|
I ‘ Instituto Superior de
‘ Engenharia do Porto

Supporting Intra-Task Parallelism in
Real-Time Multiprocessor Systems

José Carlos Nunes da Fonseca

Dissertacdo para a obtencdo do Grau de Mestre em
Engenharia Informatica

Area de especializagdo em Sistemas Graficos e Multimédia

Orientador
Doutor Luis Miguel Pinho Nogueira

Juri
Presidente: Doutor Luis Miguel Moreira Lino Ferreira,

Professor Adjunto no Departamento de Engenharia Informatica

do Instituto Superior de Engenharia do Porto

Vogais: Doutor Luis Miguel Rosario da Silva Pinho,
Professor Coordenador no Departamento de Engenharia Informatica
do Instituto Superior de Engenharia do Porto
Doutor Luis Miguel Pinho Nogueira,

Professor Adjunto no Departamento de Engenharia Informatica

do Instituto Superior de Engenharia do Porto

Porto, Outubro de 2012

Resumo Alargado

Os sistemas de tempo real modernos geram, cada vez mais, cargas computacionais pesadas e
dindmicas, comecando-se a tornar pouco expectavel que sejam implementados em sistemas uni-
processador. Na verdade, a mudanca de sistemas com um Unico processador para sistemas multi-
processador pode ser vista, tanto no dominio geral, como no de sistemas embebidos, como uma
forma eficiente, em termos energéticos, de melhorar a performance das aplica¢des.

Simultaneamente, a proliferacdo das plataformas multi-processador transformaram a pro-
gramacao paralela num tépico de elevado interesse, levando o paralelismo dinamico a ganhar
rapidamente popularidade como um modelo de programacdo. A ideia, por detras deste modelo,
é encorajar os programadores a exporem todas as oportunidades de paralelismo através da sim-
ples indicacdo de potenciais regiGes paralelas dentro das aplica¢cdes. Todas estas anotacdes sdo
encaradas pelo sistema unicamente como sugestdes, podendo estas serem ignoradas e substi-
tuidas, por construtores sequenciais equivalentes, pela propria linguagem. Assim, o modo como
a computacao é na realidade subdividida, e mapeada nos varios processadores, é da respons-
abilidade do compilador e do sistema computacional subjacente.

Ao retirar este fardo do programador, a complexidade da programacao é consideravelmente
reduzida, o que normalmente se traduz num aumento de produtividade. Todavia, se o mecan-
ismo de escalonamento subjacente nao for simples e rapido, de modo a manter o overhead geral
em niveis reduzidos, os beneficios da geracdo de um paralelismo com uma granularidade tdo fina
serdo meramente hipotéticos.

Nesta perspetiva de escalonamento, os algoritmos que empregam uma politica de work-
stealing sdo cada vez mais populares, com uma eficiéncia comprovada em termos de tempo,
espaco e necessidades de comunicagdo. Contudo, estes algoritmos nao contemplam restri¢cdes
temporais, nem outra qualquer forma de atribui¢cdo de prioridades as tarefas, o que impossibilita
qgue sejam diretamente aplicados a sistemas de tempo real. Além disso, sdo tradicionalmente im-
plementados no runtime da linguagem, criando assim um sistema de escalonamento com dois
niveis, onde a previsibilidade, essencial a um sistema de tempo real, ndo pode ser assegurada.

Nesta tese, é descrita a forma como a abordagem de work-stealing pode ser resenhada para
cumprir os requisitos de tempo real, mantendo, aoc mesmo tempo, os seus principios fundamen-
tais que tdo bons resultados tém demonstrado. Muito resumidamente, a Unica fila de gestdo
de processos convencional (deque) é substituida por uma fila de deques, ordenada de forma
crescente por prioridade das tarefas. De seguida, aplicamos por cima o conhecido algoritmo de
escalonamento dindmico G-EDF, misturamos as regras de ambos, e assim nasce a nossa proposta:

o algoritmo de escalonamento RTWS.

Tirando partido da modularidade oferecida pelo escalonador do Linux, o RTWS é adicionado
como uma nova classe de escalonamento, de forma a avaliar na pratica se o algoritmo proposto
é viavel, ou seja, se garante a eficiéncia e escalonabilidade desejadas. Modificar o nucleo do
Linux é uma tarefa complicada, devido a complexidade das suas fung¢Ges internas e as fortes in-
terdependéncias entre os varios subsistemas. N3do obstante, um dos objetivos desta tese era ter
a certeza que o RTWS é mais do que um conceito interessante. Assim, uma parte significativa
deste documento é dedicada a discussdo sobre a implementag¢do do RTWS e a exposi¢do de situ-
acOes problematicas, muitas delas ndo consideradas em teoria, como é o caso do desfasamento
entre varios mecanismo de sincronizagao.

Os resultados experimentais mostram que o RTWS, em comparagdo com outro trabalho pra-
tico de escalonamento dinamico de tarefas com restricdes temporais, reduz significativamente
o overhead de escalonamento através de um controlo de migra¢des, e mudancas de contexto,
eficiente e escalavel (pelo menos até 8 CPUs), ao mesmo tempo que alcanga um bom balancea-
mento dinamico da carga do sistema, até mesmo de uma forma nao custosa. Contudo, durante
a avaliacdo realizada foi detetada uma falha na implementag¢do do RTWS, pela forma como facil-
mente desiste de roubar trabalho, o que origina periodos de inatividade, no CPU em questao,
guando a utilizacdo geral do sistema é baixa.

Embora o trabalho realizado se tenha focado em manter o custo de escalonamento baixo e
em alcancar boa localidade dos dados, a escalonabilidade do sistema nunca foi negligenciada.
Na verdade, o algoritmo de escalonamento proposto provou ser bastante robusto, ndo falhando
gualquer meta temporal nas experiéncias realizadas. Portanto, podemos afirmar que alguma
inversdo de prioridades, causada pela sub-politica de roubo BAS, ndo compromete os objetivos
de escalonabilidade, e até ajuda a reduzir a contenc¢ado nas estruturas de dados. Mesmo assim, o
RTWS também suporta uma sub-politica de roubo deterministica: PAS. A avaliacdo experimental,
porém, ndo ajudou a ter uma nogdo clara do impacto de uma e de outra. No entanto, de uma
maneira geral, podemos concluir que o RTWS é uma solugdo promissora para um escalonamento

eficiente de tarefas paralelas com restri¢cdes temporais.

Palavras-chave: Sistemas multi-processador, escalonamento de tempo real, intra-task paral-

lelism, EDF, work-stealing, Linux

Abstract

Multiple programming models are emerging to address the increased need for dynamic task-level
parallelism in applications for multi-core processors and shared-memory parallel computing, pre-
senting promising solutions from a user-level perspective. Nonetheless, while high-level parallel
languages offer a simple way for application programmers to specify parallelism in a form that
easily scales with problem size, they still leave the actual scheduling of tasks to be performed at
runtime. Therefore, if the underlying system cannot efficiently map those tasks on the available
cores, the benefits will be lost.

This is particularly important in modern real-time systems as their average workload is rapidly
growing more parallel, complex and computing-intensive, whilst preserving stringent timing con-
straints. However, as the real-time scheduling theory has mostly been focused on sequential task
models, a shift to parallel task models introduces a completely new dimension to the scheduling
problem.

Within this context, the work presented in this thesis considers how to dynamically sched-
ule highly heterogeneous parallel applications that require real-time performance guarantees on
multi-core processors. A novel scheduling approach called RTWS is proposed. RTWS combines
the G-EDF scheduler with a priority-aware work-stealing load balancing scheme, enabling parallel
real-time tasks to be executed on more than one processor at a given time instant. Two stealing
sub-policies have arisen from this proposal and their suitability is discussed in detail.

Furthermore, this thesis describes the implementation of a new scheduling class in the Linux
kernel concerning RTWS, and extensively evaluate its feasibility. Experimental results demon-
strate the greater scalability and lower scheduling overhead of the proposed approach, compar-
atively to an existing real-time deadline-driven scheduling policy for the Linux kernel, as well as
reveal its better performance when considering tasks with intra-task parallelism than without,
even for short-living applications.

We show that busy-aware stealing is robust to small deviations from a strict priority schedule
and conclude that some priority inversion may be actually acceptable, provided it helps reduce

contention, communication, synchronisation and coordination between parallel threads.

Keywords: Multiprocessor systems, real-time scheduling, intra-task parallelism, work-stealing,
EDF, Linux

Vi

Acknowledgements

| am indebted to many people who helped me in manifold large and small ways over the last year.
First of all, | would like to thank my advisor, Luis Nogueira, for his infinite availability, wisdom,
fellowship, and guidance throughout the course of this thesis. Luis is one of very few professors
| have met who is just as human and real as he is dedicated and accomplished.

| would also like to express my deepest thanks and appreciation to Claudio Maia, Paulo Bal-
tarejo, Miguel Pinho and André Pedro. André Pedro, for his Latex lessons; Miguel Pinho, for his
advices and experience; Paulo Baltarejo, for being my Linux kernel’s mentor; and Cladudio Maia,
well, his invaluable contribution cannot be put into words. Without all their unrelenting support,
| probably would not have made my way here. Many thanks are also due to the friendly people
at CISTER, and in particular Inés Almeida who assisted me in all bureaucratic stuff.

Outside school, foremost, | am grateful to my parents Elvira and Manuel, and my sister He-
lena, for their endless support, encouragement, understanding and love. A special thanks goes
to my closest friends, mainly Marcos Sousa, Tiago Ribeiro, and Ana Silva, for keeping me sane.
When the work was driving me crazy, you guys were there to provided me what | needed most:
relax and fun.

Last but not least, this work was partially supported by the EU ARTEMIS JU funding, within
RECOMP project, ref. ARTEMIS/0202/2009, JU Grant nr. 100202.

Vi

viii

Contents

Resumo Alargadq

1 Introduction

.1 Motivation. e e e e e e e e e e
[L.2 Contributiong i e e e e e e e e e e e e e
.3 Institutional supportl e e
1 O <

PD.1 Definition e
2.2 Terminology and periodictask model
2.3 Real-timescheduling e
231 Global
R.3.2 Partitioned
DA Summary ... e e e e e e e
B.1 Parallelcomputing
B.1.1 Parallel programmingmodeld
B.1.2 Fine-grained parallelism
B.1.3 Work-stealingschedulery
B.2 Thelinuxschedulen e e
B.2.1 Modularschedulercored
B.2.2 Main scheduling structured
B.2.3 Multiprocessor-dedicated logid.
B.2.4 Real-time schedulingonlinuX

3. ummary

Xv

A W W R R

co o U1 n

12
14
15

17
17
18
21
22
24
25
27
29
31
33

A Real-Time Work-Stealing

A.1 Related work

B2 Systemmodel e e e e
/] DESIBN e s e e

1.3.1 Rules

B.3.2 Sub-policied e e e e e e e
#.3.3 Scheduling multi-threaded jobs with RTWY
A.4 Implementation L e e e e e
#.4.1 Datastructures e
B.4.2 Features. e e e e e e e e e e e
B.4.3 Systemcalld e
......................................
b Experimental Evaluation
.......................................
B.2 Overheadd e e e e e e e e
D DINTY e e e e e e e e e e e e e e e e e e e
b.4 Loadimbalance e
Bb.5 ResponsetimeE. e e e e e e e e e
......................................
b.1 Generalconclusiong e e e e e e
b.2 Summary of the main contributions

6.3 Future work

35
35
37
38
40
42
44
45
46
49
53
54

55
55
56
58
59
60
61

List of Figures

2.1 AnEDFscheduleexample oo 10
2.2 A Dhall effect scheduleexample, 11
2.3 Multi-core scheduling approaches for 4 CPUs that share L2 chaches in pairs of twg 12
B.1 Shared memory multiprocessof]o e e e 19
B.2 Distributed memory multiprocessorf Lo oo 19
B.3 Work-stealing scheduler ona 4-coresystem 23
B.4 The linux modular scheduling framework 27
B.5 TheCFSrunquUeUE o o e e e e e e e e e e e e 28
B.6 Transitions between processstateg o 0oL 29
B.1 A multi-threaded job with5regions 37
B.2 Overview of the RTWS data structuresdesign 39
.3 Process flow diagram representingruleEandH 42
B.4 Process flow diagram representingruleGandH 43
B5 ARTWSscheduleexampld 45
.6 Priority hierarchy of schedulermodules 45
B.7 Dispatcheragentrole e 50
A.8 Code flow diagram for enqueue task rtws. 50
B.9 Code flow diagram for pick next task rtws 51
A.10 Code flow diagram for put prev task rtwsg 52
5.1 Average number of migrations on the 8-core experimenty. 57
5.2 Average number of context switches on the 8-core experiments 57
5.3 Average load imbalance on the 8-core experimenty 60

Xi

Xii

List of Tables

2.1 A summary of the periodic task model’s constraints and notation 7
2.2 Atasksetexampletfor EDFscheduld 10
2.3 Atask set example causing the Dhalleftectt 11
B.1 Parallelismgranularityo 21
5.1 Composition of each experiment 56
5.2 Scale up ratios on numberof migrationy 58
5.3 Scale up ratios on number of context switches 59
5.4 Scale up ratios on the average responsetime 60
5.5 Scale up ratios on the worst-case responsetime 61

Xiii

Xiv

Acronyms

BAS
BF

CFS

DAG
DM

FF

FIFO

FP

G-EDF

GPL

GPOS

HRT

JLFP

LIFO

0sS

PAS
POSIX

RM
RTOS
RTS
RTWS

Busy-Aware Stealing
Best-Fit

Completely Fair Scheduler

Directed Acyclic Graph
Deadline Monotonic

First-Fit

First-In First-Out

Fixed-Priority

Global Earliest Deadline First

GNU General Public License
General-Purpose Operating System
Hard Real-Time

Job-Level Fixed-Priority

Last-In First-Out

Operating System

Priority-Aware Stealing

Portable Operating System Interface

Rate Monotonic

Real-Time Operating System
Real-Time System
Real-Time Work-Stealing

XV

SMP Symmetric Multiprocessing
SPMD Single-Programming-Multiple-Data
SRT Soft Real-Time

WCET Worst-Case Execution Time

XVi

Chapter 1

Introduction

It is expected that parallel workloads to become rather common as multi-core plat-
forms become ubiquitous. In contrast to prior work on real-time scheduling of paral-
lel workloads, this thesis considers a more general model of parallel real-time tasks
where dynamically generated threads can take arbitrarily different amounts of time

to execute. It proposes a novel scheduling policy that combines the
Deadline First (G-EDF) scheduler with a priority-based work-stealing policy, allowing

parallel real-time tasks to be executed in more than one processor at a given time.
To the best of our knowledge, we are the first to: (i) deal with real-time prioritiesin a
work-stealing scheduler; and (ii) to actually implement support for parallel real-time

computations in the Linux kernel.

1.1 Motivation

The advent and ubiquity of multi-core technologies has opened the door for a wide-range of
general-purpose applications to effectively harness the increasing processing capability through
parallelization. From a user-level perspective, dynamic intra-task parallelism is steadily gaining
popularity as a programming model for multi-core processors. Parallelism is easily expressed by
spawning threads that the implementation is allowed, but not mandated, to execute in parallel,
using frameworks such as OpenMP [ARB], Cilk [Frigo et all, 1998], Intel’s Parallel Building Blocks
[Corporation, @], Java Fork-join Framework [Lea, 2000], Microsoft’s Task Parallel Library [CorpoA
ration, bl], or StackThreads/MP [Taura et all, 1999].

These high-level parallel frameworks seek to reduce the complexity of multicore program-
ming by giving programmers abstract execution models, such as implicit threading, where pro-
grammers annotate their applications to suggest the parallel decomposition. Implicitly-threaded
applications, however, do not specify the actual decomposition of computations or the mapping
from computations to coresl. In fact, the annotations act simply as hints that can be ignored and
safely replaced with sequential counterparts. The parallel decomposition itself is the responsi-

bility of the language implementation and, more specifically, of the runtime scheduler. Further-

In the context of this work, we will use the terms processor, core and CPU interchangeably.

CHAPTER 1. INTRODUCTION

more, the actual scheduling depends on the underlying system which by turn heavily influences
any application speed up.

Unfortunately, scalable performance is only one facet of the problem in embedded multi-
core real-time platforms. Predictability and computational efficiency are often conflicting goals,
as many performance enhancement techniques aim at boosting the average expected execution
time, without considering potentially adverse consequences on worst-case execution time. Thus,
applications with strong predictability requirements often tend to underuse hardware resources
[Colin and Petterd, 2003]. Such a waste of resources can only be justified for very critical systems
in which a single missed deadline may cause catastrophic consequences.

Therefore, the growing importance of parallel programming models introduce a new dimen-
sion to real-time multi-core scheduling, with many open issues to be studied. Recent works on
real-time scheduling of parallel tasks define a task as a collection of several regions, both se-
guential and parallel [Lakshmanan et al), 2010, Saifullah et all, 2011]]. A task always starts with a
sequential region, which then forks into several parallel independent threads (the parallel region)
that finally join in another sequential region. However, these models require that each region of
a task contains threads of execution that are of equal length.

In contrast, in this thesis we consider a more general model of parallel real-time tasks where
threads can take arbitrarily different amounts of time to execute. That is, different regions of the
same parallel task can contain different numbers of threads, regions can contain more threads
than the number of cores, and threads can have arbitrarily different execution needs. Therefore,
this model is more portable.

Indeed, there are many applications for which this condition holds, and it is this kind of dy-
namic and irregular parallelism that is of primary interest for us. The distribution of work and
data in such applications cannot be characterised a priori because these quantities are input-
dependent and evolve with the computation itself. In practice, such real-time applications span
a wide spectrum, including radar tracking, autonomous driving, and video surveillance. Applica-
tions with these properties pose significant challenges for high-performance parallel implemen-
tations, where equal distribution of work over processors and locality of reference are desired
within each processor. Nevertheless, as the problem sizes scale and processor speeds saturate,
the only way to meet deadlines in such systems is to parallelize the computation.

Implicit threading also encourage the programmer to divide the program into short-living
threads because doing so increases the flexibility to distribute work evenly across processors.
The downside of such fine-grained parallelism is that the total scheduling cost can be significant.
The best way to reduce the total scheduling cost is to find the sub-costs that matter most and
focus on reducing them.

One of the simplest, yet best-performing, dynamic load-balancing algorithms for shared-
memory architectures is work-stealing [Blumofe and Leiserson, 1999]. The principle of work-
stealing is that idle cores, which have no useful work to do, should bear most of the scheduling
costs, and busy cores, which have useful work to do, should focus on finishing that work. Blumofe
and Leiserson have theoretically proven that the work-stealing algorithm is optimal for scheduling

fully-strict computations, i.e. computations in which all join edges from a thread go to its parent

1.2. CONTRIBUTIONS

thread in the spawn tree [Blumofe and Leiserson, 1999]. Under this assumption, an application
running on P processors achieves P-fold speed-up in its parallel part, using at most P times
more space than when running on one CPU. These results are also supported by experiments
[Saha et all, 2007].

However, the need to support task priorities fundamentally distinguishes the problem at hand
in this thesis from other work-stealing choices previously proposed in the literature [Guo et all,
2010, Vrba et all, 2009, 2010]. With classical work-stealing, threads waiting for execution in a
deque may be repressed by new threads, which are enqueued at the bottom of the worker’s
deque. As such, a thread at the top of a deque might never be executed if all workers are busy.
Consequently, there is no upper bound on the response time of a multi-threaded real-time job.

1.2 Contributions

Motivated by these observations, the work presented throughout this thesis breaks new ground
in several ways, focusing on supporting intra-task parallelism in real-time multiprocessor systems,
both in theory and practise:

¢ While several others have previously considered work-stealing as a load balancing mecha-

nism for parallel computations, we are the first to do so considering different task priorities.

¢ We propose Real-Time Work-Stealing (RTWS], a novel real-time scheduling approach that

combines the G-EDF scheduler with a priority-based locality-aware work-stealing scheme,
allowing parallel real-time tasks to be executed in more than one processor at a given time

instant. To the best of our knowledge, no research has ever focused on this subject.

e Our work is the first to actually implement support for parallel real-time computations in
the Linux kernel through the development of a new scheduling class (SCHED_RTWS) and
respective system calls. At the time of this writing, neither any RTOS natively supports such
scheduling nor any known extension does so.

Importantly, the research work described in this thesis has resulted in two scientific publi-
cations. The paper entitled Real-Time Scheduling of Parallel Tasks in the Linux Kernel [Fonseca
et al], 2012] has been published in the 4th Informatics Symposium (INForum 2012), while the
paper entitled Dynamic Global Scheduling of Parallel Real-Time Tasks [Nogueira et all, 2012] has
been accepted at the 10th IEEE/IFIP International Conference on Embedded and Ubiquitous Com-
puting (EUC 2012).

1.3 Institutional support

This research work was developed in the context of the RECOMP European project, from the AR-
TAMIS program, held at CISTER (Research Centre in Embedded Real-Time Computing Systems).
CISTER is a top-ranked research unit associated with the INESC-TEC, from the School of Engi-

neering (ISEP) of the Polytechnic Institute of Porto (IPP), Portugal. The research unit focuses its

CHAPTER 1. INTRODUCTION

activity in the analyses, design and implementation of real-time and embedded computing sys-
tems. Back in the 2004 evaluation process, CISTER was the only research unit in Portugal, in the
areas of computer and electrical engineering and computer science, to be awarded the top-level
rank of Excellent. This outstanding rating was confirmed in the last evaluation process (2007).
CISTER has grown to become one of the leading European research units in the area, contributing
with seminal research works in numerous subjects. Since mid-2011, CISTER is an autonomous
research unit associated to INESC-TEC.

