
Newcastle University e-prints

Date deposited: 9th
 March 2011

Version of file: Author final

Peer Review Status: Peer reviewed

Citation for item:

Ingham DB, Caughey SJ, Little MC. Supporting Highly Manageable Web Services. In: 6th International

World Wide Web Conference. April 7-11, 1997, Santa Clara, California, USA: Elsevier Science

Publishers

Further information on publisher website:

http://www.elsevier.com

Publisher’s copyright statement:

This is the author’s version of a work that was accepted for publication in Computer Networks and ISDN

Systems. Changes resulting from the publishing process, such as peer review, editing, corrections,

structural formatting, and other quality control mechanisms may not be reflected in this document.

Changes may have been made to this work since it was submitted for publication. A definitive version

was subsequently published in Computer Networks and ISDN Systems, volume 29, issue 8-13,

September 1997. DOI: 10.1016/S0169-7552(97)00044-5

Always use the definitive version when citing.

Use Policy:

The full-text may be used and/or reproduced and given to third parties in any format or medium,

without prior permission or charge, for personal research or study, educational, or not for profit

purposes provided that:

• A full bibliographic reference is made to the original source

• A link is made to the metadata record in Newcastle E-prints

• The full text is not changed in any way.

The full-text must not be sold in any format or medium without the formal permission of the

copyright holders.

 Robinson Library, University of Newcastle upon Tyne, Newcastle upon Tyne.

NE1 7RU. Tel. 0191 222 6000

1

Supporting Highly Manageable Web Services
D. B. Ingham, S. J. Caughey and M. C. Little

Department of Computing Science, University of Newcastle upon Tyne,

Newcastle upon Tyne, NE1 7RU, United Kingdom

{dave.ingham, s.j.caughey, m.c.little}@ncl.ac.uk

Abstract

This paper focuses on the management aspects of Web service provision. We argue that support for

manageability has to be considered at the design stage if services are to be capable of delivering

high levels of quality of service for their users. Examples of the problems caused by lack of

manageability include maintenance operations that necessitate service downtime, or difficulties in

ensuring consistency of information. We categorise management issues into those concerning a site

as a whole and those pertaining to individual services. Our approach to site management supports

the arbitrary distribution of services to machines, allowing the optimum cost/performance

configuration to be selected. Services can be easily migrated between machines, resulting in sites that

scale, both in terms of the number of services and the number of users. Service management issues

may be generalised as supporting evolution, for example, supporting changes to the functionality, the

presentation logic, and the overall look and feel of a service. Our approach, based on the separation

of functionality and presentation, allows such changes to be performed on-line and ensures that

updates are reflected consistency across the various pages of a service, or across services. This

approach also facilitates the development of services that utilise dynamic content for service

customisations, such as tailoring a service to match the profile of users. Furthermore, all

management operations are available through Web-based interfaces, making them accessible to a

broad range of users, not only specialist system administrators.

Keywords: web; management; object-oriented; dynamic content; Dublin core; metadata

1. Introduction
The Web continues to evolve from the initial role as a provider of read-only access to static documentation-

based information, and is becoming a platform for supporting complex services. This evolution is being

partially driven by commercial organisations that are beginning to use the Web for critical applications, such

as customer support systems and electronic commerce, and not simply as a low-cost advertising medium.

These advanced services typically share a number of common functional requirements, such as support for

session-based interactions, generation of dynamic content and controlled update of persistent system state. To

facilitate their implementation a number of Web application toolkits have been produced, including our own

W3Objects [Ingham95], which provide system support for these common features.

We believe, however, that providing support for the construction of Web services only addresses part of the

problem. Of equal, if not more, importance is the manageability of such services. Manageability encompasses

many issues, some relate to individual services while others are concerned with the collection of services that

together constitute a site. Scalability is an important aspect of site management so as to allow a site to grow to

support increased numbers of users and services. Service management is concerned with supporting change

while preserving consistency, both in terms of information and its presentation. If services are to be able to

deliver the high levels of quality of service demanded by users (customers), then manageability features have to

be designed in. This is particularly important for commercial services, where the consequences of providing

inconsistent information or suffering downtime for maintenance are often financial.

