Supporting Incremental Join Queries on Ranked Inputs

Apostol Natsev Yuan-Chi Chang

IBM T. J. Watson

yuanchi@us.ibm.com

Duke University
natsev@cs.duke.edu

Abstract

This paper investigates the problem of incremen-
tal joins of multiple ranked data sets when the join
condition is a list of arbitrary user-defined predi-
cates on the input tuples. This problem arises in
many important applications dealing with ordered
inputs and multiple ranked data sets, and requiring
the topk solutions. We use multimedia applica-
tions as the motivating examples but the problem
is equally applicable to traditional database ap-
plications involving optimal resource allocation,
scheduling, decision making, ranking, etc.

We propose an algoritho* that enables querying
of ordered data sets by imposing arbitrarser-
defined join predicatesThe basic version of the
algorithm does not use any random access but
a Jp 4 variation can exploit available indexes for
efficient random access based on the join predi-
cates. A special case includes the join scenario
considered by Fagin [1] for joins based on iden-
tical keys, and in that case, our algorithms per-
form as efficiently as Fagin’s. Our main contri-
bution, however, is the generalization to join sce-
narios that were previously unsupported, includ-
ing cases where random access in the algorithm is
not possible due to lack of unique keys. In addi-
tion, J* can suppornultiple join levelsor nested
join hierarchies, which are the norm for modeling
multimedia data. We also giveapproximation
versions of both of the above algorithms. Finally,
we give strong optimality results for some of the
proposed algorithms, and we study their perfor-
mance empirically.

John R. Smith

IBM T. J. Watson

jsmith@us.ibm.com

Chung-Sheng Li Jeffrey Scott Vitter

IBM T. J. Watson

csli@us.ibm.com

Duke University
jsv@cs.duke.edu

1 Introduction

Advances in computing power over the last few years have
made a considerable amount of multimedia data available
on the web and in domain-specific applications. The result
has been an increasing emphasis on the requirements for
searching large repositories of multimedia data. An impor-
tant characteristic of multimedia queries is the fact that they
return ordered data as their results, as opposed to return-
ing an unordered set of answers, as in traditional databases.
The results in multimedia queries are usually ranked by a
similarity scorereflecting how much each tuple satisfies the
guery. In addition, users are typically interested only in the
top k answers, wherg is very small compared to the total
number of tuples. Work in this area has therefore focused
primarily on supporting tog queries ranked on similarity

of domain-specific features, such as color, shape, etc.

One aspect that has received little attention, however, is
the requirement to efficiently combine ranked results from
multiple atomic queries into a single ranked stream. Most
systems support some form of search based on a limited
combination of atomic features but the combinations are
usually fixed, limited to the types of features supported in-
ternally by the system, and typically allowing only Boolean
combinations. In contrast, there has been little work on
supporting topk queries over arbitrary combinations, or
joins, of multiple ordered data sets. One notable exception
is Fagin's work [1, 2], who considered the case of equi-
joins of ordered data when the join is over a unique record
ID present in all of the join streams.

This paper formalizes the problem and generalizes it to
user-defined join predicates. It also introduces a fast incre-
mental.J* algorithm for that problem. The ability to sup-
port user-defined join predicates makes the algorithm suit-
able for join scenarios that were previously unsupported
due to the lack of key attributes needed for random ac-

Permission to copy without fee all or part of this material is granted pro- cess. In the case when we do have such key attributes, or if
vided that the copies are not made or distributed for direct commercialyye can exploit indexes to directly access tuples that satisfy
advantage, the VLDB copyright notice and the title of the publication and _ : ; ; ; ;

its date appear, and notice is given that copying is by permission of theuser deflneq predlcates, we give a pred|cate acces,s version
Very Large Data Base Endowment. To copy otherwise, or to republishOf our a|90”tr_‘m that Can.take_ advantgge of such indexes.
requires a fee and/or special permission from the Endowment. We also consider approximation algorithms that trade out-
Proceedings of the 27th VLDB Conference, put accuracy for reduced database access costs and space

Roma, Italy, 2001 requirements. Finally, we study the algorithms empirically.

The rest of the paper is organized as follows. In the
mainder of this section, we motivate and formally del
the problem of topk join queries on ordered data. We a
review relevant work and list our specific contributions.
then give a detailed description of the algorithm and
its iterative deepening variation in Section 2. We exp
the J; 4, algorithm in Section 4, and discuss approximat
algorithms in Section 5. In Section 6, we give some ¢
mality results for the proposed algorithms. The beha
of the J* algorithm is evaluated empirically in Section
where we validate our theoretical results in practice.
conclude with a summary of contributions.

Query template

3'-._:3"- Rock sample 1

"on top of"

B Rock sample 2

Find rock structures most
similar to the template.

