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Abstract—Cyber-physical systems (CPS) are heterogeneous, be-
cause they tightly couple computation, communication, and control
along with physical dynamics, which are traditionally considered
separately. Without a comprehensive modeling formalism, model-
based development of CPS involves using a multitude of models in
a variety of formalisms that capture various aspects of the system
design, such as software design, networking design, physical mod-
els, and protocol design. Without a rigorous unifying framework,
system integration and integration of the analysis results for vari-
ous models remains ad hoc. In this paper, we propose a multi-view
architecture framework that treats models as views of the under-
lying system structure and uses structural and semantic mappings
to ensure consistency and enable system-level verification in a
hierarchical and compositional manner. Throughout the paper, the
theoretical concepts are illustrated using two examples: a quad-
rotor and an automotive intersection collision avoidance system.

Index Terms—Control design, control engineering, formal veri-
fication, software architecture.

I. INTRODUCTION

MODEL-BASED development refers to the use of compu-

tational and formal models in the system design process.

The goal is to reduce costly testing and redesign: catching errors

in models is significantly cheaper than finding them in the final

system or even in prototype implementations. Model-based de-

velopment of complex cyber-physical systems (CPS) involves

creating models for a variety of different design perspectives,

including computation and software design, communication

and networking design, design of the physical dynamics, proto-

col design, and control design. Different modeling and analysis

tools are well-suited for some of these aspects but not others.

For control applications, control laws are typically derived

and initially evaluated using control-oriented models, in which

details of the implementation and the physical dynamics are

simplified or neglected. These details are usually modeled and
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Fig. 1. Multi-domain models of the STARMAC quadrotor.

evaluated using other formalisms and tools. Heterogeneity of

those models poses challenges to assessing the performance and

correctness of the CPS as a whole.

In our prior work (summarized in Section III), we introduced

the concept of architectural views for CPS to support model-

based development with heterogenous models, and demon-

strated how mappings between the views can ensure the models

are structurally consistent. Formal verification of safety-critical

CPS using heterogeneous models requires richer semantic sup-

port; however, that goes beyond the semantics enforced by

architectural structure. In this paper, we propose a framework

to provide this support based on behavioral semantics to sup-

port heterogeneous multi-model development of CPS within a

multi-view architectural framework.

To motivate the discussion, we consider two CPS examples.

The first example is the Stanford Testbed of Autonomous

Rotorcraft for Multi-Agent Control (STARMAC) [1], which is

a quadrotor platform developed to test algorithms that enable

autonomous operation of aerial vehicles. Fig. 1 depicts hetero-

geneous models of the quadrotor from four different design

domains: a signal-flow model of the closed-loop feedback

system for the vehicle, used for stability and performance anal-

ysis; an equation-based physical model to study the open-loop

dynamic response of the vehicle to external forces and torques;

a process algebra model of the on-board controller software,

used to verify certain safety conditions; and a hardware model

of the electronic units and their interconnection, used to study

tradeoffs between specifications and system-level performance.

Each of these models describes the same underlying vehicle,

so the assumptions made in each model about the structure

and properties of the quadrotor must be consistent with the

complete system in some way. The notion of structural consis-

tency makes it possible to trust analysis results obtained from
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Fig. 2. Cooperative intersection collision avoidance system for stop-sign assist (CICAS-SSA) and a collection of models for it. (a) Illustration of CICAS-SSA.
(b) A collection of models for CICAS-SSA.

each model separately and use the analysis results from each

model as assumptions in other models. The structural richness

of the STARMAC example helps illustrate the application of

structural consistency.

The other example is a cooperative intersection collision

avoidance system for stop-sign assist (CICAS-SSA), illustrated

in Fig. 2(a), which aims to augment human judgment about

safe gaps in oncoming traffic at stop-sign-controlled intersec-

tions [2]. Such systems involve: sensing for the heading of

the oncoming vehicles; communication of these readings over

networks to a decision system; and computation of safe gaps

based on the physical dynamics of the vehicles and speed limits.

In addition, there is also empirical information about the time

required to alert and warn drivers in time for them to respond,

driver behavior of acceptance and rejection of traffic gaps for

different demographics, and the suitability of the systems for

different intersection geometries [3]–[5]. There is no universal

modeling framework that captures everything that is to be

modeled for such a system, and even if there were, the analysis

of such an all-inclusive model would not be tractable. As a

result, one needs to decompose the underlying system into

semantically different models, shown in Fig. 2(b), and analyze

them separately. The semantic diversity of CICAS-SSA models

helps demonstrate our approach to heterogeneous verification.

The need to use heterogeneous models and their analysis

together towards correct system design presents a unique set

of challenges. Lack of a system-level representation makes

system integration an ad hoc and error prone activity. For-

mal verification of the overall safety-critical system without

a comprehensive modeling formalism leads to the question:

How can verification results from the different formalisms be

combined to infer system-level properties? Complex systems

are designed by composing subsystems and abstractions need

to be made across heterogeneous modeling formalisms to make

the analysis tractable. Each model represents some aspect of

system design while occluding others by making simplifying

assumptions that are often undocumented and have no support-

ing representation or are captured informally at best.

To address these issues, we present an architectural frame-

work for the heterogeneous model-based development of CPS.

We begin by reviewing related work in Section II. We then

present our architectural framework in three parts: i) a summary

of our work on the architecture-centric approach to consistent

design of CPS in Section III; ii) the development of behavior

semantics for addressing semantic heterogeneity and its use

for multi-model hierarchical and compositional heterogeneous

verification in Sections IV–VI; and iii) a unified framework that

combines the multi-view structural analysis and multi-model

semantic analysis, as presented in Section VII. Section VIII

summarizes the contributions of the paper and outlines some

directions for future work. The theoretical concepts are illus-

trated on the CICAS-SSA and STARMAC examples.

II. RELATED WORK

A. Multi-Model Development

The field of computer automated multi-paradigm modeling

is introduced in [6], and the current issues and promising

approaches are outlined. System architecture virtual integration

is an architecture-centric approach to the analysis of system

models with respect to quality attributes, such as performance,

safety, and reliability [7], but it lacks a uniform way to reason

about heterogeneous model semantics. NAOMI is an experi-

mental platform for enabling multiple heterogeneous models to

work together [8], but it does not define consistency between

models and the system, nor is there is a mechanism to define

physical architectural elements. Ptolemy II enables simulation

of heterogeneous models by integrating multiple “models of

computation” hierarchically into a single simulation model in

an actor-oriented formalism [9]. SysWeaver [10] is a model-

based development tool that includes a flexible code generation

scheme for distributed real-time systems, however it lacks

support for a physical plant modeling view and a mechanism

to define new views or relations between them.

Multiple models are also supported by model transformation/

translation using meta-models [11]–[13], a suitable interchange

format [14], [15] or the use of translation schemes [16]. The

Vanderbilt model-based prototyping toolchain supports a subset

of Simulink/Stateflow models with periodic execution, software

architecture and hardware platform modeling, but has neither

support for additional views (e.g., physical or verification mod-

els), nor a notion of consistency between additional system

views. The approach in semantic anchoring [16] to transform

between system models concentrates on the specification of the

dynamic semantics of domain-specific modeling languages us-

ing a small set of behavior abstractions. The Metropolis design
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framework [17] and its proposed extension Metro II [18] use

platform-based design methodology for multi-model system

design by orthogonalizing concerns such as communication-

computation, function-architecture and behavior-performance.

The ModelicaML profile aims to integrate UML and Mod-

elica for modeling and simulation of system requirements and

design [19]. Similar work has been done for UML and Simulink

[20]. There is also an ongoing effort to integrate Modelica with

SysML (a UML 2.0 profile) for physical domain modeling

[21]. However, in all these approaches, there is not an easy

way to incorporate physical dynamics models into the overall

framework. For example, SysML flow ports do not have a

well-defined semantics to model flows of physical quantities

(energy or torque). In addition, there are no consistent rules

or guidelines on how to define relationships between multiple

views in any of these frameworks.

These approaches focus on addressing specific sets of is-

sues in supporting multi-model system development of CPS.

Our approach is to develop a general unifying framework for

supporting not only multi-model design, but also analysis and

verification of CPS.

B. Software Architecture

Over the past decade software architecture has emerged

as one of the primary techniques for disciplined engineer-

ing of large-scale software systems. A software architecture

(SA) typically models a system as a graph of components

and connectors, in which the components represent principal

computational elements of a system’s run-time structure and the

connectors represent the pathways of communication between

components [22], [23]. These elements are annotated with

properties that characterize their abstract behaviors and allow

one to reason and make tradeoffs at a systems level about

qualities such as performance, reliability, security, and cost.

