer space,

in a somewhat regulated fashion, for each collection. Merely allocating a percentage of the total inverted

file size would be inappropriate given the range of inverted file sizes. For the three larger collections, the

medium object buffer size was 9% of the size of the large object buffer. This allocation was based on object

access behavior observed during query processing, where the number of accesses to medium objects equaled

roughly 9% of the number of accesses to large objects. For the CACM collection, 9% of the large object

buffer would not have been large enough to hold a single medium object segment. Therefore, we made the

medium object buffer large enough to hold 3 medium object segments. This decision was further supported

by the much higher percentage of accesses to medium objects when processing the CACM queries. The

small object buffer was simply made large enough to hold 3 small object segments. In all of the collections,

small object access was insignificant.

Timings were made using the system clock via calls to ftime() and getrusage(). Timing was begun just

before query processing started, after all files had been opened and any initialization was complete. Timing

ended when the query set had been processed, before any files were closed. Each query set was run 6 times,

and mean times from all six runs are reported below. In all cases, the result of any particular run differed

from the mean by less than 1% of the mean. Before each query set was run, a 32 Mbyte “chill file” was

read to purge the operating system file buffers and guarantee that no inverted file data was cached by the file

system across runs. The measured I/O inputs for each run indicate that this was accomplished.

4.3 Results

Table 3 shows the wall-clock time required by the different versions of INQUERY to process each of

the query sets. The Mneme version without caching achieves a noticeable improvement in performance

over the B-tree version. The addition of caching to the Mneme version increases the performance further,

yielding the improvements shown in the final column of the table. Improvement is calculated as (B-tree time

– Mneme with cache time) / B-tree time.

A more precise measure of the portion of the system that varies across the different versions is system

cpu time plus time spent waiting for I/O to complete. This was obtained by subtracting user cpu time from

the wall-clock time. User cpu time approximates the time spent in the inference retrieval and ranking engine.

This time should be comparable for all versions, and in fact varies by less than 1% across the versions.

System cpu plus I/O time is reported in Table 4. Again, the Mneme version without caching is faster than

7



Collection Query B-Tree Mneme, Mneme, Improve-

Set No Cache Cache ment

CACM 1 6.49 6.02 5.93 9%

2 7.41 6.40 6.37 14%

3 11.73 9.34 8.32 29%

Legal 1 62.84 51.36 50.55 20%

2 65.82 53.46 52.01 21%

TIPSTER 1 1 2683.20 2568.24 2519.55 6%

TIPSTER 1 4132.34 3973.45 3894.74 6%

Table 3: Wall-clock times. All times are in seconds.

the B-tree version, and the Mneme version with caching is fastest, yielding the improvements shown in the

final column of the table.

Collection Query B-Tree Mneme, Mneme, Improve-

Set No Cache Cache ment

CACM 1 1.97 1.48 1.41 28%

2 2.56 1.53 1.52 41%

3 5.22 2.82 1.90 64%

Legal 1 24.59 13.67 12.77 48%

2 26.38 14.70 13.21 50%

TIPSTER 1 1 586.12 479.86 430.58 27%

TIPSTER 1 861.75 723.00 646.92 25%

Table 4: System CPU plus I/O times. All times are in seconds.

For the end user, the reduction in wall-clock time is most significant. However, our goal was to

demonstrate that the inverted file index sub-system of an IR system could be efficiently supported by an

“off-the-shelf” data management system. The system plus I/O times represent the time spent in the sub-

system we have replaced, and the significant improvement shows that we have met our goal. It is also

apparent from Tables 3 and 4 that as the collection becomes larger, the time spent in the inference retrieval

and ranking engine starts to dominate the overall time, reducing the impact of any improvement in system

and I/O time. The improvement is still noticeable, however, allowing the other potential benefits of using a

more sophisticated data management system to be obtained without performance penalty.

To help explain why the Mneme versions obtain a performance improvement, Table 5 gives some

I/O statistics for each query set and INQUERY version. “I” is the number of I/O inputs measured with

getrusage(), which counts the number of 8 Kbyte blocks actually read from disk. “A” is the average number

of file accesses per inverted list record lookup. Note that this does not represent actual disk activity since

some file accesses are satisfied by the Ultrix file system cache. “B” is the total number of Kbytes read from

the inverted list file during query processing. Again, this does not represent actual bytes read from disk since

some file accesses are satisfied by the Ultrix file system cache.