Figure 1: Example of an ordered join operation

1.1 Motivation might want to define thé)ELTA_LOBE view using the

A good example to demonstrate the problem of joir ~ following SQL statement:
multiple concepts with user-specified join constraints is CREATE VIEW DELTA_LOBE AS

match of strata structures across bore holes in oil e» SELECT*

ration services. Petroleum companies selectively drill t FROM SANDSTONE SD, SHALE SH, SILTSTONE SL
holes in oil rich areas in order to estimate the size of oil WHERE above§D.DEPTH, SH.DEPTH) =1 AND
reservoir underground. Readings from instruments mea- above(H .DEPTH, SL.DEPTH) = 1 AND
suring physical parameters, such as conductivity, as well near §D.DEPTH, SH.DEPTH) =1 AND

as images of rock samples from the bore hole are indexed near GH.DEPTH, SL.DEPTH) =1

by depth, as in the example shown in Figure 1. Tradition- Even though there is nothing conceptually new in this
ally, experienced human interpreters (mostly geologistsjefinition, in practice it is very hard to support such nested
will then label the rock samples and try to co-register the la-ordered views efficiently. The reason is that due to the im-
bels of one bore hole with those of many other bores h0|e§osed order, getting even a single candidate from the top
in the neighboring area. The matched labels are then fegiew may involve materializing all candidates of the child
into 3D modeling software to reconstruct the strata strucviews, which is very time consuming. Without an effi-
ture underground, which tells the reservoir size. cient join algorithm for ordered data, the database would
The process of rock layer labeling and cross-bore cobe forced to perform a regular unordered join, followed by
registration can be significantly sped up by content-basedorting, in order to get the single best answer in the parent
image retrieval techniques. An interpreter can issue a queryiew.
to locate similar looking rock layers in all bore hole im-
ages. An exampleis illustrated in Figure 1, where the query 5 pefinitions and Problem Formulation
template consists of two rock types, and specifies that one’
should be near and on top of the other. In this section we consider the exact formulation of the join
The above scenario is an example of combining the reproblem. The problemis illustrated in Figure 2. Informally,
sults of two ranked searchefind occurrences of rock A we are givenm streams of objects ordered on a specific
and rock B based on user-defined constraintsck A is score attribute for each object. We are also given a sgt of
aboverock Bandrock A isnear rock B). We name such arbitrary predicates defined on object attributes from one
queriesordered join queries with user-defined join pred- or more streams. A valid join combination includes exactly
icates,and we define them formally in the next section. one object from each stream subject to the set of join pred-
Current database systems do not support such queries efftates (an example is denoted with a solid red line in Fig-
ciently, and while multimedia search systems support somare 2). Each combination is evaluated through a monotone
form of ranked join queries, to the best of our knowledge,score aggregation function defined on the score attributes of
none support join queries with user-defined join predicateshe individual objects, and we are interested in outputting
Another feature that receives very limited support inthek join combinations that have the highest overall scores.
both traditional and multimedia databases is the defini- Our middleware cost model considers only the cost of
tion of nested (or recursive) views of ordered data setsaccessing objects from the individual streams. We differ-
For example, building on the above oil exploration sce-entiate between two types of database accesseted ac-
nario, we can define the concept BEELTA_LOBE as a cessor scanning the objects in the order that they appear in
sequence oBANDSTONE on top of SHALE on top of each stream, angredicate acces®r accessing all objects
SILTSTONE. The concepts ofANDSTONE, SHALE, from a given stream that satisfy a certain predicate (e.g., re-
and SILTSTONE, can be recursively defined by spec- turn all objects that are within a certain distance of a fixed
ifying samples of rock textures that fall in the corre- object). Note thatandom accessor accessing a specific
sponding class. Using the previously defined views forobject in a given stream, is a special case of predicate ac-
SANDSTONE, SHALE, and SILTSTONE, the user cess where the predicate is the equivalence relation on an

stance of the above problem where at least onéafBis

the result of another ordered join query. Otherwise, we will

refer to the join as &ingle-level join problemNote that

mn the standard relational join corresponds to the special case

where each of the tuples has a score of 1. Hybrid cases for
joins of ordered and unordered data sets are therefore pos-
sible, with the unordered data being given an implicit score
of 1.

When the set of join predicates contains only the
equivalence relation on one or more attributes gtj@in is
called anequi-join If in addition, the equi-join is defined

m on key attributes only, we call the resulting jaimique

. - Unique ordered joins have been considered previously by
Figure 2: Cost model for the ordered join problem. Fagin et al. [1, 2], Ortega et al. [6], ancLGtzer et al. [3].
However, the general class of joins based on arbitrary join
predicates was previously unsupported efficiently, and is
g[he main focus of this work.

The nested ordered join top-query problemis an in-

object’s key attribute (e.g., its ID). Thus, our cost model is
slightly more general than the one defined in [1, 2]CH
and Cp, are the costs of scanning a single object usin
sorted access or predicate access (with prediégteesp.,
and if Ns and Np, are the number of objects scanned in1.3 Proposed Approach and Contributions

such manner, then the middleware cost is defined as: In this paper, we address the ordered join problem defined

Cost = NsCs + 3, Np.Cp,, in Section 1.2.1n addit_ion to formulating the general prob-
lem precisely for the first time, we propose several algo-

wherei ranges over predicates used for accessing objectsfithms for it, both exact and approximate. In contrast to a

To formalize the problem using standard database tePUsh model that requires blind scanning of the individual
minology, we extend the definition ofralational join, ora Streams until a certain condition is satisfied, our algorithms

9-join, to theordered joincase as follows: use a pull model requesting inputs one at a time, and only
if needed to determine the next best answer in the joined
Definition 1.1 We define amrdered #-join with respect result set. This incremental computation is crucial for ap-
to scoring function S as the combination of two tables plying the algorithm to multi-level joins. To the best of
ordered on a specific score attribute each and joined ac-our knowledge, the proposed algorithms are the first to ef-
cording to a specified relationship between one of more ficiently support ordered joins based on arbitrary join pred-
attributes in each table. The resulting table is ordered onicates, as well as multi-level hierarchies of such joins. We
an aggregate score attribute computed by the scoring funcpresent very strong optimality results for some of the al-

tion S: gorithms, and we also perform an empirical study of their

s performance to validate their efficiency. Our specific con-
Avdy B={t=ablac A, b€ B,0(a.X,bY) =1, tributions include algorithms for both database access sce-
t.score = S(a.score, b.score) }, narios defined in Section 1.2—using sorted access only or

using both sorted and predicate access. In addition, we give
approximation versions of the above-mentioned algorithms
that provide guaranteed bounds on the approximation qual-