Given the importance of SA, there has been considerable

research and development in: notations to support architectural

specification, often called architecture description languages

(ADLs): and tools to support their analysis and realization as

code [24], [25]. Standardized notations, such as UML 2.0 [26],

SysML [27], and AADL [28] provide a modeling vocabulary of

components and connectors, as well as certain classes of prop-

erties. Additionally, a number of researchers have investigated

the modeling of architectural behavior, for example as protocols

characterized by process algebras or state machines [29], [30].

These notations are supported by tools that provide graphi-

cal editing and viewing, hierarchical development (in which

components may be refined as more detailed architectures)

[31], checking for component compatibility or substitutability

[32], and evaluation of quality attributes such as performance,

reliability, and security [25].

SAs also support reuse of design expertise and code infras-

tructure. In many cases an architecture of a system fits within a

common family or design pattern, referred to as an architectural

style, which is typically defined as a set of component and

connector types, together with constraints that prescribe how

elements can be composed [22]. Some ADLs allow one to

define architectural styles, develop systems in that style, and

provide tools for checking whether a system is compliant with

a given style [33]. NASA has developed an architectural style

for space systems, in which components represent sensors,

actuators, state variables, and estimators, and then used this to

model space rovers for Mars [34].

In principle, SA promises a natural solution path for pro-

viding a uniform modeling approach that supports the design

and analysis of CPS. First, through high-level, hierarchical

component-oriented models, it can provide representations that

reduce complexity through abstraction and encapsulation. Sec-

ond, through SA’s uniform treatment of components, whether

embodied by software or hardware, it can support integration

of systems that combine physical and computational elements.

Third, as we discuss later, it can form the basis for understand-

ing the dependencies between various separable models that

focus on partial analysis of the full system. Indeed, SA has been

applied effectively to numerous embedded and control systems.

ADLs such as Meta-H and AADL have been used to model

avionics, automotive, and other control systems [35].

There are two fundamental shortcomings of current archi-

tecture modeling capabilities that limit their potential to fully

address the engineering problems of large-scale, heterogeneous

CPS: i) limited vocabulary to represent physical elements and

their interactions; and ii) inadequate ways to support con-

sistency relations between different (possibly heterogeneous)

architecture views of the same system. Our work on cyber-

physical system architectures that addresses these shortcomings

is summarized in Section III.

C. Analysis and Verification

For model-based verification, heterogeneous abstractions

have been used for specific pairs of formalisms, such as hy-

brid abstractions of nonlinear systems [36], [37], linear hybrid

automata abstractions of linear hybrid systems [38], discrete

abstractions of hybrid systems [39]–[41] and continuous ab-

stractions of hybrid systems [42]. Our objective is to create

a general framework for abstraction that applies to any set of

heterogeneous formalisms.

Heterogeneous reactive systems can be compared and com-

posed using the tagged-signal semantics [43], [44]. Julius cre-

ates a behavioral framework for modeling control as a behavior

interconnection problem [45]. These approaches use system

trajectories or behaviors as a mathematical framework for cre-

ating relations between the semantics of different modeling for-

malisms. In a similar spirit, we use mathematical relations and

functions between behavior domains as the semantic mappings

between heterogeneous models. In contrast to Julius’s approach

of incorporating behaviors in the definition of models, we

see behaviors as the semantic interpretation of systems, which

allows us to observe behaviors in different domains. This idea

is similar to the one proposed in [46], where timed and time-

abstract traces serve as different semantics for the same hybrid

automaton. Contract-based design [47] and the use of verti-

cal and horizontal contracts for abstraction and composition,

similar to our hierarchical and compositional heterogeneous

verification, has been presented in the context of CPS [48] and

analog mixed-signal circuits [49].

For combining verification or analysis results across hetero-

geneous models, ontologies have been used as a knowledge-

management approach. Lattice-based ontologies can be used

to infer semantic relationships between elements of heteroge-

neous models [50]. Kumar et al. proposed an ontology-based

approach for managing knowledge gained from heterogeneous
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verification activities and for targeted knowledge acquisition

[51]. Rather than treating verification activities as knowledge

to be combined, we use logical combination of verification

constructs to construct complex verification hierarchies. In a

similar spirit, the temporal logic of actions proof system de-

ploys a proof manager that breaks down a complex verification

task logically into proof obligations that are proved using

theorem provers and satisfiability-modulo-theories solvers [52],

but this framework is primarily aimed towards software

systems, whereas our framework supports more general

(e.g., continuous, hybrid) dynamics and non-deductive analysis

methods. Verification architectures have been developed to

manage proofs by using high-level switching protocols to verify

an overall system property, and require that each mode adhere

to this high-level protocol [53]; however, the only supported

formalisms are communicating sequential processes, object-Z

and duration calculus.

Compositional reasoning is essential for multi-model anal-

ysis and verification. Some methods are defined in the con-

text of a single formalism, such as such as assume-guarantee

reasoning, with abstraction defined by language inclusion [54]

and simulation relations [55], [56], or compositional methods

based on deduction [57]. Another example is the behavior-

interaction-priority framework for embedded software, which

uses structured interaction invariants to support compositional

analysis, but only for transition system models [58]. Our objec-

tive is to develop a general framework that elucidates the basic

conditions for compositional abstraction between any pair of

heterogeneous formalisms.

In summary, the existing approaches towards multi-model

design and analysis of CPS focus on specific sets of problems,

but fall short of providing a comprehensive solution. In the

following sections we develop a framework that supports the

unified structural representation of CPS and its constituent

models, creates a mechanism for managing the models and

ensuring consistency between them and the underlying system,

and supports heterogeneous formal analysis of the system using

the analysis of the individual models in a principled manner.

III. CYBER-PHYSICAL SYSTEM ARCHITECTURES

This section gives an overview of our architecture-centric

approach to design and analysis of CPS with citations to our

previous work in this area. We present an extensible archi-

tectural style for enabling architectural modeling of CPS and

architectural view consistency for comparing the structure and

semantics of the model associated with a particular view to the

common system architecture.

A. An Architectural Style for CPS

The challenge in defining an architectural style for the phys-

ical domain of CPS is to strike a balance between specificity

and generality. Architectural models should not have all the

details required for a full simulation of the physical dynamics

as they are often unnecessary at the architectural level. At

the same time, the architectural components and connectors

should correspond to intuitive notions of physical dynamics in

the same way cyber components and connectors correspond to

elements of computational systems. To achieve this balance, we

introduce components and connectors based on a behavioral

Fig. 3. Base Architecture of STARMAC in AcmeStudio.

view of open and interconnected physical systems, as defined by

Willems [59]. This provides a domain-independent perspective,

including the ability to represent interactions between different

physical domains and the possibility to specify system prop-

erties such as power flow and energy conservation laws. In

the behavioral approach, laws that govern physical phenomena

impose relations on a component’s variables, while intercon-

nection means that variables are shared between the connected

components, i.e., component behaviors are coupled via their

common variables.

The base architecture (BA) of a cyber-physical system is

an instance of the CPS architectural style and provides the

reference structure for all the models used for design and

verification. It contains the set of system elements that are

related to the analyses carried out in each model, as well

as the elements that are common between the models. The

BA should contain enough detail to describe the nature of

the information exchanged and the physical quantities flowing

between components, as well as component connectivity and

coupling between physical variables represented by connectors.

Fig. 3 illustrates the use of the CPS style to model the BA of

the quadrotor in our custom architecture design environment

called AcmeStudio [33]. On the cyber side, each controller

(attitude, position, and ground station) is mapped to a separate

computation component that implements the control algorithm.

The communication of setpoints from a higher-layer controller

to a lower-layer controller is modeled as a send-receive connec-

tor. The periodic relaying of vehicle state from the lower control

layer to the higher layer is modeled as a publish-subscribe

connector. This illustrates the use of distinct connector types to

represent different communication patterns between the same

components. The vehicle frame is modeled as a rigid-body

component, whose mass and moment of inertia are affected

by the forces and moments acting at its ports, according to the

dynamic equations of the quadrotor.

