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ABSTRACT 
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short-term needs of face-to-face communication or electronic mail. We 
address these needs with integrated, domain-oriented design environments. 
Our conceptual framework and our system-building efforts address two 
major issues: (a) How does individual work blend into project work (espe­
cially in large projects that span great distances and time)? and (b) What role 
do the work objects play in this coordination? We use a specific domain­
oriented design environment (NETWORK. HYDRA - for the design of computer 
networks) to illustrate our approach, and we discuss HYDRA as the underlying 
domain-independent, multifaceted architecture for design environments. 

1. INTRODUCTION 

Support for long-term collaboration is important in modern technologically 
oriented design projects. Such projects are increasingly large, complex, and 
long in duration. System design itself can extend over many years, only to be 
followed by extended periods of maintenance and redesign. Specialists from 
many different domains must coordinate their efforts despite large separa­
tions of distance and time. In such projects, constructive collaboration is 
crucial for success but is increasingly difficult to achieve. This difficulty is due 
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in large part to ignorance by individual designers of how the decisions they 
make interact with decisions made by other designers. Much of this, in turn, 
consists of simply not knowing what has been decided and why. Our system 
will enable designers to be informed about such things within the context of 
their work on real-world design problems. With our systems, coordination 
does not take place in a separate phase and place (e.g., in meetings) but is 
integrated into designers' individual work in their workplace. The systems we 
develop let users construct solutions to design problems, advise them when 
they are getting into trouble, and then provide directly relevant information 
for understanding how to cope with such trouble. 

We are developing a domain-oriented prototype design environment, 
NETWORK·HYDRA (or NETWORK for brevity), that supports the design of 
computer and communication networks and instantiates our multifaceted, 
domain-independent architecture, HYDRA. The network domain is useful for 
our purposes because it requires interdisciplinary project teams and deals with 
artifacts that are repeatedly redesigned over years of use. 

Our approach is based on experience with a number of previous prototypes 
we have built, together with an analysis of previous efforts by others 
attempting to support collaborative work. Our approach differs from the 
latter in three major respects: (a) it integrates collaboration into individual 
work; (b) it covers not only the argumentative aspect of design but integrates 
construction, reuse, and specification; and (c) it supports the creation of 
design rationale by providing preexisting issue-based hypermedia systems of 
domain-specific argumentation that users can modify. 

In this article, we first describe problems in supporting long-term coordi­
nation and collaboration. We then discuss a conceptual framework for 
integrated, domain-oriented design environments that addresses these prob­
lems. A scenario illustrates the use of the system. The individual components 
and the links of HYDRA are then described. We conclude by discussing issues 
that will be explored in our future research efforts. 

2. PROBLEMS IN FACILITATING LONG-TERM 
COORDINATION AND COLLABORATION AMONG 
DESIGNERS 

A large percentage of problem-solving tasks can be categorized as design 
tasks. These include the design of buildings, bridges, and electromechanical 
devices; the development of computer hardware and software; and the 
creation of application systems and operating environments using computer 
technology. Designing artifacts well is a difficult task, especially due to the 
explosive growth of technology and the resultant increase in complexity of 
design problems. Even experts rely on the expertise of others in the process of 
design by referring to textbooks, standards, legal constraints, and especially 
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previous design efforts. Project complexity forces large and heterogeneous 
groups to work together on projects over long periods of time. 

In technologically oriented design fields, the knowledge base needed for 
design grows and changes at an alarming rate (Draper, 1984; Fischer, 1988). 
It includes not only knowledge about the design process but also knowledge 
about artifacts of that process - parts used in designing artifacts, subassem­
blies previously created by other design efforts, and rationales for previous 
design decisions. 

Given this situation, designers generally have a limited awareness and 
understanding of how the work of other designers within the project (or in 
similar projects) is relevant to their own part of the design task. The large and 
growing discrepancy between the amount of such relevant knowledge and the 
amount anyone designer can know and remember puts a limit on progress in 
design. Overcoming this limit is a central challenge for developers of systems 
that support collaborative design. 

A major portion of the work of project teams is done by team members 
working individually rather than in groups. Most design problems are at best 
nearly decomposable (Simon, 1981). For example, computer network design 
is dependent on the physical structure of buildings, but even though these 
interactions are weaker than the interactions among different parts of a 
network, they cannot be ignored. Team members need to coordinate the work 
they do as individuals. For example, it is crucial that conflicts between 
individuals be detected before much work has been based on the conflicting 
decisions. Beyond the mere elimination of conflicts, coordination should 
extend to positive collaboration. Meetings and other types of direct commu­
nication are among the most used means for coordination and collaboration, 
but in many situations (especially ones involving long-term collaboration) 
these are not feasible. Modern design projects can extend over many years 
and can involve a high turnover in personnel. People who are not in the 
project group at the same time need to coordinate and collaborate in the 
design of a system. Much of the design work on systems is done as 
maintenance and redesign, and the people doing this work are often not 
members of the original design team. To be able to do this work well or at all, 
however, requires collaboration with the original designers of the system. 

Even when designers work in parallel, the time frame for individual 
decision making often does not encourage communication, either face to face 
or by electronic mail. When it does allow it in principle, the resulting 
disruption (resulting from being forced to leave the context of the work) to 
individual work sometimes militates against it. 

Support is needed for indirect coordination and collaboration beyond what 
electronic mail and most proposed computer-supported cooperative work (CSCW) 
software could provide, even in principle. This support should allow team 
members to work separately (across substantial distances in space and time) 
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Figure 1. Indirect communication in a knowledge-based design environment. 
In the first stage, a seed for the knowledge-based design environment is 
constructed. This is done by domain experts who carry out a participatory design 
process with knowledge engineers (e.g., in our project, we interact with domain 
experts in network design). In later stages, the environment (serving as a design 
memory, an institutional memory, and a design history) will grow through 
interaction with designers of varying expertise. The growth will occur by a 
dialectic process between the information contained in the design environment 
and the new tasks and demands. 
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but alert them to the existence of potential interactions between their work 
and the work of others. Where such interactions exist, support should be 
provided for collaboration and conflict resolution. Designers must be able to 
interact with representations of design rationale created by previous designers 
(see Figure 1). Technology enabling this could effectively create virtual 
cooperation between all designers who ever worked on the project. 

2.1. Indirect Communication 

Long-term indirect communication for coordination of individual work in 
groups can be achieved by using a group memory-a collection of shared 
information repositories containing a cumulative record of rationale, solution 
components, and information about prior projects. There are two crucial 
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issues concerning such a memory. One is how information gets into the 
memory and accumulates, and the other is how information in the memory is 
made available to the individual designer. Both of these issues present 
formidable obstacles for development of technology for long-term collabora­
tion. 

Perhaps the single most difficult problem in getting information into the 
various components of group memory is that of motivating designers to 
impart this information. Nowhere is this problem more difficult than in the 
input of design rationale. The designer must regard the time and effort 
invested in contributing information to be immediately worthwhile for the 
task at hand - not merely for someone else or for some putative long-term 
gain (Grudin, 1988). To minimize the amount of information that designers 
themselves must add, design environments must be seeded (see Figure 1). 