Another aspect of the changing Web is the increased use of dynamic content. Its use is becoming widespread,

not only for creating responses to a client-driven applications, but throughout services, in a system-driven

manner to support various customisation requirements. Examples include tailoring advertising to match the

profile of the user, or customising a merchant's catalogue based upon current stock levels. Such systems require

logic-based mechanisms to drive the customisations. The specification and maintenance of these logic

components is another service management issue.

This paper describes an architecture to support manageable sites based on the use of distributed object

technology. Our approach supports scalability by allowing arbitrary distribution of services to machines

2

allowing sites to be configured for optimum performance. Furthermore, configurations can be modified at run-

time without disruption.

To support manageability and customisation of services, we introduce a novel structuring technique, based on

the separation of presentation and functional aspects. This technique supports on-line service maintenance,

allowing changes to presentation and logic components to be performed. A particular feature is the ability to

ensure the consistency of changes to replicated components, such as an author's contact details, within a

service or across services.

A particular goal of this work is accessibility: traditionally service management was so complex a task that it

was reserved for only specialist system administrators. By allowing all management operations to be performed

via Web-based interfaces we aim to break down this technology barrier, making site and service management

accessible to non-specialists.

The remainder of the paper begins with an overview of the W3Objects system that has been used as a testbed

for our ideas. This is followed by a review of site management issues and how they are addressed by our

architecture. The next section focuses on service management, describing the model, an implementation

overview and several illustrations. An extended example is presented that demonstrates how the techniques can

be used to support the incorporation and management of resource metadata. Finally, we present our concluding

remarks and ideas for further work.

2. W3Objects Overview
Several research groups [Rees95, Merle96] and commercial organisations [ActiveX, WebObjects] have seen

the benefits to be gained from the application of object-oriented techniques to various aspects of Web service

provision. Our system, W3Objects, uses distributed object technology, to assist in the construction of advanced

Web-based services [Ingham95, Ingham96]. In our model, Web resources are represented as objects, which are

encapsulated resources possessing internal state and a well defined behavior, rather than the traditional file-

based entities. The model supports abstraction since clients interact with W3Objects only through well-defined

published interfaces. The objects themselves are responsible for managing their own state transitions and

properties, in response to method invocations.

W3Objects may support a number of distinct interfaces, obtained via interface inheritance. Common interfaces

may be shared thereby enabling polymorphic access, for example, all W3Objects conform to an HTTP

interface, providing methods including httpGet() and httpPost(). The specific implementation of the

methods may differ between the different classes of object. For example, a simple W3Object for holding HTML

state may simply return this state in response to a httpGet() request.

Arbitrary classes of application object can be implemented using this framework, adding class specific

operations. Desirable properties, such as persistence and concurrency control are obtained via the use of

behavioural inheritance.

W3Objects are organised and named within contexts, which may be nested. W3Object server processes

(W3OServers) are simply active contexts. Objects are accessed using RPC and addressed by specifying the

communication end-point of their containing server and the name of the object within that server. Inter-object

communication is used thoughout W3Objects to support functionality such as referential integrity [Ingham96]

and caching [Caughey97].

2.1 Web Access to W3Objects

Web access to W3Objects is provided though a gateway, implemented as a plug-in module for an extensible

Web server, such as Apache [Apache]. The gateway is fully compatible with the CGI interface allowing

standard HTML forms to be used to create user interfaces to services. The Web server is configured to pass

requests for part of the URL space (for example, URLs beginning /w3o/) to the gateway module. The

remainder of the URL identifies the name of the required service and any parameters to be passed to it. The

module then binds to the requested named object within the nameserver (a standard context) and invokes the

appropriate method on it, e.g., httpGet() or httpPost(). Additional data associated with the request,

including URL-encoded data from the client and environment data generated by the server is grouped together

as a request object that is passed as a parameter to the HTTP interface operations. The request is passed on

through the nameserver object to the destination object which performs the necessary computation and returns

3

the results to the client, via the server. The diagram in Figure 1 illustrates the architecture through an example

W3Objects site.