Each rotor and motor actuator is modeled as a single elec-

tromechanical transducer called Act, containing an electrical

port and two mechanical ports, one each for the translational

and rotational domains. The component models the conversion
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Fig. 4. Base architecture of CICAS-SSA.

of input motor voltage to an output thrust (force) and torque

acting on the vehicle frame. As we refine the architecture, this

composite component can have substructure, where the motor

and rotor are separate components, with a torque connector

between them. Each Act is connected to the vehicle frame by

two physical coupling connectors, one for force balance and

one for moment balance. This models the action and reaction

phenomenon between each rotor assembly and the vehicle

frame. The drag force is described as a dissipative component,

whose magnitude depends on the wind velocity and the aircraft

velocity, among other parameters. The complex empirical rela-

tionship of drag force to the velocities at its ports is annotated

as a behavior property of the component. Gravitational force

is modeled as a flow source component, since it exerts an

independent force on the airframe. It is connected to the vehicle

frame by a physical signal connector. Further details about the

CPS architectural style and its application to the STARMAC

are given in [60].

Fig. 4 shows an architectural model of the CICAS-SSA.

It has a roadside safety system as a computation component

that receives sensor readings from a highway sensing sys-

tem, a physical-to-cyber transducer component that senses the

physical coordinates of the vehicles on the major road, and

a physical component that models the vehicles on the major

road. The roadside safety system sends the readings to an

encapsulated cyber-physical component of the subject vehicle

(SV). The insert in Fig. 4 shows the architectural subcompo-

nents that comprise the SV, namely an on-board safety system

for computing, a computation component; the driver-vehicle

interface (DVI), a cyber-to-physical transducer component; and

the SV drive train, a physical component that can have further

substructure not shown at this level. The SV driver is modeled

as a physical component that sees the alerts or displays on the

DVI and commands acceleration input to the SV drive train.

B. Consistency for Multi-View Architectures

An architectural view for a particular analysis domain is a

mechanism to relate the architecture of the associated model

to the system’s common BA. In this context, well-defined

mappings between a view and the BA are used to identify and

manage semantically equivalent elements (and their connec-

tions) between the associated model and the underlying system.

Hence, architectural views are an abstraction that represent the

assumptions made in the model about the system’s structure

and connectivity. Views facilitate the separation of concerns

during system design. Although views are usually constructed

separately, the set of all system views must be related and

consistent (in some sense) with the overall architecture, since

each view contains a description of the same underlying system.

Since an architecture model represents the system as a graph

of components and connectors, the problem of checking for

the consistency between a view and the BA can be reduced to

checking for the existence of a graph morphism between their

associated component-connector graphs. We use undirected,

typed graphs to model a system’s architecture. Associating

types with elements is necessary to distinguish between ar-

chitectures that are topologically identical but represent se-

mantically different systems. For example, one star-topology

architecture might represent a mainframe computer being used

by multiple thin clients, while another might represent the

centralized control of several unmanned aerial vehicles by a

single ground station. Mapping architectures into graphs allows

us to leverage well-studied tools in graph theory that evaluate

the topological similarity between two structures.

View consistency means that an architectural view satisfies

the structural and semantic constraints imposed by components

and connectors in the system’s BA. A view is consistent with

the BA if there exists an appropriate graph morphism between

the typed graphs of the view and the BA. View consistency

ensures that the elements in the associated model adhere to

the connectivity constraints and physical laws present between

elements in the BA. The use of typed graphs allows us to check

for a limited notion of semantic consistency by capturing the

properties of elements in the view and BA as labels of the

nodes in the graphs. The graph matching algorithm automat-

ically analyzes the constraints defined between the labels of

corresponding nodes in the view and BA graphs as part of

the view consistency check. Details of the application of our

to the four STARMAC models and the view consistency tools

implemented in AcmeStudio are given in [62].

C. Need for Richer Semantics

Multiview architectural modeling provides a rigorous frame-

work for creating structurally consistent representations and

managing heterogeneous model-based development of CPS,

but safety-critical CPS also need formal verification of the

heterogeneous models in order to guarantee correctness of the

underlying systems. Hence, richer semantic support is needed

in addition to the semantics enforced by the architectural

styles and consistent structural deployment of functionality.

For example, a sensing view of the CICAS-SSA that analyzes

measurement errors [3] looking only at the sensing system

component while ignoring others, a network simulation model

that studies communication delay between a roadside unit and

an intelligent vehicle [63] while ignoring the rest, a physical

view that models the physics of the car to model how fast it

can move, and an abstract verification view that models sim-

ple overapproximated dynamics of the SV and the oncoming

vehicles and guarantees a safe intersection-entry strategy, can

all have structurally consistent deployment of functionality.

Correctness of these individual models along with structural

consistency is not enough to conclude correctness of the overall

system, however. A richer semantic support for dealing directly

with the models themselves is necessary in addition to the

structural mappings between their architectural abstractions.

The objective of this richer semantic support is to enable the

associations between various heterogeneous models and their

respective sets of behaviors in suitable behavior formalisms.

The framework needs to be general enough to allow the use of
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different modeling and specification formalisms, and different

analysis methods and tools. There needs to be support for com-

bining verification results from individual models in a meaning-

ful way to reason about the correctness of the overall system.

Complex systems are usually composed of smaller subsystems

where different parts are often designed by different engineers

possibly at different times, so the framework needs to support

compositionality and distributed development in order to draw

conclusions about the system correctness from that of the

components in a distributed compositional manner. Addition-

ally, semantic assumptions and simplifications are made while

constructing models from particular perspectives that hide or

abstract information from other perspectives of the system.

The framework needs the ability to formally represent these

assumptions and ensure system-wide semantic consistency of

these assumptions. The remainder of the paper develops the

semantic support for heterogeneous formal verification based

on behavior semantics to address these issues.

IV. BEHAVIOR SEMANTICS FOR

ADDRESSING HETEROGENEITY

A key challenge in using heterogeneous models to analyze

the underlying system is addressing the semantic heterogene-

ity, i.e., relating the semantics of different models defined in

different formalisms to the underlying system. Our goal is to

create a formal framework that is independent of the specifics

of any particular modeling formalism, yet works with every for-

malism. This section develops a framework based on behavior

semantics and their mappings.

A. Modeling Formalisms and Semantic Domains

A modeling formalism M is a set of models of a particular

type. Transition systems, hybrid automata, signal-flow models,

acausal equation-based models, and network models are some

of the modeling formalisms used in CPS. A model M is an

element of some formalism M. Let B denote a behavior do-

main defined using a given behavior formalism B. The behavior

formalism could be used to represent, for example, event traces,

pairs of continuous input-output signals, or hybrid trajectories,

and a particular behavior domain specifies a set of admissible

behaviors defined using the given behavior formalism [64].

Let [[M ]]B denote the set of legal behaviors for a given

model M with semantics defined in a given behavior domain

B in a suitable formalism B. With model semantics defined in

different behavior domains possibly from different formalisms,

we define behavior relations as follows to create mappings

between those behavior domains.

Definition 1 (Behavior Relation): Given behavior domains

B1 and B2 in possibly different behavior formalisms B1 and

B2, a behavior relation is a set R ⊆ B1 ×B2 that associates

pairs of behaviors from the two sets B1 and B2.

For a subset of behaviors B′
1 ⊆ B1, let R(B′

1) denote the

set of behaviors in B2 associated with behaviors in B′
1, i.e.,

R(B′
1) = {b2|∃b1 ∈ B′

1s.t.(b1, b2) ∈ R}. Similarly, for B′
2 ⊆

B2, let R−1(B′
2) represent the set of behaviors in B1 as-

sociated with behaviors in B′
2, i.e., R−1(B′

2) = {b1|∃b2 ∈
B′

2 s.t. (b1, b2) ∈ R}.

This general yet mathematically precise definition supports

a variety of formalisms and enables a mechanism to capture

the associations and assumptions made while constructing the

different models. For example, in case of CICAS-SSA, behav-

ior relations could be used to define how the hybrid traces

in an abstract verification model, the trajectories in a control-

oriented signal-flow model and the evolution of forces and

torques in a physical model relate with the underlying system

behaviors and with each other. Note that these associations are

often problem-specific and they are already assumed informally

while creating these different models; and we facilitate writing

them out precisely.

We consider special cases of behavior relations that are also

functions, i.e., R ⊆ B1 ×B2 s.t. (b1, b2) ∈ R and (b1, b
′
2) ∈ R

only if b2 = b′2. We call these behavior abstraction functions

and denote them as functions A : B1 → B2.

B. Heterogeneous Abstraction and Composition

For all but the most trivial cyber-physical systems, abstrac-

tion is essential for making analysis and verification tractable.