We are now ready to formally define the problem: ity and can refine the solution progressively.

where A, B, and A i B are ordered on their respective
score attributesll

Definition 1.2 [Ordered join top- k queries] Given: 1.4 Related Work

e TablesA = {a;} and B = {b;}, ordered on a score

attribute. and of size at mosatrecords each: The problem of supporting Boolean combinations on mul-

. . tiple ranked independent streams was first investigated by

e A score aggregation function Fagin for the case of top-queries [1]. The scenario he
S:[0,1] x [0,1] — [0,1] defined over the score considered includes a database\bbbjects andn order-
attributes of the join tables that is monotone andings (or ranked streams) of those objects according to

incremental over each of its arguments; different ranking criteria (or atomic queries). The prob-
e A set of Boolean predicat#sdefined on one or more lem then consisted of evaluating the objects with respect to
attributes fromA and B. their ranks in each of the: streams, and outputting thie

objects with the best overall scores. As such, the problem

is equivalent to the unique equi-join special case of the gen-
“This definition can be easily generalizeditoary joins o joins be- €ral Ord?r?d join problem. In that case, the problem is that

tweenm tables. of combining scores that correspond to the same database

Output: Topk tuples fromA i B I

object, as opposed to aggregating scores that belong to dijin into a hierarchy of binary joins. Neither of the pre-

ferent objects. vious approaches therefore considered nested views or or-
Fagin proposed an algorithm for that problem that usedlered joins based on arbitrary join predicates.

both sorted access and random access based on unique key

attributes [1]. Gihtzer et. al. [3] optimized the original al- 2 Algorithm J*

gorithm by formulating an earlier termination condition,))]
and also considered optimizations for skewed input data" this section we propose the algorithm for the ordered

sets. However, both algorithms relied heavily on randondin top-« query Eroblem. The proposed join algorithm
access, and in the more general join scenario, random al$ based on thel* class of search algorithms, hence the

cess may be impossible due to lack of key attributes in th@@meJ*. The idea is to maintain a priority queue of partial
join constraints. and complete join combinations, ordered on upper bound

Very recently, we have become aware of new work byest|m_ates of t.he flnal pomblnatlon SCores, _a_nd to process
) the join combinations in order of their priorities. At each
Fagin et al. [2], where the authors proposed three new al-

gorithms for the unique equi-join scenario, including anstep, the algorithm tries to complete the combination at the

algorithm that does not use random access. We note thé?p Qf the queue by sglecting the next stream to join to the
our J* algorithm is similar to that algorithm, although the partial result and pullmg the next tgple from 'that. stream.
two were derived independently, through different meansThe process terminates when the join combination at the

and have different interpretations. Also, they are still de-head of th_e_queue IS cqmpletg. If that is the case, all in-
i) X . complete join combinations will have scores smaller than
fined for different problem settings. In particular, we con-

sider joining multiple sets odifferent objectainderarbi- :E:t(:c%r;%ﬁ:t%gecg:r?se Qﬁgg tcc))ftthhee nqeg(?l:)ee,s?ggst\?v?a:e?;i’
trary join constraintsthat specify valid combinations of . ponas to '

. . algorithm thus performs the join incrementally, and due to
such objects. In contrast, the above algorithms all appl

to the scenario of joining multiple sets of tkame objects)gfcﬂlijgébiﬁsﬁgen da;[)ur?]’e';tzgp\l'izjvtotfgﬁerglgg':)er\ézlrjeodm dg'g'

that areordered differentlyn each stream. Y . q . ;
L More formally, for each input stream we define a vari-

Another treatment of the same problem of equi-joins,p e whose set of possible values consists of the tuples from

over key attributes was presented by Ortega et. al in [6liq corresponding stream. The problem of finding a valid
4

The authors defined a query tree whose nodes representgfl, ombination with maximum score reduces to the prob-
intermediate matches derived from the matches at the chilg, of finding an assignment for all the variables, subject
dren nodes, and evaluated it bottom up to get the final simg, e join constraints, that maximizes the score. There-
ilarity score at the root. They also proposed algorithm Vari'fore, define astateto be’ a set of variable assignments, and
ations for specific score aggregation functions so that they| the state @ompleteor final solutionif it instantiates
algorithms would not use random access. Their methods yariables. Otherwise, the state is callgartial or in-

however, do not generalize to any monotone score aggresmplete Since the possible values for each variable cor-
gation function and to arbitrary join predicates. respond to tuples with scores, we can define the score of

