
SupporƟng Intra-Task Parallelism in
Real-Time MulƟprocessor Systems

José Carlos Nunes da Fonseca

Dissertação para a obtenção do Grau de Mestre em
Engenharia InformáƟca

Área de especialização em Sistemas Gráficos e MulƟmédia

Orientador
Doutor Luís Miguel Pinho Nogueira

Júri
Presidente: Doutor Luís Miguel Moreira Lino Ferreira,

Professor Adjunto no Departamento de Engenharia InformáƟca
do InsƟtuto Superior de Engenharia do Porto

Vogais: Doutor Luís Miguel Rosário da Silva Pinho,
Professor Coordenador no Departamento de Engenharia InformáƟca

do InsƟtuto Superior de Engenharia do Porto
Doutor Luís Miguel Pinho Nogueira,

Professor Adjunto no Departamento de Engenharia InformáƟca
do InsƟtuto Superior de Engenharia do Porto

Porto, Outubro de 2012

Resumo Alargado

Os sistemas de tempo real modernos geram, cada vez mais, cargas computacionais pesadas e
dinâmicas, começando-se a tornar pouco expectável que sejam implementados em sistemas uni-
processador. Na verdade, amudança de sistemas comumúnico processador para sistemasmulƟ-
processador pode ser vista, tanto no domínio geral, como no de sistemas embebidos, como uma
forma eficiente, em termos energéƟcos, de melhorar a performance das aplicações.

Simultaneamente, a proliferação das plataformas mulƟ-processador transformaram a pro-
gramação paralela num tópico de elevado interesse, levando o paralelismo dinâmico a ganhar
rapidamente popularidade como ummodelo de programação. A ideia, por detrás deste modelo,
é encorajar os programadores a exporem todas as oportunidades de paralelismo através da sim-
ples indicação de potenciais regiões paralelas dentro das aplicações. Todas estas anotações são
encaradas pelo sistema unicamente como sugestões, podendo estas serem ignoradas e subsƟ-
tuídas, por construtores sequenciais equivalentes, pela própria linguagem. Assim, o modo como
a computação é na realidade subdividida, e mapeada nos vários processadores, é da respons-
abilidade do compilador e do sistema computacional subjacente.

Ao reƟrar este fardo do programador, a complexidade da programação é consideravelmente
reduzida, o que normalmente se traduz num aumento de produƟvidade. Todavia, se o mecan-
ismo de escalonamento subjacente não for simples e rápido, demodo amanter o overhead geral
em níveis reduzidos, os beneİcios da geração de um paralelismo com uma granularidade tão fina
serão meramente hipotéƟcos.

Nesta perspeƟva de escalonamento, os algoritmos que empregam uma políƟca de work-
stealing são cada vez mais populares, com uma eficiência comprovada em termos de tempo,
espaço e necessidades de comunicação. Contudo, estes algoritmos não contemplam restrições
temporais, nem outra qualquer forma de atribuição de prioridades às tarefas, o que impossibilita
que sejam diretamente aplicados a sistemas de tempo real. Além disso, são tradicionalmente im-
plementados no runƟme da linguagem, criando assim um sistema de escalonamento com dois
níveis, onde a previsibilidade, essencial a um sistema de tempo real, não pode ser assegurada.

Nesta tese, é descrita a forma como a abordagem dework-stealing pode ser resenhada para
cumprir os requisitos de tempo real, mantendo, ao mesmo tempo, os seus princípios fundamen-
tais que tão bons resultados têm demonstrado. Muito resumidamente, a única fila de gestão
de processos convencional (deque) é subsƟtuída por uma fila de deques, ordenada de forma
crescente por prioridade das tarefas. De seguida, aplicamos por cima o conhecido algoritmo de
escalonamento dinâmico G-EDF,misturamos as regras de ambos, e assim nasce a nossa proposta:

iii

o algoritmo de escalonamento RTWS.
Tirando parƟdo da modularidade oferecida pelo escalonador do Linux, o RTWS é adicionado

como uma nova classe de escalonamento, de forma a avaliar na práƟca se o algoritmo proposto
é viável, ou seja, se garante a eficiência e escalonabilidade desejadas. Modificar o núcleo do
Linux é uma tarefa complicada, devido à complexidade das suas funções internas e às fortes in-
terdependências entre os vários subsistemas. Não obstante, um dos objeƟvos desta tese era ter
a certeza que o RTWS é mais do que um conceito interessante. Assim, uma parte significaƟva
deste documento é dedicada à discussão sobre a implementação do RTWS e à exposição de situ-
ações problemáƟcas, muitas delas não consideradas em teoria, como é o caso do desfasamento
entre vários mecanismo de sincronização.

Os resultados experimentais mostram que o RTWS, em comparação com outro trabalho prá-
Ɵco de escalonamento dinâmico de tarefas com restrições temporais, reduz significaƟvamente
o overhead de escalonamento através de um controlo de migrações, e mudanças de contexto,
eficiente e escalável (pelo menos até 8 CPUs), ao mesmo tempo que alcança um bom balancea-
mento dinâmico da carga do sistema, até mesmo de uma forma não custosa. Contudo, durante
a avaliação realizada foi detetada uma falha na implementação do RTWS, pela forma como facil-
mente desiste de roubar trabalho, o que origina períodos de inaƟvidade, no CPU em questão,
quando a uƟlização geral do sistema é baixa.

Embora o trabalho realizado se tenha focado em manter o custo de escalonamento baixo e
em alcançar boa localidade dos dados, a escalonabilidade do sistema nunca foi negligenciada.
Na verdade, o algoritmo de escalonamento proposto provou ser bastante robusto, não falhando
qualquer meta temporal nas experiências realizadas. Portanto, podemos afirmar que alguma
inversão de prioridades, causada pela sub-políƟca de roubo BAS, não compromete os objeƟvos
de escalonabilidade, e até ajuda a reduzir a contenção nas estruturas de dados. Mesmo assim, o
RTWS também suporta uma sub-políƟca de roubo determinísƟca: PAS. A avaliação experimental,
porém, não ajudou a ter uma noção clara do impacto de uma e de outra. No entanto, de uma
maneira geral, podemos concluir que o RTWS é uma solução promissora para um escalonamento
eficiente de tarefas paralelas com restrições temporais.

Palavras-chave: Sistemas mulƟ-processador, escalonamento de tempo real, intra-task paral-
lelism, EDF, work-stealing, Linux

iv

Abstract

MulƟple programmingmodels are emerging to address the increased need for dynamic task-level
parallelism in applicaƟons formulƟ-core processors and shared-memory parallel compuƟng, pre-
senƟng promising soluƟons from a user-level perspecƟve. Nonetheless, while high-level parallel
languages offer a simple way for applicaƟon programmers to specify parallelism in a form that
easily scales with problem size, they sƟll leave the actual scheduling of tasks to be performed at
runƟme. Therefore, if the underlying system cannot efficiently map those tasks on the available
cores, the benefits will be lost.

This is parƟcularly important inmodern real-Ɵme systems as their averageworkload is rapidly
growingmore parallel, complex and compuƟng-intensive, whilst preserving stringent Ɵming con-
straints. However, as the real-Ɵme scheduling theory hasmostly been focused on sequenƟal task
models, a shiŌ to parallel task models introduces a completely new dimension to the scheduling
problem.

Within this context, the work presented in this thesis considers how to dynamically sched-
ule highly heterogeneous parallel applicaƟons that require real-Ɵme performance guarantees on
mulƟ-core processors. A novel scheduling approach called RTWS is proposed. RTWS combines
the G-EDF scheduler with a priority-awarework-stealing load balancing scheme, enabling parallel
real-Ɵme tasks to be executed on more than one processor at a given Ɵme instant. Two stealing
sub-policies have arisen from this proposal and their suitability is discussed in detail.

Furthermore, this thesis describes the implementaƟon of a new scheduling class in the Linux
kernel concerning RTWS, and extensively evaluate its feasibility. Experimental results demon-
strate the greater scalability and lower scheduling overhead of the proposed approach, compar-
aƟvely to an exisƟng real-Ɵme deadline-driven scheduling policy for the Linux kernel, as well as
reveal its beƩer performance when considering tasks with intra-task parallelism than without,
even for short-living applicaƟons.

We show that busy-aware stealing is robust to small deviaƟons from a strict priority schedule
and conclude that some priority inversion may be actually acceptable, provided it helps reduce
contenƟon, communicaƟon, synchronisaƟon and coordinaƟon between parallel threads.

Keywords: MulƟprocessor systems, real-Ɵme scheduling, intra-task parallelism, work-stealing,
EDF, Linux

v

vi

Acknowledgements

I am indebted tomany people who helpedme inmanifold large and small ways over the last year.
First of all, I would like to thank my advisor, Luís Nogueira, for his infinite availability, wisdom,
fellowship, and guidance throughout the course of this thesis. Luís is one of very few professors
I have met who is just as human and real as he is dedicated and accomplished.

I would also like to express my deepest thanks and appreciaƟon to Cláudio Maia, Paulo Bal-
tarejo, Miguel Pinho and André Pedro. André Pedro, for his Latex lessons; Miguel Pinho, for his
advices and experience; Paulo Baltarejo, for being my Linux kernel’s mentor; and Cláudio Maia,
well, his invaluable contribuƟon cannot be put into words. Without all their unrelenƟng support,
I probably would not have made my way here. Many thanks are also due to the friendly people
at CISTER, and in parƟcular Inês Almeida who assisted me in all bureaucraƟc stuff.

Outside school, foremost, I am grateful to my parents Elvira and Manuel, and my sister He-
lena, for their endless support, encouragement, understanding and love. A special thanks goes
to my closest friends, mainly Marcos Sousa, Tiago Ribeiro, and Ana Silva, for keeping me sane.
When the work was driving me crazy, you guys were there to provided me what I needed most:
relax and fun.

Last but not least, this work was parƟally supported by the EU ARTEMIS JU funding, within
RECOMP project, ref. ARTEMIS/0202/2009, JU Grant nr. 100202.

vii

viii

Contents

Resumo Alargado iii

Abstract v

Acronyms xv

1 IntroducƟon 1

1.1 MoƟvaƟon . 1

1.2 ContribuƟons . 3

1.3 InsƟtuƟonal support . 3

1.4 Outline . 4

2 Real-Time Systems 5

2.1 DefiniƟon . 5

2.2 Terminology and periodic task model . 6

2.3 Real-Ɵme scheduling . 8

2.3.1 Global . 12

2.3.2 ParƟƟoned . 14

2.4 Summary . 15

3 Background 17

3.1 Parallel compuƟng . 17

3.1.1 Parallel programming models . 18

3.1.2 Fine-grained parallelism . 21

3.1.3 Work-stealing scheduler . 22

3.2 The Linux scheduler . 24

3.2.1 Modular scheduler core . 25

3.2.2 Main scheduling structures . 27

3.2.3 MulƟprocessor-dedicated logic . 29

3.2.4 Real-Ɵme scheduling on Linux . 31

3.3 Summary . 33

ix

4 Real-Time Work-Stealing 35
4.1 Related work . 35
4.2 System model . 37
4.3 Design . 38

4.3.1 Rules . 40
4.3.2 Sub-policies . 42
4.3.3 Scheduling mulƟ-threaded jobs with RTWS 44

4.4 ImplementaƟon . 45
4.4.1 Data structures . 46
4.4.2 Features . 49
4.4.3 System calls . 53

4.5 Summary . 54

5 Experimental EvaluaƟon 55
5.1 Scenario . 55
5.2 Overheads . 56
5.3 Scalability . 58
5.4 Load imbalance . 59
5.5 Response Ɵme . 60
5.6 Summary . 61

6 Conclusion 63
6.1 General conclusions . 63
6.2 Summary of the main contribuƟons . 64
6.3 Future work . 65

x

List of Figures

2.1 An EDF schedule example . 10
2.2 A Dhall effect schedule example . 11
2.3 MulƟ-core scheduling approaches for 4 CPUs that share L2 chaches in pairs of two 12

3.1 Shared memory mulƟprocessor . 19
3.2 Distributed memory mulƟprocessor . 19
3.3 Work-stealing scheduler on a 4-core system . 23
3.4 The linux modular scheduling framework . 27
3.5 The CFS runqueue . 28
3.6 TransiƟons between process states . 29

4.1 A mulƟ-threaded job with 5 regions . 37
4.2 Overview of the RTWS data structures design 39
4.3 Process flow diagram represenƟng rule E and F 42
4.4 Process flow diagram represenƟng rule G and H 43
4.5 A RTWS schedule example . 45
4.6 Priority hierarchy of scheduler modules . 45
4.7 Dispatcher agent role . 50
4.8 Code flow diagram for enqueue_task_rtws . 50
4.9 Code flow diagram for pick_next_task_rtws . 51
4.10 Code flow diagram for put_prev_task_rtws . 52

5.1 Average number of migraƟons on the 8-core experiments 57
5.2 Average number of context switches on the 8-core experiments 57
5.3 Average load imbalance on the 8-core experiments 60

xi

xii

List of Tables

2.1 A summary of the periodic task model’s constraints and notaƟon 7
2.2 A task set example for EDF schedule . 10
2.3 A task set example causing the Dhall effect . 11

3.1 Parallelism granularity . 21

5.1 ComposiƟon of each experiment . 56
5.2 Scale up raƟos on number of migraƟons . 58
5.3 Scale up raƟos on number of context switches 59
5.4 Scale up raƟos on the average response Ɵme 60
5.5 Scale up raƟos on the worst-case response Ɵme 61

xiii

xiv

Acronyms

BAS Busy-Aware Stealing
BF Best-Fit

CFS Completely Fair Scheduler

DAG Directed Acyclic Graph
DM Deadline Monotonic

FF First-Fit
FIFO First-In First-Out
FP Fixed-Priority

G-EDF Global Earliest Deadline First
GPL GNU General Public License
GPOS General-Purpose OperaƟng System

HRT Hard Real-Time

JLFP Job-Level Fixed-Priority

LIFO Last-In First-Out

OS OperaƟng System

PAS Priority-Aware Stealing
POSIX Portable OperaƟng System Interface

RM Rate Monotonic
RTOS Real-Time OperaƟng System
RTS Real-Time System
RTWS Real-Time Work-Stealing

xv

SMP Symmetric MulƟprocessing
SPMD Single-Programming-MulƟple-Data
SRT SoŌ Real-Time

WCET Worst-Case ExecuƟon Time

xvi

Chapter 1

IntroducƟon

It is expected that parallel workloads to become rather common as mulƟ-core plat-
forms become ubiquitous. In contrast to prior work on real-Ɵme scheduling of paral-
lel workloads, this thesis considers a more general model of parallel real-Ɵme tasks
where dynamically generated threads can take arbitrarily different amounts of Ɵme
to execute. It proposes a novel scheduling policy that combines the Global Earliest
Deadline First (G-EDF) scheduler with a priority-based work-stealing policy, allowing
parallel real-Ɵme tasks to be executed in more than one processor at a given Ɵme.
To the best of our knowledge, we are the first to: (i) deal with real-Ɵme prioriƟes in a
work-stealing scheduler; and (ii) to actually implement support for parallel real-Ɵme
computaƟons in the Linux kernel.

1.1 MoƟvaƟon

The advent and ubiquity of mulƟ-core technologies has opened the door for a wide-range of
general-purpose applicaƟons to effecƟvely harness the increasing processing capability through
parallelizaƟon. From a user-level perspecƟve, dynamic intra-task parallelism is steadily gaining
popularity as a programming model for mulƟ-core processors. Parallelism is easily expressed by
spawning threads that the implementaƟon is allowed, but not mandated, to execute in parallel,
using frameworks such as OpenMP [ARB], Cilk [Frigo et al., 1998], Intel’s Parallel Building Blocks
[CorporaƟon, a], Java Fork-join Framework [Lea, 2000], MicrosoŌ’s Task Parallel Library [Corpo-
raƟon, b], or StackThreads/MP [Taura et al., 1999].

These high-level parallel frameworks seek to reduce the complexity of mulƟcore program-
ming by giving programmers abstract execuƟon models, such as implicit threading, where pro-
grammers annotate their applicaƟons to suggest the parallel decomposiƟon. Implicitly-threaded
applicaƟons, however, do not specify the actual decomposiƟon of computaƟons or the mapping
from computaƟons to cores1. In fact, the annotaƟons act simply as hints that can be ignored and
safely replaced with sequenƟal counterparts. The parallel decomposiƟon itself is the responsi-
bility of the language implementaƟon and, more specifically, of the runƟme scheduler. Further-

1In the context of this work, we will use the terms processor, core and CPU interchangeably.

1

CHAPTER 1. INTRODUCTION

more, the actual scheduling depends on the underlying system which by turn heavily influences
any applicaƟon speed up.

Unfortunately, scalable performance is only one facet of the problem in embedded mulƟ-
core real-Ɵme plaƞorms. Predictability and computaƟonal efficiency are oŌen conflicƟng goals,
as many performance enhancement techniques aim at boosƟng the average expected execuƟon
Ɵme, without considering potenƟally adverse consequences onworst-case execuƟon Ɵme. Thus,
applicaƟons with strong predictability requirements oŌen tend to underuse hardware resources
[Colin and PeƩers, 2003]. Such a waste of resources can only be jusƟfied for very criƟcal systems
in which a single missed deadline may cause catastrophic consequences.

Therefore, the growing importance of parallel programming models introduce a new dimen-
sion to real-Ɵme mulƟ-core scheduling, with many open issues to be studied. Recent works on
real-Ɵme scheduling of parallel tasks define a task as a collecƟon of several regions, both se-
quenƟal and parallel [Lakshmanan et al., 2010, Saifullah et al., 2011]. A task always starts with a
sequenƟal region, which then forks into several parallel independent threads (the parallel region)
that finally join in another sequenƟal region. However, these models require that each region of
a task contains threads of execuƟon that are of equal length.

In contrast, in this thesis we consider a more general model of parallel real-Ɵme tasks where
threads can take arbitrarily different amounts of Ɵme to execute. That is, different regions of the
same parallel task can contain different numbers of threads, regions can contain more threads
than the number of cores, and threads can have arbitrarily different execuƟon needs. Therefore,
this model is more portable.

Indeed, there are many applicaƟons for which this condiƟon holds, and it is this kind of dy-
namic and irregular parallelism that is of primary interest for us. The distribuƟon of work and
data in such applicaƟons cannot be characterised a priori because these quanƟƟes are input-
dependent and evolve with the computaƟon itself. In pracƟce, such real-Ɵme applicaƟons span
a wide spectrum, including radar tracking, autonomous driving, and video surveillance. Applica-
Ɵons with these properƟes pose significant challenges for high-performance parallel implemen-
taƟons, where equal distribuƟon of work over processors and locality of reference are desired
within each processor. Nevertheless, as the problem sizes scale and processor speeds saturate,
the only way to meet deadlines in such systems is to parallelize the computaƟon.

Implicit threading also encourage the programmer to divide the program into short-living
threads because doing so increases the flexibility to distribute work evenly across processors.
The downside of such fine-grained parallelism is that the total scheduling cost can be significant.
The best way to reduce the total scheduling cost is to find the sub-costs that maƩer most and
focus on reducing them.

One of the simplest, yet best-performing, dynamic load-balancing algorithms for shared-
memory architectures is work-stealing [Blumofe and Leiserson, 1999]. The principle of work-
stealing is that idle cores, which have no useful work to do, should bear most of the scheduling
costs, and busy cores, which have useful work to do, should focus on finishing that work. Blumofe
and Leiserson have theoreƟcally proven that thework-stealing algorithm is opƟmal for scheduling
fully-strict computaƟons, i.e. computaƟons in which all join edges from a thread go to its parent

2

1.2. CONTRIBUTIONS

thread in the spawn tree [Blumofe and Leiserson, 1999]. Under this assumpƟon, an applicaƟon
running on P processors achieves P -fold speed-up in its parallel part, using at most P Ɵmes
more space than when running on one CPU. These results are also supported by experiments
[Saha et al., 2007].

However, the need to support task prioriƟes fundamentally disƟnguishes the problemat hand
in this thesis from other work-stealing choices previously proposed in the literature [Guo et al.,
2010, Vrba et al., 2009, 2010]. With classical work-stealing, threads waiƟng for execuƟon in a
deque may be repressed by new threads, which are enqueued at the boƩom of the worker’s
deque. As such, a thread at the top of a deque might never be executed if all workers are busy.
Consequently, there is no upper bound on the response Ɵme of a mulƟ-threaded real-Ɵme job.

1.2 ContribuƟons

MoƟvated by these observaƟons, the work presented throughout this thesis breaks new ground
in several ways, focusing on supporƟng intra-task parallelism in real-ƟmemulƟprocessor systems,
both in theory and pracƟse:

• While several others have previously considered work-stealing as a load balancing mecha-
nism for parallel computaƟons, we are the first to do so considering different task prioriƟes.

• We propose Real-Time Work-Stealing (RTWS), a novel real-Ɵme scheduling approach that
combines the G-EDF scheduler with a priority-based locality-aware work-stealing scheme,
allowing parallel real-Ɵme tasks to be executed in more than one processor at a given Ɵme
instant. To the best of our knowledge, no research has ever focused on this subject.

• Our work is the first to actually implement support for parallel real-Ɵme computaƟons in
the Linux kernel through the development of a new scheduling class (SCHED_RTWS) and
respecƟve system calls. At the Ɵme of this wriƟng, neither any RTOS naƟvely supports such
scheduling nor any known extension does so.

Importantly, the research work described in this thesis has resulted in two scienƟfic publi-
caƟons. The paper enƟtled Real-Time Scheduling of Parallel Tasks in the Linux Kernel [Fonseca
et al., 2012] has been published in the 4th InformaƟcs Symposium (INForum 2012), while the
paper enƟtled Dynamic Global Scheduling of Parallel Real-Time Tasks [Nogueira et al., 2012] has
been accepted at the 10th IEEE/IFIP InternaƟonal Conference on Embedded andUbiquitous Com-
puƟng (EUC 2012).

1.3 InsƟtuƟonal support

This research work was developed in the context of the RECOMP European project, from the AR-
TAMIS program, held at CISTER (Research Centre in Embedded Real-Time CompuƟng Systems).
CISTER is a top-ranked research unit associated with the INESC-TEC, from the School of Engi-
neering (ISEP) of the Polytechnic InsƟtute of Porto (IPP), Portugal. The research unit focuses its

3

CHAPTER 1. INTRODUCTION

acƟvity in the analyses, design and implementaƟon of real-Ɵme and embedded compuƟng sys-
tems. Back in the 2004 evaluaƟon process, CISTER was the only research unit in Portugal, in the
areas of computer and electrical engineering and computer science, to be awarded the top-level
rank of Excellent. This outstanding raƟng was confirmed in the last evaluaƟon process (2007).
CISTER has grown to become one of the leading European research units in the area, contribuƟng
with seminal research works in numerous subjects. Since mid-2011, CISTER is an autonomous
research unit associated to INESC-TEC.

1.4 Outline

The rest of this document is structured as follows:

• Chapter 2 introduces the real-Ɵme concepts and scheduling theory on which this work is
fundamentally based, with emphasis on the periodic task model and EDF algorithms.

• Chapter 3 is devoted to provide the remainder necessary background directly related to
the main contribuƟons of this thesis. It starts by discussing parallel computaƟons and how
they can be expressed, modelled and scheduled, with parƟcular focus on thework-stealing
scheduler. It conƟnues by analysing the currentmodular framework of the Linux scheduler,
and it finishes by covering briefly relevant real-Ɵme implementaƟons on the Linux kernel.