When interpreted over the same behavior domain B, a model

M2 is an abstraction of a model M1, written M1 ⊑B M2, if

[[M1]]
B ⊆ [[M2]]

B . Many different forms of abstraction have

been considered in the literature. We focus on abstraction that

corresponds to behavioral inclusion, for example, language

or trace inclusion. This mathematical definition of a subset

relation captures the notion of overapproximation, whose in-

terpretation could depend on the particulars of the behavior for-

malism, e.g., in terms of language semantics, trace semantics,

reachable sets, and so on.

Definition 2 (Heterogeneous Abstraction): Given behavior do-

mains B1, B2 and a behavior relation R⊆B1×B2, a model M2

is an abstraction of a modelM1 throughR, writtenM1⊑
R M2, if

[[M1]]
B1 ⊆ R−1

(

[[M2]]
B2

)

.

This definition asserts that for every behavior in B1 of

model M1, the behavior relation R associates at least one

corresponding behavior in B2 of model M2. For example, given

a detailed control-oriented Simulink model, an abstract verifi-

cation model, and a behavior relation between their respective

domains, this definition states that we have an abstraction only

when for each Simulink trajectory, there is a corresponding

abstract trace of the verification model.

When abstract and concrete models across different for-

malisms are composed of smaller models of interacting compo-

nents, our objective is to associate the behaviors of component

models in isolation with those of the compositions, so that the

analysis for the component models can be used to reason about

the compositions. We start with a simple special-case scenario

in which the semantics of component models P and Q are

defined in the same behavior domain. In this case, we define

the semantic composition of two component models as follows.

Definition 3 (Semantic Composition): Given component

models P and Q from the same modeling formalism M with

semantics defined in behavior domain B, the composition P‖Q
is a model in M s.t.

[[P‖Q]]B = [[P ]]B ∩ [[Q]]B . (1)

This definition of composition as the intersection of behavior

sets is consistent with the literature for composition using many

but not all behavior domains [43]–[45]. In particular, it requires
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the semantics to allow variables to change arbitrarily if left

unspecified in the models. For a given modeling formalism M,

syntactic techniques may exist for creating a composition, e.g.,

construction of product automata. We allow all such procedures

to be used to define the composition, so long as (1) holds.

In a more general scenario, the component models P and

Q can have different local behavior domains BP and BQ in

behavior formalism B. These local behavior domains have only

the variables pertaining to a specific component while exclud-

ing others. In such a case, we need to lift the local semantics

of the components to common global behavior domains before

we can compose them. We begin by defining the relationship

between behaviors in a global domain and a local domain.

Definition 4 (Behavior Localization): Given a behavior for-

malism B and two behavior domains B,B′ ∈ B, an onto func-

tion ↓: B → B′ (i.e., every element of B′ has at least one

pre-image in B) is called a (behavior) localization of domain

B to domain B′.

Given a localization ↓ of B to B′, for b ∈ B, we will let b ↓ be

a shorthand for ↓ (b). The set-valued extension of localization

can be defined in the usual way. For b′ ∈ B′ we will let b′ ↑
denote the set-valued function ↑: B′ → 2B − {∅} defined by

↑ (b′) =↓−1 (b′) = {b ∈ B|b ↓= b′}. We will call the function

↑ a (behavior) globalization of B′ to B. Note that b′ ↑ is always

non-empty since the localization function ↓ is onto.

Behavior localization and globalization are generally in-

ferred from relationships between models from given model-

ing formalisms and associated definitions of the relationships

between model primitives and their semantic interpretations.

Given the definitions of localization and globalization of be-

havior domains, we define model globalization as follows.

Definition 5 (Model Globalization): Given a global behavior

domain B, a model P with its local behavior domain B′,

and a behavior localization function ↓: B → B′, the (model)

globalization of P is any model PG s.t. [[PG]]B = [[P ]]B
′

↑.

For a given modeling formalism M, syntactic approaches

for globalization may exist, e.g., addition of self loops for

newly-added event labels for discrete transition systems, or

addition of state variables with unconstrained dynamics for

continuous dynamic systems. We allow the use of all such

syntactic preprocessing procedures that lead to models with the

correct set of behaviors [[P ]]B
′

↑ before composition.

The following definition generalizes the notion of semantic

composition from Def. 3.

Definition 6 (Globalized Semantic Composition): Given a

global behavior domain B, component models P and Q with

their corresponding local behavior domains BP and BQ, and

behavior localizations ↓P : B → BP and ↓Q: B → BQ, the

globalized semantic composition of P and Q in the global

behavior domain B, denoted by P‖GQ is the semantic com-

position of models PG and QG, which are the globalizations of

P and Q, respectively, i.e., P‖GQ = PG‖QG.

While syntactic procedures can produce different model

globalizations, they still yield semantically equivalent compo-

sitions in terms of sets of behaviors.

C. Example

Consider the task of establishing the collision freedom of

CICAS-SSA for one oncoming vehicle, called the principal

other vehicle (POV) and one subject vehicle (SV) waiting at

Fig. 5. Instance of the CICAS-SSA with one near-side oncoming lane with
one POV.

the stop sign, as shown in Fig. 5. The collision freedom of

each POV and each SV is an integral part in establishing the

correctness of the overall system.1 The POV appears in the

sensing range, continues to approach the intersection, enters

the intersection and eventually clears it. The SV can either go

straight or turn right to merge into the POV’s path. Once they

crosses the intersection, we no longer treat the POV or the SV

to be relevant as next vehicles take their place. Assuming the

road coordinate along the POV path is X and those along the

straight and right-turn paths of the SV are Y and Z, the potential

conflict area in and adjacent to the intersection is shown with di-

mensions depicted by the bold line segments. Fig. 5 also shows

typical intersection geometry parameters such as the width of a

highway lane, the range of when a vehicle is first detected, and

a conservative estimate of when it is too close (300m) assuming

it travels at highway speeds between 20 m/s and 30 m/s.

Fig. 6 shows a hybrid-automaton model M0 for the system

in Fig. 5. The model shows a parallel composition of POV and

SV component models. The continuous dynamics of the POV

can be represented by a differential inclusion based on highway

speed limits. The SV has a choice of entering the intersection or

merging into the traffic only if it is safe to do so. It is forced to

stay stopped if unsafe or can decide to stay stopped by choice.

Once it enters the intersection or merges into the traffic, it

continues to drive with some minimum bounds of acceleration

along either y or z and eventually clears the conflict zones.

Because we do not care about what happens after either car

clears the intersection, we ignore the corresponding dynamics

after clearing the intersection by not updating the dynamics for

SV and by choosing appropriate invariant for POV.

The behavior formalism of choice for this model is hybrid

trajectories, with local behavior domains for the component

models being the set of all 1-D trajectories in the variable x and

the set of all 5-D hybrid trajectories in the variables x, y, vy ,

z, and vz , which stand for POV position and SV position and

velocities while going straight and merging right. Parallel com-

position of hybrid automata can be used to form a composition,

after addition of unrestricted dynamics along y, vy , z and vz
serves as the globalization for the POV component. In the next

two sections, we present the hierarchical and compositional

heterogeneous verification of this model.

In summary, this section develops a general semantic frame-

work for associating behaviors across different domains. Be-

havior relations serve as mappings between domains at different

levels of abstraction, and localization/globalization mappings

serve as mappings between local and global semantics. The

local semantics defines the meaning of the component models

1The overall system verification for CICAS-SSA is presented as a case study
in [65].



RAJHANS et al.: SUPPORTING HETEROGENEITY IN CPS ARCHITECTURES 3185

Fig. 6. Hhybrid automaton model M0 for CICAS-SSA.

when considered in isolation, and the global semantics defines

the meaning of the whole system models when the components

are composed to a system. We exploit these semantic mappings

to develop hierarchical heterogeneous verification across dif-

ferent levels of abstraction in Section V, and compositional

heterogeneous verification across individual component models

at a given level of abstraction in Section VI.

V. HETEROGENEOUS VERIFICATION

A specification S in a specification formalism S is an indirect

representation that captures what the system can or cannot

do, typically without any implementation details. Specifications

could be written in, for example, various temporal logics,

Kripke structures, automata, sets of unsafe states to be avoided,

or even in English language, so long as their semantic inter-

pretation is clear in terms of a given behavior domain in the

associated behavior formalism.

The semantic interpretation of S in a behavior domain B,

denoted by [[S]]B , is defined as the set of all behaviors in

B for which the specification is satisfied. When semantically

interpreted over the same set of behaviors B, a specification

S2 is said to imply a specification S1, written S2 ⇒B S1 if

[[S2]]
B ⊆ [[S1]]

B . This simply asserts that any behavior that

satisfies S2 also satisfies S1.