The SPROC algorithm [4] is the only algorithm to the 3 state assigning all variables to be simply the aggregation
best of our knowledge that addresses the problem of joinof the individual scores. For states that are complete, the
ing ranked result sets under arbitrary join conditions. Inscore is exact. For incomplete states, the score can be up-
the SPROC scenario, the overall score for the join comper bounded by exploiting the monotonicity of the score
binations is a function of not only thatomic scoredor aggregation function. We then define tsiate potential
each tuple but alseonstraint scoredor pairs of tuples. to be the maximum score a solution can take if it agrees
The problem is therefore more general than the one considyith all assignments in the given stafEhe state potential
ered here since it scores the extent to which the join predean be computed by upper bounding the scores of all non-
icates are met. It is solved by looking for a maximal costinstantiated variables for a given state. We can now solve
path, computed with a Viterbi-like dynamic programming the problem by running thel* search algorithm, which
algorithm. In general, however, the algorithm will scan all mandates that states be processed in decreasing order of
streams completely due to the lack of monotonicity in thetheir potential.
overall scoring mechanism. Therefore, it does not provide The pseudo code for the crux of the algorithm is listed
access cost savings but minimizes the number of evaluatef| Figure 3. In order to output the tdpmatches, the algo-
join combinations instead. rithm invokes the GetNextMatch() routirketimes. During

One additional distinction of our work from all of the the main processing loop, the algorithm always processes
above works is the fact that the latter considered onlythe head of the queue by expanding it into two new states,
the single-level join problem. In particular, random ac-generated by considering the next possible value for some
cess makes the above algorithms inefficient for hierarchicalinassigned variable. Both new states are inserted back into
joins since random accesses at intermediate levels of th@e priority queue according to their potential if they satisfy
join hierarchy are prohibitively expensive. Ortega et al.sthe join constraints. The GetNextUnassigned() routine en-
approach did use a multi-level query tree but the differentapsulates a heuristic that controls the order in which free
levels were derived always by breaking up a singlary variables are assigned. In general, we want to select the

GETNEXTMATCH(): SHIFTNEXTMATCH():

; if Eg?uerzeﬁ\aPLIT_YO) then 1 child + GETNEXTUNASSIGNED()
3 endif 2 child.match_ptr ++
3 if (child.match_ptr == NULL) then
4 head + queue.POR() 4 child.match_ptr +
5 if (head.COMPLETE()) then 5 child . GETNEXTMATCH()
6 return head 6 endif '
7 endif
8 head? « head.COPY() ASSIGNNEXTMATCH():
9 head?.ASSIGNNEXTMATCH() 1 child + GETNEXTUNASSIGNED()
10 if (head2.VALID()) then 2 child. match._ptr ++
1; ené]i?eue.PUSH(head,?) 3 if (child.match_ptr == NULL) then
4 child.match_ptr +
13 head.SHIFTNEXTMATCH() 5 child GETNpEXTMATCH()
14 queue.PUSH(head) 6 endif '

15 GotoStep 1

Figure 3: Pseudo-code for the join algorithm. The three functions above form the crux of the algorithm.

variable that will provide the largest refinement on the staténg combinationg A1, B1), (A2, B1), (A3, B2). The final

potential, because the tighter the score upper bounds arsglutions are listed in the top left corner of the figure, while

the faster the algorithm will converge to a solution. Ex-the top right corner shows the first four iterations of priority

amples of possible heuristics include selecting the variablgueue processing (until the top answer is identified). Each

that is most constrained or least constraining given the joirstate node in the priority queue contains a score estimate

predicates; the variable thatuldlead to the largest drop and the ID of the next possible match from stredror B,

in the state potential; or the variable tigexpectedo lead resp. The unshaded squares denote unassigned variables,

to the largest drop.In general, a heuristic that quickly re- along with the corresponding score upper bounds, while

duces ambiguity in the partial solution should lead to fastethe shaded squares contain variable assignments and exact

convergence to the best solution, and the rate at which anscores.

biguity is reduced by different heuristics can be measured Figure 4 illustrates the algorithm for a single join level

empirically. only. If we had multiple join levels, the matches returned
One important property to note from the pseudo-codeor the AB node, for example, would become part of the

is the recursive invocation of method GetNextMatch()priority queue at an upper level. In that case, the steps in

from methods ShiftNextMatch(), and AssignNextMatch(). Figure 4 will be executed each time the parent node needs

This illustrates why the algorithm works well on join to get the next match for thé B node.

hierarchies—when computing the next best match for a

join at levell, the algorithm recursively invokes the sam o, cream a8 pp sep 0 As;ggmf“‘s P .
subroutine for some of the children at levet 1, where in- TR ; Beore[A[8] EoorelAls] [oore[alg] [oore[AlE]
creasing levels correspond to deeper levelsinthe tree. 1 [Score[ale] .. (o [i[i][0%s [ii) 095 (1} ceo i
recursive mechanism enables nested joins/views to be | [5551 im 211 oo i[5\ [os0 12
cessed efficiently. The efficiency comes from the fact tt [o67 [3]2[- (050 [i]2]

the recursive call is executed only if needed, using a pt

based model (i.e., a demand-driven approach). ? On top of r
The above algorithm is illustrated in Figure 4 for the o - . }
exploration example introduced in Section 1.1. Suppc " ream A Input_sieam B
that we have two streams to join and the score aggrega oo — il
function is simply the weighted average of the two score 0901 .. 0.90 [1
with weights 0.7 and 0.3. Strearhcontains three possible e ram 060 |2

matches, and streamhas only two matches. Suppose als

that the “on-top-of” constraint is satisfied only for matct Figure 4: lllustration of the algorithm for querfiind oc-

: — _ _ _currences of rock texturd on top of rock texturd3. The

The last heuristic can be implemented by comparing the varial

weights and their score distribution gradients. This observation wasm Individual matches for each query are shown in a table next
in [3], where the authors achieved significant speedup for skewed s¢ 10 the corresponding view node. The matches for the root
distributions using the same technique. They computed the weight by query are derived from the matches of the two children.
ing a derivative of the score aggregation function with respect to the gi The first few steps of the process are illustrated to the right

stream score, and approximated the gradient with a score difference by showi h L. h of th
some cases, however, the derivative may not be defined for the spe y showing the priority queue at each of the steps.

aggregation function and the weight may not be easily computable.

