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Resumo Alargado

Os sistemas de tempo real modernos geram, cada vez mais, cargas computacionais pesadas e
dinâmicas, começando-se a tornar pouco expectável que sejam implementados em sistemas uni-
processador. Na verdade, amudança de sistemas comumúnico processador para sistemasmul -
processador pode ser vista, tanto no domínio geral, como no de sistemas embebidos, como uma
forma eficiente, em termos energé cos, de melhorar a performance das aplicações.

Simultaneamente, a proliferação das plataformas mul -processador transformaram a pro-
gramação paralela num tópico de elevado interesse, levando o paralelismo dinâmico a ganhar
rapidamente popularidade como ummodelo de programação. A ideia, por detrás deste modelo,
é encorajar os programadores a exporem todas as oportunidades de paralelismo através da sim-
ples indicação de potenciais regiões paralelas dentro das aplicações. Todas estas anotações são
encaradas pelo sistema unicamente como sugestões, podendo estas serem ignoradas e subs -
tuídas, por construtores sequenciais equivalentes, pela própria linguagem. Assim, o modo como
a computação é na realidade subdividida, e mapeada nos vários processadores, é da respons-
abilidade do compilador e do sistema computacional subjacente.

Ao re rar este fardo do programador, a complexidade da programação é consideravelmente
reduzida, o que normalmente se traduz num aumento de produ vidade. Todavia, se o mecan-
ismo de escalonamento subjacente não for simples e rápido, demodo amanter o overhead geral
em níveis reduzidos, os bene cios da geração de um paralelismo com uma granularidade tão fina
serão meramente hipoté cos.

Nesta perspe va de escalonamento, os algoritmos que empregam uma polí ca de work-
stealing são cada vez mais populares, com uma eficiência comprovada em termos de tempo,
espaço e necessidades de comunicação. Contudo, estes algoritmos não contemplam restrições
temporais, nem outra qualquer forma de atribuição de prioridades às tarefas, o que impossibilita
que sejam diretamente aplicados a sistemas de tempo real. Além disso, são tradicionalmente im-
plementados no run me da linguagem, criando assim um sistema de escalonamento com dois
níveis, onde a previsibilidade, essencial a um sistema de tempo real, não pode ser assegurada.

Nesta tese, é descrita a forma como a abordagem dework-stealing pode ser resenhada para
cumprir os requisitos de tempo real, mantendo, ao mesmo tempo, os seus princípios fundamen-
tais que tão bons resultados têm demonstrado. Muito resumidamente, a única fila de gestão
de processos convencional (deque) é subs tuída por uma fila de deques, ordenada de forma
crescente por prioridade das tarefas. De seguida, aplicamos por cima o conhecido algoritmo de
escalonamento dinâmico G-EDF,misturamos as regras de ambos, e assim nasce a nossa proposta:

iii



o algoritmo de escalonamento RTWS.
Tirando par do da modularidade oferecida pelo escalonador do Linux, o RTWS é adicionado

como uma nova classe de escalonamento, de forma a avaliar na prá ca se o algoritmo proposto
é viável, ou seja, se garante a eficiência e escalonabilidade desejadas. Modificar o núcleo do
Linux é uma tarefa complicada, devido à complexidade das suas funções internas e às fortes in-
terdependências entre os vários subsistemas. Não obstante, um dos obje vos desta tese era ter
a certeza que o RTWS é mais do que um conceito interessante. Assim, uma parte significa va
deste documento é dedicada à discussão sobre a implementação do RTWS e à exposição de situ-
ações problemá cas, muitas delas não consideradas em teoria, como é o caso do desfasamento
entre vários mecanismo de sincronização.

Os resultados experimentais mostram que o RTWS, em comparação com outro trabalho prá-
co de escalonamento dinâmico de tarefas com restrições temporais, reduz significa vamente

o overhead de escalonamento através de um controlo de migrações, e mudanças de contexto,
eficiente e escalável (pelo menos até 8 CPUs), ao mesmo tempo que alcança um bom balancea-
mento dinâmico da carga do sistema, até mesmo de uma forma não custosa. Contudo, durante
a avaliação realizada foi detetada uma falha na implementação do RTWS, pela forma como facil-
mente desiste de roubar trabalho, o que origina períodos de ina vidade, no CPU em questão,
quando a u lização geral do sistema é baixa.