1.4 Outline

The rest of this document is structured as follows:

e Chapter [introduces the real-time concepts and scheduling theory on which this work is

fundamentally based, with emphasis on the periodic task model and EDF algorithms.

e Chapter B is devoted to provide the remainder necessary background directly related to
the main contributions of this thesis. It starts by discussing parallel computations and how
they can be expressed, modelled and scheduled, with particular focus on the work-stealing
scheduler. It continues by analysing the current modular framework of the Linux scheduler,
and it finishes by covering briefly relevant real-time implementations on the Linux kernel.

e Chapter { discusses design and implementation of the RTWS scheduler. First, it dives deep
in the state-of-art of parallel real-time scheduling, with some insights on the current chal-
lenges in supporting task-level parallelism in real-time multiprocessor systems being given
as well. Then it presents our system model and addresses the problem of adapting work-
stealing to real-time. The major rules and flow of RTWS are described next. Last but not
least, it explains how this scheduling algorithm was implemented in the Linux kernel, and
how one can use it from user-space.

* In Chapter [§, we evaluate the scalability, effectiveness and efficiency of our RTWS imple-
mentation, mostly by comparing it to other real-time scheduling policy through experi-

mental results. The nature of the experiments is also explained herein.

¢ Finally, Chapter § sums up results, offers some concluding remarks and suggests possible

future extensions to our work.

Chapter 2

Real-Time Systems

Real-time computing is becoming increasingly important and pervasive, as more and
more industries, infrastructures, and even ordinary people depend on them. Nat-
urally, with the general proliferation of multi-core platforms, real-time applications
started to be massively deployed on such platforms. A key factor for that, among
other reasons, is the considerable boost in processing capacity in a relatively cheap,
small, and low power consuming chip. Therefore, they offer an opportunity to max-
imise performance and, through parallelism, execute more complex and computing-
intensive tasks whose stringent timing constraints cannot be guaranteed on unipro-

cessor systems.

However, most research in traditional multiprocessor real-time scheduling is still lim-
ited to sequential task models and ignore task-level parallelism. Such model scales
poorly and is unable to effectively exploit the potential of multi-core platforms. Thus,
a dramatic change in programming models and scheduling paradigms is undeniably

demanded.

This chapter discusses representative research efforts and gives a special focus to the
real-time scheduling theory, as both are directly related to the main contributions of
this thesis. We also briefly present real-time systems’ concepts and contextualise

them within the conducted work.

2.1 Definition

A Real-Time System (RTS] is any information processing system where the correctness of each

computation depends not only on the logical results it provides but also on the time instant at
which these results are produced [Stankovid, 1988]. A late response time (i.e. the time taken for
the system to generate output from some associated input) is as bad as a wrong response since
it may provoke an unexpected behaviour, which might lead to a system failure. Hence, RTSs must
respond in a timely predictability way to externally generated input stimuli, even under transient
overload. An automobile airbag system, one of the most safety-critical features in a modern

car, is a simple example of a real-time computing system — the strict real-time constraint in this

CHAPTER 2. REAL-TIME SYSTEMS

system is the time interval in which the airbag must be deployed in order to prevent the driver
from getting severely hurt. No matter what non-critical operation is taking place at that instant,
the will put it on hold and will immediately deploy the airbag as soon as it receives a signal
from the sensors detecting the collision.

In contrast, a system is said to be non-real-time whenever one cannot guarantee a response
time under any circumstance, even if rather often the outcome respects the timing boundaries.
Analogously, if a car is equipped with a non-RTg it might deploy the airbag after finishing the
request to power the stereo, which by coincidence happened to come right before the self-
triggered critical request. Needless to say, an airbag system deployed even 0.01 seconds later
than the demanded time may have catastrophic consequences. In fact, for certain RTSs few mi-
croseconds separate the success from the disaster.

Nonetheless, a is not a fast computing system, as oftentimes mistakenly deemed so. Its
response time scale magnitude can indeed range from a microsecond in a radar data acquisi-
tion to an hour in a chemical reaction. Thus, no matter how fast hardware or algorithms are, its
performance has to always be guaranteed against the characteristics of the surrounding execu-
tion environment. Here the key property is predictability, i.e. the logical and timing behaviour
must be as deterministic as required to fulfill system specifications, and not speed. Undoubt-
edly high-speed computing helps to minimise the average response time of a task set or even to
meet some stringent individual timeliness requirements, but it solely does not assure the overall
system correctness.

Guaranteeing real-time performance, while most effectively exploiting the available resources,
demands the appliance of efficient scheduling algorithms, properly supplemented by schedula-
bility analysis or similar techniques. Such techniques must provably assure that timing constraints
will always be met by a given scheduler during system’s activity. For better understanding the
scheduling theory referred all over this document, next section introduces scheduling and real-

time terminology.

2.2 Terminology and periodic task model

The term job refers to a schedulable and executable unit of work. Schedulable means that it can
be allocated to a resource (e.g. processor) in a particular sequence determined by the scheduling
algorithm being used and it will meet its timing constraints. A set of related jobs defines a task,
while a collection of tasks is called task set.

The necessary time to run a single job on a given platform is called execution time. The time
instant at which a job is required to complete its execution is denominated as deadline or as
absolute deadline, as it is successively calculated for each job. A relative deadline, in turn, is
its maximum allowable response time. Additionally, the recurrent nature of real-time activi-
ties is expressed by a period. The period represents the expected time of arrival between jobs,
whether they are cyclic or event-driven. The moment a job becomes available for execution is
called release time. However, for the particular case of the first job release, that time instant is

denominated offset.

2.2. TERMINOLOGY AND PERIODIC TASK MODEL

The fraction of one processor’s capacity that must be allocated to a task is its utilisation. This
does not mean, however, that a task can only execute on one processor. Straightforwardly, the
sum of all tasks’ utilisation within a task set gives its denoted total utilisation. A procedure that
determines if a task set is schedulable under a given scheduling algorithm is a schedulability test.
Whenever exists an algorithm able to deem a task set schedulable, this task set becomes feasible.
A scheduling algorithm can be considered optimal if, on a m processors system, a task set with
total utilisation at most m is schedulable.

Depending on the consequences of missing timing constraints, real-time tasks are commonly
classified as either®! hard or soft. An Hard Real-Time (HRT) task must always meet its deadline
due to its critical nature where an overrun in response time may lead to a fatal flaw, e.g. loss

of life or big financial damage. Hence, a judicious Worst-Case Execution Time (WCET]) has to be

assigned to them. When deadline violations are tolerable to a limited extent (tardiness® must
be bounded to be schedulable), but not desirable, as they entail performance degradation, a
task is said to be Foft Real-Time (SRTJ. This type of tasks does not require a execution time so
rigid, therefore it employs an average execution time. For instance, the airbag feature mentioned

above clearly fits in the former classification, whereas a multimedia interactive game suits the
latter one, provided an underlying failure (perceived as sluggishness) does not have catastrophic
consequences, although it results in a not smooth gameplay, and consequently in unsatisfied
end-users.

Table 2.1: A summary of the periodic task model’s constraints and notation

Notation Interpretation Constraint / Definition
T A task set T="Tly...,Tn
o) The *™ periodic task 1<i<n

Ji i The 57 job of task T; i>1

Ji An arbitrary job of T}

C; 7/ s per-job WCET C; >0

0; /s offset 0; >0

T; 7/ s period P> C;

D; 7/ s relative deadline D; > C;

U; 7/ utilisation u; = C;/T;
Qi,j Jz{js release time a;,j > i -1+ T;
di,; J{’js absolute deadline dij =a;; +D;
fij Jl(’js completion time fig > aij

Besides criticalness, tasks can also be classified based on their periodicity. Tasks which ex-
hibit irregular activations are called aperiodic, whilst periodic are the ones requiring symmetrical
arrival times. Periodic tasks are typically used in control and signal-processing applications and
often have hard deadlines, since they have to be executed at constant ratios for stability and up-
date purposes. On the other hand, aperiodic tasks commonly have soft deadlines and are used to
handle random processing requirements such as displaying activities. When aperiodic tasks have
hard deadlines they are denominated sporadic. Note that for these tasks, period is replaced by
a minimum interarrival time in order to enable deadlines’ fulfillment [Mok, 1983]. In this thesis,

More specific classifications can be found in the literature.
Tardiness refers to how far after deadline a task has finished its execution.

CHAPTER 2. REAL-TIME SYSTEMS

we address a task model for parallel HRT tasks similiar to the periodic one, whose notation is
shown in Table 2.1. Henceforth, every time we mention RTS we refer to HRT scenarios, unless
we specifically say otherwise.

Furthermore, literature differentiates three levels of constraint on task deadlines:

e Constrained deadlines - Task deadlines cannot be greater than their periods (D; < T;).
e Implicit deadlines - All task deadlines must be equal to their periods (D; = T3).

e Arbitrary deadlines - Task deadlines may take any value.

When considering a as a whole, there are several important aspects that should be taken

into consideration in order to ensure the timeliness of all tasks with timing requirements. In

particular, the Dperating System (OS] plays a major role in the management of all concurrent

activities running on a single or multiprocessor device, both taking care of task management,
through the use of scheduling mechanisms that handle the priority of each task, and managing
memory allocations, by taking into account the timing requirements of the tasks. When designing
aRTY, every detail must be carefully analysed in order to make it as deterministic and predictable

as possible, both in terms of time and space.

2.3 Real-time scheduling

In any multitasking RTS, scheduling is the fundamental component since it is responsible for: (i)
providing an algorithm that defines a set of rules concerning how to commit resources (mostly
processors) between tasks; (ii) establishing whether a temporal specification is guaranteed to
be satisfied under such algorithm, through exhaustive worst-case behaviour analyses; (iii) max-
imising system utilisation; and (iv) ideally minimising each task’s response time. Therefore, it is
of paramount importance to understand its nomenclature, proposed approaches, and problems
facing its theory for multi-core processor systems.

A standard set of simplifications are commonly assumed to eliminate every potential source
of unpredictability when devising an algorithm and developing corresponding schedulability anal-

ysis:

Every task is independent - besides processors, no hardware or software resources are
shared.

¢ Deterministic timing behaviour - there is no drift on tasks’ timing behaviour. Tasks are
release at, and execute for, exactly the time they are supposed to.

¢ Jobs do not self-suspend - a pending job is always either executing or ready for execution.

¢ No runtime overheads - migrations, context switches and other scheduling decisions take
negligible time or are subsumed into the of each task.

2.3. REAL-TIME SCHEDULING

Nevertheless, this idealised task behaviour does not hold in practise and it is indeed problem-
atic. Although these simplifying assumptions definitely help to formally express an algorithm’s
logic and perform schedulability tests on it, as one very hardly would get anywhere if he tried to
weight all unpredictable factors. Then, upon implementation, these can be attenuated by adding
extra features to deal with them. In fact, as stated in Chapter I, this implementation awareness
is a driving motivation underlying the work presented herein.

Generally, scheduling algorithms are categorised as static or dynamic, depending on the

method used for task priority assignment. Static schedulers, also known as Fixed-Priority (FP]

schedulers, enact at design time a constant priority to each task, which is then applied to all of
its jobs. In contrast, dynamic schedulers assign at runtime a priority directly to the jobs based on
the current system state. Basically, this categorisation affects when and in what order each job
shall execute.

Furthermore, scheduling algorithms can also be classified, as follows, according to when pre-
emptions are enable.

* Preemptive - jobs may be preempted by higher priority ones at any time instant.

e Non-preemptive - preemption is not allowed and, therefore, once a job is scheduled for

execution it will not be swapped out until completion.
e Cooperative - there are specific preemptable sections within a job execution.

In this thesis, we focus on dynamic and preemptive scheduling algorithms for implicit-deadline
real-time tasks. Since we have also restricted our work to homogeneous multiprocessor systems
(i.e. systems with identical processors), we only briefly address uniprocessor real-time scheduling
for contextualisation and completeness. A detailed historical perspective of the most important
research advances in this field can be found in [Sha et al], 2004]].

The seminal research into uniprocessor real-time scheduling dates back to the late 1960s and
early 1970s, and it was primarily applied to schedule computer programs during the first manned
space flight to the moon [Liu, 1969, Liu and Layland, 1973]. Remarkably, Liu and Layland [1973]

introduced provably optimal? static and dynamic algorithms for the scheduling of periodic tasks,

which later became known as Rate Monotonic (RM) and EDF. respectively. During the 1980s

and 1990s, these policies were improved to adopt more realistic models of synchronisation [Sha
et al), 1990], timing constraints [Lehoczky, 1990] and overheads [Katcher et al), 1993], for exam-
ple. Today, this theory can be considered mature and successfully put in practise for industrial
purposes.

As a reference point, and since we have chosen as our task-level policy, this section will
relate with EDF schedulers, whenever feasible, toillustrate or describe how differently scheduling
algorithms can be designed, extended, and implemented, and how that will affect the system’s

performance and its schedulability boundaries.

EDF is the most studied dynamic, or Job-Level Fixed-Priority (JLFP] as oftentimes referred,

real-time scheduling algorithm. It is very intuitive, since it schedules in order of urgency. That

3Regarding the specific scenario it is intended to.

CHAPTER 2. REAL-TIME SYSTEMS

is, in contrast to RM which prioritises tasks based on their periods, EDF assigns priorities to tasks
according to the deadlines of their current requests, in a form that the task with the nearest
deadline becomes the highest priority task in the system and, therefore, the one to be selected
for execution. Regardless of priorities changing at runtime, no manual assignment is required.

The acceptance test

Usum (T) = D us < 1 (2.1)

clearly shows that EDF is optimal in an HRT] context as it fully utilises the processor capacity,
unlike RM whose maximum demand of processor time is limited to in(2) ~ 69, 3%. Moreover,
EDF is also optimal for BRT] constraints, seeing that a task set HRT] schedulable implies bounded
tardiness.

A simple example may clarify how EDF works. Let us consider the task set detailed in Table
2.2, which has four tasks and utilisation: gy, (7) = % + 13—3 + % + 1—37 = 72.2%. Fig. .1 shows
the timeline execution for the first job of each task. The only task released at instant 0 is 74, so
it starts executing immediately. At instant 1, 73 arrives with an earlier deadline. Since 74 needs
more 2 times units to finish its instance, it is preempted by 3. It goes like this until instant 6,
when 7 finishes his job. Now that the remaining three tasks are ready, the earliest deadline task
is selected for execution: 73. The schedule goes on this descending way until instant 10 when

the last first job terminates.

Table 2.2: A task set example for EDF schedule

Task | C; | T; | D; | Oy
- 2 | 11| 11 | 3
T2 3 13 13 2
s | 2 | 15| 15 | 1
T4 3 17 17 0

T T_l & T Release

T t| 1 L y Deadiine

T, h O * * Execution termination
" 1 Vo,

001 2 3 4 5 6 7 8 9 1011121314 1516 17 t

Figure 2.1: An EDF schedule example

Nonetheless, EDF is not preferable over RM for practical uses. One plausible reason is the
conceptual difficulty associated to an efficient implementation of EDF [Short, 2010], mainly be-
cause it is not straightforward the mapping of deadlines to priority arrays or bitmaps pervasively
used in for scheduling purposes, and when attempting to do so it demands frequent and

costly recomputations. Supposed RM advantages in practise, namely less runtime overhead and

10

2.3. REAL-TIME SCHEDULING

more predictability under overload, arose from misconceptions or specific situations as Buttazzo

[2005] conclusively debunked. Hence, there is no reasonable justification, quite the contrary, for

the absence of EDF-alike schedulers in a Real-Time Operating System (RTOS).

Unfortunately, multiprocessor real-time scheduling theory has not yet enjoyed such a success
as it did on a uniprocessor. As early as in the 1969, Liu [1969] observed the intrinsic complexity

of multi-core scheduling and how hardly uniprocessor algorithms could be extended to it:

“Few of the results obtained for a single processor generalize directly to the multi-
ple processor case; bringing in additional processors adds a new dimension to the
scheduling problem. The simple fact that a task can use only one processor even
when several processors are free at the same time adds a surprising amount of diffi-

culty to the scheduling of multiple processors.”

Table 2.3: A task set example causing the Dhall effect

Task | C; T; Uj
T1 2¢ 1 —0
T2 2e 1 —0
T3 1 1+e€ —1
not enough!!
1-e
P
1] L1 F
Fa 124 -
. »
0 1 i1+e t

Figure 2.2: A Dhall effect schedule example

In fact, few years later, Dhall [1977] reported that when globally enforcing a RM or EDF
scheme on a multi-core host, some task sets may miss deadlines even though low system utili-
sation is requested. To provide an understanding of the so-called Dhall effect, let us consider an
example. Consider a system with 2 processors (m = 2) and 3 implicit-deadline tasks (n = 3), as
specified by Table 2.3, to be scheduled according to the EDF policy. Since all tasks are released
att = 0, the first job of 7 and 7 with deadline 1 will have higher priority over the first job of
73, whose deadline is 1 + €. Consequently, processors P; and P, are assigned to J1 1 and Jo 1
during the time interval [0, 2¢], leaving a maximum of 1 - € time units for .J3 ; before its deadline,
which is not enough for it to be completely executed (see Fig. R.2). Hence, this task set cannot be
feasibly schedule by the EDF scheduling algorithm on a 2-processor computing system although
Yorui<2,ase—0,> " u; — 1.

11

CHAPTER 2. REAL-TIME SYSTEMS

This finding led research community to look at global scheduling algorithms, where tasks can
execute in any processor as an obsolete approach and, therefore, guided its course to partitioned
ones, where tasks are statically allocated to processors in a fixed manner. Global scheduling
algorithms recovered their popularity two decades later when it was realised that the Dhall effect
is mostly related to heavy tasks scheduling, i.e. tasks with high utilisation, and not intrinsically a

global approach problem [Phillips et all, 1997].

'e
[’
100
e]
LEXE)
AN

P1 P2 F3 P4 Pl P2 F3 P4 Pl P2 F3 P4

L2 L2 L2 L2 L2 L2
Cache Cache Cache Cache Cache Cache
(Main Memory) (Main Memory)] (Main Memory)

(a) Global scheduling (b) Partitioned scheduling (c) Clustered scheduling

Figure 2.3: Multi-core scheduling approaches for 4 CPUs that share L2 chaches in pairs of two

As slightly mentioned before, there are two fundamental classes of multi-core scheduling
schemes: global and partitioned. However, not every scheduling scheme fits into one of these
distinct categories but instead employ both [Carpenter et al), 2004], as depicted in Fig. 2.3d.
Due to their wide variety, such hybrid approaches have many classifications (e.g. clustered, task-
splitting), being semi-partitioned the prevalent term for them. In the general case, each 7; may
execute on a subset P(7;) of P, with overlapping permitted. Whenever | P(7;)| = 1 partitioning
is at the table, while | P(7;)| = mimplies global scheduling. Thus, global and partitioned schemes

are restricted instances of the above model.

2.3.1 Global

Under global scheduling, there is a single priority-ordered queue serving the entire system, where
all ready jobs are stored (see Fig. 2.3d). At any time instant, the global scheduler can then select
for execution the highest priority pending jobs since it has a full overview of the system and every
job may migrate among processors. Clearly, two pivotal benefits arise from this broad knowledge
and centralisation: optimal scheduling decisions are easily achieved and load balancing is auto-
matically handled. Moreover, queueing theory results report that better average response times
are produced by a single-queue scheduling than queue-per-core scheduling [Kleinrock, 1976].
Therefore, analytically speaking, global schedulers are superior to any partitioned algorithm as
even optimality can be accomplished (for implicit-deadline tasks at least).

A class of global rate-based? schedulers called Proportionate Fair (Pfair) scheduling, intro-

4Rate-based means that the scheduler is invoked at steady points in time, which are pre-computed based on
integers multiples of an input quantum.

12

2.3. REAL-TIME SCHEDULING

duced by Baruah et all [1996], provides the only known optimal method for scheduling HRT| tasks
on multiprocessors. The idea behind Pfair is that each task progresses proportionate to its utilisa-
tion and not only based on its deadline. For that, Pfair algorithms break a task into many unit-size
sub-jobs, assign an individual deadline to them, and finally schedule them sequentially following
a pure EDF strategy. In order to excel in performance, in the sense that if tasks request no more
than the available processor capacity, and task set’s utilisation is at most m, then all deadlines
are met, an appropriate granularity must be defined. Unfortunately, if the execution time of a
task is large compared to this unit-size then the preemption overhead becomes unreasonably
large, which makes Pfair scheduling unfeasible in practise.

On the other hand, let us consider the scheduling algorithm G-EDH, where the uniprocessor
EDF scheduler is globally applied to a single shared queue. Despite is vulnerable to severe
algorithmic capacity loss in the HRT| case, since it is subject to the Dhall effect, resulting in an total
utilisation bounded by (m + 1)/2 for periodic task sets [Andersson et all, 2001], which is also
extensible to any global scheduler, for BRT] systems is optimal because it guarantees
bounded tardiness for any sporadic task set as long as sy, (7) < m [Devi and Andersor|, 2008].