3 Algorithm J* With Iterative Deepening

As defined in the previous section, the state potential can be;
expressed as a combination of the exact gain for reaching 5
the given state and a heuristic estimate of the potential gain 4
in reaching a terminal solution from the given state. By
processing states in decreasing order of their potentfal, g
automatically inherits all properties of at* algorithm?
As long as the heuristic gain approximation never under- g
estimates the true gain (i.e., the potential is always upper- g
bounded)A* algorithms are guaranteed to find the optimal 1
solution (i.e., the one with maximum gain) in the fewest 14
number of steps (modulo the heuristic function). There- 15
fore, they provide a natural starting point for any search 3
problem [7]. 14
A* algorithms, however, are designed to minimize the 15
number of processed states, not the database access cqgf
from our cost model. Minimizing the access cost trans- 17
lates into minimizing the number of values considered for 1g
each variable assignment, and is not necessarily optimizeq g
by A* algorithms. In additionA* algorithms suffer from 5
large space requirements (exponential in the worst caselq
which also makes them less suitable in practice. In this secoo
tion, we address both of the above issues by incorporating
iterative deepeningto J*.

ITERATIVEDEEPENING J*():

Let queue(r) be the priority queue at round
r+1
queue(1l) « root state
while (queue(r).head # NULL and
lqueue(r).head . COMPLETE())
do
if (3 free variable at depth< (r + 1)s) then
process that variable
else
movegueue(r).head into queue(r + 1)
endif
endwhile
if (queue(r).head # NULL) then
movegueue(r).head into queue(r + 1))
endif
rer+1
if (queue(r).head == NULL or
queue(r).head.COMPLETE()) then
return queue(r).head
else
Goto Step 4
endif

Iterative deepening is a mechanism for limiting compu-Figure 5: Pseudo-Code for th& algorithm with Iterative
tational resources by dividing computation into successivédeepening.

rounds Each round has an associated cut-off threshold,

calleddepthhere, which identifies the round’s boundaries.4 Algorithm .J} ,

The depth threshold is defined on a certain parameter, anfhe aigorithm from the previous section uses only sorted
computationin gach round continues as long as the value ¢f-cess when scanning the input streams. However, depend-
that parameter is be_low the specified threshold. At thg enq1g on the selectivity of the join predicates, it may be much
of a round, if a solution has not been found, the algorithmy, o6 efficient to perform a predicate access if the system

commences computation in the next round. Iterative deepsan exploit an index to return the objects that satisfy a given
ening can therefore be applied to a variety of algorithms bicg

) redicate. An extreme case is the random access scenario
specifying the depth parameter and the threshold boundg,nsidered by Fagin [1], where each object participates in

for each round. Solution correctness and optimality arg,yactly one valid join combination (i.e., the probability of

guaranteed as long as the modified algorithm can guarany, grpitrary combination satisfying the join predicates is

tee that soluthns in earlier rounds are better in some sens}sw{il)_ In that case, using random access to complete par-
than the ones in later rounds.

i tial join combinations is much more efficient than scanning
For our purposes, we can define the depth of an algoy, sorted order until the join constraints are met.

rithm to be the maximum number of objects scanned via \yg therefore propose a variation of the algorithm that
sorted access in any of the streams. We can define the degth, exploit indexes to directly access tuples based on the
of a state in a similar fashion, by counting the maximumjqin predicates. The pseudo-code appears in Figure 6. The
number of objects considered for each variable in the giveRgorithm works like the/* algorithm with one modifica-
state. This definition for depth is very natural given thatsq, \When processing an incomplete state from the head
the cost of the/* algorithm is directly proportional to the of the priority queue, the algorithm first checks whether
number of objects scanned via sorted access. We can fUfze state is instantiated sufficiently to allow completion by
ther define theth round to include all computation from -, egjcate access. If that is the case, the algorithm can pro-
depthi - s to depthi - s + s — 1, inclusive, for some constant cegs the state via predicate access rather than sorted access,
step factors > 1. The step factor is needed to limit both 1, 6yided the estimated cost of the predicate access is not

access cost and space requirements in some Worst Casgsy |arge. Note that each state processed via predicate ac-
and can be used to control a tradeoff between the two. Thgags will be expanded into a number of new states (corre-

pseudo-code for the modified algorithm with iterative gponding to all join combinations involving the returned
deepening is illustrated in Figure 5. objects from the uninstantiated streams). Therefore, we
tA* algorithms form a class of search methods that prune the searcr?erform the predicate access only if the estimated number

space by taking into account the exact cost of reaching a certain state arff retur_ned objects is sufficiently Sma” (ie., $maller than_
a heuristic cost approximation of reaching a solution from the given statea certain threshold). The threshold is determined dynami-

Algorithm J ,: Algorithm e-J* (resp.,e-J5 4):

1. LetP be the set of join predicates 1. Lete > 0 be a user-specified parameter.
2. Call a statex eligible if 2. LetU(k,t) be thekth largest potential in the priority
V non-instantiated streaff, 3 a key predicate € P: queue ofJ* (resp.,Jp) at timet (i.e.,U(k,t) is an

(a) There is an index defined orT upper bound on the score of thkéh best join combi-
, . nation). LetU (k,t) = 1.0 if the priority queue does
(b) target(p) is a key column inl not havek states at time.