An important principle for our approach is that designers are more likely to 
use and to add to group memory of design rationale if they do not have to 
create project rationale entirely from scratch. Seeding the base of project 
rationale by putting in substantial amounts of domain-oriented rationale in 
advance reduces the designer's required input to that rationale specific to the 
project at hand. In addition, it rewards designers with useful information on 
aspects of the domain in which they do not have expertise. 

The seed must contain information of sufficient amount and quality to 
elicit rationale from designers in the form of commentary and responses to 
issues. This does not mean, however, that the seed needs to be complete or 
correct in all aspects. Our experience in building and using issue bases of 
design rationale over the past decade (McCall, 1991) suggests that limited 
inadequacies in these respects provoke corrective input from the designers. 
The open collection of information contained in group memory can be 
strongly contrasted with the knowledge base in an expert system, whose 
completeness and correctness are crucial for its usefulness. 

2.2. Relating Group Memory to Individual Work 

The issue of how to make information in group memory available to 
designers presents formidable challenges. It is not possible for those who work 
on complex projects to know the entire group memory (i.e., all the decisions 
and rationales for a project). Designers need to know only about those things 
that are relevant to their own work (e.g., potential conflicts between their 
work and the work of others). Computer systems that support individual work 
must actively alert designers to the existence of relevant information (Fischer 
& N akakoji, 1991). This leaves designers free to concentrate on their tasks 
and lets them deal with problems of coordination only when the need to do so 
anses. 
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Merely being able to present such information when appropriate is not 
enough. Viewing design as situated action (Schon, 1983; Suchman, 1987; 
Winograd & Flores, 1986) implies that the prestored collections for design 
rationale, principles, precedents, and other information in group memory 
cannot account for all information that designers must take into account. 
Designers must evaluate and interpret the contents of group memory in light 
of the current design task situation, adding to and modifying those contents 
where appropriate. The ideas of all theorists of situated cognition are 
incompatible with the notion of delegating design judgment to the computer 
(e.g., using expert systems)-a prevalent notion in the literature on computer­
supported design (Gero, 1990). Their theories instead require that computer­
supported design systems leave room for human judgment at all times (Rittel, 
1984). 

Integrating Action and Riflection. The design methodologists mentioned 
earlier all subscribe to an "action-breakdown-repair model" of the relation­
ship between action and rational thought. Schon (1983) went the furthest in 
detailing this model and in describing its central role in design. He saw design 
as involving repeated alternation between situated action and the type of 
reflection he called reflection in action. Design is a nonreflective process and 
continues until there is a breakdown. This happens when nonreflective action 
results in unanticipated consequences-either good or bad. Reflection is used 
to repair the breakdown, and then nonreflective action continues. Reflection 
in action takes place within the action present, that is, the time period when the 
decision to act has been made but the final decision about how to act has not. 
This is the time period during which reflection can still affect what action is 
taken. This contextualization distinguishes reflection in action from the 
reflection of preplanning and postmortem analysis. 

The model of design as reflection in action provides a basis for determining 
how group memory should be related to individual work. A breakdown occurs 
when individual work conflicts with the contents of group memory. The 
situation must "talk back" (Schon, 1983, p. 79) to the individual designer in 
order for the interaction with group memory to be understood, dealt with, 
and repaired within the action present. The repair process may trigger new 
insights or reaction from the designer, which can be added to group memory 
and thus be made available to the group as a whole. 

Integrating Construction and Argumentation. Our work starts with the 
principles mentioned in the previous sections and asks, "How can these 
principles be facilitated in computer-based tools?" Schon's ideas do not in 
themselves tell us what the architecture of a system for indirect design 
collaboration should be. His concepts must be further operation ali zed and 
augmented to provide a basis for computer-based systems. His interest is not 
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in building systems that assist designers in design tasks; he is interested in 
finding psychological explanations of the designer. His theory is descriptive, 
and it identifies the importance of human resources in this process. 

Our interest is in understanding (a) how designers design; (b) how 
designers might organize designing so that they are more effective, avoid 
problems, and learn new things as they go along; and (c) how all of this can 
be supported by computational media (Fischer & Nakakoji, 1992). We have 
engaged in something that Schon's theory considers important - building 
objects to think with in the form of demonstration prototypes (Fischer, 
McCall, & Morch, 1989b; Lemke & Fischer, 1990; McCall et al., 1990) to test 
the theory in practice, to experience breakdowns of the theory, and, as a 
consequence, to refine the theory when necessary. In our work, we have 
demonstrated that computational mechanisms can be created that can take 
some of Schon's concepts and bring them alive in a computational environ­
ment. 

In our system-building efforts, we interpret action as construction and 
reflection as argumentation. This creates the problem of integrating construc­
tion and argumentation. Construction is the process of shaping the solution 
(i.e., manipulating form). Argumentation is the process of reasoning about 
the problem and its solution. 

Along with support for construction and argumentation, users need 
support for perceiving breakdowns. Experiences with our early systems 
(Fischer, McCall, & Morch, 1989a) indicate that users often do not hear the 
situation talk-back (i.e., breakdowns are not always apparent to the user). 
This problem is compounded when individuals design in the context of a 
group project because they cannot have perfect knowledge of the entire 
project. To integrate construction and argumentation, the system must play 
an active role in alerting individual designers to breakdowns as well as 
providing argumentative support for coping with the breakdowns. 

2.3. Related Work 

The goal of our work is the exploration of indirect methods for collabora­
tion and coordination within the working context (Ehn, 1988). Coordination 
can be mediated through explicit means, namely, messages sent at definite 
times to specified recipients. Alternatively, coordination can be achieved by 
creating shared information spaces containing versions of the artifact being 
constructed, argumentation structures, and design rationale. We have chosen 
shared information spaces so that coordination can occur without interrupting 
the designer's concentration on the design situation. Our emphasis on the 
coordination within the work environment and with the design activities 
centered around the evolving artifact is an important difference between our 
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project and previous research on supporting collaborative work (Conklin & 
Begeman, 1988). 

Support systems III collaborative design must have functionality that 
includes but goes beyond that of traditional computer-aided design (CAD) 
systems, task coordination systems, and purely issue-based systems. In this 
section, we discuss the strengths and limitations of these classes of systems in 
supporting collaborative design as well as specific related work involving 
knowledge-based and hypermedia technology. 

Traditional Computer-Aided Design Systems. CAD systems support the 
form-constructing activities of design. They do not, however, support 
coordination of the work of individual designers with the work of the rest of 
a project group. Although some CAD systems provide computer-based tools 
to help evaluate a design (Steele, 1987), most conventional CAD systems lack 
the ability to critique the solutions whose constructions they facilitate. 