Although the theoretical worst-case performance of G-EDF in an HRT| context cannot be higher
than (m + 1)/2, when w4, (7) is considerably less than one, a higher utilisation guarantee can
be assured. Thus, new schedulability tests based on the presence of high-utilisation tasks have
been derived. The first, and of primary interest to us, was introduced by Goossens et all [2003],

who showed that a set of independent periodic tasks with implicit-deadlines can be successfully
schedulable by on m processors if

Usum (T) < m — (M — 1)Upae (7). (2.2)

Furthermore, several tweaks to the algorithm and respective worst-case analysis were
developed with the same principle in mind. Srinivasan and Baruah [2002] proposed EDF-US[(], an
algorithm that assigns the highest (fixed) priority to task of utilisation greater than some thresh-
old ¢, and schedule the remaining tasks according to the standard EDF policy. By setting ¢ to

m/(2m — 1), an utilisation bound w4 () free is obtained:

Usum (T) < m?/(2m — 1). (2.3)

Besides deriving a utilisation bound and showing that it is tight, Goossens et al] [2003] also
proposed an algorithm that sets as highest priority tasks the k£ ones with highest utilisation. This
approach was named EDF(k), and a sufficient schedulability condition for it was shown to be

usum(T) - uk~|

m>(k—1)+] —

(2.4)

where uy, is given by the kth task utilisation with tasks order by decreasing utilisation.
Either EDF-US[(] and EDF(k) were examined by Baker [2005], who showed that the optimal
threshold used in EDF-US[(] with respect to maximising the utilisation bound is 1/2, as it results

in a sufficient test equally to the maximum possible bound for this class of scheduling algorithms:

13

CHAPTER 2. REAL-TIME SYSTEMS

Usum (7) < (m+1)/2. (2.5)

Concerning EDF(k), Bakerl [2005] revealed that there exists a minimum value of k (k) for
which the worst-case guaranteed schedulable utilisation in Equation 2.6 also holds. Nevertheless,
when accounting the number of task sets schedulable, EDF(k;;,;,,) outperforms EDF-US[1/2]

However, in practise, global scheduling algorithms are traditionally eschewed by 0 develop-
ers due to the non-deterministic contention, potentially excessive overheads, implementation
complexity, scalability issues and cache invalidation, whose impact and costs scheduling theory
become accustomed to neglect.

As mentioned earlier, Pfair algorithms are impractical because making scheduling decisions
(e.g. preemptions, migrations) at each tight timeslice, further the associated loss of cache affinity,
plus the general communication and synchronization required, entail very high overheads. On
the other hand, does not incur such problematic overhead but still encompasses a single
centralised queue whose access is disputed by m processors. Global structures like this must be
protected by a lock mechanism to prevent concurrent data manipulation (race-conditions), which
translates directly into serious contention and lack of scalability when the number of processors
competing for the resource increases significantly.

These inherent issues constitute the reasons why global algorithms have drawn little inter-
est from research community and have been discarded from most modern implementation. Al-

though global scheduling remains controversial as a concept it is extremely appealing.

2.3.2 Partitioned

The alternative to global scheduling is partitioned scheduling, in which each processor has its own
private queue and tasks are statically and permanently allocated to them during an offline phase
such that no overload occurs (see Fig. R.3B). This permits schedulability to be verified using a
wealth of thoroughly studied real-time scheduling analyses techniques for uniprocessor systems,
as well as eliminates scalability bottlenecks. Precisely, as partitioned scheduling is simple and
scalable, the Linux scheduler was rewritten to adopt this approach in kernel v2.6, significantly
boosting its performance for many-cores machines. Yet, no true real-time scheduling policies
are natively supported by Linux.

However, the moment you treat each processor as an isolated domain and you are forced to
choose a priori where to allocate the tasks, you run into a bin-packing problem which is known
to be NP-hard in the strong sense [Garey and Johnson, 1990]. Heuristics must then be used in
order to find a fast satisfactory solution, as an exhaustive search for an optimal one is impractical.
Most common ones are First-Fit (FF] and Best-Fit (BF}. FF selects the first non-empty queue with
enough resources remaining, while BF looks for the queue where the least amount of resources

are left after allocations.
Still, even an optimal allocation may leave some processors partially idle. Hence, most parti-
tioned schedulers employ load balancing mechanisms (inter-domain migrations) for distributing

the work evenly between domains and handling load-transients. Needless to say, this clashes

14

2.4. SUMMARY

with the partitioning philosophy itself, since potentiates cache misses and overheads, causing
yet another non-deterministic latency.

Following the global algorithm trend, there exists task sets with sy, (7) at most (m+1) /2+€
that cannot be schedulable on m processors by partitioned algorithms regardless of the alloca-
tion heuristic used. However, partitioned scheduling has reached the best possible results. Lopez
et all [2000] showed that when using EDF the lowest utilisation bound of any reasonable alloca-
tion algorithm is equal to Equation 2.2, while the highest utilisation bound for the same scenario

is given by

([1/Umaz(T)Im + 1)
U (T) S L g (1] 1)

where it is assumed that n > m/([1/umaz(7)]), being n the number of task in 7.

(2.6)

They also proved that EDF-FF and EDF-BF, like all reasonable allocation algorithms that or-
der tasks by decreasing utilisation, achieve the higher limit. For the unrestricted case, where
Umaz(T) = 1, Equation 2. is attained. Therefore, EDF-FF and EDF-BF are optimal partitioning
approaches in the limited sense that their guaranteed tight utilisation bound is as large as it could

feasibly be.

2.4 Summary

This chapter introduced RTSs, where the key concept is not to be fast, but deliver determinism
and predictability to real-time applications with stringent timing constraints. An HRT| system can-
not miss deadlines under any circumstance, whereas a BRT] system may tolerate short latencies.
Afterwards, relevant real-time terminology and the periodic task model were presented. Finally,
we addressed real-time scheduling theory by discussing main scheduling concepts and by proving
a brief historical overview about real-time scheduling algorithms and their schedulability tests.
Emphasis was given to EDF schedulers, since our work embraces [G-EDF.

15

16

CHAPTER 2. REAL-TIME SYSTEMS

Chapter 3

Background

Now that embedded, mainstream, and high-end computers are being deployed on
multi-core chips, the huge challenge facing parallel programming for performance
and productivity improvements has taken on a new urgency. Many high-level paral-
lel programming models, languages, and tools have emerged in order to exploit par-
allelism in the most efficient way by easing programmers’ burden when transform-
ing or writing applications in a simple, well-defined, scalable, and portable multi-
threaded form.

However, these high-level frameworks leave the actual scheduling of resulting threads
to be performed at runtime. Therefore, if the underlying system cannot efficiently

map those threads on the available cores, then the performance achieved will be

significantly lower than the desired one.

This chapter is divided in two major sections. In section B., we discuss parallel com-
puting benefits and concerns, and we justify our approach to schedule fine-grained
parallel applications. We address, roughly speaking, two main ways of expressing
parallelism by covering some particular models. Finally, this section presents work-
stealing, a provably efficient scheduling algorithm for dynamic and irregular parallel
computations. Section introduces the Linux scheduler, focuses on the essentials
of the modular scheduling framework internals, and finishes by presenting supple-
mentary patches that provide enhanced real-time scheduling capabilities.

3.1 Parallel computing

Parallel computing is more than just a promising approach to boost applications’ performance,
or to meet the demanding modern computational requirements, by executing each application
simultaneously on multiple processors. It is a compelling vision for how computation can seam-
lessly scale from a single processor to virtually limitless computing power [Dongarra et al., 2003].
Unfortunately, expressing and achieving an highly efficient parallel computation is not trivial.
In fact, the scaling of applications’ performance to match the anytime available parallelism is a

long-lasting open problem with many related issues that need to be appropriately addressed,

17

CHAPTER 3. BACKGROUND

namely: (i) how to design parallel algorithms, (i) when to partition an application into threadsf
and to what amount, (iii) when, and in what way, do threads coordinate, communicate, and syn-
chronise, and (iv) how to schedule threads onto the processors [Gajski and Peit, 1985, Quinn,
1994]. Therefore, the development of parallel applications relies largely on the availability of
suitable software tools and environments. Consequently, much of the parallelizing burden and
responsibility falls on the application’s developer.

In this sense, there are two main strategies to develop parallel applications [Diaz et al, 2012]:
automatic parallelisation and parallel programming. In the former, existing sequential source
code is automatically parallelized by a proper compiler. Thus, it relieves the programmer from
the parallelizing burden as all it takes is the code recompilation. Nevertheless, the amount of
parallelism reached by current compiler technology is considerably low since such generic au-
tomatic conversion is extremely complex to obtain. In contrast, the latter involves developing
a parallel application from scratch. This allows programmers to efficiently express parallelism
and also to freely choose the programming model and the language. However, such coding is
difficult, sometimes unproductive and painful, as data partitioning highly depends on algorithms
design, and compiler assistance techniques have limited applicability. All in all, parallel program-
ming leads to a better performance than automatic parallelization but at the expense of more
programming efforts.

Parallel programming itself may also differ in ease and efficiency depending on the approach
adopted. Implicit threading abstracts the programmer from task decomposition and placement
details, as these are left to the compiler and runtime system. Thus the programmer just has to
identify and annotate potential parallel regions on the application. Such annotations act simply
as hints that can be ignored and safely replaced with sequential counterparts whenever the com-
piler finds them not worthwhile. Instead, explicit threading assumes that the programmer is wise
enough to be the best judge of how a particular application can be parallelized and integrated in
the system in order to extract the best attainable performance. Hence, the programmer takes
full control and responsibility for partitioning the computation into threads, mapping them onto

processors, defining the communication structure, etc..

3.1.1 Parallel programming models

A parallel programming model is an abstract parallel machine describing how parallelism can be
expressed, managed, and matched to the underlying system. Is is designed to separate software-
development concerns from effective parallel-execution concerns, providing abstraction and sta-
bility [Skillicorn and Talid, 1998]. Hence, it is not tied to any specific type of machine: any model
can (theoretically) be implemented on any underlying hardware.

However, unlike sequential programming, where the von Neumann model dominates, sev-
eral different models can be found in different parallel computations. This is a natural outcome
when modelling such an isolation layer because the level of abstraction employed may vary sig-

nificantly (e.g. closer to particular existing hardware architectures). Furthermore some parallel

LA thread refers to any independent flow of control within an application. In a parallel real-time task model, each
job spawns several threads, becoming itself the master thread.

18

3.1. PARALLEL COMPUTING

algorithms are easier to express in certain models. In addition, one or several parallel program-
ming languages, or libraries, are often associated with the parallel programming model that they
realise. Thus, the choice of model is determined by the available parallel computing resources,
by the ultimate goal of the system, and by the type of parallelism inherent to the problem.

Due to the heterogeneity of levels of abstraction involved, it is extremely hard to categorise
and compare parallel programming models neatly. In this thesis, we just consider the most rele-
vant ones within a classification based on process communication and computation decomposi-
tion properties. For a comprehensive presentation or a thorough classification, the reader is re-
ferred to literature such as Maggs et all [1995], Skillicorn and Talid [1998], Asanovic et al] [2006]
and Diaz et al) [2012].

Process communication

Process communication relates to the mechanisms by which parallel processes are able to in-
teract with each other. The most common models of communication are shared memory and
message passing. In the shared memory model, a set of threads, created when the computation
enters a parallel region, have access to a common memory. Threads communicate implicitly by
writing to and reading from a shared address space. However, as threads run asynchronously,
coordination must be handled by the programmer, and the system underneath, to manage po-
tentially conflicting accesses. Despite the necessary synchronisation constructs for concurrent
threads, a user-friendly programming perspective to memory is provided, since it can be seen
as an extension of sequential programming methodology. Moreover, data sharing between pro-
cesses is both fast and uniform due to the proximity of processors to memory. Nevertheless, as
processors must contend for access to the physical memory (typically via bus), adding processors
increases memory latency as well as traffic associated with cache management, which naturally
affects scalable performance. Performance also suffers from the lack of locality exploitation. This

model is a natural match for a shared memory architecture (illustrated in Fig. B.1)), where a single

global address space exists in which all data resides, as the one present in Bymmetric Multipro]

cessing (SMP) systems, commonly used in today’s desktops.

local local local local
= =, F3 =¥ memory | [memory | |memory | Jmemory

memary bus

C shared memory) <)
message bus

Figure 3.1: Shared memory multiprocessor Figure 3.2: Distributed memory multiprocessor

On the other hand, in the message passing model, a set of processes have their local private

19

CHAPTER 3. BACKGROUND

data structures, which belongs and can be addressed only by the corresponding processor. Any
communication between processes has to be explicitly performed by exchanging messages with
special send and receive commands. Data distribution must be carefully handled. As processors
do not share an address space, they do not have to worry about concurrent accesses or external
data manipulation from other processors. Therefore, the concept of cache coherency does not
apply. Furthermore, the lack of a common bus translates in no inherent limitation on the number
of processors; the size of the system becomes constrained only by the network structure used to
connect processors to each other. The major drawback of this model is precisely the difficulty
and costs involved in interprocessor communications, and consequently in programming, as the
programmer is responsible for defining how and when data is communicated. Distributed mem-
ory architectures (illustrated in Fig. B.2), such as supercomputer clusters, where each processor
has its own local memory, are a natural match for the message passing model.

Naturally, hybrid models do exist, where a global address space is logically partitioned into
portions, and each portion is local to one processor. The goal is to combine the productivity of

the shared memory model with the performance of the message passing one.

Computation decomposition

Any parallel application is composed of simultaneously executing processes. Computation de-
composition relates to the way in which these processes are formulated and several models can

be employed for that matter. Here, we discuss the traditional Single-Programming-Multiple]

Data (SPMD) and the increasingly popular task parallelism. An application following the
model executes on multiple processors, but each processor deals with different portions of data,

though the code is the same. The number of parallel activities (e.g. processes, threads) remains
constant throughout application execution. This is, after the initial distribution, no further par-
allelism can be expressed. In this model, the programmer has the responsibility for mapping the
parallel activities onto the available processor and load balancing. While this somehow limits
flexibility and is more cumbersome at development time, it indeed reduces runtime overhead,
since dynamic scheduling is no longer necessary. The standard MPI is based on as well as
some parallel programming languages such as UPC.

An application under the task parallelism model spawns parallel activities dynamically accord-
ing to the complexity of the problem faced by it. This is, the number of parallel activities may
vary largely during execution (so does the amount of work contained by each one of them) and
thereby adapts to the currently available parallelism. Hence, the programmer focus on decom-
posing the application into sub-computations that can, but are not mandated to, run in parallel.
Thus, all these activities need to be mapped to processors at runtime by either the language’s
runtime system, the [0F, or even a thread package. The programmer is then released from the
onus of scheduling and balancing the load. Therefore, task parallelism is steadily gaining pop-
ularity as a parallel programming model, as demonstrates its implementation in the standard
OpenMP, in several languages (e.g. Cilk, Chapel) and libraries (e.g. TBB, StackThreads/MP), and

the introduction and dissemination of lightweight processes packages such as Portable Operating
Bystem Interface (POSIX] threads.

20

3.1. PARALLEL COMPUTING

3.1.2 Fine-grained parallelism

Despite the large availability of implicit-threading technologies with lightweight processes imple-
mentations, most parallel applications are still written in a coarse-grained manner, typically with
one thread per core - task-level parallelism. Each thread is relatively big in terms of code size
and execution time, so data is transferred among cores infrequently. In contrast, a fine-grained
application dynamically spawns threads according to the problem size, rather than the number
of cores, commonly resulting in a large amount of short-living threads - data-level parallelism.
Nevertheless, other levels of parallelism can be detected in an application (see Table B.T)).

Table 3.1: Parallelism granularity

Grain size | Level of parallelism Code example Mostly parallelised by
Very fine Instruction-level Operation Processor
Fine Data-level Loop Compiler
Medium Control-level Function Programmer
Coarse Task-level Heavyweight process Programmer

In order to attain the best speed-up, the best trade-off between scheduling flexibility and
overheads needs to be found. If the granularity[a is too fine, the performance may be limited by
poor locality or excessive communication. On the other side, if the granularity is too coarse, the
performance may be limited by load imbalance.

In this thesis, we focus on moderate fine-grained parallelism, where intra-task parallelism is
expressed at a reasonable granularity, to amortize thread operation costs (e.g. creation and syn-
chronisation), provide locality, and yet yield enough flexibility for good load balancing. Nonethe-
less, this still leads to a large number of threads creation, and has the following advantages over
coarse-grained approaches [Narlikar and Blelloch, 1998]:

¢ Simplicity - Programmers can express all the worthwhile parallelism in the form of lightweight
threads, without specifying their mapping to cores. This results in a simpler, shorter,

clearer code, particularly for applications with irregular and dynamic parallelism.

¢ Portability - The resulting application is architecture independent (as long as the language
in which it was written also is), since the parallelism is not statically mapped to a fixed
number of cores.

¢ Load balance - Since the number of threads spawned is often of a much higher degree
than the number of cores that will be used, the load can be transparently and effectively
balanced by the implementation.

¢ Flexibility - Unlike coarse-grained applications, where any change to the execution order of
heavyweight threads may involve considerable programming efforts because it is explicitly
coded, fine-grained ones can be dynamically rescheduled just by tuning the underlying
scheduler.

%|n parallel computing, granularity is a qualitative measure of the ratio of computation to communication.

21

CHAPTER 3. BACKGROUND

Although the fine-grained threads model allows programmers to easily expose all the paral-
lelism in the application, scalable performance is not guaranteed. Actually, it heavily relies on
the underlying system because an efficient scheduler to map threads to processors at runtime is
mandatory. Typically, such schedulers focus on providing good data locality, keeping the over-
all overhead low, and balancing the workload to deliver good time performance [Chandra et all,
1993, Hummel and Schonberg, 1991]].

However, if the same schedulers do not take into consideration the potential memory us-
age of parallel applications, a dynamic, fine-grained one may end up generating excessive active
parallelism, which leads to a huge space requirement [Blumofe and Leiserson, 1993, Narlikar
and Blelloch, 1998]. Moreover, a space-inefficient scheduler oftentimes degrades applications
performance due to more memory page misses and consequently more memory-related system
calls. Hence, reducing the memory requirements of a parallel computation is as important as
reducing the executing time itself.

Work-stealing is a well-studied runtime scheduling paradigm that can both analytically and
empirically provide a fair combination of the above demands. Due to its high success in schedul-
ing dynamically growing multi-threaded applications, we decided to extend it to the real-time

realm.

3.1.3 Work-stealing scheduler

Work-stealing by Blumofe and Leiserson [1999] is a simple scheduling algorithm for fuIIy—strictB
multi-threaded computations which is provably efficient in terms of time, space, and communi-
cation. Unlike its variant work-sharing, where newly spawned threads are distributed amongst
(hopefully idle at that moment) processors, in work-stealing idle processors take the initiative:

I”

they attempt to “steal” threads from other processors. Thus, when all processors have work to
do, there is no need to migrate threads, and when they do not, most of the effort involved with
acquiring more work is undertaken by the idle ones.

A work-stealing scheduler employs a fixed number of worker threads (henceforth referred as
just workers), usually and preferably one per core to minimise the overhead for context switching.
Each of those workers has a local double-ended queue, called deque, to store ready threads. As
soon as a master thread is assigned to a worker and starts to be executed, it can enter a parallel
region at anytime. Newly spawned threads are enqueued at the head of the worker’s deque. For
example, as Fig. depicts, task 1 spawned three new threads, which were enqueued at the
head of deque A, while task 2 is still on a sequential region. When a worker finishes or suspends
the execution of a thread, it looks for more work at the head of its deque. Therefore, workers
treat their own local deques as a stack, pushing and popping threads from the bottom in a
order. Consequently, since most threads (primarily in fine-grained applications)
share some data with their parents, it is very likely that the data required by a recently created
thread is still in cache [Acar et al), 2000].

So far, all operations performed by the workers are completely local and no synchronisation

3All data dependency edges from a thread go to the thread’s parent.

22

3.1. PARALLEL COMPUTING

Deque A Deque B Deque C Deque D

Thread:: -- e [

Thread;

Thread; Steaﬁling

Thread:

Worker A Worker B (Wﬂrk&r C) Worker D

Task 1 - l-l Thread E | Task 2 - l-l Thread::

Figure 3.3: Work-stealing scheduler on a 4-core system

is necessary. Interaction between workers is required only when a deque runs out of work. Thus,
threads created on a processor remain stored there unless load balance is demanded, which ef-
fectively increases scheduling granularity, and hence provides good data locality and low schedul-
ing contention [Narlikar, 1999]. In this case, the idle worker becomes a thief and attempts to
work-steal from a victim worker randomly chosen. If the victim’s deque is not empty, then the
thief dequeues the thread at the tail and starts executing it; else, the thief restarts the process,
selecting another victim uniformly at random to steal from. The principle is to move load bal-
ancing costs from the busy worker to the idle one, which would otherwise be wasting CPU cycles
anyway. In Fig. B.3, workers B and D each steal a thread from deque A. Note that the order is
totally unpredictable as randomness is the key property on the stealing strategy in order to re-
duce contention, which is aggravated when many processors are idle at the same time. Locality
is favoured again by stealing in a First-In First-Out (FIFO] manner because the first threads are
the ones with higher probability to generate future workloads [Frigo et al), 1998]. Furthermore,

by having thieves operating on the opposite end of the deque than the worker they are steal-
ing from, non-blocking deques can be implemented [Arora et all, 1998, Chase and LeV, 2005,
Hendler et all, 2006] to minimise the synchronisation cost. Clearly, all deque manipulations run
in constant-time O(1), independently of the number of threads in the deque.
Following Blumofe and Leiserson [1993], we denote T}, as the minimum execution time of
a fully strict computation on an infinite number of processors and 17 as its minimum serial exe-
cution time. It is proved that the expected time 7, to execute the multi-threaded computation,
on an ideal machine with no scheduling overhead, on p processors verifies Equation B.2.
T, < h + T (3.1)
p
This time appears asymptotically optimal in the case of very parallel applications where T, <
Ty. Moreover, Blumofe and Leiserson [1993] proved that the necessary space S, for the execu-

tion satisfies

23

CHAPTER 3. BACKGROUND

Sp < é, (3.2)
p

whereas the expected total communication of the algorithm is at most T Sy P, being
Smaz the largest activation record of any thread.