(€) bound(p) is invariable given state 3. Let L(k,t) be thekth largest potential of a com-

3. sorted_cost(a) = sorted cost when reached plete state (i.e. solution) in the priority queue.bf
4. predicate_cost(a) = predicate cost when reached (resp.,Jp) at timet (i.e., L(k,t) is a lower bound
;] on the score of théth best join combination). Let
5. credit(a) = sorted_cost(a) — predicate_cost(«) L(k,t) = 0.0 if the priority queue does not have
6. cost(a) = Zpep C, - filter_factor(p) - N complete states at tinte
7. Run modified J*: 4. Run iterative deepening® (resp..J} 4) algorithm un-
If head is eligible andcost(head) < credit(t), then til time ¢* such thatU (k, ") < (1 + €)L(k, t").
(a) Expandhead by predicate access 5. Output the k& complete solutions with score®
(b) Insert resulting states into the priority queue L(k,t).
Figure 6: Pseudo-code for thg , join algorithm. Figure 7: Pseudo-code for taeapproximation algorithms.

cally by the difference in sorted access cost vs. predicat® Optimality

access cost at that pOint in t”ﬁe-rhe cost of a prEdicate In this Section, we consider the performance of the pro-
access query (i.e., the number of returned objects) can Bgosed algorithms in terms of their database access cost, or
estimated with traditional selectivity estimation techniquescardina"ty of input tuples. We use the notioninétance
(e.g., random sampling or histogram statistics). The deCioptimaIity, defined by Fagin et al. in [2]:

sion on when to use predicate access can be based ontradi-
tional query optimization techniques. Definition 6.1 Let A be a set of algorithms that solve a

certain problem, and le be a set of valid inputs for
5 Approximation Algorithms that problem. LercostgA,D) denote the cost of running
algorithm A € A oninputD € D. We say that algo-
Both algorithms/* and J;, , solve the topk query prob- rithm B € A isinstance-optimalover A andD if VA € A
lem exactly. In some scenarios, however, the user may bgnd D € D, 3 constants: andc’ such that:
willing to sacrifice algorithm correctness for improved per-
formance. In the following, we describe an approximation cost(B, D) < c¢-cost(A, D) +¢'.
version for both of the above algorithms. Intuitively, we
call an algorithm ar-approximationif it returns solutions
that can be worse than optimal by at masiore formally, As discussed in [2], the above notion of optimality is
we adopt the definition from [2], and we say that an algo-very strong if.4 andD are broad. Intuitively, if an algo-
rithm provides are-approximation to the tog-answers if rithm is instance-optimal over the class of all algorithms

The constant is called theoptimality ratio of B. I

it returns a seR of £ solutions such that: and all inputs, that means that it is optimal in every in-
stance, not just in the worst case or the average case. Given
Vz € Ry¢ R: (1+¢)-z.score > y.score. the above definition, we can state the following theorem:

Figure 7 illustrates the modifie#* and.J}, , algorithms ~ Theorem 6.2 Let A be the set of all algorithms that solve
that return ar-approximation for a user-specifiedAlter- (resp., approximate) the top-ordered join problem using
natively, the algorithms can be modified to output the cur-only sorted access. L& be the set of all valid inputs (i.e.,
rent approximation factoe(= (U (k,t)— L(k,t))/L(k,t)) database instances) for that problem. Then, algorithm
at any given time, and the user can decide when to stopwith iterative deepening (respe;J*) is instance-optimal
the algorithm interactively. Note that fer = 0, both of over.4 andD with respect to database access cost. Fur-
the approximation versions behave exactly as the originahermore, it has an optimality ratio of:, wherem is the
algorithms and output the bestsolutions. number of streams being joined, and no other algorithm
has a lower optimality ratioll

§This heuristic essentially balances the two (negatively correlated)
types of access cost in an effort to minimize the overall access cost. In[2], Due to space consideration, we shall omit the proof of

the authors present a hybrid algorithm, called CA, that balances sorted a
cess cost with random access cost. Under certain assumptions, they proi/rge above theorem. We Only note that the lower bound on

optimality results independent of the unit costs for sorted access and raﬁhe optimality rat_ion follows qireCtly from. [2], where Fa-
dom access. We believe that our algorithm has similar behavior. gin et al. proved it for a special case of this problem.

7 Empirical Results equal weights. Figure 8(a) shows almost identical database

: , access cost for all three cases, which means that the run-
In this section we describe simulation experiments foreval-ning time of the algorithm is fairly robust with respect to

uating the proposed algorithms. We implemented the algog,g eight distribution. Figure 8(b), however, shows thatin
rithms as part of a constrained query framework that Wepe case of equal weights, the algorithm has a higher space
proposed in [S]. The entire framework is about 5000 lin€Sreqyirement. This is to be expected since in that case the
of C++ code and provides an API for plugging arbitrary 4|qqrithm cannot exploit the weights to scan “more impor-
attributes, constraints, and join algorithms. All of the €X-5nt streams first, and will therefore take longer to con-

periments were run on an IBM ThinkPad T20, featuring ayerge to the optimal solution. Overall, both figures show

Pentium Il 700 MHz processor, 128 MB RAM, and run- i for reasonable valuesfwhen there are enough valid

ning Linux OS. All of the experiments we report use syn-compinations to generate the desired number of outputs,

thetic data sets, generated to model real data. both the database access cost and the space requirements
The queries were generated pseudo-randomly by havgre aimost constant.