Expert Systems. RlIXCON demonstrated that support for computer 
configuration is possible using an expert system (McDermott, 1982). The 
differences between the configuration task and the design task are related to 
the greater freedom within the design task. Configuration can be character­
ized as a highly constrained form of design. In contrast, a designer often has 
many degrees of freedom and places constraints on the design that serve to 
focus the design. These constraints may later be strengthened or weakened by 
the designer as the design is progressing. It is the freedom of the designer to 
remove and add constraints that makes design a wicked problem (Rittel & 
Webber, 1984). Our design environments include knowledge-based critics 
similar to the rules found in an expert system. In our conceptual framework, 
critiquing is used to empower designers (e.g., by informing them of 
interactions with the group knowledge base) and not to replace them (Fischer, 
Lemke, Mastaglio, & Morch, 1991). 

Synchronous Support Systems. Much research in supporting collaborative 
work has gone toward supporting synchronous communication, for example, 
COLAB (Stefik et aI., 1987) and GROVE (Ellis, Gibbs, & Rein, 1991). 
Supporting indirect communication is equally important for good design. 
Direct communication is not possible when the designer responsible for a 
previous design decision is no longer with the project or the company. A 
domain in which extended project lifetimes would benefit from indirect 
communication is software design, in which empirical studies (Computer 
Science and Technology Board [CSTBJ, 1990) have shown that 40% to 60% 
of the development of complex software systems goes into maintenance. Our 
notion of the evolutionary development of a design environment (see Figure 
1) is especially appropriate, because the National Institute of Standards and 
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Technology and the U.S. Air Force have found that up to 75% of the total 
maintenance effort is enhancement in complex systems (CSTB, 1990). 

Systems for Structured Communication. The most successful asynchro­
nous coordination tool to date is electronic mail. Extensions to the electronic 
mail paradigm include Winograd's work on the theory of conversation 
(Winograd, 1988) and Malone's work with semistructured messaging systems 
(Malone, Grant, Lai, Rao, & Rosenblitt, 1986, 1988). Adding structure and 
other methods of improvement to electronic mail can certainly help coordi­
nation to some degree. One undesirable effect of using these systems for 
collaboration in design is that the designer must interrupt the construction 
situation (i.e., leave the design tool). Our design environments inform the 
designer within the context of the construction situation, where new infor­
mation can be put to use immediately. By having the communication 
mechanism as part of the design environment, the contents of the commu­
nication can include references to parts of the designed object and associated 
rationale and can provide a means for integrating the graphical representa­
tions, formal and semiformal domain knowledge, and design history into 
messages. 

Another difficulty can arise if the message system is separated from the 
design environment. If designers need more information on another part of 
the project, they have to send a message and wait for a reply, rather than 
being able to consult directly with a group memory, as in our approach. 

Text-Based Information Systems. The Arizona Analyst Information 
System (AAIS; Lynch, Snyder, Vogel, & McHenry, 1990) provides practical 
experience in the area of using group memories. AAIS is a text-based system 
that goes beyond linear text and printed documentation. It consists of several 
on-line information bases on specific topics built up over several years by 
groups of researchers, each item consisting of a roughly file-card-size text 
item that is accessible through a hierarchical index. The system is passive, 
providing no critiquing or design support of any kind, but it represents 
several years' experience with the collaborative creation, use, and mainte­
nance of a large information base organized around issues. The largest 
information base has more than 40,000 entries from 20,000 sources and has 
served more than 50 researchers. The AAIS databases have supported 3 
dissertations, 54 refereed papers, 19 book chapters, and reports that include 
policy analyses for the U.S. Congress. 

Hypermedia Systems. Hypermedia (Halasz, 1988; McCall, 1989) is a 
promising technology for use in collaborative design environments. 
Hypermedia systems provide a technology well suited for storing group 
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memories beyond the text-based level in the AAIS. Unique characteristics of 
hypennedia are (a) the multiplicity of connections between media fragments 
as opposed to the linear structure of traditional text and (b) the availability of 
media other than text. The user modifiable connectivity of hypennedia 
documents provides quick access to explanatory, elaborative, and other 
related infonnation. New media (e.g., graphics, animation, and sound) are 
more effective than text in conveying certain kinds of information such as 
two- and three-dimensional spatial relationships as well as processes, behav­
iors, and evolution of systems. 

The DOCUMENT EXAMINER is a delivery interface for commercial hypertext 
documents (Walker, 1987) that handles the on-line documentation for the 
Genera Software Environment. As a delivery vehicle, the DOCUMENT EXAM· 

INER was intended to be a reader's interface only. Documentation was to be 
prepared by product developers using a separate interface. By using the 
DOCUMENT EXAMINER as an argumentation component in previous system­
building efforts (Fischer et al., 1989b), we have found that the asymmetry 
between the reader's and writer's interfaces limits the DOCUMENT EXAMINER'S 

ability to support the evolution of a design environment seed. A design 
environment expected to evolve through the contributions of its users must 
have a single interface, allowing both reading and writing by the users. 

Systems such as KMS (Akscyn, McCracken, & Yoder, 1988) and VNS 
(Shipman, Chaney, & Gorry, 1989) include an integrated reading and writing 
interface, which provides for the arbitrary organization of multimedia 
information. These systems are general purpose and are not integrated with 
design tools. 

In contrast to the general purpose, unstructured approach of KMS and 
VNS, there are a number of systems for supporting the collection and use of 
design rationale. These systems provide a design rationale representation 
language, which consists of many node and link types with which to encode 
the design rationale. The gIBIS system (Conklin & Begeman, 1988) supports 
group communication in the fonn of issue-based design rationale through a 
graphical interface. SIBYL (Lee, 1990) includes a more formal representation 
language for design rationale than gIBIS or our system, and it emphasizes 
services like dependency, plausibility, viewpoint, and precedent manage­
ment. In one observational study (Yakemovic & Conklin, 1990), the re­
cording of design rationale was found to provide long-tenn rewards if the 
initial work of recording the design rationale could be accomplished. It is 
unclear how well the current generation of design rationale systems work in 
practice without strong support internal to a project for the approach. Our 
work addresses this issue by integrating the design rationale into the 
construction environment. This makes potential benefits more obvious to 
designers (Fischer, Lemke, McCall, & Morch, 1991). 
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Computer-Supported Cooperative Work. Most of the preceding categories 
are found under the broader categories of CSCW (Greif, 1988; Johansen, 
1988). Most CSCW applications do not focus on shared information spaces, 
lack the integration of individual users' roles into the overall process, and do 
not represent the evolving artifact itself. These issues may be responsible for 
the limited success of CSCW applications (Ellis, 1991; Grudin, 1990; 
Sorgaard, 1988). For example, the constraints on the communication process 
imposed by the process model embodied in the COORDINATOR often lead to 
rejection of the application or to ignoring of advanced features (Bullen & 
Bennett, 1990; Erickson, 1989). The explanation for this may be found in the 
difficulty of providing computer support flexible enough to handle the 
variable and transitory nature of roles and processes in most group work 
situations (Grudin, in press). In general, these findings provide support for 
our focus on shared information systems. 