• Chapter 4 discusses design and implementaƟon of the RTWS scheduler. First, it dives deep
in the state-of-art of parallel real-Ɵme scheduling, with some insights on the current chal-
lenges in supporƟng task-level parallelism in real-Ɵme mulƟprocessor systems being given
as well. Then it presents our system model and addresses the problem of adapƟng work-
stealing to real-Ɵme. The major rules and flow of RTWS are described next. Last but not
least, it explains how this scheduling algorithm was implemented in the Linux kernel, and
how one can use it from user-space.

• In Chapter 5, we evaluate the scalability, effecƟveness and efficiency of our RTWS imple-
mentaƟon, mostly by comparing it to other real-Ɵme scheduling policy through experi-
mental results. The nature of the experiments is also explained herein.

• Finally, Chapter 6 sums up results, offers some concluding remarks and suggests possible
future extensions to our work.

4

Chapter 2

Real-Time Systems

Real-Ɵme compuƟng is becoming increasingly important and pervasive, asmore and
more industries, infrastructures, and even ordinary people depend on them. Nat-
urally, with the general proliferaƟon of mulƟ-core plaƞorms, real-Ɵme applicaƟons
started to be massively deployed on such plaƞorms. A key factor for that, among
other reasons, is the considerable boost in processing capacity in a relaƟvely cheap,
small, and low power consuming chip. Therefore, they offer an opportunity to max-
imise performance and, through parallelism, execute more complex and compuƟng-
intensive tasks whose stringent Ɵming constraints cannot be guaranteed on unipro-
cessor systems.

However, most research in tradiƟonalmulƟprocessor real-Ɵme scheduling is sƟll lim-
ited to sequenƟal task models and ignore task-level parallelism. Such model scales
poorly and is unable to effecƟvely exploit the potenƟal ofmulƟ-core plaƞorms. Thus,
a dramaƟc change in programming models and scheduling paradigms is undeniably
demanded.

This chapter discusses representaƟve research efforts and gives a special focus to the
real-Ɵme scheduling theory, as both are directly related to the main contribuƟons of
this thesis. We also briefly present real-Ɵme systems’ concepts and contextualise
them within the conducted work.

2.1 DefiniƟon

A Real-Time System (RTS) is any informaƟon processing system where the correctness of each
computaƟon depends not only on the logical results it provides but also on the Ɵme instant at
which these results are produced [Stankovic, 1988]. A late response Ɵme (i.e. the Ɵme taken for
the system to generate output from some associated input) is as bad as a wrong response since
it may provoke an unexpected behaviour, whichmight lead to a system failure. Hence, RTSs must
respond in a Ɵmely predictability way to externally generated input sƟmuli, even under transient
overload. An automobile airbag system, one of the most safety-criƟcal features in a modern
car, is a simple example of a real-Ɵme compuƟng system— the strict real-Ɵme constraint in this

5

CHAPTER 2. REAL-TIME SYSTEMS

system is the Ɵme interval in which the airbag must be deployed in order to prevent the driver
from geƫng severely hurt. No maƩer what non-criƟcal operaƟon is taking place at that instant,
the RTS will put it on hold and will immediately deploy the airbag as soon as it receives a signal
from the sensors detecƟng the collision.

In contrast, a system is said to be non-real-Ɵme whenever one cannot guarantee a response
Ɵme under any circumstance, even if rather oŌen the outcome respects the Ɵming boundaries.
Analogously, if a car is equipped with a non-RTS it might deploy the airbag aŌer finishing the
request to power the stereo, which by coincidence happened to come right before the self-
triggered criƟcal request. Needless to say, an airbag system deployed even 0.01 seconds later
than the demanded Ɵme may have catastrophic consequences. In fact, for certain RTSs few mi-
croseconds separate the success from the disaster.

Nonetheless, a RTS is not a fast compuƟng system, as oŌenƟmes mistakenly deemed so. Its
response Ɵme scale magnitude can indeed range from a microsecond in a radar data acquisi-
Ɵon to an hour in a chemical reacƟon. Thus, no maƩer how fast hardware or algorithms are, its
performance has to always be guaranteed against the characterisƟcs of the surrounding execu-
Ɵon environment. Here the key property is predictability, i.e. the logical and Ɵming behaviour
must be as determinisƟc as required to fulfill system specificaƟons, and not speed. Undoubt-
edly high-speed compuƟng helps to minimise the average response Ɵme of a task set or even to
meet some stringent individual Ɵmeliness requirements, but it solely does not assure the overall
system correctness.

Guaranteeing real-Ɵmeperformance, whilemost effecƟvely exploiƟng the available resources,
demands the appliance of efficient scheduling algorithms, properly supplemented by schedula-
bility analysis or similar techniques. Such techniquesmust provably assure that Ɵming constraints
will always be met by a given scheduler during system’s acƟvity. For beƩer understanding the
scheduling theory referred all over this document, next secƟon introduces scheduling and real-
Ɵme terminology.

2.2 Terminology and periodic task model

The term job refers to a schedulable and executable unit of work. Schedulablemeans that it can
be allocated to a resource (e.g. processor) in a parƟcular sequence determined by the scheduling
algorithm being used and it will meet its Ɵming constraints. A set of related jobs defines a task,
while a collecƟon of tasks is called task set.

The necessary Ɵme to run a single job on a given plaƞorm is called execuƟon Ɵme. The Ɵme
instant at which a job is required to complete its execuƟon is denominated as deadline or as
absolute deadline, as it is successively calculated for each job. A relaƟve deadline, in turn, is
its maximum allowable response Ɵme. AddiƟonally, the recurrent nature of real-Ɵme acƟvi-
Ɵes is expressed by a period. The period represents the expected Ɵme of arrival between jobs,
whether they are cyclic or event-driven. The moment a job becomes available for execuƟon is
called release Ɵme. However, for the parƟcular case of the first job release, that Ɵme instant is
denominated offset.

6

2.2. TERMINOLOGY AND PERIODIC TASK MODEL

The fracƟon of one processor’s capacity that must be allocated to a task is its uƟlisaƟon. This
does not mean, however, that a task can only execute on one processor. Straighƞorwardly, the
sum of all tasks’ uƟlisaƟon within a task set gives its denoted total uƟlisaƟon. A procedure that
determines if a task set is schedulable under a given scheduling algorithm is a schedulability test.
Whenever exists an algorithm able to deem a task set schedulable, this task set becomes feasible.
A scheduling algorithm can be considered opƟmal if, on a m processors system, a task set with
total uƟlisaƟon at mostm is schedulable.

Depending on the consequences of missing Ɵming constraints, real-Ɵme tasks are commonly
classified as either1 hard or soŌ. An Hard Real-Time (HRT) task must always meet its deadline
due to its criƟcal nature where an overrun in response Ɵme may lead to a fatal flaw, e.g. loss
of life or big financial damage. Hence, a judicious Worst-Case ExecuƟon Time (WCET) has to be
assigned to them. When deadline violaƟons are tolerable to a limited extent (tardiness2 must
be bounded to be schedulable), but not desirable, as they entail performance degradaƟon, a
task is said to be SoŌ Real-Time (SRT). This type of tasks does not require a execuƟon Ɵme so
rigid, therefore it employs an average execuƟon Ɵme. For instance, the airbag featuremenƟoned
above clearly fits in the former classificaƟon, whereas a mulƟmedia interacƟve game suits the
laƩer one, provided an underlying failure (perceived as sluggishness) does not have catastrophic
consequences, although it results in a not smooth gameplay, and consequently in unsaƟsfied
end-users.

Table 2.1: A summary of the periodic task model’s constraints and notaƟon

NotaƟon InterpretaƟon Constraint / DefiniƟon
τ A task set τ = τ1, . . . , τn
τi The ith periodic task 1 ≤ i ≤ n

Ji,j The jth job of task τi j ≥ 1
Ji An arbitrary job of Ti

Ci τ ′is per-job WCET Ci > 0
Oi τ ′is offset Oi ≥ 0
Ti τ ′is period Pi > Ci

Di τ ′is relaƟve deadline Di ≥ Ci

ui τ ′is uƟlisaƟon ui = Ci/Ti

ai,j J ′
i,js release Ɵme ai,j ≥ ai,j−1 + Ti

di,j J ′
i,js absolute deadline di,j = ai,j +Di

fi,j J ′
i,js compleƟon Ɵme fi,j ≥ ai,j

Besides criƟcalness, tasks can also be classified based on their periodicity. Tasks which ex-
hibit irregular acƟvaƟons are called aperiodic, whilst periodic are the ones requiring symmetrical
arrival Ɵmes. Periodic tasks are typically used in control and signal-processing applicaƟons and
oŌen have hard deadlines, since they have to be executed at constant raƟos for stability and up-
date purposes. On the other hand, aperiodic tasks commonly have soŌ deadlines and are used to
handle random processing requirements such as displaying acƟviƟes. When aperiodic tasks have
hard deadlines they are denominated sporadic. Note that for these tasks, period is replaced by
a minimum interarrival Ɵme in order to enable deadlines’ fulfillment [Mok, 1983]. In this thesis,

1More specific classificaƟons can be found in the literature.
2Tardiness refers to how far aŌer deadline a task has finished its execuƟon.

7

CHAPTER 2. REAL-TIME SYSTEMS

we address a task model for parallel HRT tasks similiar to the periodic one, whose notaƟon is
shown in Table 2.1. Henceforth, every Ɵme we menƟon RTS we refer to HRT scenarios, unless
we specifically say otherwise.

Furthermore, literature differenƟates three levels of constraint on task deadlines:

• Constrained deadlines - Task deadlines cannot be greater than their periods (Di ≤ Ti).

• Implicit deadlines - All task deadlines must be equal to their periods (Di = Ti).

• Arbitrary deadlines - Task deadlines may take any value.

When considering a RTS as a whole, there are several important aspects that should be taken
into consideraƟon in order to ensure the Ɵmeliness of all tasks with Ɵming requirements. In
parƟcular, the OperaƟng System (OS) plays a major role in the management of all concurrent
acƟviƟes running on a single or mulƟprocessor device, both taking care of task management,
through the use of scheduling mechanisms that handle the priority of each task, and managing
memory allocaƟons, by taking into account the Ɵming requirements of the tasks. When designing
a RTS, every detail must be carefully analysed in order tomake it as determinisƟc and predictable
as possible, both in terms of Ɵme and space.

2.3 Real-Ɵme scheduling

In any mulƟtasking RTS, scheduling is the fundamental component since it is responsible for: (i)
providing an algorithm that defines a set of rules concerning how to commit resources (mostly
processors) between tasks; (ii) establishing whether a temporal specificaƟon is guaranteed to
be saƟsfied under such algorithm, through exhausƟve worst-case behaviour analyses; (iii) max-
imising system uƟlisaƟon; and (iv) ideally minimising each task’s response Ɵme. Therefore, it is
of paramount importance to understand its nomenclature, proposed approaches, and problems
facing its theory for mulƟ-core processor systems.

A standard set of simplificaƟons are commonly assumed to eliminate every potenƟal source
of unpredictabilitywhendevising an algorithmanddeveloping corresponding schedulability anal-
ysis:

• Every task is independent - besides processors, no hardware or soŌware resources are
shared.

• DeterminisƟc Ɵming behaviour - there is no driŌ on tasks’ Ɵming behaviour. Tasks are
release at, and execute for, exactly the Ɵme they are supposed to.

• Jobs do not self-suspend - a pending job is always either execuƟng or ready for execuƟon.

• No runƟme overheads - migraƟons, context switches and other scheduling decisions take
negligible Ɵme or are subsumed into the WCET of each task.

8

2.3. REAL-TIME SCHEDULING

Nevertheless, this idealised task behaviour does not hold in pracƟse and it is indeed problem-
aƟc. Although these simplifying assumpƟons definitely help to formally express an algorithm’s
logic and perform schedulability tests on it, as one very hardly would get anywhere if he tried to
weight all unpredictable factors. Then, upon implementaƟon, these can be aƩenuated by adding
extra features to deal with them. In fact, as stated in Chapter 1, this implementaƟon awareness
is a driving moƟvaƟon underlying the work presented herein.

Generally, scheduling algorithms are categorised as staƟc or dynamic, depending on the
method used for task priority assignment. StaƟc schedulers, also known as Fixed-Priority (FP)
schedulers, enact at design Ɵme a constant priority to each task, which is then applied to all of
its jobs. In contrast, dynamic schedulers assign at runƟme a priority directly to the jobs based on
the current system state. Basically, this categorisaƟon affects when and in what order each job
shall execute.

Furthermore, scheduling algorithms can also be classified, as follows, according to when pre-
empƟons are enable.

• PreempƟve - jobs may be preempted by higher priority ones at any Ɵme instant.

• Non-preempƟve - preempƟon is not allowed and, therefore, once a job is scheduled for
execuƟon it will not be swapped out unƟl compleƟon.

• CooperaƟve - there are specific preemptable secƟons within a job execuƟon.

In this thesis, we focus ondynamic andpreempƟve scheduling algorithms for implicit-deadline
real-Ɵme tasks. Since we have also restricted our work to homogeneous mulƟprocessor systems
(i.e. systemswith idenƟcal processors), we only briefly address uniprocessor real-Ɵme scheduling
for contextualisaƟon and completeness. A detailed historical perspecƟve of the most important
research advances in this field can be found in [Sha et al., 2004].

The seminal research into uniprocessor real-Ɵme scheduling dates back to the late 1960s and
early 1970s, and it was primarily applied to schedule computer programs during the first manned
space flight to the moon [Liu, 1969, Liu and Layland, 1973]. Remarkably, Liu and Layland [1973]
introduced provably opƟmal3 staƟc and dynamic algorithms for the scheduling of periodic tasks,
which later became known as Rate Monotonic (RM) and EDF. respecƟvely. During the 1980s
and 1990s, these policies were improved to adopt more realisƟc models of synchronisaƟon [Sha
et al., 1990], Ɵming constraints [Lehoczky, 1990] and overheads [Katcher et al., 1993], for exam-
ple. Today, this theory can be considered mature and successfully put in pracƟse for industrial
purposes.

As a reference point, and since we have chosen G-EDF as our task-level policy, this secƟonwill
relatewith EDF schedulers, whenever feasible, to illustrate or describe howdifferently scheduling
algorithms can be designed, extended, and implemented, and how that will affect the system’s
performance and its schedulability boundaries.

EDF is the most studied dynamic, or Job-Level Fixed-Priority (JLFP) as oŌenƟmes referred,
real-Ɵme scheduling algorithm. It is very intuiƟve, since it schedules in order of urgency. That

3Regarding the specific scenario it is intended to.

9

CHAPTER 2. REAL-TIME SYSTEMS

is, in contrast to RM which prioriƟses tasks based on their periods, EDF assigns prioriƟes to tasks
according to the deadlines of their current requests, in a form that the task with the nearest
deadline becomes the highest priority task in the system and, therefore, the one to be selected
for execuƟon. Regardless of prioriƟes changing at runƟme, no manual assignment is required.

The acceptance test

usum(τ) =
n∑
i

ui ≤ 1 (2.1)

clearly shows that EDF is opƟmal in an HRT context as it fully uƟlises the processor capacity,
unlike RM whose maximum demand of processor Ɵme is limited to ln(2) ≈ 69, 3%. Moreover,
EDF is also opƟmal for SRT constraints, seeing that a task set HRT schedulable implies bounded
tardiness.

A simple example may clarify how EDF works. Let us consider the task set detailed in Table
2.2, which has four tasks and uƟlisaƟon: usum(τ) = 2

13 +
3
13 +

2
15 +

3
17 = 72.2%. Fig. 2.1 shows

the Ɵmeline execuƟon for the first job of each task. The only task released at instant 0 is τ4, so
it starts execuƟng immediately. At instant 1, τ3 arrives with an earlier deadline. Since τ4 needs
more 2 Ɵmes units to finish its instance, it is preempted by τ3. It goes like this unƟl instant 6,
when τ1 finishes his job. Now that the remaining three tasks are ready, the earliest deadline task
is selected for execuƟon: τ3. The schedule goes on this descending way unƟl instant 10 when
the last first job terminates.

Table 2.2: A task set example for EDF schedule

Task Ci Ti Di Oi

τ1 2 11 11 3
τ2 3 13 13 2
τ3 2 15 15 1
τ4 3 17 17 0

Figure 2.1: An EDF schedule example

Nonetheless, EDF is not preferable over RM for pracƟcal uses. One plausible reason is the
conceptual difficulty associated to an efficient implementaƟon of EDF [Short, 2010], mainly be-
cause it is not straighƞorward the mapping of deadlines to priority arrays or bitmaps pervasively
used in OS for scheduling purposes, and when aƩempƟng to do so it demands frequent and
costly recomputaƟons. Supposed RM advantages in pracƟse, namely less runƟme overhead and

10

2.3. REAL-TIME SCHEDULING

more predictability under overload, arose frommisconcepƟons or specific situaƟons as BuƩazzo
[2005] conclusively debunked. Hence, there is no reasonable jusƟficaƟon, quite the contrary, for
the absence of EDF-alike schedulers in a Real-Time OperaƟng System (RTOS).

Unfortunately, mulƟprocessor real-Ɵme scheduling theory has not yet enjoyed such a success
as it did on a uniprocessor. As early as in the 1969, Liu [1969] observed the intrinsic complexity
of mulƟ-core scheduling and how hardly uniprocessor algorithms could be extended to it:

”Few of the results obtained for a single processor generalize directly to the mulƟ-
ple processor case; bringing in addiƟonal processors adds a new dimension to the
scheduling problem. The simple fact that a task can use only one processor even
when several processors are free at the same Ɵme adds a surprising amount of diffi-
culty to the scheduling of mulƟple processors.”

Table 2.3: A task set example causing the Dhall effect

Task Ci Ti ui

τ1 2ϵ 1 → 0
τ2 2ϵ 1 → 0
τ3 1 1 + ϵ → 1

Figure 2.2: A Dhall effect schedule example

In fact, few years later, Dhall [1977] reported that when globally enforcing a RM or EDF
scheme on a mulƟ-core host, some task sets may miss deadlines even though low system uƟli-
saƟon is requested. To provide an understanding of the so-called Dhall effect, let us consider an
example. Consider a system with 2 processors (m = 2) and 3 implicit-deadline tasks (n = 3), as
specified by Table 2.3, to be scheduled according to the EDF policy. Since all tasks are released
at t = 0, the first job of τ1 and τ2 with deadline 1 will have higher priority over the first job of
τ3, whose deadline is 1 + ϵ. Consequently, processors P1 and P2 are assigned to J1,1 and J2,1

during the Ɵme interval [0, 2ϵ], leaving a maximum of 1 - ϵ Ɵme units for J3,1 before its deadline,
which is not enough for it to be completely executed (see Fig. 2.2). Hence, this task set cannot be
feasibly schedule by the EDF scheduling algorithm on a 2-processor compuƟng system although∑n

i ui < 2, as ϵ → 0,
∑n

i ui → 1.

11

CHAPTER 2. REAL-TIME SYSTEMS

This finding led research community to look at global scheduling algorithms, where tasks can
execute in any processor as an obsolete approach and, therefore, guided its course to parƟƟoned
ones, where tasks are staƟcally allocated to processors in a fixed manner. Global scheduling
algorithms recovered their popularity two decades later when it was realised that the Dhall effect
is mostly related to heavy tasks scheduling, i.e. tasks with high uƟlisaƟon, and not intrinsically a
global approach problem [Phillips et al., 1997].

(a) Global scheduling (b) ParƟƟoned scheduling (c) Clustered scheduling

Figure 2.3: MulƟ-core scheduling approaches for 4 CPUs that share L2 chaches in pairs of two

As slightly menƟoned before, there are two fundamental classes of mulƟ-core scheduling
schemes: global and parƟƟoned. However, not every scheduling scheme fits into one of these
disƟnct categories but instead employ both [Carpenter et al., 2004], as depicted in Fig. 2.3c.
Due to their wide variety, such hybrid approaches have many classificaƟons (e.g. clustered, task-
spliƫng), being semi-parƟƟoned the prevalent term for them. In the general case, each τi may
execute on a subset P (τi) of P , with overlapping permiƩed. Whenever |P (τi)| = 1 parƟƟoning
is at the table, while |P (τi)| = m implies global scheduling. Thus, global and parƟƟoned schemes
are restricted instances of the above model.

2.3.1 Global

Under global scheduling, there is a single priority-ordered queue serving the enƟre system,where
all ready jobs are stored (see Fig. 2.3a). At any Ɵme instant, the global scheduler can then select
for execuƟon the highest priority pending jobs since it has a full overview of the system and every
jobmaymigrate among processors. Clearly, two pivotal benefits arise from this broad knowledge
and centralisaƟon: opƟmal scheduling decisions are easily achieved and load balancing is auto-
maƟcally handled. Moreover, queueing theory results report that beƩer average response Ɵmes
are produced by a single-queue scheduling than queue-per-core scheduling [Kleinrock, 1976].
Therefore, analyƟcally speaking, global schedulers are superior to any parƟƟoned algorithm as
even opƟmality can be accomplished (for implicit-deadline tasks at least).

A class of global rate-based4 schedulers called ProporƟonate Fair (Pfair) scheduling, intro-
4Rate-based means that the scheduler is invoked at steady points in Ɵme, which are pre-computed based on

integers mulƟples of an input quantum.

12

2.3. REAL-TIME SCHEDULING

duced by Baruah et al. [1996], provides the only known opƟmal method for scheduling HRT tasks
onmulƟprocessors. The idea behind Pfair is that each task progresses proporƟonate to its uƟlisa-
Ɵon and not only based on its deadline. For that, Pfair algorithms break a task intomany unit-size
sub-jobs, assign an individual deadline to them, and finally schedule them sequenƟally following
a pure EDF strategy. In order to excel in performance, in the sense that if tasks request no more
than the available processor capacity, and task set’s uƟlisaƟon is at most m, then all deadlines
are met, an appropriate granularity must be defined. Unfortunately, if the execuƟon Ɵme of a
task is large compared to this unit-size then the preempƟon overhead becomes unreasonably
large, which makes Pfair scheduling unfeasible in pracƟse.

On the other hand, let us consider the scheduling algorithm G-EDF, where the uniprocessor
EDF scheduler is globally applied to a single shared queue. Despite G-EDF is vulnerable to severe
algorithmic capacity loss in the HRT case, since it is subject to the Dhall effect, resulƟng in an total
uƟlisaƟon bounded by (m + 1)/2 for periodic task sets [Andersson et al., 2001], which is also
extensible to any global JLFP scheduler, for SRT systems G-EDF is opƟmal because it guarantees
bounded tardiness for any sporadic task set as long as usum(τ) ≤ m [Devi and Anderson, 2008].

Although the theoreƟcalworst-case performanceofG-EDF in anHRT context cannot behigher
than (m+ 1)/2, when umax(τ) is considerably less than one, a higher uƟlisaƟon guarantee can
be assured. Thus, new schedulability tests based on the presence of high-uƟlisaƟon tasks have
been derived. The first, and of primary interest to us, was introduced by Goossens et al. [2003],
who showed that a set of independent periodic tasks with implicit-deadlines can be successfully
schedulable by G-EDF onm processors if

usum(τ) ≤ m− (m− 1)umax(τ). (2.2)

Furthermore, several tweaks to the G-EDF algorithm and respecƟve worst-case analysis were
developedwith the sameprinciple inmind. Srinivasan andBaruah [2002] proposed EDF-US[ζ], an
algorithm that assigns the highest (fixed) priority to task of uƟlisaƟon greater than some thresh-
old ζ, and schedule the remaining tasks according to the standard EDF policy. By seƫng ζ to
m/(2m− 1), an uƟlisaƟon bound umax(τ) free is obtained:

usum(τ) ≤ m2/(2m− 1). (2.3)

Besides deriving a uƟlisaƟon bound and showing that it is Ɵght, Goossens et al. [2003] also
proposed an algorithm that sets as highest priority tasks the k ones with highest uƟlisaƟon. This
approach was named EDF(k), and a sufficient schedulability condiƟon for it was shown to be

m ≥ (k − 1) + ⌈usum(τ)− uk
1− uk

⌉, (2.4)

where uk is given by the kth task uƟlisaƟon with tasks order by decreasing uƟlisaƟon.