‘extensible’

Web server

W3Objects

gateway

module

nameserver

HTTP

Web

browser

W3Objects

(services)

W3OServers host boundary

naming

contexts

RPC

Figure 1: Architecture of a W3Objects site

3. Site Management
With the number of Web users increasing rapidly, site managers can expect the future to bring increased load

on their services. Similarly, it is likely that new services will be added to a site over time. Furthermore,

application-based services tend to be more computationally intensive than those that simply load and transmit

data files. Together these factors raise the issue of scalability; in order to continue to provide the desired levels

of quality of service, it is likely, that services will have to be partitioned across machines, with occasional

reconfiguration of the partitioning as load patterns vary or new services are added.

Using traditional server technology, applications are implemented as a number of disparate components,

including programs, HTML files, access control configuration, etc. Also, services typically share common

components, such as images or access control information, thereby creating dependencies between services and

between services and the server. In such conditions, migrating services can be a complex, error-prone

operation. For example, hypertext links, contained either in HTML files or embedded in programs, may

require updating, or changes to server configurations files may be required.

Due to the international nature of the Web, there is no appropriate time to bring down a service to perform

maintenance operations, therefore, a service provider would ideally like to perform such tasks on-line, without

the need for service downtime or major disruption.

The W3Objects architecture possesses a number of manageability features that help to address many of the

above issues, namely:

• Scalability through transparent distribution: The architecture supports arbitrary allocation of

services to processes and processes to machines, in a manner which is completely transparent to users.

This provides administrators with great freedom in selecting the optimum cost/performance

configuration for their site.

• Transparent service migration: Services may be migrated between processes and machines as

desired. Since services are encapsulated entities (discussed in more detail later), migrating a service is

achieved simply by invoking a migrate operation on the service object. This is accessible via a

programming-language API or via a Web-based management interface. The referential integrity

support inherent in the W3Objects system will ensure that all intra- and inter-object references (for

example, hypertext links) will remain valid after the migration and will be optimised over time to

provide the most direct paths [Ingham96].

• Introduction and removal of services: Services are made available to Web clients by registering

them in the nameserver. Installing a new application is simply a matter of starting the service and

registering it. Similarly services can be removed by deregistering them. These operation can be

4

performed while the system in on-line without disruption to users (naturally, service removal should

be performed with care.) Again, these operations are available either through a programming-

language API or a Web interface.

• Support for stateful services: Since W3Objects persist across requests, session-based state can be

held internally, either held in memory, or optionally on secondary storage. To aid the construction of

such services, application builders are able to use state persistence support provided by the W3Objects

class library.

3.1 Comparison with Alternative Techniques

In addition to the manageability features mentioned, the W3Objects architecture has several advantages over

both the traditional CGI-based mechanisms and the API-based schemes available with many of today's servers.

The mechanism of creating new processes to serve individual requests that is used in conventional CGI is

highly inefficient and results in unnecessary load on the server machine, thereby reducing the observable

performance of the server. It also makes supporting session-based services difficult, necessitating the use of

bespoke disc-based mechanisms to store session state, typically incurring additional performance penalties.

W3Objects services persist between requests and are accessed using RPC, resulting in high performance, and

the inherent ability to support session-based services.

The API mechanisms supported by many modern Web servers allow arbitrary applications to be loaded directly

into the Web server, thereby removing the need for CGI and its associated poor performance. Using this

approach, a separate module is typically installed for each application. The installation of user-code within the

Web server increases the probability of introducing bugs. A programming error in any of the installed modules

can result in the whole server crashing thereby rendering all applications unavailable. The single gateway

module used by W3Objects is a relatively simple piece of code that can be thoroughly tested. The effects of

programming faults within a W3Object application are contained to the process supporting that particular

application; other services will be unaffected.