We can draw a number of observations from this table. The Mneme version without caching is faster

than the B-tree version because it makes fewer accesses to the file (therefore fewer system calls) and, more

8



Collection Query B-Tree Mneme, No Cache Mneme, Cache

Set I A B I A B I A B

CACM 1 82 1.89 585 63 1.02 1700 64 0.89 1496

2 82 1.89 940 64 1.01 2430 64 0.85 2056

3 83 1.44 2030 65 1.00 7890 65 0.45 3600

Legal 1 2747 2.92 20700 1626 1.07 20652 1625 0.96 17346

2 2776 2.61 24526 1626 1.06 24668 1626 0.80 18594

TIPSTER 1 1 68280 2.89 503546 61308 1.03 503520 59917 0.60 271272

TIPSTER 1 96352 3.09 841304 87876 1.04 841516 84568 0.61 456062

Table 5: I/O statistics. I = I/O inputs, A = ave. file accesses / record lookup, B = total Kbytes read from file.

importantly, fewer accesses to the disk. The B-tree version does limited and unsophisticated caching of

index nodes, such that every record lookup requires more than one disk access. This problem gets worse as

the file grows and the height of the index tree increases. Mneme, however, requires close to 1 file access

per record lookup. Mneme locates objects based on their logical segments using compact multi-level hash

tables. This lookup mechanism requires slightly more computation, but the reduced table size allows the

auxiliary tables to remain permanently cached after their first access3. It is interesting to note that the Mneme

version reads substantially more bytes from the file for the CACM queries than does the B-tree version.

This is because the CACM queries generate more activity in the small and medium object pools, which have

multiple objects clustered in physical segments. Accessing a given object will cause the entire physical

segment to be read in. This is less expensive than it appears because the physical segment size is tuned to

the disk block transfer size. Each disk access causes 8 Kbytes to be read from disk, so in fact, based on the

number of I/O inputs, the B-tree version transfers more raw bytes from disk even though it attempts to read

far fewer bytes in the file.

Caching of inverted list records increases the performance of the Mneme version by further reducing

the number of file and disk accesses. For CACM and Legal, the file system cache is able to satisfy enough

file accesses so that there is no difference in “I” between the two Mneme versions. However, the reductions

in “A” and “B” mean fewer system calls, less data copying between system and user memory space, and

a savings in system cpu time. The TIPSTER collections are large enough that the Mneme version with

inverted list record caching requires fewer I/O inputs than the versions that have file system caching only.

It is clear that caching of inverted list records to reduce disk accesses is advantageous, whether provided

by the file system cache or the data management subsystem. It is also clear (and well known [16]) that caching

provided by the file system is an inferior solution for data management problems. The buffer management

requirements of inverted list data are better satisfied by the custom, domain tailored mechanisms in Mneme.

The effectiveness of these caching mechanisms can be seen in Table 6, which shows the hit rates that were

achieved in each of the buffers for each of the queries. The hit rates are fairly significant given that the

buffer sizes allocated could be considered modest.

In order to further investigate the effects of buffer size, we measured the hit rates achieved in the large

object buffer over a range of buffer sizes for the TIPSTER query set. The results are plotted in Figure 3.

The figure shows that increasing the buffer size gradually produces diminishing returns, but the knee of the

curve can be used to guide buffer allocation.3The TIPSTER collection requires only 512 Kbytes to cache all of the auxiliary tables.

9



Collection Query Small Object Buffer Medium Object Buffer Large Object Buffer

Set Refs Hits Rate Refs Hits Rate Refs Hits Rate

CACM 1 15 4 0.27 191 16 0.08 14 9 0.64

2 11 2 0.18 191 17 0.09 25 17 0.68

3 5 3 0.60 221 109 0.49 30 25 0.83

Legal 1 0 0 0.00 29 2 0.07 296 33 0.11

2 0 0 0.00 35 9 0.26 366 95 0.26

TIPSTER 1 1 1 0 0.00 158 36 0.23 2112 938 0.44

TIPSTER 1 0 0 0.00 106 25 0.24 2137 923 0.43

Table 6: Buffer hit rates for the query sets.

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0 5 10 15 20 25 30 35 40 45 50 55

H
it
 R

a
te

Buffer Size (millions of bytes)

Figure 3: Large object buffer hit rates for TIPSTER Query Set 1 over different buffer sizes.

10



5 Related Work

A great deal of work has been done in the area of supporting IR with a relational database management

system (RDBMS). Some of the earliest work was done by Crawford and MacLeod [4, 11, 3, 12], who

describe how to use the relational model to store document data and construct information retrieval queries.