One approach to schedule parallel applications using work-stealing is to include the calls to a
user-space runtime library that manages the threads themselves explicitly in the application. This
technique places a lot of onus on the programmer, requiring that the programmer is fully aware
of the runtime library and the details of scheduler, which in turn affects the productivity. Hence,
work-stealing schedulers generally resort to an alternate approach where the parallelism is ex-
pressed at a higher-level of abstraction using some parallel constructs in a language. This code
is then transformed into an equivalent version with appropriate calls to the work-stealing run-
time library using a compiler. Several frameworks for parallel programming, such as TBB and Cilk,
employ this technique. However, the compiler needs to do a good job of mapping the threads
appropriately in order to match the performance of a good hand-written application with direct
calls to runtime.

Therefore, implementing a work-stealing scheduler at the kernel level, by exploiting the [0S's
capabilities, allows one to finally switch from the current support of user-space runtime libraries
or compilers to native support from the operating system. Furthermore, existing user-level work-
stealing schedulers are not effective in the increasingly common setting where multiple applica-
tions time-share a single multi-core, suffering from both system throughput and fairness prob-
lems [Ding et all, 2012].

3.2 The Linux scheduler

Linux is, in simplest terms, a non-commercial General-Purpose Operating System (GPOS]. It was

originally developed by Linus Torvalds, in 1991, specifically for the Intel 80386 microprocessor.

Since then, Linux has evolved and grown at a spectacularly high pace due to the early adoption

of the GNU General Public License (GPL), which makes its source code open and available to

anyone to study and modify (as hundreds of developers worldwide do and as we did in this work).
Witnessing this tremendous success is the fact that, today, Linux runs on more than 90% of the
500 fastest supercomputers, leads the servers’ segment, and has a strong presence on embedded
systems such as smartphones (yes, Android is built on Linux!), watches, televisions and network
routers.

The Linux kernel is the heart of every Linux system. The kernel is the lowest-level software
layer that interfaces with the hardware, and expertly manages the limited resources. One of
the most important kernel subsystems is the process scheduler, or simply the scheduler as here-
inafter designated. The scheduler decides which processﬂ to run at any time instant, and it is
its responsibility to share the finite resource of CPU time among all runnable processes in the

system.

*In this thesis, task and process are used as synonyms.

24

3.2. THE LINUX SCHEDULER

How the scheduler works affects how the system behaves. Because Linux is a multitasking
system, the scheduler must give to users the impression that the CPU is always available. Even on
a multi-core machine, where processes can actually execute concurrently, when there are more
processes than CPUs, the scheduler is responsible for switching between processes at very short
time frames to give the illusion of simultaneous processing. Of course different processes have
different needs, and the scheduler has to play with that in an unnoticeable way. Yet, a scheduling
policy may favour task switching in order to provide an interactive system, it may privilege batch
processes and hence allow them to run longer, it may also decide that some processes are vital
for the system and should never be blocked by non-critical ones. A real-time scheduler forcibly
follows this last strategy.

In the remainder of this section, we cover the essentials of the scheduler internaIsE, with
emphasis on its modular design, and we discuss several real-time extensions to the Linux kernel
proposed by research institutions and independent developers. The purpose of this section is nei-
ther delve deep into the core scheduler logic nor describe the implementation of the scheduling
policies. For that, and much more about the Linux kernel, the reader is referred to these two
outstanding books by Bovet and Cesati [2005] and Mauerer| [2008].

3.2.1 Modular scheduler core

The Linux scheduler was completely redesigned by Ingo Molnar as a scalable and modular schedul-
ing framework, which makes the core scheduler quite extensible in a hierarchical manner. This

new modular scheduler was introduced in the kernel 2.6.23, replacing the old O(1) scheduler,

and become known as the Completely Fair Scheduler (CFS). However it does not mean that the

scheduler is broken into loadable modules, as the word “modular” traditionally suggests. There is
no mechanism to add modules on-the-fly. Each of these modules translates in a scheduling class
that encapsulates specific scheduling policies logic about which the core scheduler does not as-
sume much. The core scheduler is "just” a dispatcher that drives the overall flow and performs
low-level task switches. Scheduling policies rule how and when tasks will be scheduled. While a
scheduling class may be responsible for several policies, a task belongs exactly to a single policy.

As the core scheduler hierarchically queries the scheduling classes which task is supposed to
execute next, without any knowledge about their internals, they have to provide a generic bind
between the core scheduler logic and individual scheduling strategies. Thus, each operation that
can be requested by the scheduler is represented by one function pointer, independently on how
they are (if they are) actually implemented by each class. The set of function pointers available
is collected in a special data structure called sched_classa. Without extensions necessary for
multi-core systems (we will talk about this later), the operations that can be provided are as
follows:

¢ enqueue_task() adds a new task to the runqueue. This function is called whenever a task
enters a runnable state.

SAll references to the kernel content relate to its status in the version studied (2.6.36), not the current one.
Defined in include/linux/sched.h.

25

CHAPTER 3. BACKGROUND

dequeue_task() removes a task from the runqueue. This function is invoked whenever a

task switches from a runnable into a not runnable state.

yield_task() yields the CPU giving room for the execution of other tasks. This function is
called whenever a task wants to relinquish control of the CPU voluntary.

check_preempt_curr() checks whether the currently running task should be preempted.
This function is invoked after every enqueue operation.

pick_next_task() selects the most appropriated task eligible to be executed next. This func-

tion is called after a task has been taken away from the CPU.

put_prev_task() makes a executing task no longer executing. This function is invoked be-
fore the currently running task is replaced with another one.

set_curr_task() is mostly called whenever the scheduling policy of a task is changed.

task_tick() is invoked by the scheduler at a very short periodic rate, which is defined by the
HZ macro.

task_fork() is triggered whenever a running task spawns a new task.

Besides these function pointers, a sched_class instance also contains a pointer, called next,

which establishes how classes are related in a flat priority hierarchy. As Fig. B.4 depicts, the stock

kernel is released with the core scheduler logic plus three scheduling classes, supporting five

scheduling policies in total. The real-time class deals with POSIX FP real-time scheduling and,

therefore, is the highest priority one, followed by the class which provides fairness to regular

tasks by picking, at any moment, the task with the gravest need for executing (i.e. priorities are

adjusted periodically). The idle class is the last one to be invoked by the core scheduler as it

holds no scheduling policy but handles logic for idle tasks that are active on a CPU when there is

nothing better to run. A brief description of each scheduling class is given below.

26

1. SCHED_RR. A round robin real-time policy that will let a task run until it has exhausted

its time slice if no higher priority task becomes runnable in the meanwhile. When a task
exhausts its time slice, it gets inserted at the end of its runqueue level. This way it ensures
fair assignment of CPU time to all SCHED_RR tasks of the same priority but blocks any task
below it.

. SCHED_FIFO. A first-in, first-out real-time policy whose behaviour is identical to SCHED_RR

but it has no concept of time slice. Thus, as long as a task is not blocked by a higher priority

one it will execute for as long as it wishes and then leaves its runqueue.

. SCHED_NORMAL. The default policy in a Linux system and the reason why the Linux sched-

uleris today called CFS. The idea here is to run normal tasks concurrently at precise weighted

speeds so that each task receives a fair amount of processor share.

3.2. THE LINUX SCHEDULER

CORE SCHEDULER

i
kernel/sched_rt.c kernel/zched_fair.c kernel/sched_idle.c E
:

SCHEDULING CLASSES

SCHED_FIFO SCHED_BATCH

SCHED_NORMAL SCHED_IDLE

SCHEDULING POLICIES

Figure 3.4: The linux modular scheduling framework

4. SCHED_BATCH. A policy for CPU-intensive batch tasks which do not require interactivity.
Since these tasks want to execute for a long period of time, they cannot disturb interactive
tasks. Hence they are disfavoured in scheduling decisions and typically remitted to the
background.

5. SCHED_IDLE. The last policy to be handled by the class as its tasks always have a mini-
mal relative weight (low importance). Note that SCHED_IDLE has ,despite its name, a dif-
ferent purpose than the idle class.

3.2.2 Main scheduling structures

The scheduler contains a series of data structures to represent, sort, track and manage the tasks
in the system. How the scheduler operates is strictly linked with the design of these structures.
The most important ones are: process descriptor, scheduling entity, and runqueue.

The runqueue is the key data structure of the scheduler since it manages all active tasks. In
this new scheduler, each CPU has its own runqueue data structure called rqﬂ. Nevertheless, each
active task appears on one, and just one, runqueue. Indeed, it is not possible to run a task on
several CPUs at the same time unless this task is parallelized. In this case, the task spawns threads
which are allowed to execute on different CPUs, as task scheduling makes no relevant distinction
between tasks and threads - they are both scheduling entities. Furthermore, a runnable task can
only be executed by the CPU owning the runqueue to which that task is associated. However,

"Defined in /kernel/sched.c.

27

CHAPTER 3. BACKGROUND

a runnable process may migrate to other runqueue than the one originally assigned, mostly for

load balancing purposes. Some interesting fields that can be found inside rq are:

e lock s a spin lock that protects the integrity of the runqueue and its tasks.
e nr_running accounts the runnable tasks in the runqueue.

e curr is a pointer for the currently executing task on the CPU.

e clock provides a per-runqueue time.

The most important fields on the runqueue are those that somehow relate to the set of
runnable tasks in the system. Yet, tasks are not directly managed by the general elements of
the runqueue. Instead, a class-specific sub-runqueue is embedded into the main runqueue,
so each scheduling class can implement it on a different way. For example, struct cfs_rq
holds anytime sub-runqueue status of the class as well as the disposal of its enqueued tasks.
struct rt_rq works analogously. To highlight, cfs_rq uses a time-ordered red-black tree to
store runnable tasks and consequently build a “timeline” of future task execution. Fig. B.5 shows

all this at first sight confusing things.

structrg {

spinlock_t lock;

unsigned long nr_running;
struct task_struct *curr;
ub4 clock;

struct cfs_rq ofs; ———~v_|

struct ri_rqri; \

struct cfs_rq {

struct rb_roof tasks_timeline;
struct rb_node *rb_leftmost; .

Red-Black Tree

Figure 3.5: The CFS runqueue

In a nutshell, a red-black tree is a type of self-balancing binary search tree whose nodes are
sorted by a key. The leftmost node is then the one with a lowest key value. Red-black trees allow
for efficient management of the nodes they contain, and their typically operations (i.e. insertion,
lookup and deletion) take O(log,,) time to complete, where n here is the number of elements
present in the tree. The Linux kernel provides this data type as a standard.

Each task is represented by an instance of a structure denominated task_structh, the pro-
cess descriptor, which maintains up-to-date information about it. There are several scheduling-

relevant fields included in a task_struct; among others:

» state describes the current state of the task. Fig. B.§ depicts the main process states and

transitions.

8Defined in /include/linux/sched.h.

28

3.2. THE LINUX SCHEDULER

e prioandnormal_prio denote the dynamically computed priorities of the task, whereas
static_priority is the relative priority assigned to the task when it was created (it can
be modified by the user but not by the kernel). There is also rt_priority which is a static

priority for a real-time task.
e sched_class as we have already seen connects the task to its scheduling class.

e By turn, policy denotes the scheduling policy applied to the task.

is scheduled

terminates

TASK_RUNNING TASK_RUNNING

(ready) (running)

_// TASK_ZOMBIE
[stopped)

is preempted

sleeps

wakes u
P TASK_INTERRUFTIBLE

ar

TASK_UNINTERRUFTIBLE
(blocked)

Figure 3.6: Transitions between process states

However, the scheduler does not operate directly on tasks because is not restricted to sched-
ule tasks. Infact, it can schedule a whole group of them. The concept of scheduling entity denotes
this generality. Such an entity is implemented in a modular fashion as well due to the inevitable
class-dependency. Therefore each processor descriptor contains an instance of sched_entity
and sched_rt_entity structures, which serve the class and the real-time one, respectively.
These structures typically encompass statistical elements, group scheduling fields and, of course,
the actual and some historical task details. For instance, in sched_entity, on_rq indicates if
the entity is currently enqueued in a runqueue, while sum_exec_runtime records the consumed
CPU time when the entity is executing.

Note that despite a task is necessarily a scheduling entity the inverse statement is not true in

general. In our work we equate both since we are concerned only with task scheduling.

3.2.3 Multiprocessor-dedicated logic

So far, all that has been said is totally general and, therefore, can be applied to single core and
multi-core systems as well. Naturally, Linux provides several pivotal enhancements to efficiently

make use of multiprocessor machines, whatever form they come. Notice, however, that these

29

CHAPTER 3. BACKGROUND

enhancements, specially scheduling related ones, add much complexity to the scheduler, so they

must be anytime addressed carefully. Here we will just consider some mechanism in a simple

way to show the essential principle.

In order to ensure good scheduling on multi-core systems, the scheduler must address a few

additional issues:

As we have discussed in previous sections, the CPU load must be distributed as evenly as
possible over the available cores. It is a completely waste of resources, and a significantly
decrease in throughput, if four concurrent applications are assigned to one CPU, while
there is one dealing with the idle task.

It has to be possible to set the affinity of a task to a specific CPU or a subset of CPUs.
This allows one, for example in a 4-cores system, to dedicate one CPU to a single batch

application, whilst binding the remaining tasks to the others three CPUs.

Last but not least, the scheduler must be able to migrate tasks across CPUs. However, this
feature may severely impair performance if used in an ad-hoc manner. For instance, cache
misses are the biggest concern on a small system, whereas on a large system a CPU
can be located literally some meters away from the target memory, resulting in a extremely

costly access operation.

Needless to say that a multiprocessor Linux kernel (one configured with CONFIG_SMP) re-

quires extensions to the afore-mentioned data structures to satisfy the above conditions.

task_struct includes the cpus_allowed field which is a bit mask representing the affinity

of a task to particular CPUs. By turn, sched_class is augmented by additional functions:

select_task_rq() selects the best suited runqueue for a task. This function is invoked when-

ever a new task enters the system or wakes-up.

set_cpus_allowed() is called to modify a given task’s CPU affinity. Depending on the new

parameters, it may be responsible for initiating a task migration.

load_balance() checks if the runqueue is balanced within its scheduling domain (explained

afterwards); attempts to move tasks when the answer is negative.

pre_schedule() performs scheduling decisions before the actual schedule. This function is
invoked inside the main schedule routine.

post_schedule() differs from the previous function only in the invocation moment, which
is after the actual schedule.

Linux sticks to the model in a sense that the kernel should not have any bias toward one

CPU with respect to the remaining ones. Nonetheless, as multi-core machines come in many

different flavours (e.g. hyper-threading chips, and NUMA architectures, permutations be-

tween the three), the scheduler behaves accordingly for system performance benefit. This is,

30

3.2. THE LINUX SCHEDULER

in order to extract the best perform out of a multi-core system the scheduler sophisticatedly
takes into consideration the topology of the CPUs, specially for load balancing purposes, so it
can migrate tasks intelligently. For that, the notion of scheduling domains is supported by the
kernel, and each runqueue (CPU) is associated to one scheduling domain through the addition
of a sched_domain® structure pointer (field sd) inside rq.

Long-story short, a scheduling domain is a set of CPUs, which share some hardware charac-
teristics, and whose workloads should be kept balanced by the scheduler. Scheduling domains
are hierarchically organised: a multi-level system will have many levels of domains, and each
level may contain different domains. A small system, like the one considered in our work,
typically has a single domain which spans every CPU available. Thanks to this hierarchy, the
runqueue balancing algorithm can be easily tuned for any type of multi-core architectures, or

technologies, and therefore it can be performed in a rather efficient way.

3.2.4 Real-time scheduling on Linux

The existing real-time scheduling policies perform very well in their own domain of application,
however, they cannot provide the timing guarantees a real-time system requires as no concept
of actual timing constraints (e.g. deadlines) can be associated to tasks. Moreover, the latency
that may be experienced by a task cannot be bounded, since it highly depends on the number
of runnable tasks assigned to that particular scheduling policy at that time. These issues are of
paramount criticalness when running time-sensitive or control applications. Therefore, without
a true real-time scheduler, one cannot derive a feasibility analysis of the system under develop-
ment.

Due to this lack of real-time support in the mainstream, some companies started deploying
modified versions of the Linux kernel with enhanced real-time capabilities. Although, these non-
standard versions of Linux have commercial purposes. Thus, they are not free and their develop-
ment is restricted to a small community. Fortunately, following the GNU spirit, several real-time
extensions have been proposed to the Linux kernel mainly by research institutions and indepen-
dent developers. Among these research projects, which have been invaluable in demonstrating
the capabilities and limitations of new multi-core resource allocation techniques on actual hard-
ware, the works more related (so-to-say) to our proposal of supporting full deadline scheduling
for real-time parallel computations in the Linux kernel are LITMUS”*T and SCHED_DEADLINE.

LITMUS®T [Calandrino et all, 2006] is a plugin-based scheduling framework for the Linux
kernel, which supports the sporadic task model under a wide variety of implemented real-time
policies, targeting both global and partitioned scheduling. The project focus primarily on the
experimental evaluation of multiprocessor scheduling algorithms and synchronisation protocols
for real-time system, from a research point of view. In that regard it simplifies such prototyping
by providing abstractions and interfaces within the kernel.

SCHED_DEADLINE (originally named SCHED_EDF) [Faggioli et al), 2009] is a scheduling class
for the Linux kernel that mimics the standard real-time class but employs an EDF policy. It im-

°Defined in include/linux/sched.h.

31

CHAPTER 3. BACKGROUND

plements partitioned, global and clustered scheduling by applying CPU affinities and by allowing
dynamic task migrations across CPUs, using push and pulls operations. This scheduling policy can
handle periodic, sporadic or aperiodic tasks once it uses the Constant Bandwidth Server (CBS)
[Abeni and Buttazzd, 1998] to provide bandwidth isolation (i.e. no task is permitted to execute
longer than its budget every deadline length time interval). Therefore hard and soft real-time
tasks can cohabit in the same environment as they do not interfere with each other even when
they misbehave.

Nevertheless, none of those patches directly supports parallel real-time tasks. It has also to
be said that both of them haven’t become part of the official Linux kernel yet. While this is clearly
the aim of SCHED_DEADLINE, as itsimplementation is (at the time of this writing) being kept lined
up with the mainstream kernel and is POSIX-compliance, LITMUS?T does not share this concern
which eventually make it obsolete by now.

Despite any real-time scheduler whatsoever being added, Linux intrinsically presents some
limitations for real-time systems since as a its primary design goal is to optimise the average
throughput. Namely unpredictable latencies, non-preemptable sections, and coarse-grained tim-
ing resolution are potential issues for real-time applications [Scordino and Lipari, 2006]. Thank-
fully some meaningful efforts have been redirected into this direction.

In fact, even HRT] tasks can be scheduled on Linux by adopting the so called interrupt ab-
straction approach. This approach consists of creating an abstraction layer of virtual hardware
between the standard Linux kernel and the computer hardware. The resulting system is a multi-
threaded in which the standard Linux kernel is the lowest priority thread, therefore, it exe-
cutes only when the real-time kernel is inactive. The main advantage is to attain very low laten-
cies, hence it is efficient, whereas the major drawback is its invasiveness. RTLinux, Xenomai and
RTAI are notable examples where this solution was successfully implemented.

PREEMPT_RT is a quickly evolving set of patches maintained by a restrict group of skilled
kernel developers, currently led by Thomas Gleixner. The philosophy is to minimize the amount
of kernel code that is non-preemptible, while also minimising the amount of code that must be
changed in order to provide this added preemptibility. In order to accomplish an almost fully pre-
emptible kernel, most kernel spinlocks are replaced by mutexes that support priority inheritance
protocol [Sha et all, 1990], which solves the problem of unbounded priority inversion. Moreover,
all interrupts are moved to kernel threads so they become schedulable. By attaining a predictable
behaviour in critical kernel activities, a more deterministic Linux kernel is obtained, which is the
most important property of any RTOS.

A priority inversion happens when a higher priority task is blocked on a shared resource
owned by a lower priority task. If the lower priority task task is preempted by a medium pri-
ority task while holding the resource, the higher priority one will have to wait for an unbounded
time.

Some features from the PREEMP_RT patch series, such as generic IRQs and hrtimers, have
found their way into the mainline kernel. Other useful features remain as add-ons because, while
increasing determinism, they often result in higher kernel overheads, and consequently lower

throughput, which goes against the principles governing Linux.

32

3.3. SUMMARY

3.3 Summary

In this chapter we saw how parallelism can be explored by programmers and in what way that
may affect productivity and performance. As we are concerned with the scheduling of highly
heterogeneous real-time parallel applications for shared memory architectures, we highlighted
the characteristics of the followed models to generate work, namely the task parallelism model
and shared memory one. In order to efficiently schedule such fine-grained and dynamic parallel
computations, a time-, space-, and communication-aware scheduler must be employed. Work-
stealing, which we explained in detail, not only provably assures that, but also automatically
balances the workload in the system. The scheduler we present in the next chapter is a variant
of this scheduling algorithm, typically implemented in a language runtime system.

In this chapter, we investigated how to implement our proposal in Linux, due to its free and
open-source nature. Namely, we discussed the Linux modular scheduling framework, we looked
at the main data structures of the Linux scheduler, as well as its support for multiprocessor sys-
tems. At the end, we pointed out few of the limitations it faces regarding real-time support,
while mentioning some patches that attempt to overcome those cases. The SCHED DEADLINE

scheduling class, whose implementation inspired our work, was briefly described here.

33

34

CHAPTER 3. BACKGROUND

Chapter 4

Real-Time Work-Stealing

The motivation for this project was outlined in Chapter fl. Based on that, the next
chapters discussed the main theory behind our proposal. In Chapter P, we covered
the real-time scheduling world, pointing out the chosen directions for our model.
Chapter Bintroduced parallel computing strategies to effectively exploit parallelism,
explaining how we can efficiently map threads to cores. This guided our design from
top to bottom. Furthermore, Chapter B has also laid down the foundation for our
implementation by describing the Linux scheduler. It is now time to bringing it all
together.