Supporting session-based interaction using an API-based approach is complicated by the fact that most servers

use a multi-process architecture, making it possible for several instances of an application to be executing in

parallel. Since individual requests may be directed to any of the available server processes, external persistence

mechanisms are required to synchronise session-state between application instances.

4. Service Management
A Web service may be thought of as consisting of both functional and presentation components. For example,

the functional requirements of a search engine can be summarised as the ability to query a database based upon

some search criteria. The presentation requirements include providing usage instructions, accepting search

terms and returning results to the user. From a client's perspective, a service is simply seen as a collection of

pages. The server creates these pages either by returning some static data (e.g., usage instructions) or by

populating templates with data from programs to create dynamic content. In general, dynamic content may

either be used as the response to a client-driven request (e.g., the results of a search request) or in a system-

driven manner to support various presentation customisations, such as tailoring advertising to match user

profiles. The presentational aspects of a service can therefore by sub-divided into static and dynamic

components. Frequently services are implemented without a clear distinction between functionality and

presentation. For example, templates may be embedded within programs or the computation concerned with

the primary role of the service may be tied together with the computation concerned with presentation

customisation.

Service management is primarily concerned with supporting changes to services as they evolve over time.

Experience has shown that updates are often made to the look and feel, the logic that drives customised

presentations, and the functionality. We argue that combining functional and presentation aspects of a service

together complicates the task of performing change. Consider, as an example, the effects of modifying the

contact details of a service administrator. It is likely that this information is replicated on every page of the

service. Ensuring that all instances are consistency updated is a time-consuming and potentially error-prone

activity. Furthermore, instances may exist in both static and dynamic components. Although a trivial change, it

is likely that updating a presentation template within an application would require the skills of a programmer.

There is also the danger of accidentally interfering with the functional aspects of the service. This is more of an

issue when updates are required to the presentation logic of a service.

5

We aim to address these issues using a model for Web services that clearly separates the functional aspects of a

service from its presentation. Our model supports the isolation of commonality, ensuring the consistency of

updates to replicated components. The implementation allows changes to static and dynamic components to be

performed on-line by non-programmers using familiar Web-based interfaces.

4.1 Manageable Web Service Model

Our model is based on a novel structuring technique, in which a service is logically represented as a single

object which internally maintains a number of view objects that are assembled together to create the pages as

seen by clients.

A view may correspond directly to a complete HTML page, or may represent a fragment, such as a navigation

bar, that is used as a component within one or more pages. Views may either be static, as in a HTML fragment,

or may interact with the environment in some fashion to generate a dynamic representation. Furthermore,

views may either be private to a single resource or may be shared by multiple resources. Since views are

themselves W3Objects, they may be distributed, making it possible for view objects to be remote from the

services that utilise them. The example in Figure 2 illustrates the logical relationship between services, views

and the pages seen by users.

W3Object

services

dynamic

 component

navigation bar

component

shared view

manager

These are the instructio ns describ in g how

these services being used. These ar e th e

instructions describing ho w th ese serv ices

view manager

These are the instructio ns

describing how these services

being used. These are the

instructions describing ho w

these services being c

These are the instructio ns describ in g how

these services being used. These ar e th e

instructions describing ho w th ese serv ices

view manager

object

state

object

methods

These are the instructio ns describ in g how

these services being used. These ar e th e

instructions describing ho w th ese serv ices

client

presentation

object

state

object

methods

These are the instructions describing how these

services being used. These are the instructions
describing how these services These are the

instructions describing how these services being used.
These are the instructions describing how these

services

These are the instructions describing how these
services being used. These are the instructions

describing how these services These are the
instructions describing how these services being used.