Either EDF-US[ζ] and EDF(k) were examined by Baker [2005], who showed that the opƟmal
threshold used in EDF-US[ζ] with respect to maximising the uƟlisaƟon bound is 1/2, as it results
in a sufficient test equally to themaximum possible bound for this class of scheduling algorithms:

13

CHAPTER 2. REAL-TIME SYSTEMS

usum(τ) ≤ (m+ 1)/2. (2.5)

Concerning EDF(k), Baker [2005] revealed that there exists a minimum value of k (kmin) for
which theworst-case guaranteed schedulable uƟlisaƟon in EquaƟon 2.6 also holds. Nevertheless,
when accounƟng the number of task sets schedulable, EDF(kmin) outperforms EDF-US[1/2]

However, in pracƟse, global scheduling algorithms are tradiƟonally eschewed by OS develop-
ers due to the non-determinisƟc contenƟon, potenƟally excessive overheads, implementaƟon
complexity, scalability issues and cache invalidaƟon, whose impact and costs scheduling theory
become accustomed to neglect.

As menƟoned earlier, Pfair algorithms are impracƟcal because making scheduling decisions
(e.g. preempƟons,migraƟons) at each Ɵght Ɵmeslice, further the associated loss of cache affinity,
plus the general communicaƟon and synchronizaƟon required, entail very high overheads. On
the other hand, G-EDF does not incur such problemaƟc overhead but sƟll encompasses a single
centralised queue whose access is disputed bym processors. Global structures like this must be
protected by a lockmechanism to prevent concurrent datamanipulaƟon (race-condiƟons), which
translates directly into serious contenƟon and lack of scalability when the number of processors
compeƟng for the resource increases significantly.

These inherent issues consƟtute the reasons why global algorithms have drawn liƩle inter-
est from research community and have been discarded from most modern implementaƟon. Al-
though global scheduling remains controversial as a concept it is extremely appealing.

2.3.2 ParƟƟoned

The alternaƟve to global scheduling is parƟƟoned scheduling, inwhich each processor has its own
private queue and tasks are staƟcally and permanently allocated to them during an offline phase
such that no overload occurs (see Fig. 2.3b). This permits schedulability to be verified using a
wealth of thoroughly studied real-Ɵme scheduling analyses techniques for uniprocessor systems,
as well as eliminates scalability boƩlenecks. Precisely, as parƟƟoned scheduling is simple and
scalable, the Linux scheduler was rewriƩen to adopt this approach in kernel v2.6, significantly
boosƟng its performance for many-cores machines. Yet, no true real-Ɵme scheduling policies
are naƟvely supported by Linux.

However, the moment you treat each processor as an isolated domain and you are forced to
choose a priori where to allocate the tasks, you run into a bin-packing problem which is known
to be NP-hard in the strong sense [Garey and Johnson, 1990]. HeurisƟcs must then be used in
order to find a fast saƟsfactory soluƟon, as an exhausƟve search for an opƟmal one is impracƟcal.
Most common ones are First-Fit (FF) and Best-Fit (BF). FF selects the first non-empty queue with
enough resources remaining, while BF looks for the queue where the least amount of resources
are leŌ aŌer allocaƟons.

SƟll, even an opƟmal allocaƟon may leave some processors parƟally idle. Hence, most parƟ-
Ɵoned schedulers employ load balancing mechanisms (inter-domain migraƟons) for distribuƟng
the work evenly between domains and handling load-transients. Needless to say, this clashes

14

2.4. SUMMARY

with the parƟƟoning philosophy itself, since potenƟates cache misses and overheads, causing
yet another non-determinisƟc latency.

Following the global algorithm trend, there exists task setswithusum(τ) atmost (m+1)/2+ϵ

that cannot be schedulable on m processors by parƟƟoned algorithms regardless of the alloca-
Ɵon heurisƟc used. However, parƟƟoned scheduling has reached the best possible results. López
et al. [2000] showed that when using EDF the lowest uƟlisaƟon bound of any reasonable alloca-
Ɵon algorithm is equal to EquaƟon 2.2, while the highest uƟlisaƟon bound for the same scenario
is given by

usum(τ) ≤ (⌈1/umax(τ)⌉m+ 1)

(⌈1/umax(τ)⌉+ 1)
, (2.6)

where it is assumed that n > m/(⌈1/umax(τ)⌉), being n the number of task in τ .
They also proved that EDF-FF and EDF-BF, like all reasonable allocaƟon algorithms that or-

der tasks by decreasing uƟlisaƟon, achieve the higher limit. For the unrestricted case, where
umax(τ) = 1, EquaƟon 2.6 is aƩained. Therefore, EDF-FF and EDF-BF are opƟmal parƟƟoning
approaches in the limited sense that their guaranteed Ɵght uƟlisaƟon bound is as large as it could
feasibly be.

2.4 Summary

This chapter introduced RTSs, where the key concept is not to be fast, but deliver determinism
and predictability to real-Ɵme applicaƟons with stringent Ɵming constraints. An HRT system can-
not miss deadlines under any circumstance, whereas a SRT system may tolerate short latencies.
AŌerwards, relevant real-Ɵme terminology and the periodic task model were presented. Finally,
we addressed real-Ɵme scheduling theory by discussingmain scheduling concepts and by proving
a brief historical overview about real-Ɵme scheduling algorithms and their schedulability tests.
Emphasis was given to EDF schedulers, since our work embraces G-EDF.

15

CHAPTER 2. REAL-TIME SYSTEMS

16

Chapter 3

Background

Now that embedded, mainstream, and high-end computers are being deployed on
mulƟ-core chips, the huge challenge facing parallel programming for performance
and producƟvity improvements has taken on a new urgency. Many high-level paral-
lel programming models, languages, and tools have emerged in order to exploit par-
allelism in the most efficient way by easing programmers’ burden when transform-
ing or wriƟng applicaƟons in a simple, well-defined, scalable, and portable mulƟ-
threaded form.

However, these high-level frameworks leave the actual scheduling of resulƟng threads
to be performed at runƟme. Therefore, if the underlying system cannot efficiently
map those threads on the available cores, then the performance achieved will be
significantly lower than the desired one.

This chapter is divided in twomajor secƟons. In secƟon 3.1, we discuss parallel com-
puƟng benefits and concerns, and we jusƟfy our approach to schedule fine-grained
parallel applicaƟons. We address, roughly speaking, two main ways of expressing
parallelism by covering some parƟcular models. Finally, this secƟon presents work-
stealing, a provably efficient scheduling algorithm for dynamic and irregular parallel
computaƟons. SecƟon 3.2 introduces the Linux scheduler, focuses on the essenƟals
of the modular scheduling framework internals, and finishes by presenƟng supple-
mentary patches that provide enhanced real-Ɵme scheduling capabiliƟes.

3.1 Parallel compuƟng

Parallel compuƟng is more than just a promising approach to boost applicaƟons’ performance,
or to meet the demanding modern computaƟonal requirements, by execuƟng each applicaƟon
simultaneously on mulƟple processors. It is a compelling vision for how computaƟon can seam-
lessly scale from a single processor to virtually limitless compuƟng power [Dongarra et al., 2003].
Unfortunately, expressing and achieving an highly efficient parallel computaƟon is not trivial.
In fact, the scaling of applicaƟons’ performance to match the anyƟme available parallelism is a
long-lasƟng open problem with many related issues that need to be appropriately addressed,

17

CHAPTER 3. BACKGROUND

namely: (i) how to design parallel algorithms, (ii) when to parƟƟon an applicaƟon into threads1

and to what amount, (iii) when, and in what way, do threads coordinate, communicate, and syn-
chronise, and (iv) how to schedule threads onto the processors [Gajski and Peir, 1985, Quinn,
1994]. Therefore, the development of parallel applicaƟons relies largely on the availability of
suitable soŌware tools and environments. Consequently, much of the parallelizing burden and
responsibility falls on the applicaƟon’s developer.

In this sense, there are twomain strategies to develop parallel applicaƟons [Diaz et al., 2012]:
automaƟc parallelisaƟon and parallel programming. In the former, exisƟng sequenƟal source
code is automaƟcally parallelized by a proper compiler. Thus, it relieves the programmer from
the parallelizing burden as all it takes is the code recompilaƟon. Nevertheless, the amount of
parallelism reached by current compiler technology is considerably low since such generic au-
tomaƟc conversion is extremely complex to obtain. In contrast, the laƩer involves developing
a parallel applicaƟon from scratch. This allows programmers to efficiently express parallelism
and also to freely choose the programming model and the language. However, such coding is
difficult, someƟmes unproducƟve and painful, as data parƟƟoning highly depends on algorithms
design, and compiler assistance techniques have limited applicability. All in all, parallel program-
ming leads to a beƩer performance than automaƟc parallelizaƟon but at the expense of more
programming efforts.

Parallel programming itself may also differ in ease and efficiency depending on the approach
adopted. Implicit threading abstracts the programmer from task decomposiƟon and placement
details, as these are leŌ to the compiler and runƟme system. Thus the programmer just has to
idenƟfy and annotate potenƟal parallel regions on the applicaƟon. Such annotaƟons act simply
as hints that can be ignored and safely replaced with sequenƟal counterparts whenever the com-
piler finds them not worthwhile. Instead, explicit threading assumes that the programmer is wise
enough to be the best judge of how a parƟcular applicaƟon can be parallelized and integrated in
the system in order to extract the best aƩainable performance. Hence, the programmer takes
full control and responsibility for parƟƟoning the computaƟon into threads, mapping them onto
processors, defining the communicaƟon structure, etc..

3.1.1 Parallel programming models

A parallel programming model is an abstract parallel machine describing how parallelism can be
expressed, managed, andmatched to the underlying system. Is is designed to separate soŌware-
development concerns from effecƟve parallel-execuƟon concerns, providing abstracƟon and sta-
bility [Skillicorn and Talia, 1998]. Hence, it is not Ɵed to any specific type of machine: any model
can (theoreƟcally) be implemented on any underlying hardware.

However, unlike sequenƟal programming, where the von Neumann model dominates, sev-
eral different models can be found in different parallel computaƟons. This is a natural outcome
when modelling such an isolaƟon layer because the level of abstracƟon employed may vary sig-
nificantly (e.g. closer to parƟcular exisƟng hardware architectures). Furthermore some parallel

1A thread refers to any independent flow of control within an applicaƟon. In a parallel real-Ɵme task model, each
job spawns several threads, becoming itself the master thread.

18

3.1. PARALLEL COMPUTING

algorithms are easier to express in certain models. In addiƟon, one or several parallel program-
ming languages, or libraries, are oŌen associated with the parallel programming model that they
realise. Thus, the choice of model is determined by the available parallel compuƟng resources,
by the ulƟmate goal of the system, and by the type of parallelism inherent to the problem.

Due to the heterogeneity of levels of abstracƟon involved, it is extremely hard to categorise
and compare parallel programming models neatly. In this thesis, we just consider the most rele-
vant ones within a classificaƟon based on process communicaƟon and computaƟon decomposi-
Ɵon properƟes. For a comprehensive presentaƟon or a thorough classificaƟon, the reader is re-
ferred to literature such as Maggs et al. [1995], Skillicorn and Talia [1998], Asanovic et al. [2006]
and Diaz et al. [2012].

Process communicaƟon

Process communicaƟon relates to the mechanisms by which parallel processes are able to in-
teract with each other. The most common models of communicaƟon are shared memory and
message passing. In the shared memory model, a set of threads, created when the computaƟon
enters a parallel region, have access to a common memory. Threads communicate implicitly by
wriƟng to and reading from a shared address space. However, as threads run asynchronously,
coordinaƟon must be handled by the programmer, and the system underneath, to manage po-
tenƟally conflicƟng accesses. Despite the necessary synchronisaƟon constructs for concurrent
threads, a user-friendly programming perspecƟve to memory is provided, since it can be seen
as an extension of sequenƟal programming methodology. Moreover, data sharing between pro-
cesses is both fast and uniform due to the proximity of processors to memory. Nevertheless, as
processors must contend for access to the physical memory (typically via bus), adding processors
increases memory latency as well as traffic associated with cache management, which naturally
affects scalable performance. Performance also suffers from the lack of locality exploitaƟon. This
model is a natural match for a sharedmemory architecture (illustrated in Fig. 3.1), where a single
global address space exists in which all data resides, as the one present in Symmetric MulƟpro-
cessing (SMP) systems, commonly used in today’s desktops.

Figure 3.1: Shared memory mulƟprocessor Figure 3.2: Distributed memory mulƟprocessor

On the other hand, in the message passing model, a set of processes have their local private

19

CHAPTER 3. BACKGROUND

data structures, which belongs and can be addressed only by the corresponding processor. Any
communicaƟon between processes has to be explicitly performed by exchanging messages with
special send and receive commands. Data distribuƟon must be carefully handled. As processors
do not share an address space, they do not have to worry about concurrent accesses or external
data manipulaƟon from other processors. Therefore, the concept of cache coherency does not
apply. Furthermore, the lack of a common bus translates in no inherent limitaƟon on the number
of processors; the size of the system becomes constrained only by the network structure used to
connect processors to each other. The major drawback of this model is precisely the difficulty
and costs involved in interprocessor communicaƟons, and consequently in programming, as the
programmer is responsible for defining how and when data is communicated. Distributed mem-
ory architectures (illustrated in Fig. 3.2), such as supercomputer clusters, where each processor
has its own local memory, are a natural match for the message passing model.

Naturally, hybrid models do exist, where a global address space is logically parƟƟoned into
porƟons, and each porƟon is local to one processor. The goal is to combine the producƟvity of
the shared memory model with the performance of the message passing one.

ComputaƟon decomposiƟon

Any parallel applicaƟon is composed of simultaneously execuƟng processes. ComputaƟon de-
composiƟon relates to the way in which these processes are formulated and several models can
be employed for that maƩer. Here, we discuss the tradiƟonal Single-Programming-MulƟple-
Data (SPMD) and the increasingly popular task parallelism. An applicaƟon following the SPMD
model executes on mulƟple processors, but each processor deals with different porƟons of data,
though the code is the same. The number of parallel acƟviƟes (e.g. processes, threads) remains
constant throughout applicaƟon execuƟon. This is, aŌer the iniƟal distribuƟon, no further par-
allelism can be expressed. In this model, the programmer has the responsibility for mapping the
parallel acƟviƟes onto the available processor and load balancing. While this somehow limits
flexibility and is more cumbersome at development Ɵme, it indeed reduces runƟme overhead,
since dynamic scheduling is no longer necessary. The standard MPI is based on SPMD as well as
some parallel programming languages such as UPC.

An applicaƟonunder the task parallelismmodel spawns parallel acƟviƟes dynamically accord-
ing to the complexity of the problem faced by it. This is, the number of parallel acƟviƟes may
vary largely during execuƟon (so does the amount of work contained by each one of them) and
thereby adapts to the currently available parallelism. Hence, the programmer focus on decom-
posing the applicaƟon into sub-computaƟons that can, but are not mandated to, run in parallel.
Thus, all these acƟviƟes need to be mapped to processors at runƟme by either the language’s
runƟme system, the OS, or even a thread package. The programmer is then released from the
onus of scheduling and balancing the load. Therefore, task parallelism is steadily gaining pop-
ularity as a parallel programming model, as demonstrates its implementaƟon in the standard
OpenMP, in several languages (e.g. Cilk, Chapel) and libraries (e.g. TBB, StackThreads/MP), and
the introducƟon and disseminaƟon of lightweight processes packages such as Portable OperaƟng
System Interface (POSIX) threads.

20

3.1. PARALLEL COMPUTING

3.1.2 Fine-grained parallelism

Despite the large availability of implicit-threading technologies with lightweight processes imple-
mentaƟons, most parallel applicaƟons are sƟll wriƩen in a coarse-grained manner, typically with
one thread per core - task-level parallelism. Each thread is relaƟvely big in terms of code size
and execuƟon Ɵme, so data is transferred among cores infrequently. In contrast, a fine-grained
applicaƟon dynamically spawns threads according to the problem size, rather than the number
of cores, commonly resulƟng in a large amount of short-living threads - data-level parallelism.
Nevertheless, other levels of parallelism can be detected in an applicaƟon (see Table 3.1).

Table 3.1: Parallelism granularity

Grain size Level of parallelism Code example Mostly parallelised by
Very fine InstrucƟon-level OperaƟon Processor
Fine Data-level Loop Compiler

Medium Control-level FuncƟon Programmer
Coarse Task-level Heavyweight process Programmer

In order to aƩain the best speed-up, the best trade-off between scheduling flexibility and
overheads needs to be found. If the granularity2 is too fine, the performance may be limited by
poor locality or excessive communicaƟon. On the other side, if the granularity is too coarse, the
performance may be limited by load imbalance.

In this thesis, we focus on moderate fine-grained parallelism, where intra-task parallelism is
expressed at a reasonable granularity, to amorƟze thread operaƟon costs (e.g. creaƟon and syn-
chronisaƟon), provide locality, and yet yield enough flexibility for good load balancing. Nonethe-
less, this sƟll leads to a large number of threads creaƟon, and has the following advantages over
coarse-grained approaches [Narlikar and Blelloch, 1998]:

• Simplicity - Programmers can express all theworthwhile parallelism in the formof lightweight
threads, without specifying their mapping to cores. This results in a simpler, shorter,
clearer code, parƟcularly for applicaƟons with irregular and dynamic parallelism.

• Portability - The resulƟng applicaƟon is architecture independent (as long as the language
in which it was wriƩen also is), since the parallelism is not staƟcally mapped to a fixed
number of cores.

• Load balance - Since the number of threads spawned is oŌen of a much higher degree
than the number of cores that will be used, the load can be transparently and effecƟvely
balanced by the implementaƟon.

• Flexibility - Unlike coarse-grained applicaƟons, where any change to the execuƟon order of
heavyweight threads may involve considerable programming efforts because it is explicitly
coded, fine-grained ones can be dynamically rescheduled just by tuning the underlying
scheduler.

2In parallel compuƟng, granularity is a qualitaƟve measure of the raƟo of computaƟon to communicaƟon.

21

CHAPTER 3. BACKGROUND

Although the fine-grained threads model allows programmers to easily expose all the paral-
lelism in the applicaƟon, scalable performance is not guaranteed. Actually, it heavily relies on
the underlying system because an efficient scheduler to map threads to processors at runƟme is
mandatory. Typically, such schedulers focus on providing good data locality, keeping the over-
all overhead low, and balancing the workload to deliver good Ɵme performance [Chandra et al.,
1993, Hummel and Schonberg, 1991].

However, if the same schedulers do not take into consideraƟon the potenƟal memory us-
age of parallel applicaƟons, a dynamic, fine-grained one may end up generaƟng excessive acƟve
parallelism, which leads to a huge space requirement [Blumofe and Leiserson, 1993, Narlikar
and Blelloch, 1998]. Moreover, a space-inefficient scheduler oŌenƟmes degrades applicaƟons
performance due to more memory page misses and consequently more memory-related system
calls. Hence, reducing the memory requirements of a parallel computaƟon is as important as
reducing the execuƟng Ɵme itself.

Work-stealing is a well-studied runƟme scheduling paradigm that can both analyƟcally and
empirically provide a fair combinaƟon of the above demands. Due to its high success in schedul-
ing dynamically growing mulƟ-threaded applicaƟons, we decided to extend it to the real-Ɵme
realm.

3.1.3 Work-stealing scheduler

Work-stealing by Blumofe and Leiserson [1999] is a simple scheduling algorithm for fully-strict3

mulƟ-threaded computaƟons which is provably efficient in terms of Ɵme, space, and communi-
caƟon. Unlike its variant work-sharing, where newly spawned threads are distributed amongst
(hopefully idle at that moment) processors, in work-stealing idle processors take the iniƟaƟve:
they aƩempt to ”steal” threads from other processors. Thus, when all processors have work to
do, there is no need to migrate threads, and when they do not, most of the effort involved with
acquiring more work is undertaken by the idle ones.

A work-stealing scheduler employs a fixed number of worker threads (henceforth referred as
justworkers), usually and preferably one per core tominimise the overhead for context switching.
Each of those workers has a local double-ended queue, called deque, to store ready threads. As
soon as a master thread is assigned to a worker and starts to be executed, it can enter a parallel
region at anyƟme. Newly spawned threads are enqueued at the head of the worker’s deque. For
example, as Fig. 3.3 depicts, task 1 spawned three new threads, which were enqueued at the
head of deque A, while task 2 is sƟll on a sequenƟal region. When a worker finishes or suspends
the execuƟon of a thread, it looks for more work at the head of its deque. Therefore, workers
treat their own local deques as a stack, pushing and popping threads from the boƩom in a Last-In
First-Out (LIFO) order. Consequently, since most threads (primarily in fine-grained applicaƟons)
share some data with their parents, it is very likely that the data required by a recently created
thread is sƟll in cache [Acar et al., 2000].

So far, all operaƟons performed by the workers are completely local and no synchronisaƟon

3All data dependency edges from a thread go to the thread’s parent.

22

3.1. PARALLEL COMPUTING

Figure 3.3: Work-stealing scheduler on a 4-core system

is necessary. InteracƟon between workers is required only when a deque runs out of work. Thus,
threads created on a processor remain stored there unless load balance is demanded, which ef-
fecƟvely increases scheduling granularity, and hence provides good data locality and low schedul-
ing contenƟon [Narlikar, 1999]. In this case, the idle worker becomes a thief and aƩempts to
work-steal from a vicƟm worker randomly chosen. If the vicƟm’s deque is not empty, then the
thief dequeues the thread at the tail and starts execuƟng it; else, the thief restarts the process,
selecƟng another vicƟm uniformly at random to steal from. The principle is to move load bal-
ancing costs from the busy worker to the idle one, which would otherwise be wasƟng CPU cycles
anyway. In Fig. 3.3, workers B and D each steal a thread from deque A. Note that the order is
totally unpredictable as randomness is the key property on the stealing strategy in order to re-
duce contenƟon, which is aggravated when many processors are idle at the same Ɵme. Locality
is favoured again by stealing in a First-In First-Out (FIFO) manner because the first threads are
the ones with higher probability to generate future workloads [Frigo et al., 1998]. Furthermore,
by having thieves operaƟng on the opposite end of the deque than the worker they are steal-
ing from, non-blocking deques can be implemented [Arora et al., 1998, Chase and Lev, 2005,
Hendler et al., 2006] to minimise the synchronisaƟon cost. Clearly, all deque manipulaƟons run
in constant-Ɵme O(1), independently of the number of threads in the deque.

Following Blumofe and Leiserson [1993], we denote T∞ as the minimum execuƟon Ɵme of
a fully strict computaƟon on an infinite number of processors and T1 as its minimum serial exe-
cuƟon Ɵme. It is proved that the expected Ɵme Tp to execute the mulƟ-threaded computaƟon,
on an ideal machine with no scheduling overhead, on p processors verifies EquaƟon 3.2.