The following definition extends this notion to heterogeneous

behavior spaces using behavior relations.

Definition 7 (Heterogeneous Implication): Given behavior

domains B1, B2 and a behavior relation R ⊆ B1 ×B2, we

say that specification S2 implies specification S1 via R, written

S2 ⇒R S1, if

R−1
(

[[S2]]
B2

)

⊆ [[S1]]
B1 .

This definition requires that if a behavior b1 ∈ B1 is asso-

ciated through R with a behavior in b2 ∈ B2 that satisfies S2,

then b1 satisfies S1.

In a given behavior domain B, a model M entails a specifi-

cation S, written M |=B S, if [[M ]]B ⊆ [[S]]B . When true, this

simply asserts that the set of behaviors of the model M do not

violate the set of safe behaviors allowed by the specification

S. To establish this type of entailment, formal approaches such

as reachability analysis and theorem proving, or semiformal

approaches like systematic state-space exploration, need to be

used. The following proposition states general conditions under

which one can perform heterogeneous verification.

Proposition 1 (Heterogeneous Verification): Given two be-

havior domains B0 and B1 in behavior formalisms B0 and

B1, models M0 and M1 in modeling formalisms M0 and

M1, specifications S0 and S1 in specification formalisms S0

and S1, and a behavior relation R ⊆ B0 ×B1, if M0 ⊑R M1,

M1 |=B1 S1 and S1 ⇒R S0, then M0 |=B0 S0.

Proof: From M0 ⊑R M1, we have

[[M0]]
B1 ⊆R−1

(

[[M1]]
B1

)

(From M1 |=B1 S1) ⊆R−1
(

[[S1]]
B1

)

(From S1 ⇒R S0) ⊆ [[S0]]
B0 .

Therefore, M0 |=B0 S0. �

There are two natural ways of using multiple models and

specifications together.

1) Conjunctive Multi-Model Heterogeneous Verification: In

this case, each model is a heterogeneous abstraction of the

underlying system and we need to ensure that the specifications

checked against each model together imply the specification

of the underlying system. The following definition makes this

notion formal.

Definition 8 (Conjunctive Heterogeneous Implication): Given

system behavior domain B0, behavior domains Bi and

behavior relations Ri ⊆ B0 ×Bi, specifications Si for

i = 1, . . . , n conjunctively imply the system specification S0 if
⋂

i

R−1
i

(

[[Si]]
Bi
)

⊆ [[S0]]
B0 .

This definition allows the individual specifications Si to not

imply S0, but their conjunction (intersection of the allowed

behaviors) is required to be stronger than S0.

Proposition 2 (Heterogeneous Conjunctive Analysis): For a

system model M0 with a behavior domain B0 and specification

S0, given models Mi with the corresponding behavior domains

Bi, specifications Si and behavior relations Ri ⊆ B0 ×Bi,

if M0 ⊑Ri Mi, specifications Si conjunctively imply S0, and

Mi |=
Bi Si for each i = 1, . . . , n, then M0 |=B0 S0.

Proof: From M0 ⊑Ri Mi for each i, we have

[[M0]]
B0 ⊆

⋂

i

R−1
i

(

[[Mi]]
Bi
)

(since Mi |=Bi Si) ⊆
⋂

i

R−1
i

(

[[Si]]
Bi
)

(Conj. Het. Implication) ⊆ [[S0]]
B0 .

Therefore, M0 |=B0 S0. �
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2) Disjunctive Multi-Model Heterogeneous Verification:

Now we consider the case where different models are built to

represent different subsets of behaviors of a system. This is

typically useful when there are different behaviors in different

operating regimes best modeled by different models, where

neither one fully represents the whole set of behaviors of the

system, but their union does. This notion is made formal by the

following definition.

Definition 9 (Model Coverage): For a system model M0

with a behavior domain B0, given a set of models Mi with cor-

responding behavior domains Bi and behavior relations Ri ⊆
B0 ×Bi, models Mi, i = 1, . . . , n cover M0 if there exists a

partition {B1
0 , B

2
0 , . . . , B

n
0 } of [[M0]]

B0 s.t. ∀i = 1, . . . , n

Bi
0 ⊆ R−1

i

(

[[Mi]]
Bi
)

.

This definition requires that every behavior of the underlying

system M0 be accounted for by at least one model.

Lemma 1: If models Mi cover M0 through Ri, i = 1, . . . , n,

we have

[[M0]]
B0 =

n
⋃

i=1

R−1
i

(

[[Mi]]
Bi
)

.

Proof: From the definition of partition, we have

[[M0]]
B0 =

n
⋃

i=1

Bi
0

(Def. 9) ⊆
n
⋃

i=1

R−1
i

(

[[Mi]]
Bi
)

.

�

In the disjunctive case, no model is a proper abstraction of the

underlying system, only all models together cover it. Hence, in

order to make sure that a specification holds for the underlying

system we need to verify that each of the disjunctive models

satisfies that specification.

Proposition 3 (Heterogeneous Disjunctive Analysis): For

system model M0 with a behavior domain B0 and specification

S0, given models Mi with the corresponding behavior domains

Bi, specifications Si and behavior relations Ri ⊆ B0 ×Bi,

if each specification Si heterogeneously implies S0, models

Mi cover M0, and Mi |=
Bi Si for each i = 1, . . . , n, then

M0 |=B0 S0.

Proof: From Lemma 1, we have

[[M0]]
B0 ⊆

⋃

i

R−1
i

(

[[Mi]]
Bi
)

(since Mi |=
Bi Si) ⊆

⋃

i

R−1
i

(

[[Si]]
Bi
)

(Het. Implication) ⊆ [[S0]]
B0 .

Therefore, M0 |=B0 S0. �

Finally, we note that the conjunctive and disjunctive analysis

constructs can be nested arbitrarily. For example, the jth con-

junctive verification subtask Mj |=
Bj Sj can be broken down

disjunctively into its subtasks Mji |=
Bji Sji by creating new

models that cover Mj and specifications that imply Sj . Thus,

using the nesting of conjunctive and disjunctive constructs, any

arbitrary propositional logical breakdown of a system verifica-

tion task can be achieved. This is illustrated in an example in

the following subsection.

A. Example

Consider the following safety verification problem for the

CICAS model M0 from Fig. 6. A safety violation (potential

collision) occurs if by the time POV enters the intersection,

SV is still in the conflict zone. The absence of this violation

can be written as a temporal logic specification S0 : �¬((x ==
0 ∧ 0 < y < 4.5) ∨ (x == 0 ∧ 0 < z< 170)). The objective is

to show that M0 satisfies S0.

1) Disjunctive Analysis: We note that the SV has to be safe

irrespective of whether it is crossing or merging into the lane.

We can model these behaviors individually and verify their

safety independently in a disjunctive verification construct.

Fig. 7 shows a model M1 of the system where SV is only

allowed to intersect the traffic. A similar model M2 can be

constructed for the merging case.

In place of the behavior domain B0 of model M0 as the

class of all 5-D hybrid traces, the behavior domains B1 and

B2 for models M1 and M2 are classes of all 3-D hybrid traces.

The behavior relations between these domains and the original

domain are:

• R1 : {(b0, b1)|b0 ↓z,vz
== 0̄ and b0 ↓x,y,vy

== b1};

• R2 : {(b0, b2)|b0 ↓y,vy
== 0̄ and b0 ↓x,z,vz

== b2};

where 0̄ represents a 2-D trace of zeros over all time and ↓()
represents the projection on ().

We construct simpler specifications to be checked for the two

models as:

• S1 : �¬(x == 0 ∧ 0 < y < 4.5); and

• S2 : �¬(x == 0 ∧ 0 < z < 170).

The heterogeneous implication S1 ⇒R1 S0 holds because

R−1
1 ([[S1]]

B1) forces that y be conflict-free and z be 0, which

implies that y is conflict-free and z is conflict-free. Simi-

larly, we have S2 ⇒R2 S0. Further, we note that in every

behavior of M0, either {y, vy} or {z, vz} are zero and both

the possibilities are covered by either model. Therefore, from

Prop. 3, if M1 |=B1 S1 and M2 |=B2 S2, we can conclude

M0 |=B0 S0. Next, we show M1 |=B1 S1 using conjunctive

analysis. M2 |=B2 S2 can be shown in a similar manner.