These are the instructions describing how these
services

S1

S2

V2

V1

Figure 2: Relationship between client pages, services and views

Two services, S1 and S2, are shown that utilise both private and shared views. As a result of a request, a

service makes an invocation on the appropriate view object. The object responds by creating a static

representation of itself to be returned to the client. For example, a request on dynamic view, V2, may generate

a fragment of HTML data based upon some interaction with the functional operations of the service. Views

may also contain references to others, indicated by the arrows in the diagram. In response to a request, such

views issue requests on the objects they include, assembling their responses as a static block of data. To

illustrate this mechanism, the diagram shows the page as seen by the client as a result of a request on S1, V1.

The client's representation is a complete HTML page, containing the results of V2's interaction with the

service and the inclusion of the shared navigation bar object.

4.2 Manageability Features

Services based on this model are manageable by virtue of the ability to configure their Web-interface at run-

time without requiring them to be brought down. New operations can be added to a service, existing ones

modified, and redundant ones removed, through the creation, modification and removal of view objects

respectively. These operations are provided through a dedicated management interface, that is accessible,

either through a programming-language API or via a Web interface. Additional features of the model are

summarised below:

6

• Isolation of commonality: Since common components, such as a navigation bar or author contact

details are maintained in a single location the task of maintaining consistency of information is

simplified. Furthermore, updates to such components are performed to a single object, with the

changes automatically incorporated into views which use them.

• Encapsulation: Since the entire service is represented as a single object, it can be managed as such,

for example, migrating the service is achieved by invoking a migrate operation on the service object.

All enclosed view objects will automatically migrate with the service and links to external views will

be preserved.

• Service evolution: View objects may be migrated between view managers, for example, a view that is

initially created privately can later be exported to be shared with other services. Again, the underlying

system ensures that all references to the migrated component will remain valid.

• Accessible management interface: All management operations are accessible via a Web interface,

allowing views to be created, destroyed, and edited using a single familiar interface.

4.3 Implementation Details

The first step in creating a manageable service is the implementation of a user-defined class to support the

functionality of the service. This stage is completed without consideration for how the service will by accessed

or presented via the Web. Inheriting a user class from the Manageable class, provides an implementation of the

HTTP interface, that is driven by the gateway module in the Web server. Furthermore, it provides a dedicated

service-management interface that allows view objects to be created, edited, removed and migrated.

The Web interface to the class provides access to both service operations, i.e., those that are invoked by users of

the service, as well as management operations, i.e., those that are typically accessed by service providers and

managers. Internally, this interface is defined by two components, the dispatcher, that defines the set of

accessible operations and the view manager, which holds the view components associated with the service. A

logical representation of the internal structure of a manageable service is shown in Figure 3.

httpGet()

httpPost()

migrate()

HTTP

Manage View

Object

object

state

object

specific

create()

remove()

view manager

A

B

C

D

dispatcher
request

response

Figure 3: Internal structure of a manageable W3Object service

All Web-based requests arrive at the object via the HTTP interface and are forwarded to the dispatcher. Its role

is to allow the arbitrary operations supported by a user class to be accessed via the generic HTTP interface. To

act as a logical bootstrap mechanism, the dispatcher uses compiled dispatch objects to provide the Web

interfaces for the programming level operations, e.g., management operations (illustrated by the light arrows in

the diagram). In addition the dispatcher interacts with the view manager to map service requests into view

object invocations. The diagram shows four view objects A, B, C, and D (C is a reference to a remote view.) In

effect, each operation a service supports over its Web interface is implemented as a view object. As an

example, consider the following HTTP request:

[HTTP headers]
GET /w3o/confReg?opcode=instructions HTTP/1.0

7

To serve the request, the dispatcher attempts to bind to the object whose name corresponds to the value of the

opcode attribute in the request, "instructions", in this example. It then invokes a standard method on the view,

passing the request object as a parameter. The view object is free to respond to the request as appropriate,

eventually returning some data, for example, HTML code, to be passed back to the client; it may also modify

the request object, inserting headers to be returned to the client, for example, to specify the MIME type of the

data being returned.