Tp ≤
T1

p
+ T∞. (3.1)

This Ɵme appears asymptoƟcally opƟmal in the case of very parallel applicaƟonswhereT∞ ≤
T1. Moreover, Blumofe and Leiserson [1993] proved that the necessary space Sp for the execu-
Ɵon saƟsfies

23

CHAPTER 3. BACKGROUND

Sp ≤
S1

p
, (3.2)

whereas the expected total communicaƟon of the algorithm is at most T∞SmaxP , being
Smax the largest acƟvaƟon record of any thread.

One approach to schedule parallel applicaƟons using work-stealing is to include the calls to a
user-space runƟme library thatmanages the threads themselves explicitly in the applicaƟon. This
technique places a lot of onus on the programmer, requiring that the programmer is fully aware
of the runƟme library and the details of scheduler, which in turn affects the producƟvity. Hence,
work-stealing schedulers generally resort to an alternate approach where the parallelism is ex-
pressed at a higher-level of abstracƟon using some parallel constructs in a language. This code
is then transformed into an equivalent version with appropriate calls to the work-stealing run-
Ɵme library using a compiler. Several frameworks for parallel programming, such as TBB and Cilk,
employ this technique. However, the compiler needs to do a good job of mapping the threads
appropriately in order to match the performance of a good hand-wriƩen applicaƟon with direct
calls to runƟme.

Therefore, implemenƟng a work-stealing scheduler at the kernel level, by exploiƟng the OS’s
capabiliƟes, allows one to finally switch from the current support of user-space runƟme libraries
or compilers to naƟve support from the operaƟng system. Furthermore, exisƟng user-level work-
stealing schedulers are not effecƟve in the increasingly common seƫng where mulƟple applica-
Ɵons Ɵme-share a single mulƟ-core, suffering from both system throughput and fairness prob-
lems [Ding et al., 2012].

3.2 The Linux scheduler

Linux is, in simplest terms, a non-commercial General-Purpose OperaƟng System (GPOS). It was
originally developed by Linus Torvalds, in 1991, specifically for the Intel 80386 microprocessor.
Since then, Linux has evolved and grown at a spectacularly high pace due to the early adopƟon
of the GNU General Public License (GPL), which makes its source code open and available to
anyone to study andmodify (as hundreds of developers worldwide do and aswe did in this work).
Witnessing this tremendous success is the fact that, today, Linux runs on more than 90% of the
500 fastest supercomputers, leads the servers’ segment, and has a strong presence on embedded
systems such as smartphones (yes, Android is built on Linux!), watches, televisions and network
routers.

The Linux kernel is the heart of every Linux system. The kernel is the lowest-level soŌware
layer that interfaces with the hardware, and expertly manages the limited resources. One of
the most important kernel subsystems is the process scheduler, or simply the scheduler as here-
inaŌer designated. The scheduler decides which process4 to run at any Ɵme instant, and it is
its responsibility to share the finite resource of CPU Ɵme among all runnable processes in the
system.

4In this thesis, task and process are used as synonyms.

24

3.2. THE LINUX SCHEDULER

How the scheduler works affects how the system behaves. Because Linux is a mulƟtasking
system, the scheduler must give to users the impression that the CPU is always available. Even on
a mulƟ-core machine, where processes can actually execute concurrently, when there are more
processes than CPUs, the scheduler is responsible for switching between processes at very short
Ɵme frames to give the illusion of simultaneous processing. Of course different processes have
different needs, and the scheduler has to play with that in an unnoƟceable way. Yet, a scheduling
policy may favour task switching in order to provide an interacƟve system, it may privilege batch
processes and hence allow them to run longer, it may also decide that some processes are vital
for the system and should never be blocked by non-criƟcal ones. A real-Ɵme scheduler forcibly
follows this last strategy.

In the remainder of this secƟon, we cover the essenƟals of the scheduler internals5, with
emphasis on its modular design, and we discuss several real-Ɵme extensions to the Linux kernel
proposed by research insƟtuƟons and independent developers. The purpose of this secƟon is nei-
ther delve deep into the core scheduler logic nor describe the implementaƟon of the scheduling
policies. For that, and much more about the Linux kernel, the reader is referred to these two
outstanding books by Bovet and CesaƟ [2005] and Mauerer [2008].

3.2.1 Modular scheduler core

The Linux schedulerwas completely redesignedby IngoMolnar as a scalable andmodular schedul-
ing framework, which makes the core scheduler quite extensible in a hierarchical manner. This
new modular scheduler was introduced in the kernel 2.6.23, replacing the old O(1) scheduler,
and become known as the Completely Fair Scheduler (CFS). However it does not mean that the
scheduler is broken into loadablemodules, as theword ”modular” tradiƟonally suggests. There is
no mechanism to add modules on-the-fly. Each of these modules translates in a scheduling class
that encapsulates specific scheduling policies logic about which the core scheduler does not as-
sume much. The core scheduler is ”just” a dispatcher that drives the overall flow and performs
low-level task switches. Scheduling policies rule how and when tasks will be scheduled. While a
scheduling class may be responsible for several policies, a task belongs exactly to a single policy.

As the core scheduler hierarchically queries the scheduling classes which task is supposed to
execute next, without any knowledge about their internals, they have to provide a generic bind
between the core scheduler logic and individual scheduling strategies. Thus, each operaƟon that
can be requested by the scheduler is represented by one funcƟon pointer, independently on how
they are (if they are) actually implemented by each class. The set of funcƟon pointers available
is collected in a special data structure called sched_class6. Without extensions necessary for
mulƟ-core systems (we will talk about this later), the operaƟons that can be provided are as
follows:

• enqueue_task() adds a new task to the runqueue. This funcƟon is called whenever a task
enters a runnable state.

5All references to the kernel content relate to its status in the version studied (2.6.36), not the current one.
6Defined in include/linux/sched.h.

25

CHAPTER 3. BACKGROUND

• dequeue_task() removes a task from the runqueue. This funcƟon is invoked whenever a
task switches from a runnable into a not runnable state.

• yield_task() yields the CPU giving room for the execuƟon of other tasks. This funcƟon is
called whenever a task wants to relinquish control of the CPU voluntary.

• check_preempt_curr() checks whether the currently running task should be preempted.
This funcƟon is invoked aŌer every enqueue operaƟon.

• pick_next_task() selects themost appropriated task eligible to be executed next. This func-
Ɵon is called aŌer a task has been taken away from the CPU.

• put_prev_task() makes a execuƟng task no longer execuƟng. This funcƟon is invoked be-
fore the currently running task is replaced with another one.

• set_curr_task() is mostly called whenever the scheduling policy of a task is changed.

• task_Ɵck() is invoked by the scheduler at a very short periodic rate, which is defined by the
HZ macro.

• task_fork() is triggered whenever a running task spawns a new task.

Besides these funcƟonpointers, asched_class instance also contains a pointer, callednext,
which establishes how classes are related in a flat priority hierarchy. As Fig. 3.4 depicts, the stock
kernel is released with the core scheduler logic plus three scheduling classes, supporƟng five
scheduling policies in total. The real-Ɵme class deals with POSIX FP real-Ɵme scheduling and,
therefore, is the highest priority one, followed by the CFS class which provides fairness to regular
tasks by picking, at any moment, the task with the gravest need for execuƟng (i.e. prioriƟes are
adjusted periodically). The idle class is the last one to be invoked by the core scheduler as it
holds no scheduling policy but handles logic for idle tasks that are acƟve on a CPU when there is
nothing beƩer to run. A brief descripƟon of each scheduling class is given below.

1. SCHED_RR. A round robin real-Ɵme policy that will let a task run unƟl it has exhausted
its Ɵme slice if no higher priority task becomes runnable in the meanwhile. When a task
exhausts its Ɵme slice, it gets inserted at the end of its runqueue level. This way it ensures
fair assignment of CPU Ɵme to all SCHED_RR tasks of the same priority but blocks any task
below it.

2. SCHED_FIFO. A first-in, first-out real-Ɵme policy whose behaviour is idenƟcal to SCHED_RR
but it has no concept of Ɵme slice. Thus, as long as a task is not blocked by a higher priority
one it will execute for as long as it wishes and then leaves its runqueue.

3. SCHED_NORMAL. The default policy in a Linux system and the reasonwhy the Linux sched-
uler is today called CFS. The idea here is to runnormal tasks concurrently at preciseweighted
speeds so that each task receives a fair amount of processor share.

26

3.2. THE LINUX SCHEDULER

Figure 3.4: The linux modular scheduling framework

4. SCHED_BATCH. A policy for CPU-intensive batch tasks which do not require interacƟvity.
Since these tasks want to execute for a long period of Ɵme, they cannot disturb interacƟve
tasks. Hence they are disfavoured in scheduling decisions and typically remiƩed to the
background.

5. SCHED_IDLE. The last policy to be handled by the CFS class as its tasks always have a mini-
mal relaƟve weight (low importance). Note that SCHED_IDLE has ,despite its name, a dif-
ferent purpose than the idle class.

3.2.2 Main scheduling structures

The scheduler contains a series of data structures to represent, sort, track and manage the tasks
in the system. How the scheduler operates is strictly linked with the design of these structures.
The most important ones are: process descriptor, scheduling enƟty, and runqueue.

The runqueue is the key data structure of the scheduler since it manages all acƟve tasks. In
this new scheduler, each CPU has its own runqueue data structure called rq7. Nevertheless, each
acƟve task appears on one, and just one, runqueue. Indeed, it is not possible to run a task on
several CPUs at the same Ɵme unless this task is parallelized. In this case, the task spawns threads
which are allowed to execute on different CPUs, as task scheduling makes no relevant disƟncƟon
between tasks and threads - they are both scheduling enƟƟes. Furthermore, a runnable task can
only be executed by the CPU owning the runqueue to which that task is associated. However,

7Defined in /kernel/sched.c.

27

CHAPTER 3. BACKGROUND

a runnable process may migrate to other runqueue than the one originally assigned, mostly for
load balancing purposes. Some interesƟng fields that can be found inside rq are:

• lock is a spin lock that protects the integrity of the runqueue and its tasks.

• nr_running accounts the runnable tasks in the runqueue.

• curr is a pointer for the currently execuƟng task on the CPU.

• clock provides a per-runqueue Ɵme.

The most important fields on the runqueue are those that somehow relate to the set of
runnable tasks in the system. Yet, tasks are not directly managed by the general elements of
the runqueue. Instead, a class-specific sub-runqueue is embedded into the main runqueue,
so each scheduling class can implement it on a different way. For example, struct cfs_rq
holds anyƟme sub-runqueue status of the CFS class as well as the disposal of its enqueued tasks.
struct rt_rq works analogously. To highlight, cfs_rq uses a Ɵme-ordered red-black tree to
store runnable tasks and consequently build a ”Ɵmeline” of future task execuƟon. Fig. 3.5 shows
all this at first sight confusing things.

Figure 3.5: The CFS runqueue

In a nutshell, a red-black tree is a type of self-balancing binary search tree whose nodes are
sorted by a key. The leŌmost node is then the one with a lowest key value. Red-black trees allow
for efficient management of the nodes they contain, and their typically operaƟons (i.e. inserƟon,
lookup and deleƟon) take O(logn) Ɵme to complete, where n here is the number of elements
present in the tree. The Linux kernel provides this data type as a standard.

Each task is represented by an instance of a structure denominated task_struct8, the pro-
cess descriptor, which maintains up-to-date informaƟon about it. There are several scheduling-
relevant fields included in a task_struct; among others:

• state describes the current state of the task. Fig. 3.6 depicts the main process states and
transiƟons.

8Defined in /include/linux/sched.h.

28

3.2. THE LINUX SCHEDULER

• prio and normal_prio denote the dynamically computed prioriƟes of the task, whereas
static_priority is the relaƟve priority assigned to the task when it was created (it can
bemodified by the user but not by the kernel). There is also rt_prioritywhich is a staƟc
priority for a real-Ɵme task.

• sched_class as we have already seen connects the task to its scheduling class.

• By turn, policy denotes the scheduling policy applied to the task.

Figure 3.6: TransiƟons between process states

However, the scheduler does not operate directly on tasks because is not restricted to sched-
ule tasks. In fact, it can schedule awhole groupof them. The concept of scheduling enƟty denotes
this generality. Such an enƟty is implemented in a modular fashion as well due to the inevitable
class-dependency. Therefore each processor descriptor contains an instance of sched_entity
and sched_rt_entity structures, which serve the CFS class and the real-Ɵme one, respecƟvely.
These structures typically encompass staƟsƟcal elements, group scheduling fields and, of course,
the actual and some historical task details. For instance, in sched_entity, on_rq indicates if
the enƟty is currently enqueued in a runqueue, while sum_exec_runtime records the consumed
CPU Ɵme when the enƟty is execuƟng.

Note that despite a task is necessarily a scheduling enƟty the inverse statement is not true in
general. In our work we equate both since we are concerned only with task scheduling.

3.2.3 MulƟprocessor-dedicated logic

So far, all that has been said is totally general and, therefore, can be applied to single core and
mulƟ-core systems as well. Naturally, Linux provides several pivotal enhancements to efficiently
make use of mulƟprocessor machines, whatever form they come. NoƟce, however, that these

29

CHAPTER 3. BACKGROUND

enhancements, specially scheduling related ones, addmuch complexity to the scheduler, so they
must be anyƟme addressed carefully. Here we will just consider some mechanism in a simple
way to show the essenƟal principle.

In order to ensure good scheduling on mulƟ-core systems, the scheduler must address a few
addiƟonal issues:

• As we have discussed in previous secƟons, the CPU load must be distributed as evenly as
possible over the available cores. It is a completely waste of resources, and a significantly
decrease in throughput, if four concurrent applicaƟons are assigned to one CPU, while
there is one dealing with the idle task.

• It has to be possible to set the affinity of a task to a specific CPU or a subset of CPUs.
This allows one, for example in a 4-cores system, to dedicate one CPU to a single batch
applicaƟon, whilst binding the remaining tasks to the others three CPUs.

• Last but not least, the scheduler must be able to migrate tasks across CPUs. However, this
feature may severely impair performance if used in an ad-hoc manner. For instance, cache
misses are the biggest concern on a small SMP system, whereas on a large system a CPU
can be located literally somemeters away from the targetmemory, resulƟng in a extremely
costly access operaƟon.

Needless to say that a mulƟprocessor Linux kernel (one configured with CONFIG_SMP) re-
quires extensions to the afore-menƟoned data structures to saƟsfy the above condiƟons.

task_struct includes the cpus_allowed field which is a bit mask represenƟng the affinity
of a task to parƟcular CPUs. By turn, sched_class is augmented by addiƟonal funcƟons:

• select_task_rq() selects the best suited runqueue for a task. This funcƟon is invokedwhen-
ever a new task enters the system or wakes-up.

• set_cpus_allowed() is called to modify a given task’s CPU affinity. Depending on the new
parameters, it may be responsible for iniƟaƟng a task migraƟon.

• load_balance() checks if the runqueue is balancedwithin its scheduling domain (explained
aŌerwards); aƩempts to move tasks when the answer is negaƟve.

• pre_schedule() performs scheduling decisions before the actual schedule. This funcƟon is
invoked inside the main schedule rouƟne.

• post_schedule() differs from the previous funcƟon only in the invocaƟon moment, which
is aŌer the actual schedule.

Linux sƟcks to the SMPmodel in a sense that the kernel should not have any bias toward one
CPU with respect to the remaining ones. Nonetheless, as mulƟ-core machines come in many
different flavours (e.g. hyper-threading chips, SMP and NUMA architectures, permutaƟons be-
tween the three), the scheduler behaves accordingly for system performance benefit. This is,

30

3.2. THE LINUX SCHEDULER

in order to extract the best perform out of a mulƟ-core system the scheduler sophisƟcatedly
takes into consideraƟon the topology of the CPUs, specially for load balancing purposes, so it
can migrate tasks intelligently. For that, the noƟon of scheduling domains is supported by the
kernel, and each runqueue (CPU) is associated to one scheduling domain through the addiƟon
of a sched_domain9 structure pointer (field sd) inside rq.

Long-story short, a scheduling domain is a set of CPUs, which share some hardware charac-
terisƟcs, and whose workloads should be kept balanced by the scheduler. Scheduling domains
are hierarchically organised: a mulƟ-level system will have many levels of domains, and each
level may contain different domains. A small SMP system, like the one considered in our work,
typically has a single domain which spans every CPU available. Thanks to this hierarchy, the
runqueue balancing algorithm can be easily tuned for any type of mulƟ-core architectures, or
technologies, and therefore it can be performed in a rather efficient way.

3.2.4 Real-Ɵme scheduling on Linux

The exisƟng real-Ɵme scheduling policies perform very well in their own domain of applicaƟon,
however, they cannot provide the Ɵming guarantees a real-Ɵme system requires as no concept
of actual Ɵming constraints (e.g. deadlines) can be associated to tasks. Moreover, the latency
that may be experienced by a task cannot be bounded, since it highly depends on the number
of runnable tasks assigned to that parƟcular scheduling policy at that Ɵme. These issues are of
paramount criƟcalness when running Ɵme-sensiƟve or control applicaƟons. Therefore, without
a true real-Ɵme scheduler, one cannot derive a feasibility analysis of the system under develop-
ment.

Due to this lack of real-Ɵme support in the mainstream, some companies started deploying
modified versions of the Linux kernel with enhanced real-Ɵme capabiliƟes. Although, these non-
standard versions of Linux have commercial purposes. Thus, they are not free and their develop-
ment is restricted to a small community. Fortunately, following the GNU spirit, several real-Ɵme
extensions have been proposed to the Linux kernel mainly by research insƟtuƟons and indepen-
dent developers. Among these research projects, which have been invaluable in demonstraƟng
the capabiliƟes and limitaƟons of new mulƟ-core resource allocaƟon techniques on actual hard-
ware, the works more related (so-to-say) to our proposal of supporƟng full deadline scheduling
for real-Ɵme parallel computaƟons in the Linux kernel are LITMUSRT and SCHED_DEADLINE.

LITMUSRT [Calandrino et al., 2006] is a plugin-based scheduling framework for the Linux
kernel, which supports the sporadic task model under a wide variety of implemented real-Ɵme
policies, targeƟng both global and parƟƟoned scheduling. The project focus primarily on the
experimental evaluaƟon of mulƟprocessor scheduling algorithms and synchronisaƟon protocols
for real-Ɵme system, from a research point of view. In that regard it simplifies such prototyping
by providing abstracƟons and interfaces within the kernel.

SCHED_DEADLINE (originally named SCHED_EDF) [Faggioli et al., 2009] is a scheduling class
for the Linux kernel that mimics the standard real-Ɵme class but employs an EDF policy. It im-

9Defined in include/linux/sched.h.

31

CHAPTER 3. BACKGROUND

plements parƟƟoned, global and clustered scheduling by applying CPU affiniƟes and by allowing
dynamic task migraƟons across CPUs, using push and pulls operaƟons. This scheduling policy can
handle periodic, sporadic or aperiodic tasks once it uses the Constant Bandwidth Server (CBS)
[Abeni and BuƩazzo, 1998] to provide bandwidth isolaƟon (i.e. no task is permiƩed to execute
longer than its budget every deadline length Ɵme interval). Therefore hard and soŌ real-Ɵme
tasks can cohabit in the same environment as they do not interfere with each other even when
they misbehave.

Nevertheless, none of those patches directly supports parallel real-Ɵme tasks. It has also to
be said that both of them haven’t become part of the official Linux kernel yet. While this is clearly
the aim of SCHED_DEADLINE, as its implementaƟon is (at the Ɵme of this wriƟng) being kept lined
up with the mainstream kernel and is POSIX-compliance, LITMUSRT does not share this concern
which eventually make it obsolete by now.

Despite any real-Ɵme scheduler whatsoever being added, Linux intrinsically presents some
limitaƟons for real-Ɵme systems since as a GPOS its primary design goal is to opƟmise the average
throughput. Namely unpredictable latencies, non-preemptable secƟons, and coarse-grainedƟm-
ing resoluƟon are potenƟal issues for real-Ɵme applicaƟons [Scordino and Lipari, 2006]. Thank-
fully some meaningful efforts have been redirected into this direcƟon.

In fact, even HRT tasks can be scheduled on Linux by adopƟng the so called interrupt ab-
stracƟon approach. This approach consists of creaƟng an abstracƟon layer of virtual hardware
between the standard Linux kernel and the computer hardware. The resulƟng system is a mulƟ-
threaded RTOS in which the standard Linux kernel is the lowest priority thread, therefore, it exe-
cutes only when the real-Ɵme kernel is inacƟve. The main advantage is to aƩain very low laten-
cies, hence it is efficient, whereas the major drawback is its invasiveness. RTLinux, Xenomai and
RTAI are notable examples where this soluƟon was successfully implemented.

PREEMPT_RT is a quickly evolving set of patches maintained by a restrict group of skilled
kernel developers, currently led by Thomas Gleixner. The philosophy is to minimize the amount
of kernel code that is non-preempƟble, while also minimising the amount of code that must be
changed in order to provide this added preempƟbility. In order to accomplish an almost fully pre-
empƟble kernel, most kernel spinlocks are replaced by mutexes that support priority inheritance
protocol [Sha et al., 1990], which solves the problem of unbounded priority inversion. Moreover,
all interrupts aremoved to kernel threads so they become schedulable. By aƩaining a predictable
behaviour in criƟcal kernel acƟviƟes, a more determinisƟc Linux kernel is obtained, which is the
most important property of any RTOS.

A priority inversion happens when a higher priority task is blocked on a shared resource
owned by a lower priority task. If the lower priority task task is preempted by a medium pri-
ority task while holding the resource, the higher priority one will have to wait for an unbounded
Ɵme.

Some features from the PREEMP_RT patch series, such as generic IRQs and hrƟmers, have
found their way into themainline kernel. Other useful features remain as add-ons because, while
increasing determinism, they oŌen result in higher kernel overheads, and consequently lower
throughput, which goes against the GPOS principles governing Linux.

32

3.3. SUMMARY

3.3 Summary

In this chapter we saw how parallelism can be explored by programmers and in what way that
may affect producƟvity and performance. As we are concerned with the scheduling of highly
heterogeneous real-Ɵme parallel applicaƟons for shared memory architectures, we highlighted
the characterisƟcs of the followed models to generate work, namely the task parallelism model
and shared memory one. In order to efficiently schedule such fine-grained and dynamic parallel
computaƟons, a Ɵme-, space-, and communicaƟon-aware scheduler must be employed. Work-
stealing, which we explained in detail, not only provably assures that, but also automaƟcally
balances the workload in the system. The scheduler we present in the next chapter is a variant
of this scheduling algorithm, typically implemented in a language runƟme system.

In this chapter, we invesƟgated how to implement our proposal in Linux, due to its free and
open-source nature. Namely, we discussed the Linux modular scheduling framework, we looked
at the main data structures of the Linux scheduler, as well as its support for mulƟprocessor sys-
tems. At the end, we pointed out few of the limitaƟons it faces regarding real-Ɵme support,
while menƟoning some patches that aƩempt to overcome those cases. The SCHED_DEADLINE
scheduling class, whose implementaƟon inspired our work, was briefly described here.

33

CHAPTER 3. BACKGROUND

34

Chapter 4

Real-Time Work-Stealing

The moƟvaƟon for this project was outlined in Chapter 1. Based on that, the next
chapters discussed the main theory behind our proposal. In Chapter 2, we covered
the real-Ɵme scheduling world, poinƟng out the chosen direcƟons for our model.
Chapter 3 introduced parallel compuƟng strategies to effecƟvely exploit parallelism,
explaining howwe can efficiently map threads to cores. This guided our design from
top to boƩom. Furthermore, Chapter 3 has also laid down the foundaƟon for our
implementaƟon by describing the Linux scheduler. It is now Ɵme to bringing it all
together.