2) Conjunctive Analysis: Consider the subtask of showing

M1 |=B1 S1. We break down this task conjunctively by creating

three models M1i and constructing corresponding specifica-

tions S1i, i = 1, 2, 3, as shown in Fig. 8. M11 models the

behaviors of the POV, and is exactly the same as the POV

automaton in M1. M12 models the behavior of the SV only

while it is in the conflict zone and has the same dynamics as that

of the conflict_y location of M1. M13 is a discrete model

consisting of two elements. The component POV is a created by

partitioning the component POV of M1 into discrete states far,

close, and inInt using predicates x ≤ −300, −300 ≤ x ≤
0, and 0 ≤ x. The second component SV is merely a discrete

control graph of the hybrid automaton model for SV in M1.

The only synchronized pair of transitions is (far
β1→ close)

and (waiting
β1→ stopped).

The behavior relations are:

• R11 : {(b1, b11)|b11 == b1 ↓x};

• R12 : {(b1, b12)|b12 == s1 ↓y,vy
where s1 is b1 restricted

to the discrete location (driving,conflict_y);

• R13 : {(b1, b13)|b1 is a hybrid trajectory that visits the dis-

crete locations corresponding to ones in b13 in that order.
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Fig. 7. Hybrid model M1 for SV going only straight if safe.

Fig. 8. Abstractions M1i of M1 representing the POV dynamics, the SV dynamics in the conflict zone and the discrete protocol. (a) Model M11. (b) Model
M12. (c) Model M13.

For these behavior relations, we first note that M1 ⊑R1i M1i

because neither of the models M1i is more restrictive than M1.

The specifications for the three models are:

• S11 : �(x == −300 ⇒ �9x < 0);
• S12 : �(⋄8 ≥ 4.5);
• S13 : �((POVclose ∧ ¬SVdriving) →
¬(⋄SVdriving)), where POVclose is satisfied in

states (close, ·) and (inInt, ·); and SVdriving is

satisfied in states (·, conflict_y).

The behaviors effectively allowed in B1 by the specifications

S1i are as follows:

• R−1
11 ([[S11]]): system behaviors where POV takes at least 9

seconds to get from l = −300 to the intersection.

• R−1
12 ([[S12]]): system behaviors where SV clears the inter-

section within 8 seconds of starting to drive.

• R−1
13 ([[S13]]): system behaviors where SV does not start

driving after POV crosses l.

There can only be two cases:

1) The SV has already started driving before the POV

crosses l and is in the intersection: in this case, from

R−1
11 ([[S11]]) and R−1

12 ([[S12]]) together, it will clear the

intersection in at most 8 seconds and the POV will not

get to the intersection in at least 9 seconds; OR

2) The SV has not started driving when the POV crosses l:
in this case, from R−1

13 ([[S13]]), the SV cannot start driving

anymore.

Therefore, from all the specifications put together, the two cars

can’t be in the intersection at the same time, which implies S1,

i.e., we have conjunctive heterogeneous implication.

M11 |=B11 S11 can be shown by algebraic computations: for

the fastest velocity (30 m/s) it takes 10 s to travel 300 m.

M12 |=B12 S12 can be shown by Newton’s laws of motion:

the longest time needed to cross 4.5 m with initial velocity

0 and minimum acceleration 0.25 m/s2 is
√

(2 ∗ 4.5)/0.25 =
6 seconds. M13 |=B13 S13 can be shown by using Labeled

Transition System Analyzer [30]. Under these conditions, using

Prop. 2, we can infer that M1 |=B1 S1.

In summary, in this section we developed the notion of

hierarchical heterogeneous verification, which studies how ver-

ification results can be combined across different levels of

abstraction. Conjunctive and disjunctive heterogeneous verifi-

cation constructs can be nested arbitrarily to create arbitrary

mixes of conjunctive and disjunctive analysis hierarchies. A

detailed heterogeneous verification hierarchy for CICAS-SSA

is presented in [65].

VI. COMPOSITIONAL HETEROGENEOUS VERIFICATION

In this section, we study conditions that ensure that the

composition of abstractions for individual components is an

abstraction for the composition of the components. We use

behavior abstraction functions as the semantic mappings since

arbitrary behavior relations that are not functions are not suffi-

cient for compositionality [66].

Fig. 9 illustrates the compositional heterogeneous abstrac-

tion problem considered in this paper. For each of the two

levels of abstraction, i = 0, 1, we assume there is a model-

ing formalism Mi and a behavior formalism Bi. Component

models Pi, Qi ∈ Mi have their semantics defined in terms of

local behavior domains BP
i , BQ

i ∈ Bi. These local domains

include only the variables relevant to the given component.

Heterogeneous abstraction between the two models of each

component is established via behavior abstraction functions AP

and AQ (Section IV) that are mappings between the respective

local behavior domains. To compose the two models to form

the system models Mi ∈ Mi, the local semantics are lifted

to global behavior domains Bi ∈ Bi to include variables from

both components. We seek conditions under which heteroge-

neous abstraction between component models in their local

behavior domains implies heterogeneous abstraction between

the composite system models in the global behavior domains.
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Fig. 9. Compositional heterogeneous abstraction analysis.

We note that for globalized semantic composition, models

need to be globalized using behavior globalization as stated in

Def. 5. Similarly, in order to relate the semantic mappings of the

individual components together at a common level, we develop

the following notion of globalization of behavior abstraction

functions.

Definition 10 (Abstraction Globalization): Given two behav-

ior formalisms B0 and B1, behavior domains B0, B
′
0 ∈ B0 and

B1, B
′
1 ∈ B1 from each behavior formalism, localizations ↓i of

Bi to B′
i for i = 1, 2, and a behavior abstraction function A′ of

B′
0 to B′

1, a behavior abstraction function A of B0 to B1 is said

to be a globalization of A′ if

∀ b0 ∈ B0 : A′(b0 ↓0) = A(b0) ↓1 . (2)

We write A = A′ ⇑ if A is a globalization of A′. We call A′

a localization of A, written A′ = A ⇓, iff A = A′ ⇑. We have

shown that globalization of a given local behavior abstraction

function always exists, but is not necessarily unique; while the

localization of a global behavior abstraction function may not

always exist (because projections cause loss of information),

but the localization is unique if it exists [66]. From the unique-

ness of localization and non-uniqueness of globalization, we

note that

(A′ ⇑) ⇓= A′; (3)

but (A ⇓) ⇑ may not be equal to A.

In the next two subsections we find conditions under which

compositional heterogeneous abstraction w.r.t. Fig. 9 can be

used.

A. Heterogeneous Abstraction in Global Behavior Domains

We start with a simple special-case scenario w.r.t. Fig. 9 in

which BP
i = BQ

i = Bi ∈ Bi, i = 0, 1. For this special case,

only one behavior abstraction function A is sufficient, as we

can set AP = AQ = A. In this case, the following proposition

gives conditions for compositional heterogeneous abstraction.

Proposition 4: For each abstraction level i = 0, 1, given

component models Pi, Qi with the semantics of each model

interpreted over a behavior domain Bi, and a behavior abstrac-

tion function A : B0 → B1, if P0 ⊑A P1 and Q0 ⊑A Q1, then

P0‖Q0 ⊑A P1‖Q1.

Proof: From P0⊑
A P1 and Q0⊑

A Q1, we have [[P0]]
B0 ⊆

A−1([[P1]]
B1) and [[Q0]]

B0 ⊆A−1([[Q1]]
B1). Therefore,

[[P0‖Q0]]
B0 =[[P0]]

B0∩[[Q0]]
B0⊆A−1([[P1]]

B1)∩A−1([[Q1]]
B1)=

A−1([[P1]]
B1 ∩ [[Q1[]

B1) = A−1([[P1‖Q1]]
B1). �

This proposition states that with global semantics, compo-

sition of abstractions is the abstraction of the composition.

Next we consider the general case where the local semantics

of the two components are defined in terms of distinct behavior

domains.

B. Heterogeneous Abstraction in Local Behavior Domains

The following lemma states that heterogeneous abstraction

between model globalizations via a global abstraction function

is equivalent to heterogeneous abstraction between original

models via the localization of the global abstraction function.

Lemma 2: For abstraction levels i = 0, 1, given component

models Pi with local behavior domains B′
i, behavior localiza-

tion functions ↓i: Bi → B′
i, let their corresponding globalized

models be PG
i with global behavior domains Bi. If A : B0 →

B1 is a global behavior abstraction function and A′ : B′
0 → B′

1

is a localization of A, then PG
0 ⊑A PG

1 ⇔ P0 ⊑A′

P1.