Similar work was presented more recently by Blair [1] and Grossman and Driscoll [8]. Others have chosen to

extend the relational model to allow better support for IR. Lynch and Stonebraker [10] show how a relational

model extended with abstract data types can be used to better support the queries that are typical of an IR

system.

In spite of evidence demonstrating the feasibility of using a standard or extended RDBMS to support

information retrieval, IR system builders have still chosen to build production systems from scratch. This

is due to the belief that superior performance can be achieved with a custom system, a belief which is

substantiated by a lack of results proving otherwise and anecdotal evidence. Additionally, most of the work

described above deals only with document titles, author lists, and abstracts. Techniques used to support this

relatively constrained data collection may not scale to true full-text retrieval systems. We desire to support

full-text retrieval with high performance. Our approach, while similar in spirit to the above work, differs

in both the data management technology chosen to support IR and the extent to which it is applied for that

task. The data management technology we use is a persistent object store, and currently it is only used to

manage an inverted file index.

Other work in this area has attempted to integrate information retrieval with database management [5,

15]. The services provided by a database management system (DBMS) and an IR system are distinct

but complementary, making an integrated system very attractive. The integrated architecture consists of a

DBMS component and a custom IR system component. There is a single user interface to both systems, and

a preprocessor is used to delegate user queries to the appropriate subsystem. Additionally, the DBMS is used

to support the low level file management requirements of the whole system. This architecture is similar to

ours in that a separate data management system is used to support the file management requirements of the

IR system. However, our data management system is a persistent object store and we focus on supporting

high performance IR, with no support for traditional data management.

Efficient management of full-text database indices has received a fair amount of attention. Faloutsos [6]

gives an early survey of the common indexing techniques. The two techniques that seem to predominate are

signature files and inverted files, each of which implies a different query processing algorithm. Since the

INQUERY system uses an inverted file index, and we are not interested in changing the query processing

algorithm, we do not discuss signature files. Zobel et al. [23] investigate the efficient implementation of

an inverted file index for a full-text database system. Their focus is on compression techniques to limit the

size of the inverted file index. They also address updates to the inverted file and investigate the different

inverted file index record formats necessary to satisfy certain types of queries. In our work, the format of

the inverted file index records and the compression techniques applied to those records are pre-determined

by the existing INQUERY system. Our approach is to replace the subsystem that manages these records,

without changing the format of the records themselves.

Tomasic and Garcia-Molina [18] study inverted file index performance in a distributed shared-nothing

environment. Their simulation results show that caching inverted file index records in main memory can

significantly improve performance. This is consistent with our results obtained from measuring an actual

system, where the performance improvement of INQUERY integrated with Mneme is due mainly to caching.

This result implies that there is significant repetition of terms from query to query. This fact has severe

implications for any IR study which assumes a uniform distribution over the term vocabulary when selecting

query terms, such as the study in [17].

Properly modeling the size distribution of inverted file index records and the frequency of use of terms

in queries is addressed by Wolfram in [20, 21]. He suggests that the informetric characteristics of document

11



databases should be taken into consideration when designing the files used by an IR system. We have tried to

take this advice to heart by developing appropriate file organization and buffer management policies based

on the characteristics of the data and the data access patterns.

6 Conclusions

Information retrieval systems development is quickly reaching a point where further progress requires

the use of more sophisticated data management services, such as concurrency control, dynamic update, and a

complex data model. IR system builders are faced with the choice of developing these services themselves,

or looking to “off-the-shelf” products to provide these services. Previous attempts at using standard DBMSs

to provide these services have produced discouraging results due to poor performance. We have shown here

that with the proper data management technology, sophisticated data management services can be supplied

to an IR system by an “off-the-shelf” data management system without a performance penalty. In fact, the

performance measurement results presented in Section 4 demonstrate that a performance improvement can

be obtained.

Much of the performance improvement enjoyed by the Mneme version can be attributed to careful file

allocation sympathetic to the device transfer block size and intelligent caching of auxiliary tables and inverted

list records. While these features could be added to the B-tree package to achieve a similar improvement, it

is exactly this type of effort we are trying to avoid by using an existing data management package.

Mneme offers other advantages besides data caching and smart file allocation. The extensibility of

Mneme allows the system to be customized based on the characteristics of the data being stored. This capa-

bility is a clear advantage in an environment where the data management requirements are non-traditional,

and was mandatory for satisfying the individual management needs of the different object groups in the

inverted index. The more standard data management services provided by Mneme include recovery and

support for a richer data model. Inter-object references allow structures such as linked lists to be used to

break large objects into more manageable pieces. This could provide better support for inverted list updates

and allow incremental retrieval of large aggregate objects.