ing a fixed query tree structure but with random parame- 114 second set of experiments evaluated the perfor-

ters, such as attribute values for the join predicates, nodg,5nce of the algorithm with respect to the size of the query

scores, and node weights. Each query was built as a r§G.e ~ Gjven the number of streams to join, we considered
joiningm leaf nodes, where each leaf node hamtatches. 4 types of queries. The first walat queries joining

Each node performed an equi-join of its children views input streams in a single level (denotedraax-width

over a fixed attribute. The attribute values were generyueries). The second were nestedx-heighgueries that

ated randomly from an integer range that controls the proby,in the' same number of streams but only two at a time,
ability that the join constraint is satisfied. Unless other-by building a balanced binary tree on the input streams.
wise noted, we used probability of 0.5, in order to modelgjq, res 9(a)-9(b) show the performance of both types of
general relational binary predicates (elgft-of/right-of, g eries with identical other parameters, and with varying
above/below, smaller/bigger, before/aftetc). Also, un- n,mher of streams to join. Note also that we used larger
less specified otherwise, children nodes had weights dissyeams (100000 tuples) in these queries in order to test
tributed uniformly in the [0,1] range and scaled to add upgcgapility with respect to database size. We can make
to 1. For the scores of maiches at the leaf nodes (i.egeyera| conclusions from the figures. First, despite the in-
atomic qqerles_), we considered the fol_lowmg dlstr|but[onszcrea5ed database size, both types of queries scan only a
uniform (i.e., linear decay), exponential decay, sub-lineagm, | humber of tuples that appears to be dependent on
decay, and the%-un_ﬁorm d|.str|t_)ut|ons from [.3]’ fOi = the desired number of outputs only and not on the database
1,0.1, and0.05. Thei%-distributions were designed in [3] i, And second, all else being equal, nested queries are
to model real image datg and consist#fof all Scores b,e' more costly than flat queries in terms of access cost but
ing uniformly distributed in the [0.5, 1] range (i.e., medium ¢peaner in terms of space requirements. The higher ac-
and high scores), while the rest are all below 0.1 (i.e., inegs cost can be explained by the fact that the number of
significant scores). _ possible matches increases exponentially at each level in
The parameters:, p, n, and the desired number of an- the nested queries. Yet, the difference in the access cost
swersk for each query, are specified for each experiment;s fajrly small, which shows that the algorithm is efficient
and 1%-uniform score distributions. We performed exper- The third set of experiments was designed to evaluate

iments to study the perfqrmance with respect to constrainlthe dependence of the algorithm on different score distri-
probabll|ty, query tree size, ”“’.“b?f O.f outputs, databasﬁutions. We considered the six distributions described ear-
size, stream weight and score distributions. To evaluate the, 4 computed access cost and space requirements for
performance of a query, we measured the number of tupl rying number of desired outputs, The results in Fig-

scanned by the algorithm, as well as the maximum size of, o5 10(a) and 10(b) generally show a sub-linear depen-
the priority queue. The first measure is the database acce§ance ont. I An exception is the exponentially decaying

cost of the algorithm, while the second corresponds to th§core distribution, where the difference between successive

space requirements of the algorithm. All of the results We ore values becomes negligible very quickly and the algo-

report are averaged values'over .10 Ta”dom queries of tr\‘?thm takes longer to converge due to fact that successive
given tyPe- The results are listed in Elgures 8(a)-11. assignments lead to very small refinements in the overall
The first set of experiments studies the dependence Qfy|ytion score. However, this trend is reversed for space
the algorithm on the propablllty that th join constraints requirements in Figure 10(b), where quickly decaying dis-
are met. The join constraints’ probabilities were modeledyjtions require less space. This could also be explained
by assigning a random attribute withpossible values to py the theory that quickly decaying scores lead to small re-
each node, and using pairwise join constraints that requirgnements in the score estimates very quickly, and therefore
the attributes to have the same value. We vadliém 1 to
30, thus obtaining probabilitigs = l/d from 0.03 t0 1.0. T Note that the number of scanned database tuples can be smaller than

The reSU|tS_are p'Iott.ed _in Figures 8(3-) and 8(b) fqr thregne number of desired outputs. This is due to the fact that each tuple can
different weight distribution cases—uniform, decaying, or participate in multiple valid join combinations.

0.8
0.7
0.6
0.5
0.4
0.3
0.2

Percent of database tuples scanned

0.1
0.0

Query tree with equal weights

Query tree with random weights

01 02 03 04 05 06 07 08 09 10
Probability p of join constraint satisfaction

(a) Database access cost

Maximum length of priority queue

250

200

150

100

50

0

Query tree with equal weights

Query tree with random weights

00 01 02 03 04 05 06 07 08 09 10
Probability p of join constraint satisfaction

(b) Space requirements

Figure 8:.J*’s dependence on join constraint probabifity(1%-uniform distributionn = 3, n = 10000, & = 30)

200
180
160
140
120
100
80
60
40
20

Number of database tuples scanned

Figure 9:J*’s dependence on number of streams to join(1%-

160

140

120

100

80

60

40

Number of database tuples scanned

Max-width query tree —=—
Max-height query tree -

Lo

2 4 6 8 10 12 14 16

Number of streamsto be joined, m

(a) Database access cost

Exponential decay score distribution -+

1%-uniform score distribution "
0.1%-uniform score distribution g
0.05%-uniform score distribution —-=—
Slow decay score distri butiqn*» -