Meant to be used natively as an [0Y scheduler, is a novel scheduling approach,
which combines the policy with a priority-based locality-aware work-stealing
load balancing scheme, enabling parallel real-time tasks to run on more than one

processor at a given time instant.

In this chapter, we provide a detailed description of all the work devised regarding
the RTWS scheduler and justify our options. The next section describes the state-
of-art in parallel real-time scheduling, shortly comparing to the system model we
present in Section B.2. Then, Section [.3 follows by discussing the algorithm de-
sign, with emphasis being given to: (i) data structures, (ii) major rules, and (iii) sub-
policies. The last major contribution of our work is the RTWS implementation in the

Linux kernel. The core of this complex proceeding is analysed in Section .4,

4.1 Related work

Task-level parallelism is a form of parallelization of code across multiple processors in parallel
computing environments. Many real-time applications have a lot of potential parallelism which
is not regular in nature and which varies with the data being processed. Parallelism in these
applications is often expressed in the form of dynamically generated threads of work that can be
executed in parallel. The goal is to allow the programmer to express all the available parallelism
and let the runtime system execute the program efficiently.

Considerable work on scheduling of parallel tasks can be found in [Agrawal et all, 2008, Arora

35

CHAPTER 4. REAL-TIME WORK-STEALING

et all, 1998, Blelloch et all, 1999, Hummel and Schonberg, 1991, Polychronopoulos and Kuck,
1987, Turek et al), 1994]. However, it cannot be applied to real-time systems since timing con-
straints are not contemplated. Real-time scheduling of parallel tasks started to be addressed
in 1989 when Han and Lin [1989] have shown the NP-hardness of preemptive scheduling paral-
lel jobs, and the intractability of many parallel scheduling problems. The non-preemptive case
was later studied by Wang and Cheng [1992] which proposed a heuristic based on the makespan
metric. Ludwig and Tiwari [1994] also took makespan into consideration for scheduling parallel
malleable tasks and their relation to non-malleable ones. However, these early works impose
many limitations on the number and configuration of processors allotted to a task.

From an optimisation point of view, some research has studied cache-aware schedulers for
multi-threaded tasks [Anderson and Calandrino, 2006, Calandrino and Anderson, 2009]. Ander
son and Calandring [2006] consider Pfair algorithm and encourage tasks of the same weight to
be co-scheduled in order to minimise cache misses. Calandrino and Anderson [2009] show a
significant performance improvement, with a slight overhead trade-off, when their cache-aware
scheduler does accurately profiling. Nevertheless, in both works the parallelism degree of a job
cannot be greater than the number of processors in the system.

Most prior work in parallel real-time scheduling makes simplifying assumptions about task
models [Collette et all, 2008, Jansen, 2004, Kato and Ishikawa, 2009, Lee and Le€, 2006, Mani-
maran et al], 1998], assuming that the parallelism degree of jobs is known beforehand and using
this information when making scheduling decisions. In practice, this information is not easily
discernible, and in some cases can be inherently misleading. For instance, Jansen [2004], Lee
and Lee [2006] and Collette et all [2008] focus on malleable tasks, where tasks can efficiently
execute on any number of processors and change it at runtime. On the other hand, Manimaran
et al] [1998] and Kato and Ishikawd [2009] investigate the scheduling of moldable tasks, where
the number of processors allotted to a task is defined before execution. The latter work, in its
Gang EDF algorithm, also restricts the number of parallel threads within a task to its associated
number of processors, while the former work considers non-preemptive EDF scheduling but does
not allow the number of processors simultaneously used by a task to be posteriorly changed.

Recently, Lakshmanan et al! [2010] proposed a scheduling technique for a synchronous par-
allel task model. In this model, every task is an alternate sequence of parallel and sequential
regions, with each parallel region consisting of multiple threads of equal length that synchronise
at the end of the region. In their model, all parallel regions are assumed to have the same num-
ber of parallel threads, which must be no greater than the number of processors. Saifullah et al.
[2011] considered a more general task model, allowing different regions of the same parallel task
to contain different numbers of threads and regions to contain more threads than the number of
processor cores. It still requires, however, that each region of a task contains threads of execu-
tion that are of equal length. In contrast, this thesis considers a more general model of parallel
real-time tasks where threads can take arbitrarily different amounts of time to execute.

Furthermore, both works handle scheduling parallel tasks by decomposing them into sequen-

tial subtasks. In [Lakshmanan et all, 201Q], this technique requires a resource augmentation

bound of 3.42 under partitioned Deadline Monotonic (DM] scheduling. For the synchronous

36

4.2. SYSTEM MODEL

model with arbitrary numbers of threads in parallel regions, the work in [Saifullah et all, 2011]]
proves a resource augmentation bound of 4 and 5 for and partitioned DM scheduling, re-
spectively. Instead, we try to minimise the scheduling overhead by generating parallelism only
when required, i.e. when a processor becomes idle.

We believe that achieving predictable good performance for fine-grained task-level paral-
lelism in embedded real-time systems is important for several reasons: (i) an efficient implemen-
tation of fine-grained parallelism allows more parallelism to be exploited, which is especially
important with the expected increase in core counts in future processors; (ii) the programming
model is simplified if programmers do not need to avoid spawning small tasks, which is very diffi-
cult when task execution times can not be predicted in advance; and (iii) many real-time systems
have periodic serialisation points when input is consumed and output is produced. A natural way

to program such a system is to parallelize each interval, which then becomes a parallel region.

4.2 System model

We consider the scheduling of implicit-deadline periodic independent real-time tasks on m iden-
tical processors p1, p2, - . . , P, Using G-EDF. With [G-EDF, each task ready to execute is placed in a
system-wide queue, ordered by non-decreasing absolute deadline, from which the first m tasks
are extracted to execute on the available processors.

We primarily consider a synchronous task model, where each task 71, ..., 7, can generate a
virtually infinite number of multi-threaded jobs. A multi-threaded job is a sequence of several
regions, and each region may contain an arbitrary number of parallel threads which synchronise
at the end of the region (see Fig. f.7)). For any region with more than one thread, the threads
on that region can be executed in parallel on different cores. All parallel regions in a task share
the same number of processors and threads inherit the parent’s deadline. For now, our work is
focused on systems where all parallel threads are fully independent, i.e. except for the m-cores

there are no other shared resources, no critical sections, nor precedence constraints.

Figure 4.1: A multi-threaded job with 5 regions

The j!" job of task 7; arrives at time a; ;, is released to the queue at time r; ;, starts to

be executed at time s; ; with deadline d; ; = r; ; + 1}, with T} being the period of 7;, and finishes

37

CHAPTER 4. REAL-TIME WORK-STEALING

its execution at time f; ;. These times are characterised by the relations a; ; < r; ; < s;; < fi ;.
Successive jobs of the same task are required to execute in sequence.
During the course of its execution the jth job of task 7; can enter in a parallel region and

dynamically generate an arbitrary number of parallel threads which synchronise at the end of
k

i)j’
belonging to the jth job of task 7;. We assume n; > 2 holds for at least one task 7; in the system.

that region. A thread is denoted w?.,1 < k < n;, where n; is the total number of threads

Otherwise, the considered task set does not have intra-task parallelism.

k
(N

WCET)) C; of task 7; on a multi-core platform is the sum of the execution requirements of all of

The execution requirements of a thread wﬁj of task 7; is denoted by e Therefore, the
its threads, if all threads are executed sequentially in the same core.

Contrary to regular jobs of a task, dynamically generated parallel threads are not pushed to
the gueue, but instead maintained in a local priority-based work-stealing double-ended
gueue (deque) of the core where the job is currently being executed, thus reducing contention
on the global queue. For any busy core, parallel threads are pushed and popped from the bottom
of the deque and these operations are synchronisation-free.

The fraction of the capacity of one processor that is assigned to a task 7; is defined as its
utilisation u; = % We further define Uir = > u; as the system utilisation on the identical
multiprocessor platform II comprised of m unit-capacity processors and uj; = mazi<i<n; as
the maximum task utilisation.

A task set I' is said to be schedulable by algorithm A, if A can schedule I' such that every
7; € I" can meet its deadline d;. With [G-EDF, a task 7; executed on the identical multiprocessor
platform II comprised of m unit-capacity processors never misses its scheduling deadline under

the following conditions Goossens et al] [2003]:

urp < 1

Ung <m —up(m—1) (4.1)

Naturally, if only soft real-time tasks are considered, jobs may miss their deadlines by bounded
amounts, eliminating such restrictive utilisation limits. It has been shown that, when using
to schedule sporadic soft real-time tasks on m processors, deadline tardiness is bounded, pro-

vided total utilisation is at most m Valente and Lipari [2005].

4.3 Design

Dynamic scheduling of parallel computations by work-stealing [Blumofe and Leiserson|, 1999] has
gained popularity in academia and industry for its good performance, ease of implementation
and theoretical bounds on space and time. Work-stealing has proven to be effective in reducing
the complexity of parallel programming, especially for irregular and dynamic computations, and

its benefits have been confirmed by several studies Navarro et all [2009], Neill and Wierman

38

4.3. DESIGN

[2009].

However, the need to support tasks’ priorities and deadlines fundamentally distinguishes the
problem at hand in this thesis from other work-stealing choices previously proposed in the liter-
ature Guo et al] [2010], Mrba et al] [2009, 2010]. With classical work-stealing, threads waiting for
execution in a deque may be repressed by new threads, which are enqueued at the bottom of
the worker’s deque. As such, a thread at the top of a deque might never be executed if all work-
ers are busy. Consequently, there is no upper bound on the response time of a multi-threaded
real-time job.

Therefore, considering threads’ priorities and using a single deque per core would require,
during stealing, that a worker iterate through the threads in all deques until the highest priority
thread to be stolen was found. This cannot be considered a valid solution since it greatly increases
the theft time and, subsequently, the contention on a deque.

Using a single global concurrent priority-based deque is also not viable. While priority queues
are often used in single core schedulers, when moving to a parallel context, concurrent priority
queues are hard to make both scalable and fast Lenharth et al! [2011]. Furthermore, the se-
mantics of priority queues naturally suggest an ordered insertion method, which is against the
work-stealing deque philosophy.

Our proposal is to replace the single per-core deque of classical work-stealing with a per-core
priority queue, each element of which is a deque. A deque holds one or more threads of the same
priority. At any time, a core picks the bottom thread from the highest-priority non-empty deque.
If it finds its queue empty, it steals a thread from the top of the highest-priority non-empty deque
of the chosen core’s queue. Fig. .2 provides a first depiction of the overall design.

queue deque

-’H_,..—f-"""_——_._-____"""'-___

] - @ @ — @
glabal b
queue MF —-—P- -
H_/""'-
-
.,_/""‘l
HP = high priority
L MP = medium priority
= low priority
_h_f"‘\
P2 | <= |me| —> -
a
@
‘_f"‘-

Figure 4.2: Overview of the RTWS data structures design

Notice that with this design all queue manipulations are straightforward since empty deques
do not actually remain stored (we just mention non-empty deques for ease of understanding).
Thus, no benefit from traditional work-stealing properties is lost while we assure determinism

and predictability.

39

CHAPTER 4. REAL-TIME WORK-STEALING

Among the various possible alternatives for designing a global real-time scheduler [Branden-
burg and Anderson, 2009], the simplest and most commonly used ones are: (i) a single global
gueue from where tasks are consecutively dispatched to cores, and (ii) a distributed approach
where each core has its own queue and tasks are dynamically allotted to those queues through
migrations. Advantages of the former are the easy management of the unique queue, no need to
synchronise between clocks of different CPUs, and, most of all, optimal picking of work because
the scheduler has not to decide where to enqueue ready tasks. Moreover, the selection of what
task to run next is straightforward, assuming a somehow ordered global queue. Nevertheless,
such an approach has a serious drawback: performance degradation when the number of cores
accessing it increases. This happens because in order to keep the queue consistent (i.e. to ensure
that only one core concurrently manipulates the queue), it must be protected by a lock mech-
anism. Naturally, as a SMP system gets larger, the lock contention overhead considerably gets
higher, eventually becoming the scalability bottleneck.

Onthe other hand, the latter case has the benefit of solving this scalability problem since each
core selects runnable tasks only from its queue. Hence, contention received by any local queue
is much lower and independent of the addition of CPUs. However, as a distributed approach
implies the allotment of tasks to CPUs in the first place, this raises several disadvantages. Queue
management is rather costly and complex due to the indispensable dynamic task migration and
consistence of scheduling data information. Furthermore, making a good global scheduling de-
cision is technically difficult due to the lack of synchronisation between CPUs’ clocks.

As depicted in Fig. .2, our proposal adopts a single global queue for job-level scheduling,
and, in last resort, a global distributed approach alike for parallel threads scheduling (this will be
explained in the next section). This way the probability of acquiring a contended lock is minimised
and threads are seldom migrated (only when a CPU would otherwise be idle). Thus, we mitigate

both approaches drawbacks, while we conciliate and extract the best out of them.

4.3.1 Rules

The correctness and efficiency of a scheduling algorithm cannot be assured just by the data struc-
tures used by it and the flow connecting them. A set of rules to determine which m tasks must
be executed on the m available CPUs is compulsory.

The proposed RTWS scheduler encompasses a G-EDF scheduling policy combined with a
priority-based work-stealing load balancing scheme, used to allow parallel tasks to execute on
more than one processor at any moment. The goals are to fit a wide-range of parallel real-time
systems, reduce scheduling overheads, improve system performance by efficiently managing dy-
namic parallelism, and guarantee the schedulability of the system by G-EDF. Needless to say, in

order to accomplish such goals some rules must be defined. We describe the major ones below.

¢ Rule A: a single global ready queue exists in the system, ordered by non-decreasing abso-
lute deadlines. At each instant, the higher priority (with shorter absolute deadline) jobs
are scheduled for execution.

¢ Rule B: whenever a job of a task 7; being executed at a processor p enters a parallel region

40

4.3. DESIGN

and dynamically generates a set of parallel threads, those threads are not pushed to the

G-EDF queue but instead maintained in the processor’s local priority queue.
¢ Rule C: as soon as a job spawns parallel threads, it starts to be handled as a thread.

¢ Rule D: each entry in the processor’s local priority queue is a deque, holding one or more
threads of the same priority. At any time, a processor first looks into its local queue, picking

the bottom thread from the highest-priority non-empty deque.

¢ RuleE:if the local queue is empty and there is no thread to pick, then a processor searches

for jobs in the G-EDF queue.

¢ RuleF:still, if there is no eligible job in the G-EDF queue, the processor will steal the earliest

deadline eligible thread from the top of the chosen busy processor’s deque.

¢ Rule G: threads will never preempt any other entity. Only arriving jobs may cause a pre-

emption.

¢ Rule H: opposed to a local thread, a stolen thread preempted by a job with a shorter dead-
lineis enqueued in the G-EDF queue (like a preempted job is) and not back to the respective

deque of the processor’s local priority queue.

Each released job is enqueued in a system-wide global queue ordered by non-decreasing
absolute deadlines, with ties broken by FIFO. At ¢ = 0, all the m cores are idle and the m higher
priority jobs are selected for execution. By following a global approach, cores are responsible for
dequeuing the highest priority jobs from the global queue, therefore, eschewing the bin-packing
problem of partitioned approaches, and achieving optimal scheduling decisions.

When entering a parallel region, a job generates an arbitrary number of threads, possibly
with different execution requirements. To reduce contention on the global queue and to avoid
uncontrolled priority inversion when stealing, each core has a deadline-ordered queue, each ele-
ment of which is a deque. Therefore, each dynamically generated thread is enqueued, following
a LIFO order, in the bottom of the respective deque, so that data locality is favoured and com-
munication and synchronisation among cores are minimised.

For each core, the local deques are the first place to look for work, not only due to the fact
that if they have work it means that there is a deadline to be met, but also to take advantage
of caches and keep overhead low. If the local deques are empty, the global queue is searched.
This step assumes that no matter how many threads the other cores in the system still have to
execute, they are able to finish their work within the deadline (the schedulability of the task set
is assured by G-EDF). Clearly, this step favours jobs in the G-EDF queue, with respect to parallel
threads generated on other cores, by reducing their latency. Recall that we try to minimise the
scheduling overhead by generating parallelism only when required, i.e. when a processor would
be otherwise idle. Moreover, we focus on reducing the worst-case response time of the tasks

and not the best, since real-time is not about fast computing but computing every task in time.

41

CHAPTER 4. REAL-TIME WORK-STEALING

Finally, if no work has yet been found, a stealing operation takes place, ensuring that the top-
right parallel thread (i.e. the oldest highest priority thread), in the chosen core is stolen. As the
oldest element in its deque, it is a good candidate for stealing because it is likely that related-data
is no longer cached. This last step helps to reduce the overall average response time and to keep
the load balanced. By having a thief operating on the opposite end of the deque than the victim,
both can perform actions on the deque concurrently as synchronisation-free mechanisms can be
implemented. Furthermore, the load balancing operation cost is imputed to a core that would
otherwise be wasting CPU cycles. The process flow diagram for this task selection procedure is
shown in Fig. .3

wiait for new — cteal from other CPU 3 < pull the rightmost thread from >_
failed < > has work the highest priority deque
T empty

check global queue E—— < pull the highest priority job > —.

has work

exdcute
T empty
. select the leftmost thread from
CPU becomes idle ————>- check local queue Tsv.;? the highest priority deque >

Figure 4.3: Process flow diagram representing rule E and F

Whenever a new job is released and enqueued in the G-EDF queue, and all cores are busy,
the scheduler verifies if the core executing the lowest priority job/thread, among all the execut-
ing jobs/threads, has a higher deadline than the newly arrived job. If this condition is true, the
job/thread is preempted. One of three possible situations occurs, depending on the properties
of the preempted entity:

1. Ajobisenqueued back in the global queue because it has not yet entered a parallel region.

2. Alocal thread (i.e. a thread currently running on the core where it was spawned) is en-
queued back in the respective deque in the core’s local priority queue. Moving all related
parallel threads would be too costly. This is the reason why we have a per-core queue of

deques.

3. Astolen thread is enqueued in the global queue in order to prevent starvation and, there-

fore, a possible deadline miss.

The process flow diagram for this task preemption procedure is shown in Fig. f.4. Note that
spawned threads will never cause a preemption because system predictability does not rely on
their parallel execution. This substantially reduces the number of context switches, while also

contributes to retard accesses to the global queue.

4.3.2 Sub-policies

In designing a work-stealing scheduler there are two scheduling sub-policies to consider: work-

first and help-first. Under the work-first policy, as soon as a job spawns a thread, it will be

42

4.3. DESIGN

remain in the appropriate
local deque
thread T stolen thread
< tﬂ?ﬁ?&;fgt:gﬁ?;ﬁgg < push to global queue >

job

higher priority job
arrives to the system

Figure 4.4: Process flow diagram representing rule G and H

swapped out, so the respective core starts working on the spawned thread eagerly. Conse-
quently, unless the spawned thread creates more threads itself, there is only the master thread
available for work-stealing. Work-first shines when computations are recursive (e.g. following
divide-and-conquer paradigm).

In contrast, the help-first policy dictates that a core continues executing the master thread
and leaves spawned threads to be stolen, so as many idle cores as spawned threads may imme-
diately participate on the computation execution. This strategy fits better in computations that

present flat parallelism (e.g. following a basic fork-join model).

RTWS supports both work-first and help-first scheduling sub-policies. However, since nested
parallelism is beyond the scope of our work, we will neglect work-first in the remaining of this

thesis, with an exception raised for the implementation discussion.

So far we have not discussed how do we elect the processor to steal from. Two approaches
are possible for selecting the victim: (i) a probabilistic approach, where the victim is chosen ran-
domly; or a (ii) deterministic approach, where the core is chosen by the priorities of the threads
waiting to be executed in the deques.

Blumofe and Leiserson [1999] demonstrate that a random choice of the stolen core is fair
and presents the advantage that the choice of the target does not require more information
than the total number of cores in the execution platform. However, random selection, while
fast and easy to implement, may not always select the best victim to steal from. As core counts
increase, the number of potential victims also increases, and the probability of selecting the best
victim decreases. This is particularly true under severe cases of work imbalance, where a small
number of cores may have more work than others [Bhattacharjee et al], 2011]. Moreover, when a
thief cannot obtain tasks quickly, the unsuccessful steals it performs waste computing resources,
which could otherwise be used to execute waiting threads. In fact, if unsuccessful steals are not
well controlled, applications can easily be slowed down by 15%—350% [Blumofe and Leiserson,
1999].

It is crystal clear that a blind probabilistic approach (i.e. a random choice where all cores
are considered) is not suitable for a real-time scheduler. Nevertheless, since in our model the
schedulability of the task set is guaranteed by G-EDF, no specific task needs to be executed in

parallel. In other words, even executing sequentially every task in the system is guaranteed to

43

CHAPTER 4. REAL-TIME WORK-STEALING

meet its deadline under any circumstance, which makes RTWS robust to small deviations from a
strict priority schedule. In fact, some priority inversion may be actually acceptable, provided it
helps reduce contention, as well as synchronisation and coordination between parallel threads.

Thus, if we discard idle cores and steal randomly only among busy cores, applications will not

suffer any performance loss. Hereinafter, we will refer to this as Busy-Aware Stealing (BAS].

Naturally, a deterministic approach (henceforth called PAS) is an obvious solution when real-

time scheduling is at stake. Priority-Aware Stealing (PAS] can be defined as follows.

Definition 1 The set of processors P; eligible for work-stealing among the set of m identical pro-
cessors P = {p1,p2,...,pm} is given by Py = {Ps|Ps € P,n,, > 1}, where n,, is the number

of threads in the local priority queue of processor p;.