Meant to be used naƟvely as an OS scheduler, RTWS is a novel scheduling approach,
which combines the G-EDF policy with a priority-based locality-aware work-stealing
load balancing scheme, enabling parallel real-Ɵme tasks to run on more than one
processor at a given Ɵme instant.

In this chapter, we provide a detailed descripƟon of all the work devised regarding
the RTWS scheduler and jusƟfy our opƟons. The next secƟon describes the state-
of-art in parallel real-Ɵme scheduling, shortly comparing to the system model we
present in SecƟon 4.2. Then, SecƟon 4.3 follows by discussing the algorithm de-
sign, with emphasis being given to: (i) data structures, (ii) major rules, and (iii) sub-
policies. The last major contribuƟon of our work is the RTWS implementaƟon in the
Linux kernel. The core of this complex proceeding is analysed in SecƟon 4.4.

4.1 Related work

Task-level parallelism is a form of parallelizaƟon of code across mulƟple processors in parallel
compuƟng environments. Many real-Ɵme applicaƟons have a lot of potenƟal parallelism which
is not regular in nature and which varies with the data being processed. Parallelism in these
applicaƟons is oŌen expressed in the form of dynamically generated threads of work that can be
executed in parallel. The goal is to allow the programmer to express all the available parallelism
and let the runƟme system execute the program efficiently.

Considerable work on scheduling of parallel tasks can be found in [Agrawal et al., 2008, Arora

35

CHAPTER 4. REAL-TIME WORK-STEALING

et al., 1998, Blelloch et al., 1999, Hummel and Schonberg, 1991, Polychronopoulos and Kuck,
1987, Turek et al., 1994]. However, it cannot be applied to real-Ɵme systems since Ɵming con-
straints are not contemplated. Real-Ɵme scheduling of parallel tasks started to be addressed
in 1989 when Han and Lin [1989] have shown the NP-hardness of preempƟve scheduling paral-
lel jobs, and the intractability of many parallel scheduling problems. The non-preempƟve case
was later studied byWang and Cheng [1992] which proposed a heurisƟc based on the makespan
metric. Ludwig and Tiwari [1994] also took makespan into consideraƟon for scheduling parallel
malleable tasks and their relaƟon to non-malleable ones. However, these early works impose
many limitaƟons on the number and configuraƟon of processors alloƩed to a task.

From an opƟmisaƟon point of view, some research has studied cache-aware schedulers for
mulƟ-threaded tasks [Anderson and Calandrino, 2006, Calandrino and Anderson, 2009]. Ander-
son and Calandrino [2006] consider Pfair algorithm and encourage tasks of the same weight to
be co-scheduled in order to minimise cache misses. Calandrino and Anderson [2009] show a
significant performance improvement, with a slight overhead trade-off, when their cache-aware
scheduler does accurately profiling. Nevertheless, in both works the parallelism degree of a job
cannot be greater than the number of processors in the system.

Most prior work in parallel real-Ɵme scheduling makes simplifying assumpƟons about task
models [ColleƩe et al., 2008, Jansen, 2004, Kato and Ishikawa, 2009, Lee and Lee, 2006, Mani-
maran et al., 1998], assuming that the parallelism degree of jobs is known beforehand and using
this informaƟon when making scheduling decisions. In pracƟce, this informaƟon is not easily
discernible, and in some cases can be inherently misleading. For instance, Jansen [2004], Lee
and Lee [2006] and ColleƩe et al. [2008] focus on malleable tasks, where tasks can efficiently
execute on any number of processors and change it at runƟme. On the other hand, Manimaran
et al. [1998] and Kato and Ishikawa [2009] invesƟgate the scheduling of moldable tasks, where
the number of processors alloƩed to a task is defined before execuƟon. The laƩer work, in its
Gang EDF algorithm, also restricts the number of parallel threads within a task to its associated
number of processors, while the formerwork considers non-preempƟve EDF scheduling but does
not allow the number of processors simultaneously used by a task to be posteriorly changed.

Recently, Lakshmanan et al. [2010] proposed a scheduling technique for a synchronous par-
allel task model. In this model, every task is an alternate sequence of parallel and sequenƟal
regions, with each parallel region consisƟng of mulƟple threads of equal length that synchronise
at the end of the region. In their model, all parallel regions are assumed to have the same num-
ber of parallel threads, which must be no greater than the number of processors. Saifullah et al.
[2011] considered amore general task model, allowing different regions of the same parallel task
to contain different numbers of threads and regions to contain more threads than the number of
processor cores. It sƟll requires, however, that each region of a task contains threads of execu-
Ɵon that are of equal length. In contrast, this thesis considers a more general model of parallel
real-Ɵme tasks where threads can take arbitrarily different amounts of Ɵme to execute.

Furthermore, bothworks handle scheduling parallel tasks by decomposing them into sequen-
Ɵal subtasks. In [Lakshmanan et al., 2010], this technique requires a resource augmentaƟon
bound of 3.42 under parƟƟoned Deadline Monotonic (DM) scheduling. For the synchronous

36

4.2. SYSTEMMODEL

model with arbitrary numbers of threads in parallel regions, the work in [Saifullah et al., 2011]
proves a resource augmentaƟon bound of 4 and 5 for G-EDF and parƟƟoned DM scheduling, re-
specƟvely. Instead, we try to minimise the scheduling overhead by generaƟng parallelism only
when required, i.e. when a processor becomes idle.

We believe that achieving predictable good performance for fine-grained task-level paral-
lelism in embedded real-Ɵme systems is important for several reasons: (i) an efficient implemen-
taƟon of fine-grained parallelism allows more parallelism to be exploited, which is especially
important with the expected increase in core counts in future processors; (ii) the programming
model is simplified if programmers do not need to avoid spawning small tasks, which is very diffi-
cult when task execuƟon Ɵmes can not be predicted in advance; and (iii) many real-Ɵme systems
have periodic serialisaƟon points when input is consumed and output is produced. A natural way
to program such a system is to parallelize each interval, which then becomes a parallel region.

4.2 System model

We consider the scheduling of implicit-deadline periodic independent real-Ɵme tasks onm iden-
Ɵcal processors p1, p2, . . . , pm using G-EDF. With G-EDF, each task ready to execute is placed in a
system-wide queue, ordered by non-decreasing absolute deadline, from which the firstm tasks
are extracted to execute on the available processors.

We primarily consider a synchronous task model, where each task τ1, . . . , τn can generate a
virtually infinite number of mulƟ-threaded jobs. A mulƟ-threaded job is a sequence of several
regions, and each region may contain an arbitrary number of parallel threads which synchronise
at the end of the region (see Fig. 4.1). For any region with more than one thread, the threads
on that region can be executed in parallel on different cores. All parallel regions in a task share
the same number of processors and threads inherit the parent’s deadline. For now, our work is
focused on systems where all parallel threads are fully independent, i.e. except for them-cores
there are no other shared resources, no criƟcal secƟons, nor precedence constraints.

Figure 4.1: A mulƟ-threaded job with 5 regions

The jth job of task τi arrives at Ɵme ai,j , is released to the G-EDF queue at Ɵme ri,j , starts to
be executed at Ɵme si,j with deadline di,j = ri,j+Ti, with Ti being the period of τi, and finishes

37

CHAPTER 4. REAL-TIME WORK-STEALING

its execuƟon at Ɵme fi,j . These Ɵmes are characterised by the relaƟons ai,j ≤ ri,j ≤ si,j ≤ fi,j .
Successive jobs of the same task are required to execute in sequence.

During the course of its execuƟon the jth job of task τi can enter in a parallel region and
dynamically generate an arbitrary number of parallel threads which synchronise at the end of
that region. A thread is denoted wk

i,j , 1 ≤ k ≤ ni, where ni is the total number of threads
belonging to the jth job of task τi. We assume ni ≥ 2 holds for at least one task τi in the system.
Otherwise, the considered task set does not have intra-task parallelism.

The execuƟon requirements of a thread wk
i,j of task τi is denoted by eki,j . Therefore, the

WCET) Ci of task τi on a mulƟ-core plaƞorm is the sum of the execuƟon requirements of all of
its threads, if all threads are executed sequenƟally in the same core.

Contrary to regular jobs of a task, dynamically generated parallel threads are not pushed to
the G-EDF queue, but instead maintained in a local priority-based work-stealing double-ended
queue (deque) of the core where the job is currently being executed, thus reducing contenƟon
on the global queue. For any busy core, parallel threads are pushed and popped from the boƩom
of the deque and these operaƟons are synchronisaƟon-free.

The fracƟon of the capacity of one processor that is assigned to a task τi is defined as its
uƟlisaƟon ui = Ci

Ti
. We further define UΠ =

∑n
i ui as the system uƟlisaƟon on the idenƟcal

mulƟprocessor plaƞorm Π comprised of m unit-capacity processors and uΠ = max1≤i≤nui as
the maximum task uƟlisaƟon.

A task set Γ is said to be schedulable by algorithm A, if A can schedule Γ such that every
τi ∈ Γ can meet its deadline di. With G-EDF, a task τi executed on the idenƟcal mulƟprocessor
plaƞorm Π comprised ofm unit-capacity processors never misses its scheduling deadline under
the following condiƟons Goossens et al. [2003]:

uΠ ≤ 1;

UΠ ≤ m− uΠ(m− 1) (4.1)

Naturally, if only soŌ real-Ɵme tasks are considered, jobsmaymiss their deadlines by bounded
amounts, eliminaƟng such restricƟve uƟlisaƟon limits. It has been shown that, when using G-EDF
to schedule sporadic soŌ real-Ɵme tasks on m processors, deadline tardiness is bounded, pro-
vided total uƟlisaƟon is at mostm Valente and Lipari [2005].

4.3 Design

Dynamic scheduling of parallel computaƟons by work-stealing [Blumofe and Leiserson, 1999] has
gained popularity in academia and industry for its good performance, ease of implementaƟon
and theoreƟcal bounds on space and Ɵme. Work-stealing has proven to be effecƟve in reducing
the complexity of parallel programming, especially for irregular and dynamic computaƟons, and
its benefits have been confirmed by several studies Navarro et al. [2009], Neill and Wierman

38

4.3. DESIGN

[2009].

However, the need to support tasks’ prioriƟes and deadlines fundamentally disƟnguishes the
problem at hand in this thesis from other work-stealing choices previously proposed in the liter-
ature Guo et al. [2010], Vrba et al. [2009, 2010]. With classical work-stealing, threads waiƟng for
execuƟon in a deque may be repressed by new threads, which are enqueued at the boƩom of
the worker’s deque. As such, a thread at the top of a deque might never be executed if all work-
ers are busy. Consequently, there is no upper bound on the response Ɵme of a mulƟ-threaded
real-Ɵme job.

Therefore, considering threads’ prioriƟes and using a single deque per core would require,
during stealing, that a worker iterate through the threads in all deques unƟl the highest priority
thread to be stolenwas found. This cannot be considered a valid soluƟon since it greatly increases
the theŌ Ɵme and, subsequently, the contenƟon on a deque.

Using a single global concurrent priority-based deque is also not viable. While priority queues
are oŌen used in single core schedulers, when moving to a parallel context, concurrent priority
queues are hard to make both scalable and fast Lenharth et al. [2011]. Furthermore, the se-
manƟcs of priority queues naturally suggest an ordered inserƟon method, which is against the
work-stealing deque philosophy.

Our proposal is to replace the single per-core deque of classical work-stealing with a per-core
priority queue, each element ofwhich is a deque. A deque holds one ormore threads of the same
priority. At any Ɵme, a core picks the boƩom thread from the highest-priority non-empty deque.
If it finds its queue empty, it steals a thread from the top of the highest-priority non-empty deque
of the chosen core’s queue. Fig. 4.2 provides a first depicƟon of the overall design.

Figure 4.2: Overview of the RTWS data structures design

NoƟce that with this design all queue manipulaƟons are straighƞorward since empty deques
do not actually remain stored (we just menƟon non-empty deques for ease of understanding).
Thus, no benefit from tradiƟonal work-stealing properƟes is lost while we assure determinism
and predictability.

39

CHAPTER 4. REAL-TIME WORK-STEALING

Among the various possible alternaƟves for designing a global real-Ɵme scheduler [Branden-
burg and Anderson, 2009], the simplest and most commonly used ones are: (i) a single global
queue from where tasks are consecuƟvely dispatched to cores, and (ii) a distributed approach
where each core has its own queue and tasks are dynamically alloƩed to those queues through
migraƟons. Advantages of the former are the easymanagement of the unique queue, no need to
synchronise between clocks of different CPUs, and, most of all, opƟmal picking of work because
the scheduler has not to decide where to enqueue ready tasks. Moreover, the selecƟon of what
task to run next is straighƞorward, assuming a somehow ordered global queue. Nevertheless,
such an approach has a serious drawback: performance degradaƟon when the number of cores
accessing it increases. This happens because in order to keep the queue consistent (i.e. to ensure
that only one core concurrently manipulates the queue), it must be protected by a lock mech-
anism. Naturally, as a SMP system gets larger, the lock contenƟon overhead considerably gets
higher, eventually becoming the scalability boƩleneck.

On the other hand, the laƩer case has the benefit of solving this scalability problem since each
core selects runnable tasks only from its queue. Hence, contenƟon received by any local queue
is much lower and independent of the addiƟon of CPUs. However, as a distributed approach
implies the allotment of tasks to CPUs in the first place, this raises several disadvantages. Queue
management is rather costly and complex due to the indispensable dynamic task migraƟon and
consistence of scheduling data informaƟon. Furthermore, making a good global scheduling de-
cision is technically difficult due to the lack of synchronisaƟon between CPUs’ clocks.

As depicted in Fig. 4.2, our proposal adopts a single global queue for job-level scheduling,
and, in last resort, a global distributed approach alike for parallel threads scheduling (this will be
explained in the next secƟon). Thisway the probability of acquiring a contended lock isminimised
and threads are seldom migrated (only when a CPU would otherwise be idle). Thus, we miƟgate
both approaches drawbacks, while we conciliate and extract the best out of them.

4.3.1 Rules

The correctness and efficiency of a scheduling algorithm cannot be assured just by the data struc-
tures used by it and the flow connecƟng them. A set of rules to determine which m tasks must
be executed on them available CPUs is compulsory.

The proposed RTWS scheduler encompasses a G-EDF scheduling policy combined with a
priority-based work-stealing load balancing scheme, used to allow parallel tasks to execute on
more than one processor at any moment. The goals are to fit a wide-range of parallel real-Ɵme
systems, reduce scheduling overheads, improve system performance by efficiently managing dy-
namic parallelism, and guarantee the schedulability of the system by G-EDF. Needless to say, in
order to accomplish such goals some rules must be defined. We describe the major ones below.

• Rule A: a single global ready queue exists in the system, ordered by non-decreasing abso-
lute deadlines. At each instant, the higher priority (with shorter absolute deadline) jobs
are scheduled for execuƟon.

• Rule B:whenever a job of a task τi being executed at a processor p enters a parallel region

40

4.3. DESIGN

and dynamically generates a set of parallel threads, those threads are not pushed to the
G-EDF queue but instead maintained in the processor’s local priority queue.

• Rule C: as soon as a job spawns parallel threads, it starts to be handled as a thread.

• Rule D: each entry in the processor’s local priority queue is a deque, holding one or more
threads of the same priority. At any Ɵme, a processor first looks into its local queue, picking
the boƩom thread from the highest-priority non-empty deque.

• Rule E: if the local queue is empty and there is no thread to pick, then a processor searches
for jobs in the G-EDF queue.

• Rule F: sƟll, if there is no eligible job in theG-EDF queue, the processorwill steal the earliest
deadline eligible thread from the top of the chosen busy processor’s deque.

• Rule G: threads will never preempt any other enƟty. Only arriving jobs may cause a pre-
empƟon.

• Rule H: opposed to a local thread, a stolen thread preempted by a job with a shorter dead-
line is enqueued in theG-EDF queue (like a preempted job is) and not back to the respecƟve
deque of the processor’s local priority queue.

Each released job is enqueued in a system-wide global queue ordered by non-decreasing
absolute deadlines, with Ɵes broken by FIFO. At t = 0, all them cores are idle and them higher
priority jobs are selected for execuƟon. By following a global approach, cores are responsible for
dequeuing the highest priority jobs from the global queue, therefore, eschewing the bin-packing
problem of parƟƟoned approaches, and achieving opƟmal scheduling decisions.

When entering a parallel region, a job generates an arbitrary number of threads, possibly
with different execuƟon requirements. To reduce contenƟon on the global queue and to avoid
uncontrolled priority inversion when stealing, each core has a deadline-ordered queue, each ele-
ment of which is a deque. Therefore, each dynamically generated thread is enqueued, following
a LIFO order, in the boƩom of the respecƟve deque, so that data locality is favoured and com-
municaƟon and synchronisaƟon among cores are minimised.

For each core, the local deques are the first place to look for work, not only due to the fact
that if they have work it means that there is a deadline to be met, but also to take advantage
of caches and keep overhead low. If the local deques are empty, the global queue is searched.
This step assumes that no maƩer how many threads the other cores in the system sƟll have to
execute, they are able to finish their work within the deadline (the schedulability of the task set
is assured by G-EDF). Clearly, this step favours jobs in the G-EDF queue, with respect to parallel
threads generated on other cores, by reducing their latency. Recall that we try to minimise the
scheduling overhead by generaƟng parallelism only when required, i.e. when a processor would
be otherwise idle. Moreover, we focus on reducing the worst-case response Ɵme of the tasks
and not the best, since real-Ɵme is not about fast compuƟng but compuƟng every task in Ɵme.

41

CHAPTER 4. REAL-TIME WORK-STEALING

Finally, if no work has yet been found, a stealing operaƟon takes place, ensuring that the top-
right parallel thread (i.e. the oldest highest priority thread), in the chosen core is stolen. As the
oldest element in its deque, it is a good candidate for stealing because it is likely that related-data
is no longer cached. This last step helps to reduce the overall average response Ɵme and to keep
the load balanced. By having a thief operaƟng on the opposite end of the deque than the vicƟm,
both can perform acƟons on the deque concurrently as synchronisaƟon-free mechanisms can be
implemented. Furthermore, the load balancing operaƟon cost is imputed to a core that would
otherwise be wasƟng CPU cycles. The process flow diagram for this task selecƟon procedure is
shown in Fig. 4.3.

Figure 4.3: Process flow diagram represenƟng rule E and F

Whenever a new job is released and enqueued in the G-EDF queue, and all cores are busy,
the scheduler verifies if the core execuƟng the lowest priority job/thread, among all the execut-
ing jobs/threads, has a higher deadline than the newly arrived job. If this condiƟon is true, the
job/thread is preempted. One of three possible situaƟons occurs, depending on the properƟes
of the preempted enƟty:

1. A job is enqueued back in the global queue because it has not yet entered a parallel region.

2. A local thread (i.e. a thread currently running on the core where it was spawned) is en-
queued back in the respecƟve deque in the core’s local priority queue. Moving all related
parallel threads would be too costly. This is the reason why we have a per-core queue of
deques.

3. A stolen thread is enqueued in the global queue in order to prevent starvaƟon and, there-
fore, a possible deadline miss.

The process flow diagram for this task preempƟon procedure is shown in Fig. 4.4. Note that
spawned threads will never cause a preempƟon because system predictability does not rely on
their parallel execuƟon. This substanƟally reduces the number of context switches, while also
contributes to retard accesses to the global queue.

4.3.2 Sub-policies

In designing a work-stealing scheduler there are two scheduling sub-policies to consider: work-
first and help-first. Under the work-first policy, as soon as a job spawns a thread, it will be

42

4.3. DESIGN

Figure 4.4: Process flow diagram represenƟng rule G and H

swapped out, so the respecƟve core starts working on the spawned thread eagerly. Conse-
quently, unless the spawned thread creates more threads itself, there is only the master thread
available for work-stealing. Work-first shines when computaƟons are recursive (e.g. following
divide-and-conquer paradigm).

In contrast, the help-first policy dictates that a core conƟnues execuƟng the master thread
and leaves spawned threads to be stolen, so as many idle cores as spawned threads may imme-
diately parƟcipate on the computaƟon execuƟon. This strategy fits beƩer in computaƟons that
present flat parallelism (e.g. following a basic fork-join model).

RTWS supports both work-first and help-first scheduling sub-policies. However, since nested
parallelism is beyond the scope of our work, we will neglect work-first in the remaining of this
thesis, with an excepƟon raised for the implementaƟon discussion.

So far we have not discussed how do we elect the processor to steal from. Two approaches
are possible for selecƟng the vicƟm: (i) a probabilisƟc approach, where the vicƟm is chosen ran-
domly; or a (ii) determinisƟc approach, where the core is chosen by the prioriƟes of the threads
waiƟng to be executed in the deques.

Blumofe and Leiserson [1999] demonstrate that a random choice of the stolen core is fair
and presents the advantage that the choice of the target does not require more informaƟon
than the total number of cores in the execuƟon plaƞorm. However, random selecƟon, while
fast and easy to implement, may not always select the best vicƟm to steal from. As core counts
increase, the number of potenƟal vicƟms also increases, and the probability of selecƟng the best
vicƟm decreases. This is parƟcularly true under severe cases of work imbalance, where a small
number of coresmay havemorework than others [BhaƩacharjee et al., 2011]. Moreover, when a
thief cannot obtain tasks quickly, the unsuccessful steals it performs waste compuƟng resources,
which could otherwise be used to execute waiƟng threads. In fact, if unsuccessful steals are not
well controlled, applicaƟons can easily be slowed down by 15%–350% [Blumofe and Leiserson,
1999].

It is crystal clear that a blind probabilisƟc approach (i.e. a random choice where all cores
are considered) is not suitable for a real-Ɵme scheduler. Nevertheless, since in our model the
schedulability of the task set is guaranteed by G-EDF, no specific task needs to be executed in
parallel. In other words, even execuƟng sequenƟally every task in the system is guaranteed to

43

CHAPTER 4. REAL-TIME WORK-STEALING

meet its deadline under any circumstance, which makes RTWS robust to small deviaƟons from a
strict priority schedule. In fact, some priority inversion may be actually acceptable, provided it
helps reduce contenƟon, as well as synchronisaƟon and coordinaƟon between parallel threads.
Thus, if we discard idle cores and steal randomly only among busy cores, applicaƟons will not
suffer any performance loss. HereinaŌer, we will refer to this as Busy-Aware Stealing (BAS).

Naturally, a determinisƟc approach (henceforth called PAS) is an obvious soluƟon when real-
Ɵme scheduling is at stake. Priority-Aware Stealing (PAS) can be defined as follows.

DefiniƟon 1 The set of processors Ps eligible for work-stealing among the set ofm idenƟcal pro-
cessors P = {p1, p2, . . . , pm} is given by Ps = {Ps|Ps ∈ P, npi ≥ 1}, where npi is the number
of threads in the local priority queue of processor pi.

Having Ps, an idle processor steals the earliest deadline thread wedf among the ones in the
top of the highest-priority non-empty deques (first entry in each of the processor’s local priority
queue) from the set of eligible processors Ps.

DefiniƟon 2 The earliest deadline threadwedf from the set of eligible processors Ps is defined as
∃1wedf ∈ Ps : mindr

k
(Ps), Ps ̸= ∅.

Note that the ∃1 relaƟon is guaranteed by themin funcƟon which, whenever there is more
than one thread with the same earliest deadline, always returns the first thread on the list.

However, this determinism may turn in large contenƟon overhead, affecƟng performance
scalability. For instance, if at the same Ɵme instant 10 CPUs become idle, and there are several
CPUs with ready threads, all idle ones will disputed the access to a single queue, resulƟng in
considerable blocking Ɵme for 9 CPUs which could undoubtedly be beƩer availed. A scenario like
this is much unlikely to happen using BAS.