Embora o trabalho realizado se tenha focado em manter o custo de escalonamento baixo e
em alcançar boa localidade dos dados, a escalonabilidade do sistema nunca foi negligenciada.
Na verdade, o algoritmo de escalonamento proposto provou ser bastante robusto, não falhando
qualquer meta temporal nas experiências realizadas. Portanto, podemos afirmar que alguma
inversão de prioridades, causada pela sub-polí ca de roubo BAS, não compromete os obje vos
de escalonabilidade, e até ajuda a reduzir a contenção nas estruturas de dados. Mesmo assim, o
RTWS também suporta uma sub-polí ca de roubo determinís ca: PAS. A avaliação experimental,
porém, não ajudou a ter uma noção clara do impacto de uma e de outra. No entanto, de uma
maneira geral, podemos concluir que o RTWS é uma solução promissora para um escalonamento
eficiente de tarefas paralelas com restrições temporais.

Palavras-chave: Sistemas mul -processador, escalonamento de tempo real, intra-task paral-
lelism, EDF, work-stealing, Linux
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Abstract

Mul ple programmingmodels are emerging to address the increased need for dynamic task-level
parallelism in applica ons formul -core processors and shared-memory parallel compu ng, pre-
sen ng promising solu ons from a user-level perspec ve. Nonetheless, while high-level parallel
languages offer a simple way for applica on programmers to specify parallelism in a form that
easily scales with problem size, they s ll leave the actual scheduling of tasks to be performed at
run me. Therefore, if the underlying system cannot efficiently map those tasks on the available
cores, the benefits will be lost.

This is par cularly important inmodern real- me systems as their averageworkload is rapidly
growingmore parallel, complex and compu ng-intensive, whilst preserving stringent ming con-
straints. However, as the real- me scheduling theory hasmostly been focused on sequen al task
models, a shi to parallel task models introduces a completely new dimension to the scheduling
problem.

Within this context, the work presented in this thesis considers how to dynamically sched-
ule highly heterogeneous parallel applica ons that require real- me performance guarantees on
mul -core processors. A novel scheduling approach called RTWS is proposed. RTWS combines
the G-EDF scheduler with a priority-awarework-stealing load balancing scheme, enabling parallel
real- me tasks to be executed on more than one processor at a given me instant. Two stealing
sub-policies have arisen from this proposal and their suitability is discussed in detail.

Furthermore, this thesis describes the implementa on of a new scheduling class in the Linux
kernel concerning RTWS, and extensively evaluate its feasibility. Experimental results demon-
strate the greater scalability and lower scheduling overhead of the proposed approach, compar-
a vely to an exis ng real- me deadline-driven scheduling policy for the Linux kernel, as well as
reveal its be er performance when considering tasks with intra-task parallelism than without,
even for short-living applica ons.

We show that busy-aware stealing is robust to small devia ons from a strict priority schedule
and conclude that some priority inversion may be actually acceptable, provided it helps reduce
conten on, communica on, synchronisa on and coordina on between parallel threads.

Keywords: Mul processor systems, real- me scheduling, intra-task parallelism, work-stealing,
EDF, Linux
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Chapter 1

Introduc on

It is expected that parallel workloads to become rather common as mul -core plat-
forms become ubiquitous. In contrast to prior work on real- me scheduling of paral-
lel workloads, this thesis considers a more general model of parallel real- me tasks
where dynamically generated threads can take arbitrarily different amounts of me
to execute. It proposes a novel scheduling policy that combines the Global Earliest
Deadline First (G-EDF) scheduler with a priority-based work-stealing policy, allowing
parallel real- me tasks to be executed in more than one processor at a given me.
To the best of our knowledge, we are the first to: (i) deal with real- me priori es in a
work-stealing scheduler; and (ii) to actually implement support for parallel real- me
computa ons in the Linux kernel.