A related distinction of our approach within the CSCW field is our focus on 
benefits for individual designers. A common source of failures for CSCW 
applications is that the primary intended beneficiaries are managers, whose 
use of systems is often less than individual contributors for whom they 
generate more work and less direct benefit (Grudin, 1988). It is critical to 
reduce the burden of use and to provide benefits for the principal users of the 
system. Several of the components of our system described later, notably the 
domain knowledge seed, must be entered into the system once, but subse­
quent reuse provides a substantial benefit for future design activities. 

3. SUPPORTING COLLABORATIVE DESIGN WITH 
INTEGRATED KNOWLEDGE-BASED DESIGN 
ENVIRONMENTS 

To further develop and test our approach for supporting indirect collabo­
ration among group members situated in the work context, we are developing 
the specific domain-oriented design environment NETWORK, which supports 
the design of computer networks. NETWORK is an instantiation of HYDRA, the 
underlying domain-independent, multifaceted architecture for design envi­
ronments. In this section, we briefly discuss the conceptual framework 
underlying the system and describe the chosen application domain. 

3.1. Conceptual Framework 

Our previous work on design environments, such as FRAMER (Lemke & 
Fischer, 1990), JANUS (Fischer et aI., 1989b), and PHIDIAS (McCall et al., 
1990), has emphasized systems for individual designers by providing support 
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of human problem-domain communication (Fischer & Lemke, 1988) and 
construction kits. 

Design Environments. Human problem-domain communication and con­
struction kits are necessary but not sufficient for good design. Upon 
evaluating prototypical construction kits (Fischer & Lemke, 1988), we found 
that they do not by themselves assist the user in constructing interesting and 
useful artifacts in the application domain. To do this, they need knowledge to 
distinguish "good" designs from "bad" designs. Design environments combine 
construction kits with critics (Fischer, Lemke, McCall, & Morch, 1991). 
Critics use knowledge of design principles for the detection of suboptimal 
solutions constructed by the designer. One of the challenges for critiquing 
systems is avoiding work disruption. Our systems accomplish this by making 
the critics sensitive to the specific design situation (Fischer & Nakakoji, 1991), 
incorporating a model of the user (Fischer, Lemke, McCall, & Morch, 1991), 
and giving users control over when and which critics should fire (Fischer & 
Girgensohn, 1990). JANUS has demonstrated that critics do not need to be 
highly intelligent (i.e., more intelligent than a designer) to be useful. Simple 
critics can be informative because they are based on domain knowledge that 
designers might not have (e.g., network designers are not necessarily familiar 
with relevant knowledge about fire codes for buildings). 

Issue-Based Hypermedia. Design tasks are argumentative and open ended 
(Rittel, 1984); therefore, final designs addressing the same problem may take 
on many different forms. The large variety of solutions and questions that 
might be considered in a design task requires that large information spaces to 
be considered. In an attempt to improve design by improving the reasoning 
on which it is based, Rittel (1972) developed the IBIS (Issue-Based Informa­
tion System) method (despite its name, IBIS is a method and not a software 
system) for documenting design rationale. With IBIS, information is orga­
nized around the discussion of questions, referred to as issues. The method of 
discussion is deliberation, that is, considering arguments for and against 
various proposed answers to the issues, these answers sometimes being known 
as positions. 

We use a variant of the IBIS method, called PHI (Procedural Hierarchy of 
Issues; McCall, 1991), which extends Rittel's original IBIS by broadening the 
scope of the issue concept and by altering the structure of relating issues. IBIS 
uses a variety of relationships to connect issues. These include "more general 
than," "similar to," "logical successor of," "temporal successor of," and 
"replaces." PHI streamlines interissue structure by focusing on dependency 
relationships between issues, and it structures issues by the way in which a 
given issue is "served by" other issues, that is, the way in which the answer to 
the given issue depends on answers to other issues (Fischer, Lemke, McCall, 
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& Morch, 1991). The PHI method has been in nearly continual use by 
student designers and others for more than a decade. It is currently the basis 
for all student projects in a required course for undergraduates majoring in 
environmental design at the University of Colorado, Boulder. PHI has been 
applied to a wide range of projects, from health care policymaking to building 
and software design (McCall, Mistrik, & Schuler, 1981; McCall et al., 1990). 

Domain Knowledge Seed. The initial collection of design parts, rules, and 
discussion included in the knowledge base is called the seed. The seed consists 
of domain knowledge in various forms (e.g., palette items, critics, argumen­
tation, and a catalog of canonical designs). Our work addresses the question 
of what is the appropriate domain knowledge to be included in the seed. This 
question includes what objects should be in the construction palette, what 
examples should be in a catalog, what information about them is important to 
include, what critics should be initially in the design environment, and what 
issues and answers should be discussed in the issue-based hypermedia. 
Because the concept of a design environment seed is based on the concept of 
reusing design components and design rationale, our task is to identify 
reoccurring components and rationales in the network domain. 

In the current version of NETWORK, we represent an existing network design 
(the campus network of the University of Colorado; see Figure 2). Our 
previous efforts (Fischer et al., 1989b) taught us that acquiring and repre­
senting domain knowledge without the guidance of real-life situations are 
tasks that are not focused enough and often turn out to be wasted efforts. By 
modeling an existing situation we are guided in our selection of domain 
knowledge that is relevant at least in one design situation (to determine the 
relevance of knowledge by potential use situations differentiates our effort 
from the CYC project; Lenat & Guha, 1990). 

Design can be considered as a dialectical process between being in the 
tradition of a professional activity and at the same time transcending it (Ehn, 
1988). Designing the seed is not merely the task of replicating existing design 
information. It is also the task of designing a system that will alter the way 
workers perform their job. If we are to alter the practice of network designers 
in a positive way, they must be partners in the design of the seed (see Figure 
1). This requires the network domain experts to become knowledgeable about 
the ways their practice might be supported using knowledge-based tech­
niques. We use design artifacts as a means to transfer knowledge and ideas 
back and forth between system builders and domain experts. Artifacts serve 
as concrete reference points (as "languages of doing"; Ehn, 1988, p. 58) 
facilitating communication of ideas between the design partners. The seed­
building process is not a one-step affair. We are fortunate to have network 
domain experts at the University of Colorado (Nemeth, Snyder, & Seebass, 
1989) who collaborate with us in the construction of the seed. 
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Figure 2. A portion of a network designer's logical map of the University of Colorado network. 

T~ 

.­-- ;; 
Z 
-' w o 

.-:v 
TCOI 
lASP 

r 

VCB CamPUS Ethernet 

.,.~ ~ 
1 

1 

--".~ 
IfjIilWMS 

,,­""",.- ~ 
-: ~,,:: 

- __ I ~ 
- t1:ru. 

- -~ - - - AL-3 

~ -, 

---------, -: ._;;r-- -------~~ ,-
L_________ ------- ! 1 .., 

Bak&f " .... 

.­-. 
~ 1'::1= ...J d 

- ~ ~ ~ :: - - - - - - - - -~:;~ -""",--
"""'" 

---=---------, ~';::.F----------~ ~'; --F~-- 1 ;.-:. , "~--iL c ... 