Having P, an idle processor steals the earliest deadline thread w4 among the ones in the
top of the highest-priority non-empty deques (first entry in each of the processor’s local priority
queue) from the set of eligible processors Px.

Definition 2 The earliest deadline thread w.qy from the set of eligible processors Pk is defined as
Fwegr € Py : mindZ(PS), Py # 0.

Note that the 3! relation is guaranteed by the min function which, whenever there is more
than one thread with the same earliest deadline, always returns the first thread on the list.

However, this determinism may turn in large contention overhead, affecting performance
scalability. For instance, if at the same time instant 10 CPUs become idle, and there are several
CPUs with ready threads, all idle ones will disputed the access to a single queue, resulting in
considerable blocking time for 9 CPUs which could undoubtedly be better availed. A scenario like
this is much unlikely to happen using BAS.

As BAS and PAS fit well in different real-time systems, our proposal encompasses these two
stealing sub-policies. Yet, both will always select the rightmost thread from the highest-priority
non-empty deque of the target queue.

4.3.3 Scheduling multi-threaded jobs with RTWS

Consider the following task set, described by WCET and period, 71 = (5, 10), 72 = (10, 20), and
T3 = (4,19). Task 71 executes sequentially for three time units and then spawns two threads
which have an execution requirement of one time unit each. Task 7 has a sequential execution
requirement of two time units and then spawns four threads, with the first and third threads
having an execution requirement of one time unit, whereas the second and fourth threads have
an execution requirement of three time units. Finally, task 73 only executes sequentially. Note
that the task set is schedulable under G-EDH, u;; = 0.5 and Uy = 1.21.

Fig. B.5 depicts a possible schedule generated by RTWS for those three tasks in two identical
processors, when applying help-first and PAS sub-policies.

All tasks are released at ¢ = 0. The ones with a lower deadline, 7 and 73, are selected for

execution in the two cores. In the interval t = [0, 5] none of the cores is idle. Therefore, task

44

4.4. IMPLEMENTATION

Py |W1_|1 |W1,11 | Wy, | W1,14 |W1.11 |""'l":a.|1 |W?_|1 |W?,1' | Wy |W2,1[' |""'l":a.1;1 |Wz.| | | W | | |

v -
Pz W-E,IJ |‘-'\l".'e..1J | W.!.'I' | W-Ul | | | |W}_12 | WJ,'I! | W},12 Wllzl |W1,11 |W],21 ‘n"-"Lz3
a 5 10 15

Figure 4.5: A RTWS schedule example

71 executes sequentially, although it spawns parallel threads. At t = 5, task 7 is scheduled for
execution in core 1. Its sequential part executes until ¢ = 7 and then it spawns four threads. As
core 2 isidle at time ¢ = 7 and there is pending work in the priority queue of core 1, it is able to
work-steal. Therefore, at t = 7, core 2 steals w%}l from the highest-priority non-empty deque of
core 1.

At t = 10, a job from task 7; is released and preempts w%jl, which has a lower priority.
According to the RTWS policy, w%yl is enqueued in the global queue until one of the cores is able
to finish its execution. In the depicted example, w%l is executed at¢ = 11 in core 1.

As core 2 is idle after t = 12, threads generated by the second job of task 7 can be executed
in parallel by both cores, by work-stealing at time ¢ = 13.

4.4 Implementation

Based on the design principles presented in section .3, we have implemented RTWS in the stan-
dard Linux kernel 2.6.36 as a new scheduling class called SCHED RTWS. In this section, we will
dive into the code: (i) presenting the added data structures, (ii) analysing the main implementa-
tion logic, and (iii) showing the differences between theory and practise.

As we have seen in section B.2.7], the Linux kernel has three native scheduling classes, hi-
erarchically organised to establish a priority order between them. In order to create our new
scheduler module, we need to code it in a separate file (kernel/sched_rtws.c) and position
it anyhow in the module’s hierarchy. Not surprisingly, the RTWS class is placed on the top of the
hierarchy, becoming the highest priority module in the system, as shown in Fig. i.6. The reason
is because we will be dealing with time-sensitive real-time parallel tasks which cannot be delayed
by ordinary tasks.

CF > Idle

Y

RTWS » RT

Figure 4.6: Priority hierarchy of scheduler modules

Before informing the core scheduler about the new highest priority module, a set of functions
specified in the sched_class structure must be implemented. Listing .7 shows the definition
of rtws_sched_class, which realises the RTWS scheduler module.

The first field (next) is a pointer to the second highest priority scheduling class in the hierar-

chy. Accordingly, rt_sched_class, which implements the two POSIX real-time policies, will be

45

-

©0

CHAPTER 4. REAL-TIME WORK-STEALING

qgueried every time RTWS fails to return a task. The other fields are functions that act as callbacks
to specific events. Section will narrowly analyse the most relevant ones. The reader may
wonder why there is no CONFIG_SMP directive isolating the multiprocessor functions. Well, we
neither intent to merged this first approach into mainline Linux, nor POSIX-compliance is a goal,
so we just focused on the scheduling features for simplicity.

static const struct sched_class rtws_sched_class = {
.next = &rt_sched_class,
/* main functions */
.enqueue_task = enqueue_task_rtws,
.dequeue_task = dequeue_task_rtws,
.check_preempt_curr = check_preempt_curr_rtws,
.pick_next_task = pick_next_task_rtws,

/* secondary functions */

.put_prev_task = put_prev_task_rtws,
.set_curr_task = set_curr_task_rtws,
.task_tick = task_tick_rtws,
.task_fork = task_fork_rtws,
.task_dead = task_dead_rtws,
.switched_from = switched_from_rtws,
.switched_to = switched_to_rtws,

/*¥ multiprocessor functions */
.set_cpus_allowed = set_cpus_allowed_rtws,
.task_woken = task_woken_rtws,

};

Listing 4.1: RTWS scheduling class

To differentiate tasks bound to our scheduling policy from other tasks in the system, we refer
to them as RTWS tasks, or RTWS jobs due to these tasks continuous recurrency. Further, we use
the term pjob when referring to a parallel thread of a job. Recall that RTWS tasks are periodic
and, therefore, are potentially endlessly releasing new instances. They present a code structure
similar to the algorithm present in Listing because their periodicity is typically time-triggered
and not event-triggered as most sporadic tasks. Note that, in this example, we ignore the com-

putation itself (i.e. no parallelism is expressed), and focus only on the periodic behaviour.

start := time_now () + offset;
while (true) {
delay_until(start);
compute () ;
start := start + period;

Listing 4.2: RTWS task algorithm example

4.4.1 Data structures

Following the scheduler code convention, we do not embed required data fields directly on the

existing structures but instead create our own. Thereby, each process descriptor is provided with

46

10

12

14

18

20

22

24

28

30

32

4.4. IMPLEMENTATION

a struct sched_entity_rtws which is an entity to schedule RTWS tasks (detailed in Listing
A.3). Remember that we neglect group scheduling, so an entity equals to a task, or a thread, as
in Linux there is no substantial difference, they are both represented by a task_struct. This
entity manages the general parameters of a RTWS task and some information about its status.
Furthermore, an additional data structure is created to manage RTWS job specific parameters

(struct rtws_job), tough a task only tracks the current job.

struct rtws_job {
atomic_t nr; /* task instance number */
u64 deadline; /* absolute deadline */

u64 release; /* absolute release time */

}

struct sched_rtws_entity {
struct hrtimer timer;
struct rb_node task_node;
u64 rtws_deadline; /* relative deadline */
u64 rtws_period; /* relative period */
struct sched_stats_rtws stats;
struct rtws_job job;
unsigned long nr_pjobs; /* number of spawned threads */

/* specifying the scheduler behaviour: */
unsigned int flags;
int help_first, throttled, stolen;

/* parallel threads fields: */
struct rb_node pjob_node;
struct rb_node stealable_pjob_node;
struct sched_rtws_entity *parent; /*¥ pointer to the RTWS entity that spawned
it */
b

struct task_struct {
volatile long state; /* —1 unrunnable, 0 runnable, >0 stopped */

struct sched_entity se;
struct sched_rt_entity rt;
struct sched_rtws_entity rtws;

Listing 4.3: RTWS scheduling entity

struct hrtimer represents a high resolution timer which is used to set and trigger tasks’
periodicity at precise instants. It also contains a pointer to a callback function, so actions can be
performed as soon as a task is released. Note that all timing parameters are set using nanosecond
time unit. task_node, pjob_node and stealable_pjob_node are required to organise RTWS

on three red-black trees serving different purposes. struct sched_rtws_stats holds statistic

47

-

©0

21

23

25

27

29

CHAPTER 4. REAL-TIME WORK-STEALING

information about the successive jobs execution of a RTWS task. help_first and stolen act
as binaries to indicate whether an entity employs the help-first scheduling sub-policy and has
been stolen, respectively, while flags and throttled are barely used to boost or throttle entity
status. The remaining fields are quite self-explanatory.

Each per-processor main runqueue is provided with a struct rtws_rq which is a sub-
runqueue holding all RTWS runnable entities assigned to that processor (detailed in Listing f.4).
Each rtws_rq points to a global runqueue (struct global_rq) where all RTWS ready jobs
are maintained before they get scheduled. Although we could access global_rq directly, we
decided to embed it for the sake of consistency. Notice, however, that any inner affiliation is
just logical because it boils down to sort pointers: the actual process descriptors are all, with no
exception whatsoever, stored in a circular doubly-linked list, called the task list.

struct global_rqg {
raw_spinlock_t lock; /* global runqueue lock */
struct rb_root tasks;
struct rb_node *leftmost_task;
unsigned long nr_running; /* number of ready jobs */

int deterministic;

|5

struct rtws_rq {
struct global_rq *global;
struct rb_root pjobs;
struct rb_node *leftmost_pjob;

unsigned long nr_running; /* number of currently stored tasks */

struct rb_root stealable_pjobs;
struct rb_node *leftmost_stealable_pjob;
u6d earliest_dl;

struct rg_stats_rtws stats; /* accounting for runqueue operations */

|5

struct rq {
raw_spinlock_t lock; /* runqueue lock */

struct cfs_rq cfs;

struct rt_rq rt;
struct rtws_rq rtws;

b

Listing 4.4: RTWS runqueues

Allready RTWS jobs are stored and sorted by increasing absolute deadline, with ties broken by
FIFO, in a red-black tree represented by its root tasks. This is the first difference between theory
and practise, because while queues (translated in linked lists under Linux) are much easier to

understand, red-black trees are more efficient for priority-ordered data management. Another

48

4.4. IMPLEMENTATION

big difference relates to the fact that each local queue of deques is implemented as two red-
black trees (pjobs and stealable_pjobs). One red-black tree is not enough because it would
required a thief to do a depth search in order to find the suitable thread, and once found, it would
demand a costly rearrangement of the tree balance.

pjobs red-black tree is ordered by increasing absolute deadline, with ties broken by LIFO,
and it contains all local pending threads plus the entity currently executing. Therefore, unless
there is a context switch taking place, the leftmost element is always the entity running on that
particular CPU. Note that, in theory, this aspect is omitted since many sources of overhead are
considered non-existent. In the other hand, stealable_pjobs red-black tree is also sorted by
increasing absolute deadline, but ties are broken by FIFO and the entity currently executing is
left out. This way the leftmost element is assured to be the top-right thread from the design
previously discussed. Thus, the desired thread from both corresponds to a leaf and pick it is
straightforward because leftmost_task, leftmost_pjob and leftmost_stealable_pjob
operate like a cache for the respective leftmost element.

Only one stealing sub-policy is adopted by all tasks. Whether it is PAS or BAS depends on the
binary behaviour applied to determinism, which matchesto 1and 0, respectively. earliest_dl
is not always the deadline of leftmost_task. It is used to keep the previous earliest deadline
until we perform the last update on rtws_rq global status. Finally, 1ock fields are spinlocks to
effectively synchronise runqueues. As these lock mechanisms keep spinning until acquire the
resource (they do not sleep like semaphores), great care must be taken in order not to delay
real-time scheduling decisions. The same goes for hierarchical locking, as deadlock situations

may arise due to interrupts being enable or concurrent inverse lock acquisitions.

4.4.2 Features

Let us now turn our attention to how the scheduling features provided by the RTWS scheduler are
implemented. First of all, in practise, we do not straightly insert every arriving job in the global
queue, waiting for CPUs to pick work, as the model suggests. Since a timer interrupt is individually
handled by a CPU, the other CPUs have no idea about the arrival of a new job. In fact, they can
notice it by checking constantly the global queue. However, constantly means at each local tick,
which might be considerably late compared to the time when the job was released. And we all
know by now that even very short delays matter in a RTS. Therefore, as Fig. 1.7 illustrates, we
employ a dispatching mechanism that we called dispatcher agent.

The dispatcher agent starts by verifying if the current CPU is free of RTWS tasks, so that the
released job can be schedule right away. In case of failing, it verifies whether there is any idle
rtws_rq or a CPU executing a lower priority task. When both conditions return false, the job
is enqueued in global_rq and waits for its turn. However, if one condition is satisfied, the
job is enqueued on the eligible rtws_rq and the kernel native resched_task function is in-
voked on that specific CPU to perform a task switch. It must be said that to the idle condition
is given preference over the other one. By adopting this particular sequence of steps, we as-

sure that jobs are scheduled when they should and where they are less costly. Thus, function

49

CHAPTER 4. REAL-TIME WORK-STEALING

job
arrives

¥

check local status
resched_task()
M
global_rq busy enqueue on
target rtws_rq

‘L Ar

(check global status > later deadline

Figure 4.7: Dispatcher agent role

all CPUs busy and
no later deadline

check_preempt_curr_rtws just has to check preemptions locally.

It goes without saying that the dispatcher agent also has to deal with waking up tasks, since
in practise many kernel subsystems rely on wait mechanisms to deliver correctness and perfor-
mance. Nevertheless, it is not worth to be illustrated here to avoid too much confusion.

Two functions are available to move elements to and from the rtws_rq:
enqueue_task_rtws and dequeue_task_rtws. Let us concentrate only on placing new tasks
on the runqueue because removing is basically the inverse but way simpler. Fig. .8 shows the

code flow diagram for enqueue_task_rtws.

enqueue_task_rtws |

—>| already on rtws_rg? |—>| return |
—>| enqueue_pjobs |
—>-| update_pjobs |

—)I p != rq-=curr && rtws_rg-=nr_running = 1 |

—P'I enqueue_stealable_pjobs |

—)-I update_stealable

Figure 4.8: Code flow diagram for enqueue_task_rtws

If the task is already stored, nothing needs to be done. Otherwise, we proceed inserting the
task on rtws_rq with enqueue_pjobs, where the scheduler takes the opportunity to update: (i)
the leftmost_pjob in case the task at hand has higher priority; (ii) runqueue related statistics;
and (iii) global information about current earliest task in this CPU. Then, if our queueing task
is not being executed and there are at least two RTWS runnable tasks, we also add it to to the
stealable_pjob red-black tree and analogously perform updates, so that it becomes available
to be stolen.

50

4.4. IMPLEMENTATION

Selecting the next task to run is performed in pick_next_task_rtws. This procedure is very

similar to the theoretical design. The code flow diagram is shown in Fig. .9,

| pick_next_task_rtws |

no runnable pjobs?
pull_job
nao ready jobs?

steal_pjob

—I-I no pjobs available? |—>| return |

ick_next_pjob

—)-I dequeue_stealable_pjob |
update_stealable

Figure 4.9: Code flow diagram for pick_next_task_rtws

pick_next_job

If no RTWS tasks are currently pending on this CPU as indicated by an empty nr_running
counter, the work is delegated to pull_job which retrieves a job from global_rq if its field
nr_runningis higher than zero; else steal_pjobisinvoked. We give up and end all the process,
passing the initiative to the real-time class, whether there is no eligible CPU for work-stealing.
Otherwise, we choose the CPU victim according to determinism value, and steal the leftmost
element from it. Note that it is implicit both pull methods being responsible for triggering se-
lected task dequeuing on target, queueing on source, and then update data.

In contrast, if leftmost_task is available at first place, pick_next_pjob extracts
sched_entity_rtws from that red-black tree. This is done using the container_of mecha-
nism since any RTWS red-black tree manages instances of rb_node that are embedded in those
scheduling entities. Now the task has been picked, but some more work is required to make it
unavailable for stealing in order to prevent concurrent execution of the same process descriptor,
which would crash the system. This is handled by dequeue_stealable_pjob.

Another key sched_class-specified function to respect RTWS rules is
put_prev_task_rtws because it is its responsibility to dispatch tasks to the proper runqueues
when they are withdrawn from CPU. Fig. presents the code flow diagram.

If the task is not on rtws_rq, then we do nothing because it certainly finished its execution,
and any necessary clean up or statistical accounting regarding task termination can be done in
task_dead_rtws. Otherwise, a preemption occurred, and when we are dealing with a pjob
spawned on this CPU, we call enqueue_stealable_pjob for the aforementioned reason. How-
ever, if that is not the case, we push task away to global_rq by invoking dequeue_pjob and
enqueue_job, respectively. Although, in between those operations, we boost pjob status by
setting flags to RTWS_SPECIAL if stolen equals to 1.

Before we look at how do we link the RTWS scheduler to user-space, a word must be said

51

CHAPTER 4. REAL-TIME WORK-STEALING

put_prev_task_rtws |

—bl is on rows_rq? |

—>| is & stolen pjob? |

—>| dequeue_pjob |

—>{ set flags = RTWS_SPECIAL |
—bl enqueue_job |

—DI is still a job? |

—'-l enqueue_stealable_pjob |

Figure 4.10: Code flow diagram for put_prev_task_rtws

about set_curr_task_rtws. While the content of other functions implemented by

sched_class_rtws that have not deserved our attention is quite generic and, therefore, has low
relevance, set_curr_task_rtws one is vital because it sets the absolute deadline for the first
instance, which may start immediately (i.e. task offset is not defined), thus not triggered by the
timer. Anyway, both timer callback and set_curr_task_rtws update scheduling parameters

by calling update_task_rtws:

static inline void update_task_rtws(struct rq *rq,
struct sched_rtws_entity *rtws_se)

atomic_inc(&rtws_se —>job.nr); /* increment jobs counter */
/* reseting flags */
rtws_se—>nr_pjobs = 0;

/* update absolute deadline */
rtws_se —>job.deadline = rqg—>clock + rtws_se—>rtws_deadline;

Listing 4.5: update_task_rtws function

Note that the job absolute deadline is always set as the sum of current time and relative dead-
line, not release time plus relative deadline as our system model states. We do so to avoid suffer-
ing from cumulative timer drift [Burns and Wellings, 2007]. While a production-quality RTS can-
not take this shortcut because it would be cheating the true timing constraints (that’s one of the
reasons to use a RTOS), we just want to validate RTWS in practise. Moreover, SCHED DEADLINE
also follows this approach, and it is important that we set equals grounds as we will experimental

compare both scheduling policies in Chapter .

52

13

15

4.4. IMPLEMENTATION

4.4.3 System calls

A system call is the standard way of allowing user-space code to trigger kernel events in order to
exploit the special capabilities of the kernel. They enable the kernel to be a transparent system
layer from the view of user applications - it is always there but never really noticed. System calls
in Linux are fast, mostly because the infrastructure is very efficient, but also due to their reduced
number. Hence, adding a system call must be a thoughtful and last resort decision. Despite the
internal kernel API is declared unstable as a design-feature, the external APl cannot be broken
under any circumstance. Therefore, once a system call is added neither it can ever be removed
nor its signature can ever be changed.

In this project, we only had access to x86 hardware. In x86, we need to modify the file
arch/x86/kernel/syscall_table_32.S in order to register new system calls. All new en-
tries must be placed on the bottom of the list, so we do not break user-space compatibility by
changing the unique identifier given to each system call. The system call name must be given
the prefix sys_, whereas the function created to trap the interrupt must use a special macro
where all input-arguments are specified. For instance, the correct macro for a system call re-
quiring three arguments is SYSCALL_DEFINE3. The macro wraps the actual function, which for
scheduler-related system calls is typically placed in sched. c. It must be said that for other plat-
forms the process differs little, since the only required change is where we add the table-lookup
address.

Each system call must inform the user application if its routine was executed and with which
result. This is accomplished by means of its return code. Generally, negative return values denote
an error, whilst positive return values (and 0) indicate successful termination. In order to copy
data safely from user-space to kernel-space, and vice-versa, functions like copy_from_user and

copy_to_user, respectively, must be used.

/**
* sys _sched_setscheduler_ex — set/change the scheduler policy but with
extended sched_param dedicate to real—time timing constraints.

* @pid: the pid in question.

* @policy: new policy.

* @len: size of data pointed by param_ex.

* @param: structure containing the extended parameters.

*/

SYSCALL_DEFINE4 (sched_setscheduler_ex , pid_t, pid, int, policy,

unsigned, len, struct sched_param_ex __user *, param_ex)

if (policy < 0)
return —EINVAL;

return do_sched_setscheduler_ex(pid, policy, len, param_ex);

Listing 4.6: sched_setscheduler_ex system call
RTWS implementation provides three system calls:

53

CHAPTER 4. REAL-TIME WORK-STEALING

1. sched_setscheduler_ex(): initially, a RTWS task is created as any task in the system, us-
ing either fork or clone system calls. After that, it may change its policy by invoking the
native sched_setscheduler system call. However, sched_setscheduler has no argu-
ment which supports real-time timing constraints parameters. sched_setscheduler_ex
solves this issue by replacing the traditional param structure with a extended one
(param_ex), where D;, T; and C; can be specified. A description of the remaining argu-
ments and the system call implementation can be found above, in Listing .6. Notice that
all parameters validation and actual policy change are delegated to

do_sched_setscheduler_ex which we is also not supported natively.