1.1 Mo va on

The advent and ubiquity of mul -core technologies has opened the door for a wide-range of
general-purpose applica ons to effec vely harness the increasing processing capability through
paralleliza on. From a user-level perspec ve, dynamic intra-task parallelism is steadily gaining
popularity as a programming model for mul -core processors. Parallelism is easily expressed by
spawning threads that the implementa on is allowed, but not mandated, to execute in parallel,
using frameworks such as OpenMP [ARB], Cilk [Frigo et al., 1998], Intel’s Parallel Building Blocks
[Corpora on, a], Java Fork-join Framework [Lea, 2000], Microso ’s Task Parallel Library [Corpo-
ra on, b], or StackThreads/MP [Taura et al., 1999].

These high-level parallel frameworks seek to reduce the complexity of mul core program-
ming by giving programmers abstract execu on models, such as implicit threading, where pro-
grammers annotate their applica ons to suggest the parallel decomposi on. Implicitly-threaded
applica ons, however, do not specify the actual decomposi on of computa ons or the mapping
from computa ons to cores1. In fact, the annota ons act simply as hints that can be ignored and
safely replaced with sequen al counterparts. The parallel decomposi on itself is the responsi-
bility of the language implementa on and, more specifically, of the run me scheduler. Further-

1In the context of this work, we will use the terms processor, core and CPU interchangeably.
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CHAPTER 1. INTRODUCTION

more, the actual scheduling depends on the underlying system which by turn heavily influences
any applica on speed up.

Unfortunately, scalable performance is only one facet of the problem in embedded mul -
core real- me pla orms. Predictability and computa onal efficiency are o en conflic ng goals,
as many performance enhancement techniques aim at boos ng the average expected execu on
me, without considering poten ally adverse consequences onworst-case execu on me. Thus,

applica ons with strong predictability requirements o en tend to underuse hardware resources
[Colin and Pe ers, 2003]. Such a waste of resources can only be jus fied for very cri cal systems
in which a single missed deadline may cause catastrophic consequences.

Therefore, the growing importance of parallel programming models introduce a new dimen-
sion to real- me mul -core scheduling, with many open issues to be studied. Recent works on
real- me scheduling of parallel tasks define a task as a collec on of several regions, both se-
quen al and parallel [Lakshmanan et al., 2010, Saifullah et al., 2011]. A task always starts with a
sequen al region, which then forks into several parallel independent threads (the parallel region)
that finally join in another sequen al region. However, these models require that each region of
a task contains threads of execu on that are of equal length.

In contrast, in this thesis we consider a more general model of parallel real- me tasks where
threads can take arbitrarily different amounts of me to execute. That is, different regions of the
same parallel task can contain different numbers of threads, regions can contain more threads
than the number of cores, and threads can have arbitrarily different execu on needs. Therefore,
this model is more portable.

Indeed, there are many applica ons for which this condi on holds, and it is this kind of dy-
namic and irregular parallelism that is of primary interest for us. The distribu on of work and
data in such applica ons cannot be characterised a priori because these quan es are input-
dependent and evolve with the computa on itself. In prac ce, such real- me applica ons span
a wide spectrum, including radar tracking, autonomous driving, and video surveillance. Applica-
ons with these proper es pose significant challenges for high-performance parallel implemen-

ta ons, where equal distribu on of work over processors and locality of reference are desired
within each processor. Nevertheless, as the problem sizes scale and processor speeds saturate,
the only way to meet deadlines in such systems is to parallelize the computa on.

Implicit threading also encourage the programmer to divide the program into short-living
threads because doing so increases the flexibility to distribute work evenly across processors.
The downside of such fine-grained parallelism is that the total scheduling cost can be significant.
The best way to reduce the total scheduling cost is to find the sub-costs that ma er most and
focus on reducing them.