I ~ - -I I ...... ",..., ____ w.co.w 

~-----, I '--------1 ~- .:;.; l ...... 

=. ' -- i.ASP1 Klit~ 

E~ L-------l L.. _____________ , -----, ~ 
I ~? ~ _'j ~ l' : : ---1 ____ n_n~:. 

1 L..--- 1 1 ! ~ 
--L:~- 9.w • : ---L ~ ~= ----1--~ 
~l ~~EllEMS ~N - f f - '-~~L ;.~ 

ORES EKElEY I I -

iQ--II=----~ ._0I4lr-
!--
!.,~ 11-
~--- ---- ----~j 

--±:l 



296 FISC HER ET AL. 

Figure 2 shows an example of a logical map used to ground discussions 
about changes to the real network. This map is a portion of a MacDraw 
document created by a network designer. This artifact has been used to focus 
issues that arose during design meetings. One can write on it directly, 
annotate it, and argue about it. It is easy to do end-user modification; one just 
adds a symbol in the lower right-hand-side box and then does a copy-and­
paste onto the document. But this representation has the fundamental 
limitation that changes to this document have no semantic meaning beyond 
the interpretation given to them by the users. There are no computational 
mechanisms associated with the artifact. 

Supporting the Evolution of Design Environments. No practical situation 
fits exactly into a preconceived category. Application domains and user 
requirements are constantly changing (Curtis, Krasner, & Iscoe, 1988). These 
changing environments require a design environment that is adaptable by the 
designer to fit unanticipated needs of the situation (Fischer & Girgensohn, 
1990). 

Design environments and individual design projects carried out within a 
design environment are complex systems. Complex systems are not only 
designed, but they need to evolve (as illustrated by Figure 1). Besides the goal 
of providing general domain information in the seed, a successful design 
environment seed needs to support the addition of new knowledge. This 
evolution of the general purpose seed to suit the individual design task and to 
support cooperation between designers is essential for the success of the 
design environment. In our application domain - digital communication 
networks-the technology is changing so rapidly that without evolution the 
information in the design environment would quickly become out of date. 

The evolution of design environments will be severely limited if the domain 
experts are unable to incorporate new knowledge themselves. However, 
domain experts are in most cases unwilling to acquire detailed knowledge 
about programming and knowledge engineering. Therefore, mechanisms in 
support of end-user modifiability are required (Fischer & Girgensohn, 1990). 
End-user modifiability is important in design environments for the following 
reasons: (a) Competent practitioners usually know more than they can say; 
(b) tacit knowledge is triggered by situations and by breakdowns; (c) 
background assumptions cannot be completely articulated; (d) situations of 
practice are complex, unique, uncertain, conflicted, and unstable; and (e) 
initial moves must be reframed, because the changed situation most often 
deviates from the initial appreciation. The breakdowns are not experienced by 
the knowledge engineers but by the domain experts using the system. To 
support evolution on a continual basis, the people experiencing the break­
downs are in the best position to do something about them. 

Because domain experts are interested not in evolving the seed per se but in 
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solving design problems, modifications to the seed must follow as a natural 
consequence of their work without requiring an unreasonable effort. Exten­
sible critics and the addition of new palette items are examples of seed 
modifications (Fischer & Girgensohn, 1990). 

The goal to create possibilities for domain experts to change systems 
provides a potential solution to address the maintenance problems in software 
design (CSTB, 1990), where maintenance characterizes a process of con­
tinued design and development rather than the traditional notion of dealing 
with wear and age. Seeded design environments provide a potential solution 
to the general and important problem of finding new ways to enhance existing 
software systems on a continual basis (Henderson & Kyng, 1991). The 
evolutionary growth of systems can be supplemented by reseeding processes, 
where knowledge engineers do major revisions of the systems. 

3.2. Application Domain 

The application domain of digital communication networks meets several 
important criteria. The domain is of sufficient complexity to exhibit the kinds 
of problems we have described, and it is in some sense typical of a wide range 
of applications to which our work should be generalizable. Our previous work 
has concentrated on the domains of kitchen and user interface design (JANUS 

and FRAMER systems). These domains, especially the former, were chosen for 
a first feasibility study and do not show the generality of our approach. 

A local area network links devices such as workstations, file servers, and 
printers using cables of different lengths and types. A partial construction kit 
for such networks is pictured in Figure 3. Networks can be viewed at different 
levels of abstraction. There is the level of individual devices and the level of 
subnets that are connected using bridges and gateways. At an even larger 
level, the local area network must be properly integrated into a nationwide 
network such as the Internet. 

Designers of these networks must take into account criteria such as cost, 
reliability, and extensibility. There is a large body of design rules of different 
flexibility. Hard rules are rules that must be adhered to. For example, 
CSMA/CD networks must have a hierarchical topology and do not function 
in a ring topology. Some rules are bendable. For example, although technical 
specifications require that RS 232 asynchronous communication lines are no 
longer than 75 ft (22m), experience has shown that in normal circumstances 
they can safely be extended to several hundred feet (a few hundred meters). 
Soft rules are guidelines that describe good practice, and their violation may 
result in decreased performance and increased error rates in specific situa­
tions. Sources of design knowledge for this domain are books (Comer, 1988; 
Nemeth et al., 1989; Tanenbaum, 1981), standards such as IEEE 802.3, 
product literature, and local experts. 
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Figure 3. Construction kit for digital communication networks. The construction area shows a 
generic ring configuration in which machine types have not yet been decided or expressed. The 
palette area shows a number of devices from which the user can choose. Items in the palette vary in 
specificity to allow for a gradual expression of the design. The global construction view provides a 
higher level view of the construction space where the user can see how what is in the construction 
space relates to unseen parts of the network. A property sheet describing the attributes of a design 
object appears in the lower right corner of the screen. 
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Networks can rarely be designed as a whole, but they almost always evolve 
from a minimum configuration by the addition of needed connections to 
other networks and new hardware. This means that the design phase is never 
over, and decisions that were made long ago continue to interact with current 
decisions. The administration and design of local area networks often passes 
from network administrator to administrator. The new network administrator 
must often modify the design (to add new machines or to connect new rooms) 
of the previous administrator. Currently, this occurs with the new network 
manager not knowing the rationale of a previous design decision or what 
problems had come up in the past. This would not be the case if the former 
network managers decisions were in the issue base and critics. 

The design of networks often relies on a number of people who form the 
network support team and who each have to make decisions about the design 
in some way. Localized decisions (e. g., where and how to connect a new 
workstation to an existing network) should be made in the context of the 
overall design goals. Most networks are so large that no single person can 
comprehend all the details about the network design. 

The design of digital communication networks is a discipline that, in the 
current information age, is in high demand in many sectors of society. 
Network design is typical of a wide range of other design domains. Scarcity 
of hard rules and conflicts among soft rules make an algorithmic problem­
solving approach infeasible. Each solution illustrates tradeoffs between many 
goals such as cost and reliability. The constraints of the domain are ever 
changing as new hardware enters the market and new experience is gained. 
To achieve and to retain a high level of performance, designers must 
continuously learn and extend their knowledge accordingly. 