The current version of Mneme is a prototype and does not provide all of the services one might expect

from a mature data management system, such as concurrency control and transaction support. However, the

nature of access to the data we are supporting here is predominately read-only. We expect that the addition

of these services would not introduce excessive overhead or change the results reported above.

For future work we plan to implement some of the standard data management services not currently

provided by Mneme and verify the above claim. We will also make use of the services that are currently

provided by Mneme but not used to advantage above, such as the richer data model. Furthermore, it would

be worthwhile to investigate other store and buffer organizations, looking for more opportunities to tune the

system to the unique data management requirements of information retrieval.

References

[1] D. C. Blair. An extended relational document retrieval model. Inf. Process. & Mgmnt.,
24(3):349–371, 1988.

[2] J. P. Callan, W. B. Croft, and S. M. Harding. The INQUERY retrieval system. In Proceedings of the
3rd Inter. Conf. on Database and Expert Systems Applications, Sept. 1992.

[3] R. G. Crawford. The relational model in information retrieval. J. Amer. Soc. Inf. Sci., 32(1):51–64,
1981.

[4] R. G. Crawford and I. A. MacLeod. A relational approach to modular information retrieval systems
design. In Proceedings of the 41st Conf. of the Amer. Soc. for Inf. Sci., 1978.

12



[5] J. S. Deogun and V. V. Raghavan. Integration of information retrieval and database management
systems. Inf. Process. & Mgmnt., 24(3):303–313, 1988.

[6] C. Faloutsos. Access methods for text. ACM Comput. Surv., 17:50–74, 1985.

[7] E. A. Fox. Characterization of two new experimental collections in computer and information science
containing textual and bibliographic concepts. Technical Report 83-561, Cornell University, Ithaca,
NY, Sept. 1983.

[8] D. A. Grossman and J. R. Driscoll. Structuring text within a relational system. In Proceedings of the
3rd Inter. Conf. on Database and Expert Systems Applications, pages 72–77, Sept. 1992.

[9] D. Harman, editor. The First Text REtrieval Conference (TREC1). National Institute of Standards and
Technology Special Publication 200-207, Gaithersburg, MD, 1992.

[10] C. A. Lynch and M. Stonebraker. Extended user-defined indexing with application to textual
databases. In Proceedings of the 14th International Conference on Very Large Databases, pages
306–317, 1988.

[11] I. A. MacLeod. SEQUEL as a language for document retrieval. J. Amer. Soc. Inf. Sci., 30(5):243–249,
1979.

[12] I. A. MacLeod and R. G. Crawford. Document retrieval as a database application. Inf. Tech.: Res.
Dev., 2(1):43–60, 1983.

[13] J. E. B. Moss. Design of the Mneme persistent object store. ACM Trans. Inf. Syst., 8(2):103–139, Apr.
1990.

[14] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, New York,
1983.

[15] L. V. Saxton and V. V. Raghavan. Design of an integrated information retrieval/database management
system. IEEE Trans. Know. Data Eng., 2(2):210–219, June 1990.

[16] M. Stonebraker. Operating system support for database management. Commun. ACM,
24(7):412–418, July 1981.

[17] A. Tomasic and H. Garcia-Molina. Performance of inverted indices in distributed text document
retrieval systems. Technical Report STAN-CS-92-1434, Stanford University Department of
Computer Science, 1992.

[18] A. Tomasic and H. Garcia-Molina. Caching and database scaling in distributed shared-nothing
information retrieval systems. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Washington, D.C., May 1993.

[19] H. Turtle and W. B. Croft. Evaluation of an inference network-based retrieval model. ACM Trans. Inf.
Syst., 9(3):187–222, July 1991.

[20] D. Wolfram. Applying informetric characteristics of databases to IR system file design, Part I:
informetric models. Inf. Process. & Mgmnt., 28(1):121–133, 1992.

[21] D. Wolfram. Applying informetric characteristics of databases to IR system file design, Part II:
simulation comparisons. Inf. Process. & Mgmnt., 28(1):135–151, 1992.

[22] G. K. Zipf. Human Behavior and the Principle of Least Effort. Addison-Wesley Press, 1949.

[23] J. Zobel, A. Moffat, and R. Sacks-Davis. An efficient indexing technique for full-text database
systems. In Proceedings of 18th International Conference on Very Large Databases, Vancouver, 1992.

13