4.4 Varieties of Views

View objects are standard W3Objects that inherit from the View class. Therefore, view classes may define new

interfaces and can support arbitrary functionality. Typically, a view-specific management interface is provided

that allows their functionality to be customised. View objects can be independently accessed via the Web and

typically provide access to their management operations through this interface. Furthermore, views may also be

manageable, in that their internal operation may too be constructed using views. The W3Objects library

supports a number of generally useful views. One of the simplest is the HTMLView, which is used to hold

HTML components.

4.4.1 HTMLView - an example view object

The HTMLView is a simple class that is capable of storing HTML data, complete pages or page fragments. In

response to a request, such views simply return their internal HTML state. Their management interface

supports three operations: read, write and load (allowing the internal HTML to be overwritten by new data

from a file.) Their Web interface uses these operations to allow the object to be edited using a forms-based

editor, as shown in Figure 4.

Figure 4: HTMLView Web-based management interface

Note that we also support object editing using the HTTP PUT method, that is supported by some browsers.

4.4.2 Providing maximum flexibility using scripted views

Scripted views allow the logic that drives dynamic components to be modified at run-time via a Web interface.

Such objects are implemented using W3OScript, a server-side scripting language based on tcl [Ousterhout94].

W3OScript programs are executed by a safe tcl interpreter which only supports a sub-set of the standard tcl

command set. W3OScript adds a number of additional W3Object-specific commands to the interpreter. The

system is implemented using the Embedded Tk (ET) toolkit, which provides a convenient way of executing tcl

applications within compiled C or C++ programs [ET]. W3OScript views are editable using the same Web-

based interface as shown previously.

W3OScript views are able to access the functional interface of a service. In particular, this mechanism can be

used to include other views as components. The native Tcl language provides a convenient way of expressing

logic to support tailored dynamic views. Consider a simple example in which a service has a requirement to

8

tailor a page, offering a different menu depending on whether a user is local or an outsider. Such a requirement

can be implemented with a few lines of W3OScript as shown below:

<HTML>
<HEAD><TITLE>Welcome</TITLE></HEAD>
<BODY>
<H1>Welcome</H1>
<!--W3OSCRIPT>
switch -regexp [w3ovar REMOTE_HOST] {
ncl.ac.uk {set html [w3oinclude parent localMenu]}
default {set html [w3oinclude parent remoteMenu]}
}
return $html
</W3OSCRIPT-->
</BODY></HTML>

4.4.3 Supporting session-based interactions

Many applications require the ability to create session-based interactions between the client and the service.

Implementing such services requires mechanisms to maintain session state between requests. This state can

either be held by the client or at the server. A W3OScript application can use either or both techniques as

required. Client-side state maintenance is achieved by encoding session-state in the forms returned to clients.

Holding session state at the server is achieved by using client-held cookies to index into server-held data.

W3OScript provides a convenient programming abstraction, known as the cookie jar, to shield users from the

complexity of implementing such services. W3OScript objects place data in the cookie jar using attribute-value

pairs and in subsequent requests can retrieve the data by specifying the attribute name.

4.5 Service Management Example - managing resource metadata

In common with many service providers, Netskills, a UK based project, providing network service training to

academics, are seeking to incorporate Dublin core metadata [Dublin, Miller96] into their resources so as to

facilitate indexing and searching. This process is a time-consuming and potentially error-prone activity

requiring many resources to be edited.

Analysing the problem, it is observed that many resources share common metadata elements, for example, all

of an author's resources contain the same author-based information and similarly authors belonging to the

same organisation share the same organisation-based information. This raises the issue of maintaining

consistency, for example, if an author's contact details change, we would ideally like to make the change in a

single place and have it reflected in all resources. Another issue is the complex syntax of metadata; tool

support is ideally required to facilitate its creation removing the need for hand-crafting. Furthermore, the

metadata standards are in a state of flux, therefore, it is likely, that the syntax used to embed metadata in

HTML resources will change.