4. A SCENARIO USING NETWORK 

Figures 3, 4, and 5 are screen images of our prototype system illustrating 
how NETWORK provides for the gradual expression of a design, supports the 
situation talking back, uses critics to link the construction component with 
argumentation, and helps multiple designers notice conflicts in their collab­
orative work. 

In our scenario, a network designer, "Tom," has been asked to create a 
subnet for a new research group and attach it to the rest of the engineering 
center's network. Figure 3 shows how Tom has chosen generic components 
from the palette to record an initial idea for the design because he does not yet 
know what types of workstations the research group will be using. By 
including generic devices in the palette as well as specific devices, the design 
environment provides for the gradual expression of a design over time. Figure 
3 also shows the properties of a selected transceiver so that Tom can make 
sure it meets the needs of the current situation. 
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Figure 4. Construction and argumentation. A user is notified of a conflict between the current 
design in the construction space and a recently added rule, which is described for the user in the critic 
window. The argumentation window provides rationale related to the rule. 
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Figure 5 . Catalog and argumentation. A user sees a prototypical use situation in the catalog area for 
possibilities described in the argumentation. The catalog overview shows several catalog examples 
that have been retrieved for the user . 
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Now, imagine that designer "Joe" used a bridge to connect a subnet to the 
main backbone a while ago. Later on in the project, Tom decides that 
backbone connections should be done only with "smart routers," and he writes 
a critiquing rule that enforces this. To illustrate a critic rule, this one can be 
represented as: 

if connected(Device, "Engineering Center") 
then Routing-Capability(Device, ''True'') 

When he activates this new rule, he is informed of current conflicts, in this 
case a bridge has previously been used in a way that violates the new rule. 
Tom is informed of this violation as soon as the critic rule is active. Figure 4 
shows Joe's view the next time he logs onto the system. He is informed that 
a part of the design he handled is in conflict with a rule. The system knows 
that Joe should be informed because it keeps a design history: a log of when 
and by whom design units were placed. The critiquing component and the 
design history of the artifact support coordination between designers. 

To continue with the scenario, Joe wants to look up rationale for bridges 
and routers, so he selects "connecting subnets to main networks" and sees the 
rationale related to that issue (see "Argumentation Area" in Figure 4). The 
critiquing component links the construction situation to the argumentation. 
Joe finds that Tom has added the rationale for routers to the argumentation 
base. 

A continuation of this scenario shows how NETWORK uses actual and 
prototypical design artifacts to illustrate design rationale. Previously, Joe was 
informed that a design decision he made a while ago now conflicts with a new 
rule. To see a concrete illustration of the various answers to the issue of 
connecting subnets, he asks for an illustration of the answer "The subnetwork 
can be connected via a router" to the issue "How should a subnetwork be 
connected to the main network?" (see Figure 5). NETWORK orders the catalog 
of designs by their relevance to this issue and allows the designer to explore 
any of the catalog entries. 

5. SYSTEM ARCHITECTURE AND IMPLEMENTATION 

In this section, we present a system architecture that extends our previous 
work. We justify this architecture by showing how it addresses the problems 
identified in Section 2. The system architecture contains the following 
components (Fischer, Lemke, McCall, & Morch, 1991): a construction kit, 
argumentative hypermedia, a specification component, a simulation compo­
nent, and a catalog. An important characteristic of the architecture is that 
design decisions made within the context of any given component affect the 
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information in each of the other components. In this way, the entire system 
continuously adjusts to the designer's actions, providing situated support for 
the design process. 

5.1. Construction Kits 

The construction kit is the principal medium for work in the integrated 
environment. It provides a palette of domain abstractions (see Figure 3) and 
supports the construction of artifacts using direct manipulation. The domain 
abstractions support human problem-domain communication (Fischer & 
Lemke, 1988) because they allow designers to think in terms of familiar 
domain abstractions. Construction kits support collaboration by providing a 
shared language for representing designs in a particular domain (Ehn, 1988; 
Resnick, 1991). As the domain building blocks are extended and refined, they 
are stored in the palette, where they are available to all users of NETWORK. The 
initial palette was modeled after design artifacts the network designers used. 
Certain icons were taken from network designers' documents (like the one 
shown in Figure 2), and others came from textbooks. The rapid change of 
technology in this domain confirmed the need for end-user modifiable palette 
items (Fischer & Girgensohn, 1990). 

5.2. Argumentative Hypermedia 

The issue base is a collection of argumentation on recurring issues in the 
problem domain that is structured according to the PHI serves relationship 
(McCall, 1991). Information fragments in the hypermedia issue base are 
linked according to what information serves to resolve an issue relevant to 
construction. The primary function of the issue base is to support construc­
tion by providing designers with information required to understand and 
resolve breakdown situations. 

A design environment must provide mechanisms and tools to help designers 
quickly access the relevant information stored in the domain-oriented issue 
base. In the construction situation, argumentative information is accessible 
from objects displayed on the screen, such as palette items (McCall et al., 
1990). The internal representation for each object includes the location of 
related information in the issue base. The system performs the task of locating 
information for the designer. 

Issue-based argumentation provides a forum and repository for an ongoing 
discourse about principles and recurring themes in design, allowing designers 
to communicate indirectly and thereby supporting collaboration. The issue 
base has the following functions: (a) supporting reflection in action by 
explaining breakdowns (identified by critic messages; Fischer, Lemke, 
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Mastaglio, & Morch, 1991) and suggesting ways to repair them; (b) allowing 
designers to record design rationale and to react to rationale supplied by 
others (Fischer, Lemke, McCall, & Morch, 1991); and (c) making designers 
aware of issues, possible answers, and argumentation as they browse the issue 
base. For the development of the seed of our issue base, we videotaped a 
number of design sessions. The videotapes showed that deliberation of issues 
is a major activity in design - for a detailed analysis of design activities, see 
Olson, Olson, Carter, and Storr~sten (1992) - and that most argumentation 
arises in reference to a specific situation and thus is expressed in terms of that 
situation. Constructing the issue base seed will require transforming this 
argumentation into a general form and assembling the various argumentation 
fragments into a coherent PHI structure. This work demands domain 
expertise as well as experience in PHI methodology. A seed generated by 
experts will save designers the cognitive effort of providing a base structure to 
the issue base. 

5.3. Specification Component 

Designers must trade off competing goals such as minimal cost, reliability, 
and extensibility. With a specification component, designers can input 
characteristics of the task, and the system can use them to tailor its 
information structures by filtering out argumentation, critics, and catalog 
examples that are not relevant to the specified task. 