As BAS and PAS fit well in different real-Ɵme systems, our proposal encompasses these two
stealing sub-policies. Yet, both will always select the rightmost thread from the highest-priority
non-empty deque of the target queue.

4.3.3 Scheduling mulƟ-threaded jobs with RTWS

Consider the following task set, described by WCET and period, τ1 = (5, 10), τ2 = (10, 20), and
τ3 = (4, 19). Task τ1 executes sequenƟally for three Ɵme units and then spawns two threads
which have an execuƟon requirement of one Ɵme unit each. Task τ2 has a sequenƟal execuƟon
requirement of two Ɵme units and then spawns four threads, with the first and third threads
having an execuƟon requirement of one Ɵme unit, whereas the second and fourth threads have
an execuƟon requirement of three Ɵme units. Finally, task τ3 only executes sequenƟally. Note
that the task set is schedulable under G-EDF, uΠ = 0.5 and UΠ = 1.21.

Fig. 4.5 depicts a possible schedule generated by RTWS for those three tasks in two idenƟcal
processors, when applying help-first and PAS sub-policies.

All tasks are released at t = 0. The ones with a lower deadline, τ1 and τ3, are selected for
execuƟon in the two cores. In the interval t = [0, 5] none of the cores is idle. Therefore, task

44

4.4. IMPLEMENTATION

Figure 4.5: A RTWS schedule example

τ1 executes sequenƟally, although it spawns parallel threads. At t = 5, task τ2 is scheduled for
execuƟon in core 1. Its sequenƟal part executes unƟl t = 7 and then it spawns four threads. As
core 2 is idle at Ɵme t = 7 and there is pending work in the priority queue of core 1, it is able to
work-steal. Therefore, at t = 7, core 2 steals w2

2,1 from the highest-priority non-empty deque of
core 1.

At t = 10, a job from task τ1 is released and preempts w3
2,1, which has a lower priority.

According to the RTWS policy, w3
2,1 is enqueued in the global queue unƟl one of the cores is able

to finish its execuƟon. In the depicted example, w3
2,1 is executed at t = 11 in core 1.

As core 2 is idle aŌer t = 12, threads generated by the second job of task τ1 can be executed
in parallel by both cores, by work-stealing at Ɵme t = 13.

4.4 ImplementaƟon

Based on the design principles presented in secƟon 4.3, we have implemented RTWS in the stan-
dard Linux kernel 2.6.36 as a new scheduling class called SCHED_RTWS. In this secƟon, we will
dive into the code: (i) presenƟng the added data structures, (ii) analysing the main implementa-
Ɵon logic, and (iii) showing the differences between theory and pracƟse.

As we have seen in secƟon 3.2.1, the Linux kernel has three naƟve scheduling classes, hi-
erarchically organised to establish a priority order between them. In order to create our new
scheduler module, we need to code it in a separate file (kernel/sched_rtws.c) and posiƟon
it anyhow in the module’s hierarchy. Not surprisingly, the RTWS class is placed on the top of the
hierarchy, becoming the highest priority module in the system, as shown in Fig. 4.6. The reason
is because wewill be dealing with Ɵme-sensiƟve real-Ɵme parallel tasks which cannot be delayed
by ordinary tasks.

Figure 4.6: Priority hierarchy of scheduler modules

Before informing the core scheduler about the newhighest prioritymodule, a set of funcƟons
specified in the sched_class structure must be implemented. LisƟng 4.1 shows the definiƟon
of rtws_sched_class, which realises the RTWS scheduler module.

The first field (next) is a pointer to the second highest priority scheduling class in the hierar-
chy. Accordingly, rt_sched_class, which implements the two POSIX real-Ɵme policies, will be

45

CHAPTER 4. REAL-TIME WORK-STEALING

queried every Ɵme RTWS fails to return a task. The other fields are funcƟons that act as callbacks
to specific events. SecƟon 4.4.2 will narrowly analyse the most relevant ones. The reader may
wonder why there is no CONFIG_SMP direcƟve isolaƟng the mulƟprocessor funcƟons. Well, we
neither intent to merged this first approach into mainline Linux, nor POSIX-compliance is a goal,
so we just focused on the scheduling features for simplicity.

1 s t a t i c con s t s t r u c t s c h e d _ c l a s s r tw s _ s c h ed_ c l a s s = {
. nex t = &r t _ s c h e d _ c l a s s ,

3 /* main f u n c t i o n s */
. enqueue_task = enqueue_task_r tws ,

5 . dequeue_task = dequeue_task_r tws ,
. check_preempt_cur r = check_preempt_cur r_ r tws ,

7 . p i c k _ n e x t _ t a s k = p i c k _ne x t _ t a s k _ r tw s ,
/* secondary f u n c t i o n s */

9 . p u t _p r e v_ t a s k = pu t_p rev_ t a s k_ r tws ,
. s e t _ c u r r _ t a s k = s e t _ c u r r _ t a s k _ r tw s ,

11 . t a s k _ t i c k = t a s k _ t i c k _ r tw s ,
. t a s k _ f o r k = t a s k _ f o r k _ r tw s ,

13 . t a sk_dead = task_dead_r tws ,
. sw i t ched_f rom = swi t ched_f rom_r tws ,

15 . sw i t ched_ to = sw i t ched_ to_ r tws ,
/* mu l t i p r o c e s s o r f u n c t i o n s */

17 . s e t _ cpu s_a l l owed = se t_cpus_a l l owed_ r tws ,
. task_woken = task_woken_rtws ,

19 } ;

LisƟng 4.1: RTWS scheduling class

To differenƟate tasks bound to our scheduling policy from other tasks in the system, we refer
to them as RTWS tasks, or RTWS jobs due to these tasks conƟnuous recurrency. Further, we use
the term pjob when referring to a parallel thread of a job. Recall that RTWS tasks are periodic
and, therefore, are potenƟally endlessly releasing new instances. They present a code structure
similar to the algorithm present in LisƟng 4.2 because their periodicity is typically Ɵme-triggered
and not event-triggered as most sporadic tasks. Note that, in this example, we ignore the com-
putaƟon itself (i.e. no parallelism is expressed), and focus only on the periodic behaviour.

1 s t a r t : = time_now () + o f f s e t ;
wh i l e (t r ue) {

3 d e l a y _ u n t i l (s t a r t) ;
compute () ;

5 s t a r t : = s t a r t + pe r i od ;
}

LisƟng 4.2: RTWS task algorithm example

4.4.1 Data structures

Following the scheduler code convenƟon, we do not embed required data fields directly on the
exisƟng structures but instead create our own. Thereby, each process descriptor is provided with

46

4.4. IMPLEMENTATION

a struct sched_entity_rtws which is an enƟty to schedule RTWS tasks (detailed in LisƟng
4.3). Remember that we neglect group scheduling, so an enƟty equals to a task, or a thread, as
in Linux there is no substanƟal difference, they are both represented by a task_struct. This
enƟty manages the general parameters of a RTWS task and some informaƟon about its status.
Furthermore, an addiƟonal data structure is created to manage RTWS job specific parameters
(struct rtws_job), tough a task only tracks the current job.

s t r u c t r tws_ j ob {
2 a tom i c_ t nr ; /* t a s k i n s t a n c e number */

u64 dead l i n e ; /* ab so l u t e dead l i n e */
4 u64 r e l e a s e ; /* ab so l u t e r e l e a s e t ime */

} ;
6

s t r u c t s c h ed_ r tw s _ en t i t y {
8 s t r u c t h r t ime r t ime r ;

s t r u c t rb_node task_node ;
10 u64 r tw s_dead l i n e ; /* r e l a t i v e dead l i n e */

u64 r tws_pe r i od ; /* r e l a t i v e pe r i od */
12 s t r u c t s c h ed_ s t a t s _ r tw s s t a t s ;

s t r u c t r tws_ j ob job ;
14 uns i gned long n r_p j ob s ; /* number o f spawned th r ead s */

16 /* s p e c i f y i n g the s c hedu l e r behav iou r : */
uns i gned i n t f l a g s ;

18 i n t h e l p _ f i r s t , t h r o t t l e d , s t o l e n ;

20 /* p a r a l l e l t h r ead s f i e l d s : */
s t r u c t rb_node pjob_node ;

22 s t r u c t rb_node s t e a l a b l e _p j ob_node ;
s t r u c t s c h ed_ r tw s _ en t i t y * pa ren t ; /* po i n t e r to the RTWS e n t i t y t h a t spawned

i t */
24 } ;

26 s t r u c t t a s k _ s t r u c t {
v o l a t i l e l ong s t a t e ; /* −1 unrunnable , 0 runnab le , >0 stopped */

28 . . .
s t r u c t s c h e d _ en t i t y se ;

30 s t r u c t s c h e d _ r t _ e n t i t y r t ;
s t r u c t s c h ed_ r tw s _ en t i t y r tws ;

32 . . .
} ;

LisƟng 4.3: RTWS scheduling enƟty

struct hrtimer represents a high resoluƟon Ɵmer which is used to set and trigger tasks’
periodicity at precise instants. It also contains a pointer to a callback funcƟon, so acƟons can be
performed as soon as a task is released. Note that all Ɵming parameters are set using nanosecond
Ɵme unit. task_node, pjob_node and stealable_pjob_node are required to organise RTWS
on three red-black trees serving different purposes. struct sched_rtws_stats holds staƟsƟc

47

CHAPTER 4. REAL-TIME WORK-STEALING

informaƟon about the successive jobs execuƟon of a RTWS task. help_first and stolen act
as binaries to indicate whether an enƟty employs the help-first scheduling sub-policy and has
been stolen, respecƟvely, while flags and throttled are barely used to boost or throƩle enƟty
status. The remaining fields are quite self-explanatory.

Each per-processor main runqueue is provided with a struct rtws_rq which is a sub-
runqueue holding all RTWS runnable enƟƟes assigned to that processor (detailed in LisƟng 4.4).
Each rtws_rq points to a global runqueue (struct global_rq) where all RTWS ready jobs
are maintained before they get scheduled. Although we could access global_rq directly, we
decided to embed it for the sake of consistency. NoƟce, however, that any inner affiliaƟon is
just logical because it boils down to sort pointers: the actual process descriptors are all, with no
excepƟon whatsoever, stored in a circular doubly-linked list, called the task list.

1 s t r u c t g l o b a l _ r q {
r aw_ sp i n l o c k _ t l o c k ; /* g l o b a l runqueue l o c k */

3 s t r u c t r b_ roo t t a s k s ;
s t r u c t rb_node * l e f tmo s t _ t a s k ;

5 uns i gned long n r_ runn i ng ; /* number o f ready j ob s */
i n t d e t e rm i n i s t i c ;

7 } ;

9 s t r u c t r tws_ rq {
s t r u c t g l o b a l _ r q * g l o b a l ;

11 s t r u c t r b_ roo t p job s ;
s t r u c t rb_node * l e f tmo s t _ p j o b ;

13 uns i gned long n r_ runn i ng ; /* number o f c u r r e n t l y s t o r ed t a s k s */

15 s t r u c t r b_ roo t s t e a l a b l e _ p j o b s ;
s t r u c t rb_node * l e f tmo s t _ s t e a l a b l e _ p j o b ;

17 u64 e a r l i e s t _ d l ;

19 s t r u c t r q _ s t a t s _ r tw s s t a t s ; /* a c coun t i n g f o r runqueue ope r a t i o n s */
} ;

21

s t r u c t rq {
23 r aw_ s p i n l o c k _ t l o c k ; /* runqueue l o c k */

. . .
25 s t r u c t c f s _ r q c f s ;

s t r u c t r t _ r q r t ;
27 s t r u c t r tws_ rq r tws ;

. . .
29 } ;

LisƟng 4.4: RTWS runqueues

All ready RTWS jobs are stored and sorted by increasing absolute deadline, with Ɵes broken by
FIFO, in a red-black tree represented by its root tasks. This is the first difference between theory
and pracƟse, because while queues (translated in linked lists under Linux) are much easier to
understand, red-black trees are more efficient for priority-ordered data management. Another

48

4.4. IMPLEMENTATION

big difference relates to the fact that each local queue of deques is implemented as two red-
black trees (pjobs and stealable_pjobs). One red-black tree is not enough because it would
required a thief to do a depth search in order to find the suitable thread, and once found, it would
demand a costly rearrangement of the tree balance.

pjobs red-black tree is ordered by increasing absolute deadline, with Ɵes broken by LIFO,
and it contains all local pending threads plus the enƟty currently execuƟng. Therefore, unless
there is a context switch taking place, the leŌmost element is always the enƟty running on that
parƟcular CPU. Note that, in theory, this aspect is omiƩed since many sources of overhead are
considered non-existent. In the other hand, stealable_pjobs red-black tree is also sorted by
increasing absolute deadline, but Ɵes are broken by FIFO and the enƟty currently execuƟng is
leŌ out. This way the leŌmost element is assured to be the top-right thread from the design
previously discussed. Thus, the desired thread from both corresponds to a leaf and pick it is
straighƞorward because leftmost_task, leftmost_pjob and leftmost_stealable_pjob
operate like a cache for the respecƟve leŌmost element.

Only one stealing sub-policy is adopted by all tasks. Whether it is PAS or BAS depends on the
binary behaviour applied todeterminism, whichmatches to 1 and0, respecƟvely. earliest_dl
is not always the deadline of leftmost_task. It is used to keep the previous earliest deadline
unƟl we perform the last update on rtws_rq global status. Finally, lock fields are spinlocks to
effecƟvely synchronise runqueues. As these lock mechanisms keep spinning unƟl acquire the
resource (they do not sleep like semaphores), great care must be taken in order not to delay
real-Ɵme scheduling decisions. The same goes for hierarchical locking, as deadlock situaƟons
may arise due to interrupts being enable or concurrent inverse lock acquisiƟons.

4.4.2 Features

Let us now turn our aƩenƟon to how the scheduling features provided by the RTWS scheduler are
implemented. First of all, in pracƟse, we do not straightly insert every arriving job in the global
queue, waiƟng for CPUs to pickwork, as themodel suggests. Since a Ɵmer interrupt is individually
handled by a CPU, the other CPUs have no idea about the arrival of a new job. In fact, they can
noƟce it by checking constantly the global queue. However, constantly means at each local Ɵck,
which might be considerably late compared to the Ɵme when the job was released. And we all
know by now that even very short delays maƩer in a RTS. Therefore, as Fig. 4.7 illustrates, we
employ a dispatching mechanism that we called dispatcher agent.

The dispatcher agent starts by verifying if the current CPU is free of RTWS tasks, so that the
released job can be schedule right away. In case of failing, it verifies whether there is any idle
rtws_rq or a CPU execuƟng a lower priority task. When both condiƟons return false, the job
is enqueued in global_rq and waits for its turn. However, if one condiƟon is saƟsfied, the
job is enqueued on the eligible rtws_rq and the kernel naƟve resched_task funcƟon is in-
voked on that specific CPU to perform a task switch. It must be said that to the idle condiƟon
is given preference over the other one. By adopƟng this parƟcular sequence of steps, we as-
sure that jobs are scheduled when they should and where they are less costly. Thus, funcƟon

49

CHAPTER 4. REAL-TIME WORK-STEALING

Figure 4.7: Dispatcher agent role

check_preempt_curr_rtws just has to check preempƟons locally.
It goes without saying that the dispatcher agent also has to deal with waking up tasks, since

in pracƟse many kernel subsystems rely on wait mechanisms to deliver correctness and perfor-
mance. Nevertheless, it is not worth to be illustrated here to avoid too much confusion.

Two funcƟons are available to move elements to and from the rtws_rq:
enqueue_task_rtws and dequeue_task_rtws. Let us concentrate only on placing new tasks
on the runqueue because removing is basically the inverse but way simpler. Fig. 4.8 shows the
code flow diagram for enqueue_task_rtws.

Figure 4.8: Code flow diagram for enqueue_task_rtws

If the task is already stored, nothing needs to be done. Otherwise, we proceed inserƟng the
task on rtws_rqwith enqueue_pjobs, where the scheduler takes the opportunity to update: (i)
the leftmost_pjob in case the task at hand has higher priority; (ii) runqueue related staƟsƟcs;
and (iii) global informaƟon about current earliest task in this CPU. Then, if our queueing task
is not being executed and there are at least two RTWS runnable tasks, we also add it to to the
stealable_pjob red-black tree and analogously perform updates, so that it becomes available
to be stolen.

50

4.4. IMPLEMENTATION

SelecƟng the next task to run is performed in pick_next_task_rtws. This procedure is very
similar to the theoreƟcal design. The code flow diagram is shown in Fig. 4.9.

Figure 4.9: Code flow diagram for pick_next_task_rtws

If no RTWS tasks are currently pending on this CPU as indicated by an empty nr_running
counter, the work is delegated to pull_job which retrieves a job from global_rq if its field
nr_running is higher than zero; else steal_pjob is invoked. We give up and end all the process,
passing the iniƟaƟve to the real-Ɵme class, whether there is no eligible CPU for work-stealing.
Otherwise, we choose the CPU vicƟm according to determinism value, and steal the leŌmost
element from it. Note that it is implicit both pull methods being responsible for triggering se-
lected task dequeuing on target, queueing on source, and then update data.

In contrast, if leftmost_task is available at first place, pick_next_pjob extracts
sched_entity_rtws from that red-black tree. This is done using the container_of mecha-
nism since any RTWS red-black tree manages instances of rb_node that are embedded in those
scheduling enƟƟes. Now the task has been picked, but some more work is required to make it
unavailable for stealing in order to prevent concurrent execuƟon of the same process descriptor,
which would crash the system. This is handled by dequeue_stealable_pjob.

Another key sched_class-specified funcƟon to respect RTWS rules is
put_prev_task_rtws because it is its responsibility to dispatch tasks to the proper runqueues
when they are withdrawn from CPU. Fig. 4.10 presents the code flow diagram.

If the task is not on rtws_rq, then we do nothing because it certainly finished its execuƟon,
and any necessary clean up or staƟsƟcal accounƟng regarding task terminaƟon can be done in
task_dead_rtws. Otherwise, a preempƟon occurred, and when we are dealing with a pjob
spawned on this CPU, we call enqueue_stealable_pjob for the aforemenƟoned reason. How-
ever, if that is not the case, we push task away to global_rq by invoking dequeue_pjob and
enqueue_job, respecƟvely. Although, in between those operaƟons, we boost pjob status by
seƫng flags to RTWS_SPECIAL if stolen equals to 1.

Before we look at how do we link the RTWS scheduler to user-space, a word must be said

51

CHAPTER 4. REAL-TIME WORK-STEALING

Figure 4.10: Code flow diagram for put_prev_task_rtws

about set_curr_task_rtws. While the content of other funcƟons implemented by
sched_class_rtws that have not deserved our aƩenƟon is quite generic and, therefore, has low
relevance, set_curr_task_rtws one is vital because it sets the absolute deadline for the first
instance, which may start immediately (i.e. task offset is not defined), thus not triggered by the
Ɵmer. Anyway, both Ɵmer callback and set_curr_task_rtws update scheduling parameters
by calling update_task_rtws:

1 s t a t i c i n l i n e vo i d upda te_ t a s k_ r tws (s t r u c t rq * rq ,
s t r u c t s c h ed_ r tw s _ en t i t y * r tws_se)

3 {
. . .

5 a tom i c _ i n c (& rtws_se−>job . nr) ; /* inc rement j ob s counte r */
/* r e s e t i n g f l a g s */

7 r tws_se−>n r_p j ob s = 0 ;
. . .

9 /* update ab so l u t e dead l i n e */
r tws_se−>job . d e ad l i n e = rq−>c l o c k + r tws_se−>r tw s_dead l i n e ;

11 }

LisƟng 4.5: update_task_rtws funcƟon

Note that the job absolute deadline is always set as the sumof current Ɵme and relaƟve dead-
line, not release Ɵme plus relaƟve deadline as our systemmodel states. We do so to avoid suffer-
ing from cumulaƟve Ɵmer driŌ [Burns and Wellings, 2007]. While a producƟon-quality RTS can-
not take this shortcut because it would be cheaƟng the true Ɵming constraints (that’s one of the
reasons to use a RTOS), we just want to validate RTWS in pracƟse. Moreover, SCHED_DEADLINE
also follows this approach, and it is important that we set equals grounds as wewill experimental
compare both scheduling policies in Chapter 5.

52

4.4. IMPLEMENTATION

4.4.3 System calls

A system call is the standard way of allowing user-space code to trigger kernel events in order to
exploit the special capabiliƟes of the kernel. They enable the kernel to be a transparent system
layer from the view of user applicaƟons - it is always there but never really noƟced. System calls
in Linux are fast, mostly because the infrastructure is very efficient, but also due to their reduced
number. Hence, adding a system call must be a thoughƞul and last resort decision. Despite the
internal kernel API is declared unstable as a design-feature, the external API cannot be broken
under any circumstance. Therefore, once a system call is added neither it can ever be removed
nor its signature can ever be changed.

In this project, we only had access to x86 hardware. In x86, we need to modify the file
arch/x86/kernel/syscall_table_32.S in order to register new system calls. All new en-
tries must be placed on the boƩom of the list, so we do not break user-space compaƟbility by
changing the unique idenƟfier given to each system call. The system call name must be given
the prefix sys_, whereas the funcƟon created to trap the interrupt must use a special macro
where all input-arguments are specified. For instance, the correct macro for a system call re-
quiring three arguments is SYSCALL_DEFINE3. The macro wraps the actual funcƟon, which for
scheduler-related system calls is typically placed in sched.c. It must be said that for other plat-
forms the process differs liƩle, since the only required change is where we add the table-lookup
address.

Each system call must inform the user applicaƟon if its rouƟne was executed and with which
result. This is accomplished bymeans of its return code. Generally, negaƟve return values denote
an error, whilst posiƟve return values (and 0) indicate successful terminaƟon. In order to copy
data safely from user-space to kernel-space, and vice-versa, funcƟons like copy_from_user and
copy_to_user, respecƟvely, must be used.

1 /* *
* s y s _ s c h ed_ s e t s c h edu l e r _ e x − s e t / change the s chedu l e r p o l i c y but wi th

extended sched_param ded i c a t e to r e a l−t ime t im i n g c o n s t r a i n t s .
3 * @pid : the p id i n que s t i on .

* @pol i cy : new p o l i c y .
5 * @len : s i z e o f data po in ted by param_ex .

* @param : s t r u c t u r e c o n t a i n i n g the extended parameters .
7 */

SYSCALL_DEFINE4 (s ched_ se t s chedu l e r _e x , p id_ t , p id , i n t , p o l i c y ,
9 uns igned , len , s t r u c t sched_param_ex __user * , param_ex)

{
11 i f (p o l i c y < 0)

r e t u r n −EINVAL ;
13

r e t u r n do_s ched_ se t s chedu l e r _ex (p id , p o l i c y , len , param_ex) ;
15 }

LisƟng 4.6: sched_setscheduler_ex system call

RTWS implementaƟon provides three system calls:

53

CHAPTER 4. REAL-TIME WORK-STEALING

1. sched_setscheduler_ex(): iniƟally, a RTWS task is created as any task in the system, us-
ing either fork or clone system calls. AŌer that, it may change its policy by invoking the
naƟve sched_setscheduler system call. However, sched_setscheduler has no argu-
ment which supports real-Ɵme Ɵming constraints parameters. sched_setscheduler_ex
solves this issue by replacing the tradiƟonal param structure with a extended one
(param_ex), where Di, Ti and Ci can be specified. A descripƟon of the remaining argu-
ments and the system call implementaƟon can be found above, in LisƟng 4.6. NoƟce that
all parameters validaƟon and actual policy change are delegated to
do_sched_setscheduler_ex which we is also not supported naƟvely.