To illustrate the flexibility of our approach for service management, a W3Objects-based implementation was

designed to support this task. Firstly, a dedicated metadata view class was defined as a specialisation of

HTMLView. The Web-based management interface provides a form-based metadata editor, allowing metadata

to be created simply by filling in boxes, as shown in Figure 5.

9

Figure 5: Web-based management interface for metadata views

The data is maintained internally within the view object in a structured fashion. W3OScript is used to specify

the logic rules that map this structured information in to the desired format for embedding in a HTML

resource. This approach has two advantages, firstly, if the standards for embedding metadata are changed, then

a single change to the presentation logic is all that is required. Secondly, the metadata can also be presented in

a user-friendly form if required, for example, through an additional operation on the object.

A hierarchy of view objects was then created, reflecting the commonality inherent in the metadata. A particular

page object includes within its "HEAD" block a private metadata view, which contains the metadata elements

unique to the resource. This view includes the shared metadata view of its author, which, in turn, includes the

organisation metadata view. When a resource is accessed the various components are pulled together to create

the page as seen by the client. This approach removes replicated information, allowing changes to be made at a

single place which are reflected in all resources that use it.

4.6 Comparison with Alternative Techniques

Supporting changes to look and feel can be partially achieved using style sheets [Lie96], which allow HTML

formatting commands, such as heading colours, to be stored separately from the resources that use them. Style

sheets can therefore be shared by multiple resources, helping to ensure the consistent look and feel of a set of

pages. Our approach does not conflict with the use of style sheets, in fact their use is encouraged (style sheets

can be implemented as shared views objects.) However, style sheets do not assist in all look and feel changes,

for example, the aforementioned problems of updating replicated items of information, such as an author's

contact details cannot be addressed using style sheets.

An alternative approach for supporting dynamic content is through the use of server-side include (SSI)

techniques. Special server-parsed HTML files are used to define templates that may contain embedded requests

to CGI applications. When the server receives a request for such a resource, the template is loaded and

processed, executing the embedded CGI requests and entering the results into the template before it is returned

to the client. This approach provides greater flexibility than embedding templates within programs since they

can be modified without editing application code. The disadvantage of SSI is its poor performance as the

service must load and parse the template file for each request. Our approach improves on this by pre-loading

objects and pre-parsing where possible. The resulting system performs well; overheads include executing

interpreted W3OScript objects and the occasional RPCs used to communicate with remote objects (we are

investigating ways of reducing this cost, as discussed in the conclusions.)

5. Conclusions and Further Work
Manageability is becoming an increasingly important aspect of Web-based systems, especially for commercial

services where quality of service is understood to be an important issue. This paper has shown how distributed

object technology can be used to build manageable Web sites that scale according to the increased number of

users and services that they are required to support.

Orthogonal mechanisms to address the issues of service management illustrate the advantages to be gained

from separating the presentation from the functional aspects of a service. Services constructed using the class

library provided are managable by virtue of the ability to add, remove and modify the service's set of operations

10

at run-time. The problem of preserving the consistency of replicated information in the face of updates is

addressed by isolating changes to a single location, with the assurance that all occurrences will reflect the

changes. The use of scripted resources has the advantage of allowing functional components to be modified on-

line. This is especially useful for generating dynamic content for customisation purposes, for example, to tailor

the presentation of a service to match user profiles.

A key feature of the work has been improving the accessibility of site and service management. Allowing all

management operations to be performed via Web-based interfaces helps to make such tasks accessible to a

broad-range of users, not just specialist system administrators.

One aspect of our planned future work is concerned with further improving performance, in particular, we aim

to deploy internal, inter-object, caching mechanisms to minimise inter-object communication [Caughey97].

Additionally, we are aiming to further improve the flexibility offered to service managers. One specific aim is

to provide the ability to group together multiple management operations, involving numerous resources, as a

single operation, so as to prevent users from seeing intermediate stages. We are currently investigating the use

of atomic actions to support this functionality [Little97].