Specifications are not completely known before beginning a design project. 
Instead, they are incrementally refined throughout the design process. By 
allowing incremental definition of specifications, design environments sup­
port the integration of problem setting and problem solving (Rittel, 1984) as 
well as the coevolution of specifications and implementations (Swartout & 
Balzer, 1982). In addition, specifications have side effects that conflict with 
the current state of the design in subtle ways. NETWORK incorporates work 
done on JANUS that allows the system to detect such specification interactions 
and notify the designer by causing the situation to talk back (Fischer & 
Nakakoji, 1991). This way, designers can quickly assess tradeoffs and 
recognize specification tradeoffs. Active, adaptive issue bases filter out 
irrelevant information, resulting in a smaller information space having a 
larger percentage of information relevant to the specific situation (McCall, 
Ostwald, & Shipman, 1991). 

Specifications provide high-level guidelines for both designers and the 
environments supporting design. In collaborative design, specifications serve 
to help coordinate the work of group members by providing a common 
framework in which to operate. For example, if a network is specified to 
support the Ethernet protocol, then group members must design accordingly 
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and trust others to do the same. Tools to help understand the side effects of 
a specification modification are important in group design because designers 
cannot know an entire project in enough detail to predict how a specification 
will affect the work of others. Design environments use partial specifications 
as a resource for situating information structures. Specifications are also used 
by the system to classify designs. Designs stored by the system may be 
retrieved based on their specifications. This use of specifications is discussed 
in Section 5.6 in relation to CATALOG EXPLORER. 

5.4. Catalog 

The catalog (see Figure 5), a collection of predesigned artifacts, illustrates 
the space of possible designs in the domain. It serves as the repository of 
designs constructed by the group over time. The catalog supports design by 
modification, a copy-and-edit strategy. Catalog items may be copied into the 
construction situation, where they are modified to fit the requirements of a 
particular design situation. Reusing successful designs, or portions of designs, 
saves time and cognitive effort and provides stable components for con­
structing complex designs. Designers can assess the relevance of the example 
to the situation at hand by using critics and the design rationale associated 
with the example. 

The catalog supports collaborative design by storing completed designs for 
future use, along with their rationale and specification (see Figure 6). 
Designers concerned with maintenance need this information to understand 
the original design and to make informed decisions in the future. 

5.5. Simulation Component 

Evaluations of the JANUS system by expert designers (Fischer et al., 1989a) 
have demonstrated a need for simulating usage scenarios (Ehn, 1988; Fischer 
& Reeves, 1992) with the artifact being designed. Such functional simulations 
can take the form of deterministic mathematical models as well as informal 
what-if games. Functional simulation improves the capability of the construc­
tion situation to talk back to the designer. Work in the domain of voice dialog 
systems suggests that simulations enhance a designer's ability to understand 
how modifications affect the designed artifact's behavior in use situations 
(Sumner, Davies, Lemke, & Polson, 1991). Information provided by simu­
lation complements the argumentative component, which can never capture 
all relevant aspects of use situations (Suchman, 1987). 

In the domain of communication networks, where many performance 
measures require substantial computation, the inclusion of a simulation 
component is a necessity. From our videotaped design sessions, it became 
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Figure 6. Schematic of a design representation in the catalog. Catalog entries 
contain a graphical representation, specification, and design rationale. This 
example shows the catalog representation of the college of environmental design's 
subnetwork, including the rationale for a project-specific issue. 

Enyironmental peslgn $ubnet 

Specification 

Protocol 

Extensibility 

To Engineering 
Center 

Serial line IP 

Low Priority 

Req'd Data Rate 9600 bps 

Minimal Cost High Priority 

Rationale for Modem 9600 

This building is not wired, and the 
networking needs are minimal 
(most of the computing is local) . 
In addition, we had a spare modem 
which we could use to keep costs 
down. 
When the ENVD school is rewred, 
this connection must be upgraded to 
a bridge. 

Author: Frank Shipman 
Date: 5/20/89 

Per Tom Mastaglio's rule for 
connecting subnets, this connection 
must be upgraded to a 'router*1 

Author: Brent Reeves 
Date: 10/5191 

apparent that one use of example designs, as found in the catalog, would be 
the running of simulations on slightly modified example designs. By doing so, 
designers can find the effects of such modifications on a completed design, 
and differences in opinion can be reduced. 

The purpose of our simulation component is not to calculate detailed 
numerical values over an entire network, Rather, we want to estimate local 
effects associated with different usage scenarios for a given segment of a 
network. An example of a useful simulation is to test the load on a crucial 
network component, such as a flle server having a known performance 
threshold, given different configurations, hardware platforms, and software 
requirements in a subnet. This type of information is essential for the 
enforcement of performance specifications. 

With the help of a simulation component, breakdowns can be identified 
that are invisible in static construction kits. General design principles, such as 
answers and arguments in the argumentation component, cannot take into 
account the variety of real-life contingencies that characterize design in 
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complex domains. Even relatively simple simulations can provide information 
to the designer that helps in evaluating design principles in light of unantic­
ipated design situations. 

5.6. Links Between the Components in HYDRA 

HYDRA derives its power from the integration of its components. At each 
stage in the design process, the partial design embedded in the design 
environment is a "situation that can talk back" to users by suggesting what 
they should attend to next. This direction to new subgoals permits new 
information to be extracted from memory and reference sources and is 
another step to be taken toward the development of the design. The primary 
mechanisms for integration in HYDRA are CONSTRUCTION ANALYZER, CATALOG 

EXPLORER, and ARGUMENTATION ILLUSTRATOR. 

CONSTRUCTION ANALYZER is a critiquing system (Fischer, Lemke, Mastaglio, 
& Morch, 1991) in which each critic is responsible for recognizing a specific 
construction situation representing a potential breakdown. For example, in 
the scenario discussed in Section 4, one critic is responsible for detecting 
backbone connectors that do not use smart routing devices. The critic 
mechanism consists of a feature detector, a mouse-sensitive message, and a 
location in the issue base where relevant information is stored. If the situation 
is detected, the critic's message is displayed in the critics area of the screen. If 
the designer chooses to click on the message, the argumentation window is 
opened, and information located by the critic is displayed. The designer may 
also choose to ignore the critic message and proceed with the construction 
process. 

CONSTRUCTION ANALYZER integrates construction and argumentation, en­
abling the system to play an active role in providing information that becomes 
relevant as the construction situation changes. 

CATALOG EXPLORER (Fischer & Nakakoji, 1991, 1992) helps users to search 
the catalog space according to the task at hand. It retrieves design examples 
similar to the current construction situation and orders sets of examples by 
their appropriateness to the current specification. CATALOG EXPLORER links the 
specification and construction components with the catalog. It exploits the 
information articulated in a partial specification or a partial construction to 
prioritize the designs stored in the catalog with respect to the task at hand. 

Design objects stored in a catalog can be reused for case-based reasoning, 
such as providing a solution to a new problem, evaluating and justifying 
decisions behind the partial construction or specification, and informing 
designers of possible failures. Case-based reasoning (Riesbeck & Schank, 
1989) complements generalized argumentative reasoning when principles are 
not sufficiently well defined. 
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ARGUMENTATION ILLUSTRATOR (Fischer, Lemke, McCall, & Morch, 1991) 
helps users to understand the information given in the argumentation 
component by using a catalog design example as a source of concrete 
realization. Explanations given as argumentation are often highly abstract 
and conceptual. Concrete design examples that match explanations help users 
to understand abstract concepts by showing their use in specific examples. 