2. sched_setsubpolicies_rtws(): allows one to change scheduling sub-policy for a parƟcular
task and stealing sub-policy for the overall system. It takes three arguments: pid_t pid,
int helpfirst, and int pas. pid idenƟfies the task in quesƟon, helpfirst replaces
the given task rtws_se->helpfirst, whereas pas sets global_rq->determinism.
As we have seen in SecƟon 4.4.1, 0 and 1 are indeed the only acceptable values for these
last two arguments, and the system call returns an error otherwise. By default both are set
to 1, meaning that work-first and PAS are the sub-policies enforced.

3. sched_delay_unƟl_rtws(): is responsible for seƫng the current task’s Ɵmer to expire at a
specific point in Ɵme, and for puƫng the task to sleep unƟl then. Therefore, this system
call is intended to simulate a task periodicity. Since the periodic task model dictates that
the first job release can be delayed by an offset, sched_delay_until_rtws provides an
argument (const struct timespec __user * release) where the user can define
the first release Ɵme. AŌer that the kernel takes full control over the Ɵming details, guar-
anteeing periodic correctness, so that the user just has to blindly invoke this system call
at the end of each task instance. Any aƩempt to set the Ɵmer on the past, or invoke the
system call on a parallel thread, will output an error. As soon as the Ɵmer expire, the task
is woken up and the Ɵmer callback new_job_rtws is triggered.

4.5 Summary

In this chapterwepresented theRTWS scheduler, which combines theG-EDFpolicywith a priority-
based locality-aware work-stealing load balancing scheme, enabling parallel real-Ɵme tasks to
run on more than one processor at a given Ɵme instant. We introduced the model that supports
RTWS applicaƟons domain, we provided the niƩy-griƩy details and jusƟficaƟons about its design,
which was guided with a disƟnct purpose: to bring predictability to the provably efficient work-
stealing scheduling algorithm. At last, a thorough discussion concerning RTWS implementaƟon
in the Linux kernel was given, in which we focused on showing the differences between theory
and pracƟse.

54

Chapter 5

Experimental EvaluaƟon

In the preceding chapter, we introduced the RTWS scheduler for heterogeneous real-
Ɵme parallel tasks. As stated, theoreƟcal and pracƟcal design decisions were taken
to provide efficient scheduling decisions regarding dynamic intra-task parallelism,
without jeopardising real-Ɵme guarantees, rather than increase the system’s uƟl-
isaƟon bound or boost the performance of applicaƟons. By efficient we mean a
scheduling policy able to minimise implementaƟon’s sources of overhead.

Therefore, an overhead-aware evaluaƟon of the proposed scheduling policy is re-
quired to assess its pracƟcality. Naturally, we also have to evaluate if mixing real-
Ɵme principles with parallel compuƟng features is worthwhile. Thus, in this chapter,
aŌer we explain our experimental scenario, a discussion on the results collected is
presented, mainly regarding two major sources of scheduling overhead: migraƟons
and context switches. In order to have a comparison base, we present an evalua-
Ɵon of SCHED_DEADLINE as well, under the same circumstances. Furthermore, we
invesƟgate the scalability of our approach, and comment on the load balance dis-
crepancy.

Note, however, that the target of the following analysis is not to prove that our RTWS
implementaƟon is beƩer than other real-Ɵme policies because they serve different
purposes. Moreover, a scheduling algorithm performance analysis may be influ-
enced by a number of subtle events that affect how the system behaves, introducing
unexpected noise in the collected data.

5.1 Scenario

The experiments reported in this thesis were conducted in a machine equipped with 16 GB of
main memory and an eight-core processor, where each of the cores is running at 2.0 GHz. All
assessments were carried out under both RTWS stealing sub-policies. HereinaŌer, we use the
terms RTWS-PAS and RTWS-BAS to disƟnguish the experiments. Every Ɵme we want to make no
disƟncƟon, we simply use RTWS.

The Linux kernel 2.6.36 was configured as follows: disabled group scheduling, CPU frequency

55

CHAPTER 5. EXPERIMENTAL EVALUATION

scaling, hyper-threading, and Ɵckless system; HZ macro set to 1000; preempƟble kernel selected
as preempƟon model. Since our evaluaƟon is also based in a comparison to SCHED_DEADLINE
(version 3), we have disabled bandwidth management on it to set equal grounds.

A set of three major experiments was conducted, where in each of the experiments twenty
random task sets were used [Sousa et al., 2011], running in 2, 4 and 8 cores. In order to dy-
namically generate the task sets, we have defined the minimum task uƟlisaƟon (umin) equal
to 0.1, the maximum task uƟlisaƟon (umax) equal to 0.5, a minimum period (Tmin) of 700 ms,
and a maximum period (Tmax) of 800 ms. The period Ti of each task was computed as Ti =

Tmin + x ∗ (Tmax − Tmin), where x denotes a random value between 0 and 1.
In order to analyse the scalability of the proposed approach with respect to the number of

tasks/threads in the system, unƟl the maximum system uƟlisaƟon calculated by EquaƟon 4.1 is
reached, three uƟlisaƟon windows ([UΠmin, UΠmax]) were chosen: [0.38, 0.40], [0.58, 0.60] and
[0.73, 0.75]. The Ɵghtness of the chosen intervals is jusƟfied by the need to ensure similariƟes
between task sets within the same experiment. With these parameters, we compute each task
uƟlisaƟon as follows: ui is given by ui = umin + x ∗ (umax − umin), where

∑n
k=1 uk ≥ UΠmin

and
∑n

k=1 uk ≤ UΠmax. Finally, Ci is given by Ci = Ti ∗ ui.
The number of parallel threads per task was dynamically derived as ni = x∗(m∗2), whereas

the number of tasks (n) was totally dynamic, based on the system uƟlisaƟon window condiƟon
being saƟsfied (please refer to Table 5.1). Note that as we keep increasing UΠmax, and umax

remains constant, n scales. We strongly believe that these parameters can deeply assess our
scheduler features.

Table 5.1: ComposiƟon of each experiment

m Total tasks Total threads
38-40% 58-60% 73-75% 38-40% 58-60% 73-75%

2 50 82 98 128 218 216
4 102 158 193 457 703 866
8 217 320 401 1736 2720 3491

Each task was a simple fork-join applicaƟon whose actual work was limited to a series of NOP
instrucƟons to avoid memory and cache interferences. Even though RTWS is specially designed
to explore data locality, we let that aside because we will not evaluate cache misses. Each of the
task’s jobs (i) executes sequenƟally; (ii) splits into mulƟple parallel threads; and (iii) synchronises
at the end of the parallel region, resuming the execuƟon of the master thread. SequenƟal, paral-
lel, and total execuƟon Ɵmes were derived randomly, with the actual total execuƟon Ɵme upper
bounded by Ci.

5.2 Overheads

Data was collected and averaged concerning the number of context switches andmigraƟons, pa-
rameters which represent the main sources of scheduling overhead. Fig. 5.1 depicts the average
number of migraƟons that occurred for each scheduling policy when all cores were online. In
the case of RTWS, the number of migraƟons refers to the number of steals performed by the idle

56

5.2. OVERHEADS

cores, while the values collected for SCHED_DEADLINE refer to pure migraƟons that occurred
between cores.

Figure 5.1: Average number of migraƟons on the 8-core experiments

The overall results show that RTWS outperforms SCHED_DEADLINE in every experiments.
These results can be explained by our decision to favour data locality, generaƟng parallelism only
when strictly required, i.e. when a core becomes idle. In fact, the results are far beƩer for medi-
um/high workloads since load balancing calls are more frequently required on SCHED_DEADLINE
with the greater number of tasks. Remarkably, the number of migraƟons barely increases on
RTWS under such heavy circumstances. For lower workloads, the difference becomes slighter
mainly because on our scheduling policy the system lacks parallel threads to keep all cores busy.
Surprisingly, RTWS-PAS caused more migraƟons than RTWS-BAS; we expected it to be the other
way around due to the lesser contenƟon Ɵme RTWS-BAS is subject. However, the difference is
so small we cannot conclude anything but blame Linux kernel’s predictability gap.

Figure 5.2: Average number of context switches on the 8-core experiments

Regarding the average number of context switches, depicted in Fig. 5.2, no maƩer the con-
sideredworkload rate, RTWS also outperforms SCHED_DEADLINE on the eight-core experiments.
SCHED_DEADLINE blindly assigns new jobs of a task to the core where the last job of that task
was executed, which rather frequently leads to a preempƟon of the running job. Contrariwise, in
RTWS, preempƟons are minimised because a released job is assigned to a idle core (if available)

57

CHAPTER 5. EXPERIMENTAL EVALUATION

or inserted into the global queue when its priority is lower than the ones currently execuƟng.
Moreover, we do not allow parallel threads to preempt other threads or jobs, unless they have
been stolen. Even though the number of context switches increases with higher system uƟlisa-
Ɵons, values indicate a less than linear scalability for both policies, which can be seen as a good
behaviour. Stealing sub-policies have no impact on the number of context switches besides the
one directly related with the variance on the number of migraƟons. Hence, it is easily under-
standable why RTWS-PAS is shown to trigger more context switch operaƟons. There is no need
to blame Linux kernel again.

5.3 Scalability

Before analysing the scalability results introduced by Tables 5.2 and 5.3, let us clarify that the
RTWS-PAS two-core experiments are treated as the base case and, therefore, every other single
experiment relates to that base case resulƟng in a factor - the scale up raƟo. For example, a
scale up raƟo of 2 means that the considered metric has doubled. Furthermore, note that this
kind of scalability is strictly and peculiarly linked to the values presented in Table 5.1 because
the amount of tasks and parallel threads has greater impact on the number of migraƟons, and
context switches, than a core increase itself.

Table 5.2: Scale up raƟos on number of migraƟons

m RTWS_PAS RTWS_BAS SCHED_DEADLINE
38-40% 58-60% 73-75% 38-40% 58-60% 73-75% 38-40% 58-60% 73-75%

2 1 1 1 1.13 1.10 1.08 2.75 3.27 3.08
4 5.88 5.55 5.92 6.13 5.55 5.67 11.38 12 13
8 36.38 33 31.08 34.75 32.46 29,83 45.38 48.36 55.08

According to the values reported in Table 5.2, it becomes crystal clear that the obtained re-
sults suffered from some unexpected noise: even in the two-core experiments, where stealing
randomly or determinisƟcally produces the same outcome, differences between RTWS-PAS and
RTWS-BAS can be noƟced.

SƟll, considering the properƟes of our experiments, one can conclude that the number of mi-
graƟons is largely influenced by the number of dynamically generated parallel threads. Provided
that we create more tasks when m is increased, the number of threads exponenƟally grows as
can be easily seen in Table 5.1. Nonetheless, this growth factor is not directly proporƟonal to the
scale up raƟo. Note the reacƟon triggered by Ci being constant in every experiment: the more
we parallelize, the less execuƟng Ɵme will be assigned to each thread, faster threads will finish,
migraƟons will scale.

Thereby, we have to mulƟply the raƟo of the system’s total number of threads by the raƟo
of each task’s maximum number of threads to be able to find the linear scalability value. For
example, for m = 4 and a uƟlisaƟon interval [0.38, 0.40], the scale up raƟo is expected to be
457
128 ∗ 8

4 = 7.14. AŌer analogously calculaƟng for the remaining cases, it is clear that RTWS
efficiently scales as respects to the number of migraƟons.

Under G-EDF, context switches occur either when a job is released or when it completes.

58

5.4. LOAD IMBALANCE

Table 5.3: Scale up raƟos on number of context switches

m RTWS_PAS RTWS_BAS SCHED_DEADLINE
38-40% 58-60% 73-75% 38-40% 58-60% 73-75% 38-40% 58-60% 73-75%

2 1 1 1 1.01 1.02 0.99 1.35 1.40 1.33
4 2.91 2.80 3 2.89 2.78 2.95 4.43 4.45 4.74
8 10.60 9.97 10.75 10.26 9.70 10.43 15.93 16.36 18.51

However, not every job releasewill swap the currently execuƟng job. Thus, the number of context
switches over a Ɵme interval of lengthL is upper bounded by twice the number of jobs’ releases
during that interval. As every experiment has lasted exactly the same Ɵme and its periodicity
parameters were constant, the scale up raƟo on the number of jobs is given by the scale up raƟo
on the number of tasks. IntuiƟvely, for m = 4, RTWS scales in a very efficient manner, as Table
5.3 reflects, since there are approximately twice more tasks (e.g. 158

82 = 1.93) but the scale up
raƟos on the number context switches are lower than the upper bounded value of 4.

Following the same logic, form = 8our scheduling algorithmappears to scale poorly because
the amount of tasks is almost four Ɵmes higher (21750 ≈ 320

82 ≈ 401
98 ≈ 4). Nevertheless, recall that,

in RTWS, stolen parallel threads may also preempt any schedulable enƟty, plus we sƟll have to
account each thread’s compleƟon as a context switch, seriously inflaƟng the upper bounded scale
up raƟo from G-EDF. In this case, it is parƟcularly noƟceable by having to dispatch an incredibly
high number of threads, which in turn also potenƟates work-stealing (please refer to Table 5.1
and Fig. 5.2 again).

It must be said that scalable efficiency by itself is meaningless in a RTS. That is, it does not
really maƩer if a real-Ɵme scheduling algorithm has negligible overhead but is unable to meet all
deadlines. Oppositely, a overhead increase is jusƟfied by a gain in schedulability. However this
observaƟon does not hold for this experimental analysis. Besides being overhead-aware, both
RTWS-PAS and RTWS-BAS did not miss any deadline, whilst SCHED_DEADLINE missed a couple.

5.4 Load imbalance

In a RTS, load balancing is not a requirement. As long as a scheduler delivers predictability to
be able to scheduled every feasible task set, it could even execute all tasks in a single proces-
sor. Nonetheless, for several reasons, included energy-wise which is of paramount importance
specially on embedded systems, it is preferable that real-Ɵme schedulers assure both. Fig. 5.3
shows the average load imbalance (in terms of overall execuƟon Ɵmes) registered in the 8-cores
experiments.

Although for low systemuƟlisaƟons RTWS is unable to distributed theworkloadwithmore ef-
ficiency than SCHED_DEADLINE, the reporƟng results are quite interesƟng. Among other things,
work-stealing is known as a load balancing scheme for parallel computaƟons, so at first glance
it might be hard to understand why, in some scenarios, it fails to overcome a real-Ɵme schedul-
ing policy which has no parƟcular feature addressing intra-task parallelism. Well, the answer is
not on the work-stealing design but on our implementaƟon. Since Linux scheduler is a modular
framework, every Ɵme RTWS, on a certain CPU, fails to find a stealable task, it passes the lead

59

CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.3: Average load imbalance on the 8-core experiments

to the other scheduling classes, which have no knowledge about the global status of RTWS run-
queues. RTWS is invoked again only when RTWS tasks are assigned to that same CPU. Naturally,
this results in scheduling downƟme when the work available is scarce.

5.5 Response Ɵme

The experimental results presented so far where inconclusive in order to understand if one of the
proposed sub-policies outshines the other, or whether they offer a fair trade-off between deter-
minism and low lock contenƟon. Therefore, in this secƟon we turn our aƩenƟon to evaluaƟng
tasks’ response Ɵme.

As we have seen early in Chapter 2, response Ɵme denotes the Ɵme elapsed between the
moment a job becomes ready to be scheduled, and the moment when it finishes its execuƟon.
Therefore, when we consider a task’s response Ɵme using its average value, we get an idea about
how efficiently that task is being executed (parallel vs sequenƟal performance). On the other
hand, when a task’s response Ɵme is measured by its worst-case value, it becomes clear how
strictly the schedule is being respected and how far from the deadline that task is (laxity).

In this sense, we have measured both ways of perceiving a task’s response Ɵme, not only for
RTWS-PAS and RTWS-BAS, but also for a pure G-EDF approach, ignoring intra-task parallelism and
execuƟng sequenƟally for an equivalent amount of Ɵme. For the remainder of this secƟon, we
refer to this last approach as RTWS-SEQ, and it will enlighten us whether generaƟng short-living
threads and scheduling them under RTWS is worthwhile for real-Ɵme systems.

The obtained results are depicted in Tables 5.4 and 5.5. Note that, in both tables, a scale up
raƟo of 0.5 means that the considered metric has reduced to an half comparaƟvely to the base
case which is RTWS-SEQ two-core experiments.

Table 5.4: Scale up raƟos on the average response Ɵme

m RTWS-SEQ RTWS-PAS RTWS-BAS
38-40% 58-60% 73-75% 38-40% 58-60% 73-75% 38-40% 58-60% 73-75%

2 1 1 1 0.87 0.88 0.87 0.87 0.88 0.87
4 1.04 0.99 0.97 0.80 0.82 0.80 0.82 0.82 0.81
8 0.98 0.98 0.96 0.69 0.73 0.75 0.70 0.73 0.76

60

5.6. SUMMARY

It was expected that, when considering average response Ɵmes, RTWS-BAS would outper-
form RTWS-PAS. However, once again, both sub-policies show idenƟcal results all over the ex-
periments. By now, it is safe to say that the conducted experiments do not led to concurrent
stealing operaƟons as many Ɵmes as we wished. Nevertheless, RTWS always achieves beƩer
performance when intra-task parallelism is expressed than when sequenƟal execuƟon is con-
sidered. Moreover, its performance increases as more cores become available for work-stealing.
This allowus to conclude that RTWSprovides an efficient scheduling environment for fine-grained
parallel real-Ɵme tasks.

Table 5.5: Scale up raƟos on the worst-case response Ɵme

m RTWS-SEQ RTWS-PAS RTWS-BAS
38-40% 58-60% 73-75% 38-40% 58-60% 73-75% 38-40% 58-60% 73-75%

2 1 1 1 0.91 0.91 0.91 0.91 0.91 0.91
4 1.04 1.01 0.99 0.93 0.89 0.89 0.93 0.90 0.90
8 0.99 1.01 0.99 0.87 0.91 0.91 0.89 0.91 0.91

Following the previous reasoning, similariƟes between RTWS-BAS and RTWS-PAS prevail also
for worst-case response Ɵmes. Nevertheless, worst-case response Ɵmes relate to a wiser choice
of the vicƟm core when considering task prioriƟes since the earliest deadline ready thread has
less flexibility to support waiƟng Ɵmes. Also, unlike average response Ɵmes, worst-case response
Ɵmes do not scale since, with work-stealing, we do not force parallelism, but instead it only takes
place only when a core would otherwise be idle. Recall that we favour predictability over per-
formance. Yet, the mulƟ-threaded version of the experiments always outperforms its sequenƟal
counterpart.

One final note about the obtained results with RTWS-SEQ. The experimental results were
almost constant, but not strictly idenƟcal, because there are no threads involved and the number
of tasks n adapts to the increasing number of coresm.

5.6 Summary

In this chapter, we presented the experimental results collected from the Linux kernel 2.6.36,
regarding dynamic generated task sets running under RTWS-PAS and RTWS-BAS. An overhead-
aware and a scalability evaluaƟon were discussed by comparing RTWS to SCHED_DEADLINE.
RTWS was shown to outperform the laƩer scheduling policy, and to efficiently schedule the ex-
periments provided, at least up to 8 cores. However, due to the underlying OS’s unpredictability,
no conclusions about the impact of the two stealing sub-policies can be taken.

Furthermore, by assessing the load imbalance of both schedulers, we found that RTWS imple-
mentaƟon needs to be tweaked in order to be pro-acƟve concerning the work-stealing strategy.
RTWS was also shown to provide beƩer performance when considering tasks with intra-task par-
allelism than without, through response Ɵme analysis.

61

CHAPTER 5. EXPERIMENTAL EVALUATION

62

Chapter 6

Conclusion

High-level parallel languages offer a simpleway for applicaƟon programmers to spec-
ify parallelism in a form that easily scales with problem size, leaving the scheduling
of the tasks onto processors to be performed at runƟme. This thesis demonstrated
how to schedule highly heterogeneous parallel applicaƟons that require real-Ɵme
performance guarantees on mulƟ-core processors. In contrast to prior work on real-
Ɵme scheduling of parallel workloads, a more general model of parallel real- Ɵme
tasks where dynamically generated threads can take arbitrarily different amounts of
Ɵme to execute was considered.

This chapter resumes its most relevant contribuƟons and highlights some lines of
future work.

6.1 General conclusions

Modern RTSs increasingly generate heavy and highly varyingworkloads and it is rapidly becoming
unreasonable to expect to implement them as single core systems. In fact, a general shiŌ from
single to mulƟ-core processors can be seen both in the general purpose and embedded domains
as an energy-efficient way to boost applicaƟons’ performance.

Simultaneously, the proliferaƟon of mulƟ-core plaƞorms have transformed parallelism into
a main concern, and dynamic task-level parallelism is steadily gaining popularity as a program-
ming model. The idea behind that model is to encourage applicaƟon developers to expose every
opportunity for parallelism by just poinƟng out potenƟally parallel regions within the code. All
annotaƟons provided act simply as hints that can be ignored and safely replaced with sequenƟal
counterparts by the language implementaƟon. Hence, how computaƟons are actually decom-
posed and mapped to processors is the responsibility of the compiler and runƟme systems.

By easing the developer from this burden, programming complexity is considerably reduced,
which usually translates in increased producƟvity. Nevertheless, if the scheduling mechanism
underneath is not simple and fast to keep the overall overhead low, such fine-grained parallelism
is not worthwhile, and all benefits will be lost.

From a scheduling perspecƟve, work-stealing algorithms are increasingly popular, and are

63

CHAPTER 6. CONCLUSION

considered a promising approach to address the soŌware challenge in the ongoing trend for
massive parallelism due to their provably Ɵme, space, and communicaƟon efficiency. However,
they do not contemplate Ɵming constraints or any other formof prioriƟsing tasks, which prevents
them for being applied to a RTS. Moreover, they are tradiƟonally employed on the language
runƟme, creaƟng a two-level scheduling system, where predictability cannot be ensured.

In this thesis, we described how work-stealing can be redesigned to fulfill real-Ɵme require-
ments, maintaining its basic principles. Long-story short, convenƟonal deques are replaced by a
queue of deques ordered by increasing priority. We further applied the well-known G-EDF policy
on top of it, mixed the rules, and RTWS was born.

Taking advantage of the modularity offered by the Linux scheduler, we added RTWS to it as
a new scheduling class, in order to pracƟcally assess if our approach is viable (i.e. provides effi-
ciency and schedulability). Enhance the Linux kernel is a tremendous task, due to the complexity
of the kernel internals and high interdependence between various subsystems. Nevertheless, we
wanted to make sure RTWS is more than a interesƟng concept. Moreover, despite Linux is not
a RTOS, it supplies the tools and documentaƟon we needed to get started, and is open-source.
A representaƟve part of this thesis was dedicated to discuss RTWS implementaƟon, and state
issues like synchronisaƟon driŌs that are not address in theory.

Experimental results showed that RTWS, in comparison to other pracƟcal work, significantly
reduces the scheduling overhead through an efficient and scalable (at least up to 8 cores) control
of migraƟons and context switches, while sƟll achieves good dynamic load balancing even with
low communicaƟon costs. Furthermore, RTWS was also shown to provide beƩer performance
when considering tasks with intra-task parallelism than without, even for short-living computa-
Ɵons. However, during evaluaƟon we realised that RTWS implementaƟon has a flaw, causing
unacceptable scheduling downƟme when the system uƟlisaƟon is low.