Proof: From the definition of model globalization,

we have

bi ∈
[[

PG
i

]]Bi
⇔ bi ↓i∈ [[Pi]]

B′

i (4)

and

b′i ∈ [[Pi]]
B′

i ⇔ b′i ↑i⊆
[[

PG
i

]]Bi
. (5)

Case I: PG
0 ⊑A PG

1 ⇒P0⊑
A′

P1: This can can be shown

as follows. For any given b0∈ [[PG
0 ]]

B0

, let b1 :=A(b0). From

PG
0 ⊑APG

1 , we have b1 ∈ [[PG
1 ]]

B1

. From (2), A′(b′0) = b1 ↓1,

where b′0 := b0 ↓0. Hence, from (4) we have that ∀ b′0 ∈ [[P0]]
B′

0 ,

A′(b′0) ∈ [[P1]]
B′

1 , which implies [[P0]]
B′

0 ⊆ A′−1

([[P1]]
B′

1),
i.e., P0⊑

A′

P1.

Case II: PG
0 ⊑A PG

1 ⇐ P0 ⊑A′

P1: This can be shown as

follows. From P0 ⊑A′

P1, we have b′0 ∈ [[P0]]
B′

0 ⇒ A′(b′0) =:
b′1 ∈ [[P1]]

B′

1 . From Def. 10 and (5), for any b′0 ∈ [[P0]]
B′

0 , b0 ∈

b′0 ↑0⊆ [[PG
0 ]]

B0 ⇒ A(b0) =: b1 ∈ b′1 ↑1⊆ [[PG
1 ]]

B1

. Therefore,

[[PG
0 ]]

B0 ⊆ A−1([[PG
1 ]]

B1), i.e., PG
0 ⊑A PG

1 . �

Lemma 2 implies the following reasoning indicated in Fig. 9.

When the abstract and concrete models of a component are

considered in isolation, it does not matter whether one does

the heterogeneous abstraction analysis in the global domains

or the local domains. We now use the result from Lemma 2

in a compositional setting when the component models are

composed to form a system model.

For the following discussion, we let models Mi, with the

global behavior domains Bi, be the globalized compositions

Pi‖
GQi of component models Pi and Qi with their local

behavior domains BP
i and BQ

i , for levels of abstraction i = 0, 1
as depicted in Fig. 9. We consider two scenarios in which the

source of the abstraction is at the system level and component

levels, respectively.

1) Centralized Development: First, we consider the case

where we have an abstraction function A : B0 → B1 between

the global behavior domains B0 and B1.
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Proposition 5: For abstraction levels i=0, 1, given compo-

nent models Pi and Qi with corresponding local behavior do-

mains BP
i and BQ

i , let their globalized semantic compositions

be Pi‖
GQi in global behavior domains Bi with behavior local-

izations ↓ji:Bi→Bj
i , where j=P,Q, and a global behavior ab-

straction function A :B0→B1. If localizations A⇓P and A⇓Q

of A exist and P0⊑
A⇓P

P1 and Q0⊑
A⇓Q

Q1, then M0⊑
AM1.

Proof: From P0 ⊑AP

P1 and Q0 ⊑AQ

Q1, we know from

Lemma 2 that PG
0 ⊑APG

1 and QG
0 ⊑AQ

QG
1 , i.e., that [[PG

0 ]]
B0 ⊆

A−1([[PG
1 ]]

B1) and [[QG
0 ]]

B0 ⊆ A−1([[QG
1 ]]

B1). We have, [[P0‖
G

Q0]]
B0 =[[PG

0 ]]
B0∩[[QG

0 ]]
B0 ⊆A−1([[PG

1 ]]
B1)∩A−1([[QG

1 ]]
B1)=

A−1([[PG
1 ]]

B1 ∩ [[QG
1 ]]

B1)= A−1([[P1‖
GQ1]]

B1). �

Prop. 5 states that we can establish M0 ⊑A M1 in the global

behavior domains by establishing P0 ⊑A⇓P

P1 and Q0 ⊑A⇓Q

Q1 in the local behavior domains of the two components.

2) Decentralized Development: Now, we consider the case

where the abstraction functions AP : BP
0 → BP

1 and AQ :

BQ
0 → BQ

0 between the local behavior domains BP
i and BQ

i

are given and heterogeneous abstractions of component models

P0 ⊑AP

P1 and Q0 ⊑AQ

Q1 are established independently.

This is the more common situation in practice, particularly for

distributed development. In this case, the following proposi-

tion states that if the globalizations of abstraction functions

AP ⇑P and AQ ⇑Q are defined consistently, the heteroge-

neous abstraction results for the components carry over to their

compositions.

Proposition 6: For abstraction levels i=0, 1, given com-

ponent models Pi and Qi with local behavior domains BP
i

and BQ
i , let their compositions be Pi‖

GQi in global behavior

domains Bi and local behavior abstraction functions be AP :
BP

0 →BP
1 and AQ:BQ

0 →BQ
1 s.t. P0 ⊑AP

P1 and Q0 ⊑AQ

Q1.

If AP ⇑P=AQ ⇑Q=:A, i.e., then P0‖
GQ0 ⊑A P1‖

GQ1.

Proof: The result follows due to (AP ⇑P ) ⇓P= AP and

(AQ ⇑Q) ⇓Q= AQ from (3) and Prop. 5. �

In order to make sure that the globalizations of the local

abstraction functions from the two components agree, we either

need the local behavior domains to be disjoint (no common

variables), or the local abstraction functions to agree on the

“intersection” of the two behavior domains, i.e., along the

variables common to the two components [66].

C. Example

We consider the problem of establishing heterogeneous ab-

straction between models M1 from Fig. 7 and M13 from

Fig. 8(c) compositionally.

1) Heterogeneous Abstraction for POV: Consider the hy-

brid and discrete POV component models from Fig. 7 and

Fig. 8(c) and call them P0 and P1 respectively. The local

behavior domains are BPOV
0 : 1-D hybrid traces, i.e., evolution

of the hybrid state hPOV := (lPOV, x) over time, with lPOV ∈
LPOV := {driving} and x ∈ R; and BPOV

1 := ΣPOV ∗

for

set of event labels ΣPOV = {β1, β2}. The model semantics

are [[P0]]
B0 : the set of all hybrid traces with the discrete lo-

cation driving and x that starts in the initial condition set

[−420,−400] and evolves along any arbitrary derivative in the

range [20, 30], and [[P1]]
B1 : the singleton set {β1β2}.

A behavior abstraction function APOV : BPOV
0 → BPOV

1

constructed by partitioning the continuous dimension x

at boundaries x = l and x = 0 is written mathematically

as follows. Given bPOV
0 = hPOV(t) ∈ BPOV

0 and bPOV
1 =

σ0σ1 · · · ∈ BPOV
1 , APOV(bPOV

0 ) = bPOV
1 iff ∃ times ti ∈ R+

s.t. ∀ t′ ∈ [0, t0),x(t
′) ∈ FROM(σ0); ∀ t′ ∈ [ti−1, ti), x(t′) ∈

TO(σi−1) ∩ FROM(σi) for i = 1, . . . , N for some N ∈ N; and

∀ t′ ≥ tN , x(t′) ∈ TO(σN ), where FROM(·) and TO(·) are

given in the following table. Otherwise, APOV(bPOV
0 ) = ε.

α FROM(α) TO(α)

β1 x ≤ l x ∈ [l, 0]
β2 x ∈ [l, 0] x ≥ 0.

Given that the boundary l is at −300, the range of ve-

locities is positive, and the initial condition is in the range

[−420,−400], it is straightforward to show that ∀bPOV
0 ∈

BPOV
0 , APOV(bPOV) = β1β2. Therefore, P0 ⊑APOV

P1. Note

that if l is say −410, APOV(bPOV) = β2 for some bPOV and

P0 �⊑APOV

P1.

2) Heterogeneous Abstraction for SV: Now consider the SV

component of the hybrid and discrete models from Fig. 7

and Fig. 8(c) and call them Q0 and Q1. The local behavior

domains are BSV
0 : the set of 3-D hybrid trajectories hSV (t),

where hSV := (lSV , x, y, vy) are the hybrid states that take

values in LSV ×XSV , for the discrete set of locations LSV :=
{waiting, stopped, conflict_y, clear_y} and the continu-

ous state space XSV := R
3; and BSV

1 := ΣSV ∗

with ΣSV :=
{α1, α2, β1}, where α’s signify SV entering and exiting the

intersection.