The set of catalog examples that illustrates an argumentative concept is 
computed by applying a critic rule to each example. In the scenario, the user 
asked for an illustration of the answer, "The subnetwork can be connected via 
a router," to the issue, "How should a subnetwork be connected to the main 
network?" In this case, a critic that recognizes "subnetworks connected to 
main networks by a router" is applied to each example design in the catalog to 
compute the set of relevant examples. It is important to find examples that are 
similar to the current design situation so that designers are able to understand 
how the general principle is instantiated in the example design and how the 
same principle might apply to their design situation. 

6. FUTURE WORK 

Reuse r:if Design Rationale. A design rationale is a large additional product 
of the design process (Fischer, Lemke, McCall, & Morch, 1991). Creating 
and representing a design rationale is a great effort. Reuse of existing issue 
bases has the potential to dramatically reduce this effort. Just as reuse and 
redesign is an indispensable goal in programming (and has become more 
feasible in object-oriented design methodologies), reuse of design rationale is 
equally important. Every project is unique in some respects, and few if any 
projects are unique in all respects. Therefore, the contents of a project issue 
base are not entirely unique to that project. Similar projects overlap 
substantially in issues, answers, and arguments. This is not to say, however, 
that the issues are resolved in the same way, but merely that a great deal of 
the reasoning is shared by projects. 

Reusable issue bases can serve as a seed that grows with each new design 
project. Each project extends and enhances the reusable issue base. The issue 
base being reused provides information about how to decompose the task, 
possible answers to issues, and principles of design. Domain-oriented issue 
bases amplify the designer's ability to reflect on issues. Recurring design 
issues can be researched intensively, and results of this can be stored at the 
appropriate location in the issue base for use by designers encountering 
similar decisions in the future. This allows the "folk theories" of designers to 
be subjected to rigorous scientific scrutiny. 

Cumulative domain-oriented issue bases could also foster communication 
among designers, researchers, and users about recurring matters of design. 
The PHI subissue relationship is crucial to making issue bases reusable 
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(McCall, 1991). The hierarchical grouping of issues allows argumentation 
systems to be built that fllter issue bases according to the specifics of the new 
task. 

Evolution of Design Environments. Design environments are a repository 
for design information in a certain domain. Accumulation and modification 
of knowledge of the design environment should be regarded as evolution of a 
design environment. There are two types of evolution: ontogeny and phylogeny­
terms used in biology. Ontogeny means development of an individual 
organism, and phylogeny refers to history of a species. 

Ontogenic evolution of a design environment means that, as a design 
process proceeds, a designers task at hand is articulated, and the content and 
representation of the knowledge of the environment are reframed and 
restructured according to the evolving task at hand. Phylogenic evolution of 
a design environment means that designers (i.e., domain experts) add their 
knowledge to the system within their working context by constantly using the 
design environment. Through ontogenic interaction, the design environ­
ment's information structures are restructured to contain information rele­
vant to the task at hand. In contrast, through phylogenic interaction, the 
design environments come closer to achieving coverage of their target 
domain. 

In our future work, we will investigate in detail how ontogenic and 
phylogenic processes interact with each other, that is, under which circum­
stances knowledge should remain with individual design projects and under 
which circumstances it should become a part of the general design environ­
ment. 

Addressing the Challenges of Designing CSCW Applications. As our 
system integrates support for individual use into CSCW design and develop­
ment contexts, it will encounter the challenges faced by CSCW applications 
in general (Grudin, in press). We are addressing many of these challenges 
from the outset. 

A major source of failure of CSCW applications is that key users do not 
perceive direct benefit from the use of the system, yet they must do work to 
support it. Our initial focus on support for individuals has required us to 
provide benefits for each user. In NETWORK, a major initial effort is required 
to provide domain seed knowledge. Once the seed is in place, the reuse of this 
material provides benefits to all users. The ratio of reuse to initial construc­
tion effort is likely to be a key determinant of the system's success in a given 
domain. We expect that design environments will be less useful in novel 
design circumstances (e. g., building a research prototype) than in more 
repetitive design situations, such as designing a new kitchen or a new 
network. The seed also circumvents the related "critical mass" problem that 
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afflicts CSCW applications. For example, if a group had to build a catalog 
from scratch, the labor required of all members before benefits from reuse 
appeared might be such that few would persist in the use of the system, and 
it would never become viable. But the seed, and its evolution through use, 
supports a large number of knowledge enterers and thereby provides a critical 
mass situation at the outset. 

As noted earlier, by focusing on shared information systems, we allow users 
to define their own relationships to the system and avoid conflicts arising in 
variations or exceptions in roles and procedures within a group. Tailorability 
provides support for variability. By starting with individual use situations in 
mind, we hope to avoid another CSCW problem-the tendency to provide 
only very infrequently used communication and coordination features that 
are less readily learned and recalled by users and less intuitively understood 
by developers. 

Two CSCW challenges we must explore carefully are the limitations of 
conscious, rational decision making and the difficulty of anticipating prob­
lems that will arise when a system is introduced in a workplace. Social and 
motivational issues that arise in group contexts are often handled through 
tacit or unconscious mechanisms that resist the explicit treatment inherent to 
knowledge bases. Tools that contribute to decision making can be threatening 
to people who successfully use other approaches to influence decision making. 

7. CONCLUSIONS 

We have presented a methodology and system architecture for supporting 
group design that allows individuals to be informed about how their work 
interacts with the work of other group members. Designers should be 
informed on a need-to-know basis, leaving them free to concentrate on their 
design task. We are developing knowledge-based mechanisms to identify 
situations in which artifacts created by individuals and group design goals 
interact. These mechanisms then alert designers of the interactions. Systems 
with such capabilities will reduce the cognitive effort required for individuals 
to design asynchronously, but in coordination, with other members of a 
group. 

Designers operate in the context of an integrated design environment, such 
as NETWORK, which is based on the domain-independent architecture HYDRA. 

A fundamental aspect of this work is the concept of a group memory 
containing domain knowledge ranging from general design principles to 
information about specific projects and their associated design rationale. The 
group memory allows design knowledge to be useful beyond the life of a single 
project and to survive changes in personnel. To reduce the effort to create a 
group memory, a design environment must supply a seed for such a group 
memory. The seed provides general domain knowledge and structure for the 
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group memory. Our work investigates the requirements for a seed and how 
the seed can evolve through time as the design environment is used. As the 
group memory becomes large, techniques of finding and presenting informa­
tion relevant to a specific design become important. 

We have described the domain of network design. This domain undergoes 
continuous change and requires a great deal of design expertise not found in 
textbooks. Network design and administration involves groups of people and 
extends over time. The network design and administration task is passed from 
person to person. Modifications made to the network must take into account 
the rationale for past design decisions as well as decisions made by other 
members of the design team. Computers can support this task through a 
combination of a group memory and mechanisms for alerting the designer to 

information relevant to the current task. 
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