¥ i

50 60 70 80
Number of desired outputs, k

90 100

(a) Database access cost

Maximum length of priority queue

Maximum length of priority queue

800
700
600
500
400
300
200
100

Max-width query tree —=—
Max-height query tree -

4 6 8 10 12 14 16
Number of streamsto be joined, m

(b) Space requirements

uniform distributionp = 100000, k& = 30, p = 0.5)

75 1

65

55 -

45

35

25

15

Exponential decay score distribution -+ |

1%-uniform score distribution

0.1%-uniform score distribution a
0.05%-uniform score distribution —=—
Slow decay score distribution o~

20 30 40 50 60 70 80
Number of desired outputs, k

(b) Space requirements

Figure 10:J*’s dependence on number of desired outpkit$§m = 3,n = 100000, p = 0.5)

8 Conclusions

Recall values ——
In this paper, we introduced several algorithms for incre-

B Percent space needed - mental joins of ranked inputs based on user-defined join
g 1000 { e predicates. The algorithms enable more powerful querying
g 90 by providing the ability to integrate result sets from multi-
£ 900 | ple atomic independent queries, using complex criteria for
% 85.0 A integration. The need for such efficient query integration
@ 800 1 arises naturally in domains dealing with ordered inputs and
§ 75.0 1 multiple ranked data sets, and requiring the &gmlutions.
F 70047 Our proposed’* algorithm differs from previous work

65.0 - in two main aspects: 1) it can support joins of ranked in-

puts based omiser-defined join predicateand 2) it can
handle multiple levels of joins that arise mested views
This is the first algorithm to the best of our knowledge that
supports the above operations. We also presentél ,a
Figure 11: J*-relative performance (in percentages) of version of the algorithm that uses predicate access to re-
first-k greedy.J* algorithm vs. number of desired outputs. duce the cost of the algorithm, and we discussed variations
(1%-uniform distributionyn = 3,n = 100000, p = 0.5) for both scenarios that reduce complexity by approximating
the solution. We gave strong optimality results for the al-
orithms requiring only sorted access. We also performed

0O 10 20 30 40 50 60 70 80 90 100
Number of desired outputs, k

the algorithm is more likely to be localized to the same se
of assignments, as opposed to spreading its computation
over a large set of assignments.

The final experiment measured the performance of
very simplefirst-k greedy approximation algorithm with
respect to the original* algorithm. The idea is to rud*
until there are: complete and valid join combinations, and
then to output them as the best solutions, even if they are
not at the top of the priority queue. This corresponds to
running thes-J* algorithm and stopping at the earliest pos-
sible time (i.e, for any approximation factor that is neb) [2]
in order to produce the coarsest approximation with that al-
gorithm. We measured the database access cost and total
space requirements of the greediy version as a fraction
of the corresponding values fdi*. We also calculated the
recall and precision values. We considered the output oﬁe’]
the J* algorithm for a topk query to be the ground truth for
that query, and therefore, each thmuery had exactly
correct answers. Thus, the precision, defined as the frac-
tion of output answers that were correct, is the same as th@]
recall, or the fraction of correct answers retrieved by the
approximation algorithm.

11

The recall, relative access cost and relative space cost

n extensive empirical study for validation in practice.

References

R. Fagin. Combining fuzzy information from multiple
systems. Journal of Computer and System Sciences
58:83-99, 1999. An extended abstract of this paper
appears infProc. Fifteenth ACM Symp. on Principles
of Database Systems (PODS '9§6Montreal, 1996,
pp. 216-226.

R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. I#®roc. of ACM Sympo-
sium on Principles of Database Systems (PODS,’01)
Santa Barbara, CA, May 2001.

U. Glntzer, W.-T. Balke, and W. Kiessling. Optimiz-
ing multi-feature queries for image databasesPhoc.

of the 26th Intl. Conference on Very Large Databases
(VLDB '00), Cairo, Egypt, 2000.

C. S. Li, J. R. Smith, V. Castelli, and L. Bergman. Se-
guential processing for content-based retrieval of com-
posite objects. IiBtorage and Retrieval of Image and
Video Databases, VEPIE, 1998.

are shown as percentages in Figure 11. From the recaf] A. Natsev, J. R. Smith, Y.-C. Chang, C.-S. Li, and J. S.

curve in the graph, we can conclude that the greedy heuris-
tic is an excellent approximation to the optimal answers for
values ofk that are not very small. We hypothesize that the
greedy algorithm outputs the tuples in a slightly different
order, which reduces the recall at the beginning. However,
the identities of the top-tuples eventually match the true [6
answers, even though they might be shuffled somewhat.
Thus, theunorderedset of topk answers is approximated
very well. In addition, we see that the database access cost
is reduced by 5-10%, while the space requirements are re-
duced by 40%. Therefore, we can conclude that the greedpy]
first-k heuristic provides significant cost savings with al-
most no reduction of accuracy.

Vitter. Constrained querying of multimedia databases:
Issues and approaches. Rroc. SPIE Electronic Imag-
ing 2001: Storage and Retrieval for Media Databases
San Jose, CA, Jan. 2001.

] M. Ortega, Y. Rui, K. Chakrabarti, K. Porkaew,

S. Mehrotra, and T. S. Huang. Supporting ranked
Boolean similarity queries in MARS.IEEE Trans.
on Knowledge and Data Engineerint0, Nov.—Dec.
1998.

S. Russell and P. Norvig.Artificial Intelligence: A
Modern ApproachPrentice Hall, Inc., 1995.