6. Acknowledgments
The work reported here has been partially funded by grants from the Engineering and Physical Sciences

Research Council (EPSRC) (Grant Number GR/K34863), Hewlett-Packard Laboratories and GEC-Plessey

Telecommunications.

Thanks also go to the Netskills team, in particular to Brian Kelly (now at UKOLN as UK Web Focus Officer),

whose experience in managing a large Web site provided valuable insight into current management issues,

thereby contributing to the goals of this work.

7. References
[ActiveX] The ActiveX Home Page, Microsoft Inc.

See <URL:http://www.microsoft.com/activex/>

[Apache] The Apache Project Home Page.

See <URL:http://www.apache.org>

[Caughey97] S. J. Caughey, D. B. Ingham, and M. C. Little, "Flexible Cache Consistency for the Web,"

Proceedings of the 6th International World Wide Web Conference, Santa Clara, California, USA, April 1997.

[Dublin] The Dublin Core Metadata Element Set Home Page.

See <URL:http://purl.org/metadata/dublin_core>

[ET] The Embedded Tk Home Page.

See <URL:http://users.vnet.net/drh/ET.html>

[Ingham95] D. B. Ingham, M. C. Little, S. J. Caughey, and S. K. Shrivastava, "W3Objects: Bringing Object-

Oriented Technology To The Web," The Web Journal, 1(1), pp. 89-105, Proceedings of the 4th International

World Wide Web Conference, Boston, USA, December 1995.

Available at <URL:http://www.w3.org/pub/Conferences/WWW4/Papers2/141/>
or <URL:http://arjuna.ncl.ac.uk/w3objects/papers/www4/Overview.html>

[Ingham96] D. B. Ingham, S. J. Caughey, and M. C. Little, "Fixing the Broken-Link Problem: The W3Objects

Approach," Computer Networks and ISDN Systems, 28(7-11), pp. 1255-1268, Proceedings of the 5th

International World Wide Web Conference, Paris, France, May 1996.

Available at <URL:http://www5conf.inria.fr/fich_html/papers/P32/Overview.html>
or <URL:http://arjuna.ncl.ac.uk/w3objects/papers/www5/Overview.html>

[Lie96] H. W. Lie and B. Bos, "Cascading Style Sheets, level 1," W3C Proposed Recommendation, November

1996.

Available at <URL:http://www.w3.org/pub/WWW/TR/PR-CSS1>

[Little97] M. C. Little, S. K. Shrivastava, S. J. Caughey, and D. B. Ingham, "Constructing Reliable Web

Applications Using Atomic Actions," Proceedings of the 6th International World Wide Web Conference, Santa

Clara, California, USA, April 1997.

11

[Merle96] P. Merle, C. Gransart, and J. Geib, "CorbaWeb: A Generic Object Navigator," Computer Networks

and ISDN Systems, 28(7-11), Proceedings of the 5th International World Wide Web Conference, Paris, France,

May 1996.

Available at <URL:http://www5conf.inria.fr/fich_html/papers/P33/Overview.html>

[Miller96] P. Miller, "Metadata for the Masses," Ariadne (The Web Version), Issue 5, ISSN: 1361-3200,

September 1996.

Available at <URL:http://www.ukoln.ac.uk/ariadne/issue5/metadata-masses/>

[Netskills] The Netskills Project Home Page.

See <URL:http://www.netskills.ac.uk/>

[Ousterhout94] J. K. Ousterhout, "Tcl and the Tk Toolkit," Addison-Wesley, 1994.

[Rees95] O. Rees et al., "A Web of Distributed Objects," The Web Journal, 1(1), Proceedings of the 4th

International World Wide Web Conference, Boston, USA, December 1995.

Available at <URL:http://www.w3.org/pub/Conferences/WWW4/Papers/85/>

[WebObjects] The WebObjects Home Page, NeXT Computer Inc.

See <URL:http://www.next.com/WebObjects/>