2. sched_setsubpolicies_rtws(): allows one to change scheduling sub-policy for a particular
task and stealing sub-policy for the overall system. It takes three arguments: pid_t pid,
int helpfirst, and int pas. pid identifies the task in question, helpfirst replaces
the given task rtws_se->helpfirst, whereas pas sets global_rq->determinism.
As we have seen in Section f.4.7, 0 and 1 are indeed the only acceptable values for these
last two arguments, and the system call returns an error otherwise. By default both are set
to 1, meaning that work-first and PAS are the sub-policies enforced.

3. sched_delay_until_rtws(): is responsible for setting the current task’s timer to expire at a
specific point in time, and for putting the task to sleep until then. Therefore, this system
call is intended to simulate a task periodicity. Since the periodic task model dictates that
the first job release can be delayed by an offset, sched_delay_until_rtws provides an
argument (const struct timespec __user * release) where the user can define
the first release time. After that the kernel takes full control over the timing details, guar-
anteeing periodic correctness, so that the user just has to blindly invoke this system call
at the end of each task instance. Any attempt to set the timer on the past, or invoke the
system call on a parallel thread, will output an error. As soon as the timer expire, the task

is woken up and the timer callback new_job_rtws is triggered.

4.5 Summary

In this chapter we presented the RTWS scheduler, which combines the G-EDF policy with a priority-
based locality-aware work-stealing load balancing scheme, enabling parallel real-time tasks to
run on more than one processor at a given time instant. We introduced the model that supports
RTWS applications domain, we provided the nitty-gritty details and justifications about its design,
which was guided with a distinct purpose: to bring predictability to the provably efficient work-
stealing scheduling algorithm. At last, a thorough discussion concerning RTWS implementation
in the Linux kernel was given, in which we focused on showing the differences between theory
and practise.

54

Chapter 5

Experimental Evaluation

In the preceding chapter, we introduced the RTWS scheduler for heterogeneous real-
time parallel tasks. As stated, theoretical and practical design decisions were taken
to provide efficient scheduling decisions regarding dynamic intra-task parallelism,
without jeopardising real-time guarantees, rather than increase the system’s util-
isation bound or boost the performance of applications. By efficient we mean a
scheduling policy able to minimise implementation’s sources of overhead.

Therefore, an overhead-aware evaluation of the proposed scheduling policy is re-
quired to assess its practicality. Naturally, we also have to evaluate if mixing real-
time principles with parallel computing features is worthwhile. Thus, in this chapter,
after we explain our experimental scenario, a discussion on the results collected is
presented, mainly regarding two major sources of scheduling overhead: migrations
and context switches. In order to have a comparison base, we present an evalua-
tion of SCHED_DEADLINE as well, under the same circumstances. Furthermore, we
investigate the scalability of our approach, and comment on the load balance dis-
crepancy.

Note, however, that the target of the following analysis is not to prove that our RTWS
implementation is better than other real-time policies because they serve different
purposes. Moreover, a scheduling algorithm performance analysis may be influ-
enced by a number of subtle events that affect how the system behaves, introducing
unexpected noise in the collected data.

5.1 Scenario

The experiments reported in this thesis were conducted in a machine equipped with 16 GB of
main memory and an eight-core processor, where each of the cores is running at 2.0 GHz. All
assessments were carried out under both RTWS stealing sub-policies. Hereinafter, we use the
terms RTWS-PAS and RTWS-BAS to distinguish the experiments. Every time we want to make no
distinction, we simply use RTWS.

The Linux kernel 2.6.36 was configured as follows: disabled group scheduling, CPU frequency

55

CHAPTER 5. EXPERIMENTAL EVALUATION

scaling, hyper-threading, and tickless system; HZ macro set to 1000; preemptible kernel selected
as preemption model. Since our evaluation is also based in a comparison to SCHED_DEADLINE
(version 3), we have disabled bandwidth management on it to set equal grounds.

A set of three major experiments was conducted, where in each of the experiments twenty
random task sets were used [Sousa et al), 2011], running in 2, 4 and 8 cores. In order to dy-
namically generate the task sets, we have defined the minimum task utilisation (u,,,;,) equal
to 0.1, the maximum task utilisation (u,,,42) equal to 0.5, a minimum period (7},;,) of 700 ms,
and a maximum period (1},,..:) of 800 ms. The period T; of each task was computed as T; =
Tinin + @ * (Tnaz — Tinin), Where x denotes a random value between 0 and 1.

In order to analyse the scalability of the proposed approach with respect to the number of
tasks/threads in the system, until the maximum system utilisation calculated by Equation f.1 is
reached, three utilisation windows ([Urmin, Uttmaz|) Were chosen: [0.38,0.40], [0.58,0.60] and
[0.73,0.75]. The tightness of the chosen intervals is justified by the need to ensure similarities
between task sets within the same experiment. With these parameters, we compute each task
utilisation as follows: u; is given by u; = Umin + & * (Umaz — Umin), Where > 11 ug > Utimin
and Y 7 uk < Utimas- Finally, C; is given by C; = T; * ;.

The number of parallel threads per task was dynamically derived as n; = x*(m=*2), whereas
the number of tasks (n) was totally dynamic, based on the system utilisation window condition
being satisfied (please refer to Table B.T). Note that as we keep increasing Urrjnaz, and tmaz
remains constant, n scales. We strongly believe that these parameters can deeply assess our
scheduler features.

Table 5.1: Composition of each experiment

m Total tasks Total threads

38-40% { 58-60% { 73-75% | 38-40% { 58-60% { 73-75%
2 50 82 98 128 218 216
4 102 158 193 457 703 866
8 217 320 401 1736 2720 3491

Each task was a simple fork-join application whose actual work was limited to a series of NOP
instructions to avoid memory and cache interferences. Even though RTWS is specially designed
to explore data locality, we let that aside because we will not evaluate cache misses. Each of the
task’s jobs (i) executes sequentially; (ii) splits into multiple parallel threads; and (iii) synchronises
at the end of the parallel region, resuming the execution of the master thread. Sequential, paral-
lel, and total execution times were derived randomly, with the actual total execution time upper
bounded by C;.

5.2 Overheads

Data was collected and averaged concerning the number of context switches and migrations, pa-
rameters which represent the main sources of scheduling overhead. Fig. 5.7 depicts the average
number of migrations that occurred for each scheduling policy when all cores were online. In

the case of RTWS, the number of migrations refers to the number of steals performed by the idle

56

5.2. OVERHEADS

cores, while the values collected for SCHED_DEADLINE refer to pure migrations that occurred
between cores.
B RTWS-PAS ORTWS-BAS B SCHED_DEADLINE
700
600
500
400

300

Migrations

200
100
0

1 2 3
System Utilisation (%)

Figure 5.1: Average number of migrations on the 8-core experiments

The overall results show that RTWS outperforms SCHED_DEADLINE in every experiments.
These results can be explained by our decision to favour data locality, generating parallelism only
when strictly required, i.e. when a core becomes idle. In fact, the results are far better for medi-
um/high workloads since load balancing calls are more frequently required on SCHED_DEADLINE
with the greater number of tasks. Remarkably, the number of migrations barely increases on
RTWS under such heavy circumstances. For lower workloads, the difference becomes slighter
mainly because on our scheduling policy the system lacks parallel threads to keep all cores busy.
Surprisingly, RTWS-PAS caused more migrations than RTWS-BAS; we expected it to be the other
way around due to the lesser contention time RTWS-BAS is subject. However, the difference is

so small we cannot conclude anything but blame Linux kernel’s predictability gap.

@ RTWS-PAS ORTWS-BAS 8 SCHED_DEADLINE

3500
3000
2500
2000

1500

Context Switches

1000

500

38-40 58-60 7375
System Utilisation (%)

Figure 5.2: Average number of context switches on the 8-core experiments

Regarding the average number of context switches, depicted in Fig. B.2, no matter the con-
sidered workload rate, RTWS also outperforms SCHED_ DEADLINE on the eight-core experiments.
SCHED_DEADLINE blindly assigns new jobs of a task to the core where the last job of that task
was executed, which rather frequently leads to a preemption of the running job. Contrariwise, in

RTWS, preemptions are minimised because a released job is assigned to a idle core (if available)

57

CHAPTER 5. EXPERIMENTAL EVALUATION

or inserted into the global queue when its priority is lower than the ones currently executing.
Moreover, we do not allow parallel threads to preempt other threads or jobs, unless they have
been stolen. Even though the number of context switches increases with higher system utilisa-
tions, values indicate a less than linear scalability for both policies, which can be seen as a good
behaviour. Stealing sub-policies have no impact on the number of context switches besides the
one directly related with the variance on the number of migrations. Hence, it is easily under-
standable why RTWS-PAS is shown to trigger more context switch operations. There is no need
to blame Linux kernel again.

5.3 Scalability

Before analysing the scalability results introduced by Tables and B.3, let us clarify that the
RTWS-PAS two-core experiments are treated as the base case and, therefore, every other single
experiment relates to that base case resulting in a factor - the scale up ratio. For example, a
scale up ratio of 2 means that the considered metric has doubled. Furthermore, note that this
kind of scalability is strictly and peculiarly linked to the values presented in Table b.1 because
the amount of tasks and parallel threads has greater impact on the number of migrations, and

context switches, than a core increase itself.

Table 5.2: Scale up ratios on number of migrations

m RTWS_PAS RTWS_BAS SCHED_DEADLINE
38-40% | 58-60% | 73-75% | 38-40% | 58-60% | 73-75% | 38-40% | 58-60% | 73-75%
2 1 1 1 1.13 1.10 1.08 2.75 3.27 3.08
4 5.88 5.55 5.92 6.13 5.55 5.67 11.38 12 13
8 36.38 33 31.08 34.75 32.46 29,83 45.38 48.36 55.08

According to the values reported in Table b.2, it becomes crystal clear that the obtained re-
sults suffered from some unexpected noise: even in the two-core experiments, where stealing
randomly or deterministically produces the same outcome, differences between RTWS-PAS and
RTWS-BAS can be noticed.

Still, considering the properties of our experiments, one can conclude that the number of mi-
grations is largely influenced by the number of dynamically generated parallel threads. Provided
that we create more tasks when m is increased, the number of threads exponentially grows as
can be easily seen in Table 5.1. Nonetheless, this growth factor is not directly proportional to the
scale up ratio. Note the reaction triggered by C; being constant in every experiment: the more
we parallelize, the less executing time will be assigned to each thread, faster threads will finish,
migrations will scale.

Thereby, we have to multiply the ratio of the system’s total number of threads by the ratio
of each task’s maximum number of threads to be able to find the linear scalability value. For
example, for m = 4 and a utilisation interval [0.38, 0.40], the scale up ratio is expected to be
%5; * % = 7.14. After analogously calculating for the remaining cases, it is clear that RTWS
efficiently scales as respects to the number of migrations.

Under G-EDF, context switches occur either when a job is released or when it completes.

58

5.4. LOAD IMBALANCE

Table 5.3: Scale up ratios on number of context switches

m RTWS_PAS RTWS_BAS SCHED_DEADLINE
38-40% [58-60% [73-75% | 38-40% [58-60% [73-75% | 38-40% [58-60% [73-75%
2 1 1 1 1.01 1.02 0.99 1.35 1.40 1.33
4 291 2.80 3 2.89 2.78 2.95 4.43 4.45 4.74
8 10.60 9.97 10.75 10.26 9.70 10.43 15.93 16.36 18.51

However, not every job release will swap the currently executing job. Thus, the number of context
switches over a time interval of length L is upper bounded by twice the number of jobs’ releases
during that interval. As every experiment has lasted exactly the same time and its periodicity
parameters were constant, the scale up ratio on the number of jobs is given by the scale up ratio

on the number of tasks. Intuitively, for m = 4, RTWS scales in a very efficient manner, as Table

5.3 reflects, since there are approximately twice more tasks (e.g. % = 1.93) but the scale up

ratios on the number context switches are lower than the upper bounded value of 4.

Following the same logic, for m = 8 our scheduling algorithm appears to scale poorly because

217 320 . 401
S0 N 5 = Gg = 4). Nevertheless, recall that,

in RTWS, stolen parallel threads may also preempt any schedulable entity, plus we still have to

the amount of tasks is almost four times higher (

account each thread’s completion as a context switch, seriously inflating the upper bounded scale
up ratio from [G-EDR. In this case, it is particularly noticeable by having to dispatch an incredibly
high number of threads, which in turn also potentiates work-stealing (please refer to Table 5.1
and Fig. again).

It must be said that scalable efficiency by itself is meaningless in a RTS. That is, it does not
really matter if a real-time scheduling algorithm has negligible overhead but is unable to meet all
deadlines. Oppositely, a overhead increase is justified by a gain in schedulability. However this
observation does not hold for this experimental analysis. Besides being overhead-aware, both
RTWS-PAS and RTWS-BAS did not miss any deadline, whilst SCHED_DEADLINE missed a couple.

5.4 Load imbalance

In a RTS, load balancing is not a requirement. As long as a scheduler delivers predictability to
be able to scheduled every feasible task set, it could even execute all tasks in a single proces-
sor. Nonetheless, for several reasons, included energy-wise which is of paramount importance
specially on embedded systems, it is preferable that real-time schedulers assure both. Fig. 5.3
shows the average load imbalance (in terms of overall execution times) registered in the 8-cores
experiments.

Although for low system utilisations RTWS is unable to distributed the workload with more ef-
ficiency than SCHED_DEADLINE, the reporting results are quite interesting. Among other things,
work-stealing is known as a load balancing scheme for parallel computations, so at first glance
it might be hard to understand why, in some scenarios, it fails to overcome a real-time schedul-
ing policy which has no particular feature addressing intra-task parallelism. Well, the answer is
not on the work-stealing design but on our implementation. Since Linux scheduler is a modular

framework, every time RTWS, on a certain CPU, fails to find a stealable task, it passes the lead

59

CHAPTER 5. EXPERIMENTAL EVALUATION

@ RTWS-PAS ORTWS-EAS @ SCHED_DEADLINE
1000
900
800
700
600
500
400
300
200
100

Load Imbalance (ms)

38-40 58-60 73-75
System Utilisation (%)

Figure 5.3: Average load imbalance on the 8-core experiments

to the other scheduling classes, which have no knowledge about the global status of RTWS run-
gueues. RTWS is invoked again only when RTWS tasks are assigned to that same CPU. Naturally,

this results in scheduling downtime when the work available is scarce.

5.5 Response time

The experimental results presented so far where inconclusive in order to understand if one of the
proposed sub-policies outshines the other, or whether they offer a fair trade-off between deter-
minism and low lock contention. Therefore, in this section we turn our attention to evaluating
tasks’ response time.

As we have seen early in Chapter P}, response time denotes the time elapsed between the
moment a job becomes ready to be scheduled, and the moment when it finishes its execution.
Therefore, when we consider a task’s response time using its average value, we get an idea about
how efficiently that task is being executed (parallel vs sequential performance). On the other
hand, when a task’s response time is measured by its worst-case value, it becomes clear how
strictly the schedule is being respected and how far from the deadline that task is (/axity).

In this sense, we have measured both ways of perceiving a task’s response time, not only for
RTWS-PAS and RTWS-BAS, but also for a pure G-EDF approach, ignoring intra-task parallelism and
executing sequentially for an equivalent amount of time. For the remainder of this section, we
refer to this last approach as RTWS-SEQ, and it will enlighten us whether generating short-living
threads and scheduling them under RTWS is worthwhile for real-time systems.

The obtained results are depicted in Tables 5.4 and B.5. Note that, in both tables, a scale up
ratio of 0.5 means that the considered metric has reduced to an half comparatively to the base

case which is RTWS-SEQ two-core experiments.

Table 5.4: Scale up ratios on the average response time

m RTWS-SEQ RTWS-PAS RTWS-BAS

38-40% | 58-60% | 73-75% | 38-40% | 58-60% | 73-75% | 38-40% | 58-60% | 73-75%
2 1 1 1 0.87 0.88 0.87 0.87 0.88 0.87
4 1.04 0.99 0.97 0.80 0.82 0.80 0.82 0.82 0.81
8 0.98 0.98 0.96 0.69 0.73 0.75 0.70 0.73 0.76

60

5.6. SUMMARY

It was expected that, when considering average response times, RTWS-BAS would outper-
form RTWS-PAS. However, once again, both sub-policies show identical results all over the ex-
periments. By now, it is safe to say that the conducted experiments do not led to concurrent
stealing operations as many times as we wished. Nevertheless, RTWS always achieves better
performance when intra-task parallelism is expressed than when sequential execution is con-
sidered. Moreover, its performance increases as more cores become available for work-stealing.
This allow us to conclude that RTWS provides an efficient scheduling environment for fine-grained
parallel real-time tasks.

Table 5.5: Scale up ratios on the worst-case response time

m RTWS-SEQ RTWS-PAS RTWS-BAS

38-40% | 58-60% | 73-75% | 38-40% | 58-60% | 73-75% | 38-40% | 58-60% | 73-75%
2 1 1 1 0.91 0.91 0.91 0.91 0.91 0.91
4 1.04 1.01 0.99 0.93 0.89 0.89 0.93 0.90 0.90
8 0.99 1.01 0.99 0.87 0.91 0.91 0.89 0.91 0.91

Following the previous reasoning, similarities between RTWS-BAS and RTWS-PAS prevail also
for worst-case response times. Nevertheless, worst-case response times relate to a wiser choice
of the victim core when considering task priorities since the earliest deadline ready thread has
less flexibility to support waiting times. Also, unlike average response times, worst-case response
times do not scale since, with work-stealing, we do not force parallelism, but instead it only takes
place only when a core would otherwise be idle. Recall that we favour predictability over per-
formance. Yet, the multi-threaded version of the experiments always outperforms its sequential
counterpart.

One final note about the obtained results with RTWS-SEQ. The experimental results were
almost constant, but not strictly identical, because there are no threads involved and the number

of tasks n adapts to the increasing number of cores m.

5.6 Summary

In this chapter, we presented the experimental results collected from the Linux kernel 2.6.36,
regarding dynamic generated task sets running under RTWS-PAS and RTWS-BAS. An overhead-
aware and a scalability evaluation were discussed by comparing RTWS to SCHED_DEADLINE.
RTWS was shown to outperform the latter scheduling policy, and to efficiently schedule the ex-
periments provided, at least up to 8 cores. However, due to the underlying OS’s unpredictability,
no conclusions about the impact of the two stealing sub-policies can be taken.

Furthermore, by assessing the load imbalance of both schedulers, we found that RTWS imple-
mentation needs to be tweaked in order to be pro-active concerning the work-stealing strategy.
RTWS was also shown to provide better performance when considering tasks with intra-task par-

allelism than without, through response time analysis.

61

62

CHAPTER 5. EXPERIMENTAL EVALUATION

Chapter 6

Conclusion

High-level parallel languages offer a simple way for application programmers to spec-
ify parallelism in a form that easily scales with problem size, leaving the scheduling
of the tasks onto processors to be performed at runtime. This thesis demonstrated
how to schedule highly heterogeneous parallel applications that require real-time
performance guarantees on multi-core processors. In contrast to prior work on real-
time scheduling of parallel workloads, a more general model of parallel real- time
tasks where dynamically generated threads can take arbitrarily different amounts of

time to execute was considered.

This chapter resumes its most relevant contributions and highlights some lines of

future work.

6.1 General conclusions

Modern RTSs increasingly generate heavy and highly varying workloads and it is rapidly becoming
unreasonable to expect to implement them as single core systems. In fact, a general shift from
single to multi-core processors can be seen both in the general purpose and embedded domains
as an energy-efficient way to boost applications’ performance.

Simultaneously, the proliferation of multi-core platforms have transformed parallelism into
a main concern, and dynamic task-level parallelism is steadily gaining popularity as a program-
ming model. The idea behind that model is to encourage application developers to expose every
opportunity for parallelism by just pointing out potentially parallel regions within the code. All
annotations provided act simply as hints that can be ignored and safely replaced with sequential
counterparts by the language implementation. Hence, how computations are actually decom-
posed and mapped to processors is the responsibility of the compiler and runtime systems.

By easing the developer from this burden, programming complexity is considerably reduced,
which usually translates in increased productivity. Nevertheless, if the scheduling mechanism
underneath is not simple and fast to keep the overall overhead low, such fine-grained parallelism
is not worthwhile, and all benefits will be lost.

From a scheduling perspective, work-stealing algorithms are increasingly popular, and are

63

CHAPTER 6. CONCLUSION

considered a promising approach to address the software challenge in the ongoing trend for
massive parallelism due to their provably time, space, and communication efficiency. However,
they do not contemplate timing constraints or any other form of prioritising tasks, which prevents
them for being applied to a RTS. Moreover, they are traditionally employed on the language
runtime, creating a two-level scheduling system, where predictability cannot be ensured.

In this thesis, we described how work-stealing can be redesigned to fulfill real-time require-
ments, maintaining its basic principles. Long-story short, conventional deques are replaced by a
gueue of deques ordered by increasing priority. We further applied the well-known G-EDF policy
on top of it, mixed the rules, and RTWS was born.

Taking advantage of the modularity offered by the Linux scheduler, we added RTWS to it as
a new scheduling class, in order to practically assess if our approach is viable (i.e. provides effi-
ciency and schedulability). Enhance the Linux kernel is a tremendous task, due to the complexity
of the kernel internals and high interdependence between various subsystems. Nevertheless, we
wanted to make sure RTWS is more than a interesting concept. Moreover, despite Linux is not
a RTOS, it supplies the tools and documentation we needed to get started, and is open-source.
A representative part of this thesis was dedicated to discuss RTWS implementation, and state
issues like synchronisation drifts that are not address in theory.