One of the simplest, yet best-performing, dynamic load-balancing algorithms for shared-
memory architectures is work-stealing [Blumofe and Leiserson, 1999]. The principle of work-
stealing is that idle cores, which have no useful work to do, should bear most of the scheduling
costs, and busy cores, which have useful work to do, should focus on finishing that work. Blumofe
and Leiserson have theore cally proven that thework-stealing algorithm is op mal for scheduling
fully-strict computa ons, i.e. computa ons in which all join edges from a thread go to its parent

2
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thread in the spawn tree [Blumofe and Leiserson, 1999]. Under this assump on, an applica on
running on P processors achieves P -fold speed-up in its parallel part, using at most P mes
more space than when running on one CPU. These results are also supported by experiments
[Saha et al., 2007].

However, the need to support task priori es fundamentally dis nguishes the problemat hand
in this thesis from other work-stealing choices previously proposed in the literature [Guo et al.,
2010, Vrba et al., 2009, 2010]. With classical work-stealing, threads wai ng for execu on in a
deque may be repressed by new threads, which are enqueued at the bo om of the worker’s
deque. As such, a thread at the top of a deque might never be executed if all workers are busy.
Consequently, there is no upper bound on the response me of a mul -threaded real- me job.

1.2 Contribu ons

Mo vated by these observa ons, the work presented throughout this thesis breaks new ground
in several ways, focusing on suppor ng intra-task parallelism in real- memul processor systems,
both in theory and prac se:

• While several others have previously considered work-stealing as a load balancing mecha-
nism for parallel computa ons, we are the first to do so considering different task priori es.

• We propose Real-Time Work-Stealing (RTWS), a novel real- me scheduling approach that
combines the G-EDF scheduler with a priority-based locality-aware work-stealing scheme,
allowing parallel real- me tasks to be executed in more than one processor at a given me
instant. To the best of our knowledge, no research has ever focused on this subject.

• Our work is the first to actually implement support for parallel real- me computa ons in
the Linux kernel through the development of a new scheduling class (SCHED_RTWS) and
respec ve system calls. At the me of this wri ng, neither any RTOS na vely supports such
scheduling nor any known extension does so.

Importantly, the research work described in this thesis has resulted in two scien fic publi-
ca ons. The paper en tled Real-Time Scheduling of Parallel Tasks in the Linux Kernel [Fonseca
et al., 2012] has been published in the 4th Informa cs Symposium (INForum 2012), while the
paper en tled Dynamic Global Scheduling of Parallel Real-Time Tasks [Nogueira et al., 2012] has
been accepted at the 10th IEEE/IFIP Interna onal Conference on Embedded andUbiquitous Com-
pu ng (EUC 2012).

1.3 Ins tu onal support

This research work was developed in the context of the RECOMP European project, from the AR-
TAMIS program, held at CISTER (Research Centre in Embedded Real-Time Compu ng Systems).
CISTER is a top-ranked research unit associated with the INESC-TEC, from the School of Engi-
neering (ISEP) of the Polytechnic Ins tute of Porto (IPP), Portugal. The research unit focuses its
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ac vity in the analyses, design and implementa on of real- me and embedded compu ng sys-
tems. Back in the 2004 evalua on process, CISTER was the only research unit in Portugal, in the
areas of computer and electrical engineering and computer science, to be awarded the top-level
rank of Excellent. This outstanding ra ng was confirmed in the last evalua on process (2007).
CISTER has grown to become one of the leading European research units in the area, contribu ng
with seminal research works in numerous subjects. Since mid-2011, CISTER is an autonomous
research unit associated to INESC-TEC.

1.4 Outline

The rest of this document is structured as follows:

• Chapter 2 introduces the real- me concepts and scheduling theory on which this work is
fundamentally based, with emphasis on the periodic task model and EDF algorithms.

• Chapter 3 is devoted to provide the remainder necessary background directly related to
the main contribu ons of this thesis. It starts by discussing parallel computa ons and how
they can be expressed, modelled and scheduled, with par cular focus on thework-stealing
scheduler. It con nues by analysing the currentmodular framework of the Linux scheduler,
and it finishes by covering briefly relevant real- me implementa ons on the Linux kernel.