Although we focused on keeping the overhead low and on achieving good data locality, sys-
tem’s schedulability was never neglect by us. In fact, our scheduling algorithm proved to be very
robust as we did not get any deadline miss on the performed experiments. Therefore, we can
pronounce that some priority inversion caused by the BAS stealing sub-policy does not compro-
mise the schedulability goals, and it even helps to reduce contenƟon as well as to keep global
accounted informaƟon to a minimum. Yet, RTWS supports a determinisƟc stealing sub-policy:
PAS. The experimental evaluaƟon did not help to have a clear picture about PAS and BAS conse-
quences.

All in all, we can conclude that RTWS is a promising soluƟon to efficiently schedule highly
heterogeneous and dynamic parallel real-Ɵme tasks, assuming the restricƟons defined in our
system model.

6.2 Summary of the main contribuƟons

In contrast to prior work on real-Ɵme scheduling of parallel tasks, this thesis considered a more
general and portable model of parallel real-Ɵme tasks, where dynamically spawned threads may
take arbitrarily different amounts of Ɵme to execute. That is, any task may be composed by sev-

64

6.3. FUTURE WORK

eral sequenƟal and parallel regions, where each parallel regionsmay contain an arbitrary number
of threads (is not limited to the cores count), and each one of those threads may have arbitrarily
different execuƟon needs.

TargeƟng the aforemenƟoned model, we proposed RTWS, a novel scheduling algorithm that
combines the G-EDF scheduler with a priority-based locality-aware work-stealing load balancing
policy, allowing parallel real-Ɵme tasks to be executed in more than one processor at a given
Ɵme instant. The ulƟmate goal is to provide efficient low-level support for the scheduling of
parallel real-Ɵme, mixing real-Ɵme determinism and predictability with work-stealing space and
communicaƟon awareness.

Towards this, we implemented RTWS in the standard Linux kernel just as a proof of concept,
since Linux is not a RTOS and, therefore, is not reliable for Ɵme-sensiƟve applicaƟons. To the
best of our knowledge, we are the first to: (i) deal with real-Ɵme prioriƟes (deadlines) in a work-
stealing scheduler; and (ii) to actually implement support for parallel real-Ɵme computaƟons in
the Linux kernel. Last but not least, this research work has resulted in two scienƟfic publicaƟons.

6.3 Future work

The research on this topic is all but over. First of all, we will address the implementaƟon flaw
detected. One possible way to sort things out is to retry the steal operaƟon for a staƟc pre-
defined number of Ɵmes. Another important topic is to come upwith a soluƟon, both theoreƟcal
and pracƟcal, for the nested parallelism limitaƟon. One possible direcƟon is to consider parallel
mulƟ-threaded tasks to be represented as a Directed Acyclic Graph (DAG) where nodes represent
threads and edges represent dependences between those threads. In its current state, RTWS
does not support this task model. If a stolen thread is able to spawn new threads on a CPU
different than the one who assured its schedulability, whenever a preempƟon occurs it would be
too costly to move them all to the global queue.

Furthermore, several improvements on efficiency of the presented implementaƟon, namely
lock acquisiƟon points and data structures, should be deeply studied to further reinforce our
results. A key change would be to port RTWS to recent Linux kernel versions and apply it on top
of PREEMP_RT patch set.

Many more metrics, such as cache misses and latencies, are possible to be collected. Nu-
merous experimental analyses should be considered to clarify how the peculiariƟes of each task
set may influence our scheduler goodness or, at least, enlighten about which stealing sub-policy
suits beƩer a generic RTS. It would also be of great interest to test real-world applicaƟons to see
if RTWS misbehaves.

With the complexity of mulƟ-core systems growing, it may be interesƟng to evaluate RTWS in
largemulƟ-core systems that are likely to have hierarchical cache layouts. One possible extension
to RTWS for such systems could be a scheduling approach that mixes aspects of parƟƟoning and
global scheduling. In parƟcular, while task migraƟons within a cluster of cores that share some
lower level cache might be acceptable, migraƟons among processors that are “far apart” in the
cache hierarchy may be too expensive.

65

66

Bibliography

Luca Abeni and Giorgio BuƩazzo. IntegraƟng mulƟmedia applicaƟons in hard real-Ɵme systems.
In Proceedings of the 19th IEEE Real-Time Systems Symposium, page 4, Madrid, Spain, Decem-
ber 1998.

Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of work stealing. In
Theory of CompuƟng Systems, pages 1–12, 2000.

Kunal Agrawal, Charles E. Leiserson, Yuxiong He, and Wen Jing Hsu. AdapƟve work-stealing with
parallelism feedback. ACM Trans. Comput. Syst., 26(3):7:1–7:32, September 2008.

James H. Anderson and John M. Calandrino. Parallel real-Ɵme task scheduling on mulƟcore plat-
forms. In PROC. OF THE 27TH IEEE REAL-TIME SYSTEMS SYMP, pages 89–100. IEEE, 2006.

Björn Andersson, Sanjoy Baruah, and Jan Jonsson. StaƟc-priority scheduling on mulƟprocessors.
In In Proc. 22nd IEEE Real-Time Systems Symposium, pages 193–202. Society Press, 2001.

OpenMP ARB. Openmp. Available at http://www.openmp.org/.

Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for mulƟprogrammed
mulƟprocessors. In Proceedings of the 10th annual ACM symposium on Parallel algorithms and
architectures, pages 119–129, New York, NY, USA, 1998. ACM.

Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Husbands,
Kurt Keutzer, David A. PaƩerson, William Lester Plishker, John Shalf, Samuel Webb Williams,
and Katherine A. Yelick. The landscape of parallel compuƟng research: A view from berkeley.
Technical Report UCB/EECS-2006-183, EECSDepartment, University of California, Berkeley, Dec
2006.

T.P. Baker. An analysis of edf schedulability on amulƟprocessor. Parallel and Distributed Systems,
IEEE TransacƟons on, 16(8):760 – 768, aug. 2005.

S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. ProporƟonate progress: A noƟon of
fairness in resource allocaƟon. Algorithmica, 15:600–625, 1996.

Abhishek BhaƩacharjee, Gilberto Contreras, and Margaret Martonosi. ParallelizaƟon libraries:
Characterizing and reducing overheads. ACM TransacƟons on Architecture and Code OpƟmiza-
Ɵon, 8(1):5:1–5:29, February 2011.

67

http://www.openmp.org/

Guy E. Blelloch, Phillip B. Gibbons, and Yossi MaƟas. Provably efficient scheduling for languages
with fine-grained parallelism. J. ACM, 46(2):281–321, March 1999.

Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling of mulƟthreaded compu-
taƟons. In Proceedings of the 25th ACM symposium on Theory of compuƟng, pages 362–371,
New York, NY, USA, 1993. ACM.

Robert D. Blumofe and Charles E. Leiserson. Scheduling mulƟthreaded computaƟons by work
stealing. Journal of the ACM, 46(5):720–748, September 1999.

Daniel Bovet and Marco CesaƟ. Understanding The Linux Kernel. Oreilly & Associates Inc, 2005.
ISBN 0596005652.

Björn B. Brandenburg and James H. Anderson. On the implementaƟon of global real-Ɵme sched-
ulers. In Proceedings of the 2009 30th IEEE Real-Time Systems Symposium, RTSS ’09, pages
214–224, Washington, DC, USA, 2009. IEEE Computer Society.

Alan Burns and Andy Wellings. Concurrent and Real-Time Programming in Ada. Cambridge Uni-
versity Press, New York, NY, USA, 3rev ed ediƟon, 2007. ISBN 0521866979, 9780521866972.

Giorgio C. BuƩazzo. Rate monotonic vs. edf: judgment day. Real-Time Syst., 29(1):5–26, January
2005.

JohnM. Calandrino and James H. Anderson. On the design and implementaƟon of a cache-aware
mulƟcore real-Ɵme scheduler. In Proceedings of the 2009 21st Euromicro Conference on Real-
Time Systems, ECRTS ’09, pages 194–204, Washington, DC, USA, 2009. IEEE Computer Society.

John M. Calandrino, Hennadiy Leontyev, Aaron Block, UmaMaheswari C. Devi, and James H. An-
derson. LitmusRT : A testbed for empirically comparing real-Ɵme mulƟprocessor schedulers.
In Proceedings of the 27th IEEE InternaƟonal Real-Time Systems Symposium, pages 111–126,
2006.

John Carpenter, Shelby Funk, Philip Holman, Anand Srinivasan, James Anderson, and Sanjoy
Baruah. A categorizaƟon of real-Ɵme mulƟprocessor scheduling problems and algorithms. In
Handbook on Scheduling Algorithms, Methods, and Models. Chapman Hall/CRC, Boca, 2004.

Rohit Chandra, Anoop Gupta, and John L. Hennessy. Data locality and load balancing in cool.
In Proceedings of the fourth ACM SIGPLAN symposium on Principles and pracƟce of parallel
programming, PPOPP ’93, pages 249–259, New York, NY, USA, 1993. ACM.

David Chase and Yossi Lev. Dynamic circular work-stealing deque. In Proceedings of the 17th
ACM Symposium on Parallelism in Algorithms and Architectures, pages 21–28, 2005.

Antoine Colin and StefanM. PeƩers. Experimental evaluaƟonof codeproperƟes forwcet analysis.
In Proceedings of the 24th IEEE RTSS, pages 190–199, December 2003.

SébasƟen ColleƩe, Liliana Cucu, and Joël Goossens. IntegraƟng job parallelism in real-Ɵme
scheduling theory. InformaƟon Processing LeƩers, 106:180–187, May 2008.

68

Intel CorporaƟon. Parallel building blocks. Available at http://software.intel.com/en-us/
articles/intel-parallel-building-blocks/, a.

MicrosoŌ CorporaƟon. Task parallel library. Available at http://msdn.microsoft.com/
en-us/library/dd460717.aspx, b.

Umamaheswari C. Devi and J. H. Anderson. Tardiness bounds under global edf scheduling on a
mulƟprocessor. Real-Time Syst., 38(2):133–189, February 2008.

Sudarshan Kumar Dhall. Scheduling periodic-Ɵme - criƟcal jobs on single processor and mulƟpro-
cessor compuƟng systems. PhD thesis, Champaign, IL, USA, 1977. AAI7714943.

Javier Diaz, CameliaMunoz-Caro, andAlfonsoNino. A survey of parallel programmingmodels and
tools in the mulƟ and many-core era. IEEE TransacƟons on Parallel and Distributed Systems,
23:1369–1386, 2012.

Xiaoning Ding, KaiboWang, Phillip B. Gibbons, and Xiaodong Zhang. Bws: balancedwork stealing
for Ɵme-sharing mulƟcores. In Proceedings of the 7th ACM European Conference on Computer
Systems, pages 365–378, New York, NY, USA, 2012. ACM.

Jack Dongarra, Ian Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda Torczon, and Andy
White, editors. Sourcebook of parallel compuƟng. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2003. ISBN 1-55860-871-0.

Dario Faggioli, Michael Trimarchi, and Fabio Checconi. An implementaƟonof the earliest deadline
first algorithm in linux. In Proceedings of the 2009 ACM symposium on Applied CompuƟng,
pages 1984–1989, March 2009.

José Carlos Fonseca, Luís Nogueira, Cláudio Maia, and Luís Miguel Pinho. Real-Ɵme schedul-
ing of parallel tasks in the linux kernel. In Proceedings of the 4th INForum, Lisbon, Portugal,
September 2012.

MaƩeo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementaƟon of the cilk-5 mulƟ-
threaded language. ACM SIGPLAN NoƟces, 33(5):212–223, 1998.

D. D. Gajski and Jib-Kwon Peir. EssenƟal issues in mulƟprocessor systems. Computer, 18(6):9–27,
June 1985.

Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990. ISBN 0716710455.

Joël Goossens, Shelby Funk, and Sanjoy Baruah. Priority-driven scheduling of periodic task sys-
tems on mulƟprocessors. Real-Time Systems Journal, 25:187–205, September 2003.

Yi Guo, Jisheng Zhao, Vincent Cave, and Vivek Sarkar. Slaw: a scalable locality-aware adapƟve
work-stealing scheduler for mulƟ-core systems. In Proceedings of the 24th IEEE InternaƟonal
Symposium on Parallel and Distributed Processing, pages 1–12, April 2010.

69

http://software.intel.com/en-us/articles/intel-parallel-building-blocks/
http://software.intel.com/en-us/articles/intel-parallel-building-blocks/
http://msdn.microsoft.com/en-us/library/dd460717.aspx
http://msdn.microsoft.com/en-us/library/dd460717.aspx

C.-C. Han and K.-J. Lin. Scheduling parallelizable jobs on mulƟprocessors. In Real Time Systems
Symposium, 1989., Proceedings., pages 59 –67, dec 1989.

Danny Hendler, Yossi Lev, Mark Moir, and Nir Shavit. A dynamic-sized nonblocking work stealing
deque. Distributed CompuƟng, 18:189–207, February 2006.

S. F. Hummel and E. Schonberg. Low-overhead scheduling of nested parallelism. IBM J. Res. Dev.,
35(5-6):743–765, September 1991.

Klaus Jansen. Scheduling malleable parallel tasks: An asymptoƟc fully polynomial Ɵme approxi-
maƟon scheme. Algorithmica, 39(1):59–81, January 2004.

D. I. Katcher, H. Arakawa, and J. K. Strosnider. Engineering and analysis of fixed priority schedulers.
IEEE Trans. SoŌw. Eng., 19(9):920–934, September 1993.

S. Kato and Y. Ishikawa. Gang edf scheduling of parallel task systems. In Proceedings of the 30th
IEEE Real-Time Systems Symposium, pages 459 –468, December 2009.

Leonard Kleinrock. Queueing Systems, volume II: Computer ApplicaƟons. Wiley Interscience,
1976. (Published in Russian, 1979. Published in Japanese, 1979.).

K. Lakshmanan, S. Kato, and R. Rajkumar. Scheduling parallel real-Ɵme tasks on mulƟ-core pro-
cessors. In Proceedings of the 31st IEEE Real-Time Systems Symposium, pages 259 –268, De-
cember 2010.

Doug Lea. A java fork/join framework. In Proceedings of the ACM 2000 conference on Java
Grande, pages 36–43, 2000.

Wan Yeon Lee and Heejo Lee. OpƟmal scheduling for real-Ɵme parallel tasks. TransacƟons on
InformaƟon and Systems, E89-D:1962–1966, June 2006.

J. P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In Proceed-
ings of the 11th Real-Time Systems Symposium, pages 201–209, 1990.

Andrew Lenharth, Donald Nguyen, and Keshav Pingali. Priority queues are not good concurrent
priority schedulers. Technical Report TR-11-39, The University of Texas at AusƟn, Department
of Computer Sciences, November 2011.

C. L. Liu. Scheduling Algorithms for MulƟprocessors in a Hard Real-Time Environment. JPL Space
Programs Summary 37-60, II:28–31, 1969.

C. L. Liu and J. Layland. Scheduling algorithms for mulƟprogramming in a hard-real-Ɵme environ-
ment. Journal of the ACM, 1(20):40–61, 1973.

J. M. López, M. García, J. L. Díaz, and D. F. García. Worst-case uƟlizaƟon bound for edf scheduling
on real-ƟmemulƟprocessor systems. In Proceedings of the 12th Euromicro conference on Real-
Ɵme systems, Euromicro-RTS’00, pages 25–33, Washington, DC, USA, 2000. IEEE Computer
Society.

70

Walter Ludwig and Prasoon Tiwari. Scheduling malleable and nonmalleable parallel tasks. In
Proceedings of the fiŌh annual ACM-SIAM symposium on Discrete algorithms, SODA ’94, pages
167–176, Philadelphia, PA, USA, 1994. Society for Industrial and Applied MathemaƟcs.

B. M. Maggs, L. R. Matheson, and R. E. Tarjan. Models of parallel computaƟon: a survey and
synthesis. In Proceedings of the 28th Hawaii InternaƟonal Conference on System Sciences,
HICSS ’95, pages 61–, Washington, DC, USA, 1995. IEEE Computer Society.

G. Manimaran, C. Siva RamMurthy, and Krithi Ramamritham. A new approach for scheduling of
parallelizable tasks inreal-Ɵme mulƟprocessor systems. Real-Time Systems Journal, 15:39–60,
July 1998.

WolfgangMauerer. Professional Linux Kernel Architecture. Wrox Press Ltd., Birmingham, UK, UK,
2008. ISBN 0470343435, 9780470343432.

A.K. Mok. Fundamental Design Problems of Distributed Systems for the Hard Real-Time Environ-
ment. PhD thesis, MassachuseƩs InsƟtute of Technology, 1983.

Girija J. Narlikar. Scheduling threads for low space requirement and good locality. In In Proceed-
ings of the Eleventh Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA),
pages 83–95, 1999.

Girija J. Narlikar and Guy E. Blelloch. Pthreads for dynamic and irregular parallelism. In Pro-
ceedings of the 1998 ACM/IEEE conference on SupercompuƟng (CDROM), SupercompuƟng ’98,
pages 1–16, Washington, DC, USA, 1998. IEEE Computer Society.

Angeles Navarro, Rafael Asenjo, Siham Tabik, and Cǎlin Caşcaval. Load balancing using work-
stealing for pipeline parallelism in emerging applicaƟons. In Proceedings of the 23rd Interna-
Ɵonal Conference on SupercompuƟng, pages 517–518, New York, NY, USA, 2009. ACM.

Daniel Neill and Adam Wierman. On the benefits of work stealing in shared-memory mulƟpro-
cessors. Technical report, Department of Computer Science, CarnegieMellon University, 2009.

Luís Nogueira, José Carlos Fonseca, CláudioMaia, and LuísMiguel Pinho. Dynamic global schedul-
ing of parallel real-Ɵme tasks. In Proceedings of the 10th IEEE/IFIP InternaƟonal Conference on
Embedded and Ubiquitous CompuƟng, Paphos, Cyprus, December 2012.

Cynthia A. Phillips, Cliff Stein, Eric Torng, and Joel Wein. OpƟmal Ɵme-criƟcal scheduling via
resource augmentaƟon (extended abstract). In Proceedings of the twenty-ninth annual ACM
symposium on Theory of compuƟng, STOC ’97, pages 140–149, New York, NY, USA, 1997. ACM.

C. D. Polychronopoulos and D. J. Kuck. Guided self-scheduling: A pracƟcal scheduling scheme for
parallel supercomputers. IEEE Trans. Comput., 36(12):1425–1439, December 1987.

M.J. Quinn. Parallel CompuƟng: Theory and PracƟce. McGraw-Hill computer science series:
Networks–parallel and distributed compuƟng. McGraw-Hill, 1994. ISBN 9780070512948.

71

BraƟn Saha, Ali-Reza Adl-Tabatabai, Anwar Ghuloum, Mohan Rajagopalan, Richard L. Hudson,
Leaf Petersen, Vijay Menon, Brian Murphy, TaƟana Shpeisman, Eric Sprangle, Anwar Rohillah,
Doug Carmean, and Jesse Fang. Enabling scalability and performance in a large scale cmp
environment. ACM SIGOPS OperaƟng Systems Review, 41(3):73–86, June 2007.

Abusayeed Saifullah, Kunal Agrawal, Chenyang Lu, and Christopher Gill. MulƟ-core real-Ɵme
scheduling for generalized parallel task models. In Proceedings of the 32nd IEEE Real-Time
Systems Symposium, pages 217 –226, Vienna, Austria, December 2011.

Claudio Scordino and Giuseppe Lipari. Linux and real-Ɵme: Current approaches and future op-
portuniƟes. In IEEE InternaƟonal Congress ANIPLA, 2006.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: an approach to real-Ɵme
synchronisaƟon. IEEE TransacƟon on Computers, 39(9):1175–1185, 1990.

Lui Sha, Tarek Abdelzaher, Karl-Erik Arzen, Anton Cervin, Theodore Baker, Alan Burns, Giorgio
BuƩazzo, Marco Caccamo, John Lehoczky, and Aloysius K. Mok. Real Ɵme scheduling theory:
A historical perspecƟve. Real-Time Syst., 28(2-3):101–155, November 2004.

Michael Short. Improved task management techniques for enforcing edf scheduling on recurring
tasks. In Proceedings of the 2010 16th IEEE Real-Time and Embedded Technology and Applica-
Ɵons Symposium, RTAS ’10, pages 56–65, Washington, DC, USA, 2010. IEEE Computer Society.

David B. Skillicorn and Domenico Talia. Models and languages for parallel computaƟon. ACM
Comput. Surv., 30(2):123–169, June 1998.

Paulo Baltarejo Sousa, Björn Andersson, and Eduardo Tovar. ImplemenƟng Slot-Based Task-
Spliƫng MulƟprocessor Scheduling. In of 6th IEEE InternaƟonal Symposium on Industrial Em-
bedded Systems (SIES 11), 2011.

Anand Srinivasan and Sanjoy Baruah. Deadline-based scheduling of periodic task systems on
mulƟprocessors. Inf. Process. LeƩ., 84(2):93–98, October 2002.

John A. Stankovic. MisconcepƟons about real-Ɵme compuƟng: A serious problem for next-
generaƟon systems. Computer, 21(10):10–19, 1988.

Kenjiro Taura, Kunio Tabata, and Akinori Yonezawa. Stackthreads/mp: integraƟng futures into
calling standards. ACM SIGPLAN NoƟces, 34(8):60–71, 1999.

John Turek, Uwe Schwiegelshohn, Joel L. Wolf, and Philip S. Yu. Scheduling parallel tasks to min-
imize average response Ɵme. In Proceedings of the fiŌh annual ACM-SIAM symposium on Dis-
crete algorithms, SODA ’94, pages 112–121, Philadelphia, PA, USA, 1994. Society for Industrial
and Applied MathemaƟcs.

P. Valente andG. Lipari. An upper bound to the lateness of soŌ real-Ɵme tasks scheduled by edf on
mulƟprocessors. In Proceedings of the 26th IEEE InternaƟonal Real-Time Systems Symposium,
pages 311–320, December 2005.

72

Željko Vrba, Håvard Espeland, Pål Halvorsen, and Carsten Griwodz. Limits of work-stealing
scheduling. In Proceedings of the 14th InternaƟonal Workshop on Job Scheduling Strategies
for Parallel Processing, pages 280–299, May 2009.

Zeljko Vrba, Paal Halvorsen, and Carsten Griwodz. A simple improvement of the work-stealing
scheduling algorithm. In Proceedings of the 4th InternaƟonal Conference on Complex, Intelli-
gent and SoŌware Intensive Systems, pages 925–930, February 2010.

QingzhouWang and KamHoi Cheng. A heurisƟc of scheduling parallel tasks and its analysis. SIAM
J. Comput., 21(2):281–294, April 1992.

73

	Resumo Alargado
	Abstract
	Acronyms
	Introduction
	Motivation
	Contributions
	Institutional support
	Outline

	Real-Time Systems
	Definition
	Terminology and periodic task model
	Real-time scheduling
	Global
	Partitioned

	Summary

	Background
	Parallel computing
	Parallel programming models
	Fine-grained parallelism
	Work-stealing scheduler

	The Linux scheduler
	Modular scheduler core
	Main scheduling structures
	Multiprocessor-dedicated logic
	Real-time scheduling on Linux

	Summary

	Real-Time Work-Stealing
	Related work
	System model
	Design
	Rules
	Sub-policies
	Scheduling multi-threaded jobs with RTWS

	Implementation
	Data structures
	Features
	System calls

	Summary

	Experimental Evaluation
	Scenario
	Overheads
	Scalability
	Load imbalance
	Response time
	Summary

	Conclusion
	General conclusions
	Summary of the main contributions
	Future work