Experimental results showed that RTWS, in comparison to other practical work, significantly
reduces the scheduling overhead through an efficient and scalable (at least up to 8 cores) control
of migrations and context switches, while still achieves good dynamic load balancing even with
low communication costs. Furthermore, RTWS was also shown to provide better performance
when considering tasks with intra-task parallelism than without, even for short-living computa-
tions. However, during evaluation we realised that RTWS implementation has a flaw, causing
unacceptable scheduling downtime when the system utilisation is low.

Although we focused on keeping the overhead low and on achieving good data locality, sys-
tem’s schedulability was never neglect by us. In fact, our scheduling algorithm proved to be very
robust as we did not get any deadline miss on the performed experiments. Therefore, we can
pronounce that some priority inversion caused by the BAS stealing sub-policy does not compro-
mise the schedulability goals, and it even helps to reduce contention as well as to keep global
accounted information to a minimum. Yet, RTWS supports a deterministic stealing sub-policy:
PAS. The experimental evaluation did not help to have a clear picture about PAS and BAS conse-
qguences.

All in all, we can conclude that RTWS is a promising solution to efficiently schedule highly
heterogeneous and dynamic parallel real-time tasks, assuming the restrictions defined in our

system model.

6.2 Summary of the main contributions

In contrast to prior work on real-time scheduling of parallel tasks, this thesis considered a more
general and portable model of parallel real-time tasks, where dynamically spawned threads may

take arbitrarily different amounts of time to execute. That is, any task may be composed by sev-

64

6.3. FUTURE WORK

eral sequential and parallel regions, where each parallel regions may contain an arbitrary number
of threads (is not limited to the cores count), and each one of those threads may have arbitrarily
different execution needs.

Targeting the aforementioned model, we proposed RTWS, a novel scheduling algorithm that
combines the G-EDF scheduler with a priority-based locality-aware work-stealing load balancing
policy, allowing parallel real-time tasks to be executed in more than one processor at a given
time instant. The ultimate goal is to provide efficient low-level support for the scheduling of
parallel real-time, mixing real-time determinism and predictability with work-stealing space and
communication awareness.

Towards this, we implemented RTWS in the standard Linux kernel just as a proof of concept,
since Linux is not a RTOS and, therefore, is not reliable for time-sensitive applications. To the
best of our knowledge, we are the first to: (i) deal with real-time priorities (deadlines) in a work-
stealing scheduler; and (ii) to actually implement support for parallel real-time computations in
the Linux kernel. Last but not least, this research work has resulted in two scientific publications.

6.3 Future work

The research on this topic is all but over. First of all, we will address the implementation flaw
detected. One possible way to sort things out is to retry the steal operation for a static pre-
defined number of times. Another important topicis to come up with a solution, both theoretical

and practical, for the nested parallelism limitation. One possible direction is to consider parallel

multi-threaded tasks to be represented as a Directed Acyclic Graph (DAG) where nodes represent

threads and edges represent dependences between those threads. In its current state, RTWS
does not support this task model. If a stolen thread is able to spawn new threads on a CPU
different than the one who assured its schedulability, whenever a preemption occurs it would be
too costly to move them all to the global queue.

Furthermore, several improvements on efficiency of the presented implementation, namely
lock acquisition points and data structures, should be deeply studied to further reinforce our
results. A key change would be to port RTWS to recent Linux kernel versions and apply it on top
of PREEMP_RT patch set.

Many more metrics, such as cache misses and latencies, are possible to be collected. Nu-
merous experimental analyses should be considered to clarify how the peculiarities of each task
set may influence our scheduler goodness or, at least, enlighten about which stealing sub-policy
suits better a generic RTS. It would also be of great interest to test real-world applications to see
if RTWS misbehaves.

With the complexity of multi-core systems growing, it may be interesting to evaluate RTWS in
large multi-core systems that are likely to have hierarchical cache layouts. One possible extension
to RTWS for such systems could be a scheduling approach that mixes aspects of partitioning and
global scheduling. In particular, while task migrations within a cluster of cores that share some
lower level cache might be acceptable, migrations among processors that are “far apart” in the

cache hierarchy may be too expensive.

65

66

Bibliography

Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications in hard real-time systems.
In Proceedings of the 19th IEEE Real-Time Systems Symposium, page 4, Madrid, Spain, Decem-
ber 1998.

Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of work stealing. In
Theory of Computing Systems, pages 1-12, 2000.

Kunal Agrawal, Charles E. Leiserson, Yuxiong He, and Wen Jing Hsu. Adaptive work-stealing with
parallelism feedback. ACM Trans. Comput. Syst., 26(3):7:1-7:32, September 2008.

James H. Anderson and John M. Calandrino. Parallel real-time task scheduling on multicore plat-
forms. In PROC. OF THE 27TH IEEE REAL-TIME SYSTEMS SYMP, pages 89—-100. IEEE, 2006.

Bjorn Andersson, Sanjoy Baruah, and Jan Jonsson. Static-priority scheduling on multiprocessors.
In In Proc. 22nd IEEE Real-Time Systems Symposium, pages 193—202. Society Press, 2001.

OpenMP ARB. Openmp. Available at http://www.openmp.org/.

Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for multiprogrammed
multiprocessors. In Proceedings of the 10th annual ACM symposium on Parallel algorithms and
architectures, pages 119-129, New York, NY, USA, 1998. ACM.

Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Husbands,
Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams,
and Katherine A. Yelick. The landscape of parallel computing research: A view from berkeley.
Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley, Dec
2006.

T.P. Baker. An analysis of edf schedulability on a multiprocessor. Parallel and Distributed Systems,
IEEE Transactions on, 16(8):760 — 768, aug. 2005.

S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress: A notion of

fairness in resource allocation. Algorithmica, 15:600-625, 1996.

Abhishek Bhattacharjee, Gilberto Contreras, and Margaret Martonosi. Parallelization libraries:
Characterizing and reducing overheads. ACM Transactions on Architecture and Code Optimiza-
tion, 8(1):5:1-5:29, February 2011.

67

http://www.openmp.org/

Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. Provably efficient scheduling for languages
with fine-grained parallelism. J. ACM, 46(2):281-321, March 1999.

Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling of multithreaded compu-
tations. In Proceedings of the 25th ACM symposium on Theory of computing, pages 362-371,
New York, NY, USA, 1993. ACM.

Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by work
stealing. Journal of the ACM, 46(5):720-748, September 1999.

Daniel Bovet and Marco Cesati. Understanding The Linux Kernel. Oreilly & Associates Inc, 2005.
ISBN 0596005652.

Bjorn B. Brandenburg and James H. Anderson. On the implementation of global real-time sched-
ulers. In Proceedings of the 2009 30th IEEE Real-Time Systems Symposium, RTSS ‘09, pages
214-224, Washington, DC, USA, 2009. IEEE Computer Society.

Alan Burns and Andy Wellings. Concurrent and Real-Time Programming in Ada. Cambridge Uni-
versity Press, New York, NY, USA, 3rev ed edition, 2007. ISBN 0521866979, 9780521866972.

Giorgio C. Buttazzo. Rate monotonic vs. edf: judgment day. Real-Time Syst., 29(1):5-26, January
2005.

John M. Calandrino and James H. Anderson. On the design and implementation of a cache-aware
multicore real-time scheduler. In Proceedings of the 2009 21st Euromicro Conference on Real-
Time Systems, ECRTS ’09, pages 194—204, Washington, DC, USA, 2009. IEEE Computer Society.

John M. Calandrino, Hennadiy Leontyev, Aaron Block, UmaMaheswari C. Devi, and James H. An-
derson. Litmus®”: A testbed for empirically comparing real-time multiprocessor schedulers.
In Proceedings of the 27th IEEE International Real-Time Systems Symposium, pages 111-126,
2006.

John Carpenter, Shelby Funk, Philip Holman, Anand Srinivasan, James Anderson, and Sanjoy
Baruah. A categorization of real-time multiprocessor scheduling problems and algorithms. In
Handbook on Scheduling Algorithms, Methods, and Models. Chapman Hall/CRC, Boca, 2004.

Rohit Chandra, Anoop Gupta, and John L. Hennessy. Data locality and load balancing in cool.
In Proceedings of the fourth ACM SIGPLAN symposium on Principles and practice of parallel
programming, PPOPP '93, pages 249—-259, New York, NY, USA, 1993. ACM.

David Chase and Yossi Lev. Dynamic circular work-stealing deque. In Proceedings of the 17th
ACM Symposium on Parallelism in Algorithms and Architectures, pages 21-28, 2005.

Antoine Colin and Stefan M. Petters. Experimental evaluation of code properties for wcet analysis.
In Proceedings of the 24th IEEE RTSS, pages 190-199, December 2003.

Sébastien Collette, Liliana Cucu, and Joél Goossens. Integrating job parallelism in real-time
scheduling theory. Information Processing Letters, 106:180—187, May 2008.

68

Intel Corporation. Parallel building blocks. Available at http://software.intel.com/en-us/

articles/intel-parallel-building-blocks/, a

Microsoft Corporation. Task parallel library. Available at http://msdn.microsoft.com/
en-us/library/dd460717.aspx, b

Umamaheswari C. Devi and J. H. Anderson. Tardiness bounds under global edf scheduling on a
multiprocessor. Real-Time Syst., 38(2):133-189, February 2008.

Sudarshan Kumar Dhall. Scheduling periodic-time - critical jobs on single processor and multipro-
cessor computing systems. PhD thesis, Champaign, IL, USA, 1977. AAI7714943.

Javier Diaz, Camelia Munoz-Caro, and Alfonso Nino. A survey of parallel programming models and
tools in the multi and many-core era. IEEE Transactions on Parallel and Distributed Systems,
23:1369-1386, 2012.

Xiaoning Ding, Kaibo Wang, Phillip B. Gibbons, and Xiaodong Zhang. Bws: balanced work stealing
for time-sharing multicores. In Proceedings of the 7th ACM European Conference on Computer
Systems, pages 365—378, New York, NY, USA, 2012. ACM.

Jack Dongarra, lan Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda Torczon, and Andy
White, editors. Sourcebook of parallel computing. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2003. ISBN 1-55860-871-0.

Dario Faggioli, Michael Trimarchi, and Fabio Checconi. An implementation of the earliest deadline
first algorithm in linux. In Proceedings of the 2009 ACM symposium on Applied Computing,
pages 1984-1989, March 2009.

José Carlos Fonseca, Luis Nogueira, Claudio Maia, and Luis Miguel Pinho. Real-time schedul-
ing of parallel tasks in the linux kernel. In Proceedings of the 4th INForum, Lisbon, Portugal,
September 2012.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the cilk-5 multi-
threaded language. ACM SIGPLAN Notices, 33(5):212—-223, 1998.

D. D. Gajski and Jib-Kwon Peir. Essential issues in multiprocessor systems. Computer, 18(6):9-27,
June 1985.

Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990. ISBN 0716710455.

Joél Goossens, Shelby Funk, and Sanjoy Baruah. Priority-driven scheduling of periodic task sys-
tems on multiprocessors. Real-Time Systems Journal, 25:187-205, September 2003.

Yi Guo, Jisheng Zhao, Vincent Cave, and Vivek Sarkar. Slaw: a scalable locality-aware adaptive
work-stealing scheduler for multi-core systems. In Proceedings of the 24th IEEE International

Symposium on Parallel and Distributed Processing, pages 1-12, April 2010.

69

http://software.intel.com/en-us/articles/intel-parallel-building-blocks/
http://software.intel.com/en-us/articles/intel-parallel-building-blocks/
http://msdn.microsoft.com/en-us/library/dd460717.aspx
http://msdn.microsoft.com/en-us/library/dd460717.aspx

C.-C. Han and K.-J. Lin. Scheduling parallelizable jobs on multiprocessors. In Real Time Systems

Symposium, 1989., Proceedings., pages 59 —67, dec 1989.

Danny Hendler, Yossi Lev, Mark Moir, and Nir Shavit. A dynamic-sized nonblocking work stealing
deque. Distributed Computing, 18:189-207, February 2006.

S. F. Hummel and E. Schonberg. Low-overhead scheduling of nested parallelism. IBM J. Res. Dev.,
35(5-6):743-765, September 1991.

Klaus Jansen. Scheduling malleable parallel tasks: An asymptotic fully polynomial time approxi-
mation scheme. Algorithmica, 39(1):59-81, January 2004.

D. I. Katcher, H. Arakawa, and J. K. Strosnider. Engineering and analysis of fixed priority schedulers.
IEEE Trans. Softw. Eng., 19(9):920-934, September 1993.

S. Kato and Y. Ishikawa. Gang edf scheduling of parallel task systems. In Proceedings of the 30th
IEEE Real-Time Systems Symposium, pages 459 —468, December 2009.

Leonard Kleinrock. Queueing Systems, volume Il: Computer Applications. Wiley Interscience,
1976. (Published in Russian, 1979. Published in Japanese, 1979.).

K. Lakshmanan, S. Kato, and R. Rajkumar. Scheduling parallel real-time tasks on multi-core pro-
cessors. In Proceedings of the 31st IEEE Real-Time Systems Symposium, pages 259 —268, De-
cember 2010.

Doug Lea. A java fork/join framework. In Proceedings of the ACM 2000 conference on Java
Grande, pages 36—43, 2000.

Wan Yeon Lee and Heejo Lee. Optimal scheduling for real-time parallel tasks. Transactions on
Information and Systems, E89-D:1962-1966, June 2006.

J. P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In Proceed-
ings of the 11th Real-Time Systems Symposium, pages 201-209, 1990.

Andrew Lenharth, Donald Nguyen, and Keshav Pingali. Priority queues are not good concurrent
priority schedulers. Technical Report TR-11-39, The University of Texas at Austin, Department

of Computer Sciences, November 2011.

C. L. Liu. Scheduling Algorithms for Multiprocessors in a Hard Real-Time Environment. JPL Space
Programs Summary 37-60, 11:128-31, 19609.

C. L. Liuand . Layland. Scheduling algorithms for multiprogramming in a hard-real-time environ-
ment. Journal of the ACM, 1(20):40-61, 1973.

J. M. Lépez, M. Garcia, J. L. Diaz, and D. F. Garcia. Worst-case utilization bound for edf scheduling
on real-time multiprocessor systems. In Proceedings of the 12th Euromicro conference on Real-
time systems, Euromicro-RTS'00, pages 25—-33, Washington, DC, USA, 2000. IEEE Computer
Society.

70

Walter Ludwig and Prasoon Tiwari. Scheduling malleable and nonmalleable parallel tasks. In
Proceedings of the fifth annual ACM-SIAM symposium on Discrete algorithms, SODA ‘94, pages
167-176, Philadelphia, PA, USA, 1994. Society for Industrial and Applied Mathematics.

B. M. Maggs, L. R. Matheson, and R. E. Tarjan. Models of parallel computation: a survey and
synthesis. In Proceedings of the 28th Hawaii International Conference on System Sciences,
HICSS '95, pages 61—, Washington, DC, USA, 1995. IEEE Computer Society.

G. Manimaran, C. Siva Ram Murthy, and Krithi Ramamritham. A new approach for scheduling of
parallelizable tasks inreal-time multiprocessor systems. Real-Time Systems Journal, 15:39-60,
July 1998.

Wolfgang Mauerer. Professional Linux Kernel Architecture. Wrox Press Ltd., Birmingham, UK, UK,
2008. ISBN 0470343435, 9780470343432.

A.K. Mok. Fundamental Design Problems of Distributed Systems for the Hard Real-Time Environ-
ment. PhD thesis, Massachusetts Institute of Technology, 1983.

Girija J. Narlikar. Scheduling threads for low space requirement and good locality. In In Proceed-
ings of the Eleventh Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA),
pages 83-95, 1999.

Girija J. Narlikar and Guy E. Blelloch. Pthreads for dynamic and irregular parallelism. In Pro-
ceedings of the 1998 ACM/IEEE conference on Supercomputing (CDROM), Supercomputing ‘98,
pages 1-16, Washington, DC, USA, 1998. IEEE Computer Society.

Angeles Navarro, Rafael Asenjo, Siham Tabik, and Calin Cascaval. Load balancing using work-
stealing for pipeline parallelism in emerging applications. In Proceedings of the 23rd Interna-
tional Conference on Supercomputing, pages 517-518, New York, NY, USA, 2009. ACM.

Daniel Neill and Adam Wierman. On the benefits of work stealing in shared-memory multipro-
cessors. Technical report, Department of Computer Science, Carnegie Mellon University, 2009.

Luis Nogueira, José Carlos Fonseca, Claudio Maia, and Luis Miguel Pinho. Dynamic global schedul-
ing of parallel real-time tasks. In Proceedings of the 10th IEEE/IFIP International Conference on

Embedded and Ubiquitous Computing, Paphos, Cyprus, December 2012.

Cynthia A. Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-critical scheduling via
resource augmentation (extended abstract). In Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing, STOC’97, pages 140-149, New York, NY, USA, 1997. ACM.

C. D. Polychronopoulos and D. J. Kuck. Guided self-scheduling: A practical scheduling scheme for
parallel supercomputers. IEEE Trans. Comput., 36(12):1425-1439, December 1987.

M.J. Quinn. Parallel Computing: Theory and Practice. McGraw-Hill computer science series:
Networks—parallel and distributed computing. McGraw-Hill, 1994. ISBN 9780070512948.

71

Bratin Saha, Ali-Reza Adl-Tabatabai, Anwar Ghuloum, Mohan Rajagopalan, Richard L. Hudson,
Leaf Petersen, Vijay Menon, Brian Murphy, Tatiana Shpeisman, Eric Sprangle, Anwar Rohillah,
Doug Carmean, and Jesse Fang. Enabling scalability and performance in a large scale cmp
environment. ACM SIGOPS Operating Systems Review, 41(3):73—86, June 2007.

Abusayeed Saifullah, Kunal Agrawal, Chenyang Lu, and Christopher Gill. Multi-core real-time
scheduling for generalized parallel task models. In Proceedings of the 32nd IEEE Real-Time
Systems Symposium, pages 217 —226, Vienna, Austria, December 2011.

Claudio Scordino and Giuseppe Lipari. Linux and real-time: Current approaches and future op-
portunities. In IEEE International Congress ANIPLA, 2006.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: an approach to real-time
synchronisation. IEEE Transaction on Computers, 39(9):1175-1185, 1990.

Lui Sha, Tarek Abdelzaher, Karl-Erik Arzen, Anton Cervin, Theodore Baker, Alan Burns, Giorgio
Buttazzo, Marco Caccamo, John Lehoczky, and Aloysius K. Mok. Real time scheduling theory:
A historical perspective. Real-Time Syst., 28(2-3):101-155, November 2004.

Michael Short. Improved task management techniques for enforcing edf scheduling on recurring
tasks. In Proceedings of the 2010 16th IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, RTAS '10, pages 56—65, Washington, DC, USA, 2010. IEEE Computer Society.

David B. Skillicorn and Domenico Talia. Models and languages for parallel computation. ACM
Comput. Surv., 30(2):123-169, June 1998.

Paulo Baltarejo Sousa, Bjorn Andersson, and Eduardo Tovar. Implementing Slot-Based Task-
Splitting Multiprocessor Scheduling. In of 6th IEEE International Symposium on Industrial Em-
bedded Systems (SIES 11), 2011.

Anand Srinivasan and Sanjoy Baruah. Deadline-based scheduling of periodic task systems on
multiprocessors. Inf. Process. Lett., 84(2):93—-98, October 2002.

John A. Stankovic. Misconceptions about real-time computing: A serious problem for next-

generation systems. Computer, 21(10):10-19, 1988.

Kenjiro Taura, Kunio Tabata, and Akinori Yonezawa. Stackthreads/mp: integrating futures into
calling standards. ACM SIGPLAN Notices, 34(8):60-71, 1999.

John Turek, Uwe Schwiegelshohn, Joel L. Wolf, and Philip S. Yu. Scheduling parallel tasks to min-
imize average response time. In Proceedings of the fifth annual ACM-SIAM symposium on Dis-
crete algorithms, SODA '94, pages 112—-121, Philadelphia, PA, USA, 1994. Society for Industrial
and Applied Mathematics.

P. Valente and G. Lipari. An upper bound to the lateness of soft real-time tasks scheduled by edf on
multiprocessors. In Proceedings of the 26th IEEE International Real-Time Systems Symposium,
pages 311-320, December 2005.

72

Zeljko Vrba, Havard Espeland, Pal Halvorsen, and Carsten Griwodz. Limits of work-stealing
scheduling. In Proceedings of the 14th International Workshop on Job Scheduling Strategies
for Parallel Processing, pages 280—299, May 2009.

Zeljko Vrba, Paal Halvorsen, and Carsten Griwodz. A simple improvement of the work-stealing
scheduling algorithm. In Proceedings of the 4th International Conference on Complex, Intelli-

gent and Software Intensive Systems, pages 925-930, February 2010.

Qingzhou Wang and Kam Hoi Cheng. A heuristic of scheduling parallel tasks and its analysis. SIAM
J. Comput., 21(2):281-294, April 1992.

73

	Resumo Alargado
	Abstract
	Acronyms
	Introduction
	Motivation
	Contributions
	Institutional support
	Outline

	Real-Time Systems
	Definition
	Terminology and periodic task model
	Real-time scheduling
	Global
	Partitioned

	Summary

	Background
	Parallel computing
	Parallel programming models
	Fine-grained parallelism
	Work-stealing scheduler

	The Linux scheduler
	Modular scheduler core
	Main scheduling structures
	Multiprocessor-dedicated logic
	Real-time scheduling on Linux

	Summary

	Real-Time Work-Stealing
	Related work
	System model
	Design
	Rules
	Sub-policies
	Scheduling multi-threaded jobs with RTWS

	Implementation
	Data structures
	Features
	System calls

	Summary

	Experimental Evaluation
	Scenario
	Overheads
	Scalability
	Load imbalance
	Response time
	Summary

	Conclusion
	General conclusions
	Summary of the main contributions
	Future work