A behavior abstraction function ASV : BSV
0 → BSV

1 , con-

structed by only keeping the discrete part of the hybrid

model and adding transition labels, is written formally as

follows. Given bSV
0 = hSV (t), where t ∈ R+ and hSV =

(lSV , x, y, vy), and bPOV
1 = σ0σ1 · · · with states qSV

i ∈ LSV
i

s.t. qSV
i

σi−→ qSV
i+1, ASV (bSV

0 ) = bSV
1 iff ∃ times ti ∈ R+

s.t. ∀t′ ∈ [ti, ti+1) with t0 = 0, lSV (t′) == qSV
i . Otherwise,

APOV(bPOV
0 ) = ε.

Because Q1 has the exact same discrete transition graph

as that of Q0, for every hybrid behavior bSV
0 ∈ [[Q0]]

BSV
0 ,

ASV (bSV
0 ) ∈ [[Q1]]

BSV
1 , i.e., Q0 ⊑ASV

Q1.

3) Abstraction Between Compositions: The variables com-

mon to local behavior domains BPOV
i and BSV

i are x and

β1. We have to make sure that the localizations APOV ⇓∩ and

ASV ⇓∩ of abstraction functions APOV and ASV onto these

common variables, i.e., the mappings from behaviors in x to

behaviors in {β1}
∗ agree. APOV ⇓∩ is essentially the same

as APOV, with the row for β2 discarded. ASV puts indirect

restrictions on x due to the guard and invariant conditions of

the hybrid transitions (waiting, x) → (stopped, x) that are

mapped with the discrete transition waiting
β1−→ stopped.

Such a hybrid transition occurs iff x ≤ l and x ≥ l hold before

and after the transition, i.e., while crossing the boundary x = l
in the increasing direction, which agrees with APOV ⇓∩. In

the self-loop β1 transitions, x does not appear and is therefore

unrestricted, and in agreement with APOV ⇓∩.

Therefore, using Prop. 6, we can conclude (without having

to analyze models M1 and M13 directly) that M1 ⊑A M13.

In summary, compositional heterogeneous abstraction makes

it possible to use component models in isolation for establish-

ing abstraction between the composite models. In hierarchical
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Fig. 10. CICAS-SSA: Semantic hierarchies of verification models (left) and structural hierarchies of architectural models (right).

heterogeneous verification, compositional abstraction can be

used at each level whenever possible.

VII. COMBINED STRUCTURAL AND

SEMANTIC ANALYSIS FRAMEWORK

We have described structural analysis with architectural

views in Section III and heterogeneous semantic analysis in

Sections IV–VI, which, combined, form our multi-view archi-

tectural framework. We advocate the use of this framework as

a CPS design approach that combines structural and semantic

analyses for multi-model design and analysis of CPS, over-

coming the limitations of the existing approaches. Each model

has a corresponding structural representation in an architectural

view. Depending on the particular formalisms involved in the

heterogeneous analysis, models may explore and verify various

aspects of a cyber-physical system design. The role of archi-

tectural views in this framework is to analyze the structure

of models and store high-level information about models to

enable inter-model analysis. A simple example of such analysis

is structural consistency (cf., Section III).

The semantic and structural hierarchies for CICAS-SSA are

shown in Fig. 10. On the left side, verification models described

in this paper are linked with semantic mappings: component-

wise abstraction and behavior relations. On the right side, archi-

tectural views are linked with structural mappings. As the figure

shows, for this verification example we need to manage: various

heterogeneous models and specifications, semantic mappings

between various formalisms, abstractions or disjunctive cover-

age between models and conjunctive or individual implications

between specifications given these mappings, component-wise

semantic mappings, their local and global behavior domains,

localization mappings for compositional development, etc.

Managing the multi-model design and analysis using our

architectural framework provides the necessary rigor that

ad hoc approaches lack. Drawing from our experience with the

STARMAC and CICAS-SSA examples, we believe there are

several benefits to multi-model development and analysis in the

architectural framework as follows.

An extensible base for developing project-specific analyses

of several models. A set of architectural views may contain

the necessary meta-information about models to perform inter-

model analysis. For example, such analysis could ensure that

variables (e.g., a vehicle’s coordinates) are propagated in simi-

lar ways through the system in all models.

A global system representation that individual modeling for-

malisms cannot provide. Architectural views serve as a unifying

place for system-level information. This satisfies learning and

documentation needs of a CPS project: as new engineers join

the project, views and mappings between them help to commu-

nicate the high-level structure and relations between the system

models [67]. Nontechnical stakeholders may find views useful

to see the scope and main parts of a CPS.

Extensible architectural styles. Architectural styles support

capturing the constraints of a domain and constraining the

design process within them. A common way of constraining is

to declare the spaces of valid and invalid architectural configu-

rations. For example, the physical style can be extended into the

electrical, mechanical, hydraulic, and other styles depending on

the level of detail to be captured. Such styles facilitate creation

and verification of corresponding systems.

Representation of model structures as architectural views.

This enables structural consistency analysis, as described in

Section III. Structural consistency guarantees that the models

make compatible assumptions about the structure of the system.

Such analysis may prevent or correct system design flaws [61].

Explicit representation of interdependent assumptions about

models. Heterogeneous models often make simplifying as-

sumptions about each other to keep the complexity of each

model manageable for analysis. We have proposed explicitly

representing these assumptions using constraints over parame-

ters, and a notion of semantic consistency [68]. Such a consis-

tency analysis can be supported by the multi-view framework as

constraints over parameters and/or variables can be represented

as properties of architectural elements. For example, a verifica-

tion view of a system may assume a worst-case communication

delay δ of 0.5 seconds, while a wireless communication view

may calculate a maximum value of δ for communication delays.
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Fig. 11. AcmeStudio multi-view editor showing structural mappings between
the control view of STARMAC and the BA. The latter is shown in Fig. 3 in
detail.

The overall analysis is consistent if the assumption δ ≤ 0.5
actually holds.

Utilization of structural knowledge to simplify verification.

The information about architectural topology may inform ver-

ification activities. For example, the presence of a connector

means that the components share at least one variable. Con-

versely, absence of any connection means that the components

lack directly shared variables. This information would let the

verification engine avoid needless behavior consistency checks

to satisfy the conditions of Prop. 6.

The practical need to support the multi-model architectural

framework necessitates the creation of integrated design envi-

ronments for CPS design and analysis. We used the AcmeStu-

dio architectural design environment [33] to model views in the

STARMAC and CICAS-SSA examples. One of the key benefits

of AcmeStudio for heterogeneous design is a multi-view editor

[61], illustrated in Fig. 11. Here several components in the base

architecture are mapped to a single component in the control

view of the STARMAC quadrotor. AcmeStudio allows specifi-

cation of constraints over what element types can be mapped

to each other. It also checks for appropriate correspondences

between the mapped components and components connected

to them in both views using graph morphism checking.

We are currently working on additions that allow stronger

association between semantic models and architectural views:

support for parametric assumptions, associating variables with

components for verification views to enable more generic anal-

yses, and linking architectural views to specific models like

Simulink.

VIII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

This paper presents an architecture-based framework with

structural and semantic mappings to manage multi-model het-

erogeneous development of cyber-physical systems. We extend

software architecture principles by adding architectural model-

ing vocabulary to include physical and cyber-physical interface

elements and using architectural views to capture structure of

various models and structural mappings to ensure consistency.

Semantic mappings using behavior relations and abstraction

functions enable the use of hierarchical and compositional

heterogeneous verification. Finally, we combine the architec-

tural views with behavior relations within a unified analytical

framework to utilize the advantages of both during model-based

development of CPS. For control system development, this

framework creates a formal connection between the concerns

addressed by control engineering models and tools, and the

concerns addressed by the many other models and tools used

to design and implement the complete system.

There are several future research directions that can build

upon the work presented here. The behavior relations presented

here are mathematical definitions at the level of mappings

between entire behaviors. To make these more useful in prac-

tice, mappings between state spaces such as generalizations of

simulation relations to heterogeneous domains may offer a con-

structive approach to creating relations between the resulting

behaviors. Inter-formalism dependencies are currently captured

using constraints over static parameters. We are working on

extensions to dynamic constraints. Globalization/localization

mappings currently exist for different levels of abstraction in

behavior domains of the same formalism. Generalizations to

heterogeneous component models would be interesting. We are

investigating how the structural and semantic sides can help

each other. The structural connectivity information could help

simplify verifications or proofs. We are also developing tool

support in AcmeStudio. Support for semantic consistency is

being developed by exporting to external analysis tools such

as the theorem prover KeYmaera [69].
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