• Chapter 4 discusses design and implementa on of the RTWS scheduler. First, it dives deep
in the state-of-art of parallel real- me scheduling, with some insights on the current chal-
lenges in suppor ng task-level parallelism in real- me mul processor systems being given
as well. Then it presents our system model and addresses the problem of adap ng work-
stealing to real- me. The major rules and flow of RTWS are described next. Last but not
least, it explains how this scheduling algorithm was implemented in the Linux kernel, and
how one can use it from user-space.

• In Chapter 5, we evaluate the scalability, effec veness and efficiency of our RTWS imple-
menta on, mostly by comparing it to other real- me scheduling policy through experi-
mental results. The nature of the experiments is also explained herein.

• Finally, Chapter 6 sums up results, offers some concluding remarks and suggests possible
future extensions to our work.
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Chapter 2

Real-Time Systems

Real- me compu ng is becoming increasingly important and pervasive, asmore and
more industries, infrastructures, and even ordinary people depend on them. Nat-
urally, with the general prolifera on of mul -core pla orms, real- me applica ons
started to be massively deployed on such pla orms. A key factor for that, among
other reasons, is the considerable boost in processing capacity in a rela vely cheap,
small, and low power consuming chip. Therefore, they offer an opportunity to max-
imise performance and, through parallelism, execute more complex and compu ng-
intensive tasks whose stringent ming constraints cannot be guaranteed on unipro-
cessor systems.

However, most research in tradi onalmul processor real- me scheduling is s ll lim-
ited to sequen al task models and ignore task-level parallelism. Such model scales
poorly and is unable to effec vely exploit the poten al ofmul -core pla orms. Thus,
a drama c change in programming models and scheduling paradigms is undeniably
demanded.

This chapter discusses representa ve research efforts and gives a special focus to the
real- me scheduling theory, as both are directly related to the main contribu ons of
this thesis. We also briefly present real- me systems’ concepts and contextualise
them within the conducted work.

2.1 Defini on

A Real-Time System (RTS) is any informa on processing system where the correctness of each
computa on depends not only on the logical results it provides but also on the me instant at
which these results are produced [Stankovic, 1988]. A late response me (i.e. the me taken for
the system to generate output from some associated input) is as bad as a wrong response since
it may provoke an unexpected behaviour, whichmight lead to a system failure. Hence, RTSs must
respond in a mely predictability way to externally generated input s muli, even under transient
overload. An automobile airbag system, one of the most safety-cri cal features in a modern
car, is a simple example of a real- me compu ng system— the strict real- me constraint in this
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system is the me interval in which the airbag must be deployed in order to prevent the driver
from ge ng severely hurt. No ma er what non-cri cal opera on is taking place at that instant,
the RTS will put it on hold and will immediately deploy the airbag as soon as it receives a signal
from the sensors detec ng the collision.

In contrast, a system is said to be non-real- me whenever one cannot guarantee a response
me under any circumstance, even if rather o en the outcome respects the ming boundaries.

Analogously, if a car is equipped with a non-RTS it might deploy the airbag a er finishing the
request to power the stereo, which by coincidence happened to come right before the self-
triggered cri cal request. Needless to say, an airbag system deployed even 0.01 seconds later
than the demanded me may have catastrophic consequences. In fact, for certain RTSs few mi-
croseconds separate the success from the disaster.

Nonetheless, a RTS is not a fast compu ng system, as o en mes mistakenly deemed so. Its
response me scale magnitude can indeed range from a microsecond in a radar data acquisi-
on to an hour in a chemical reac on. Thus, no ma er how fast hardware or algorithms are, its

performance has to always be guaranteed against the characteris cs of the surrounding execu-
on environment. Here the key property is predictability, i.e. the logical and ming behaviour

must be as determinis c as required to fulfill system specifica ons, and not speed. Undoubt-
edly high-speed compu ng helps to minimise the average response me of a task set or even to
meet some stringent individual meliness requirements, but it solely does not assure the overall
system correctness.

Guaranteeing real- meperformance, whilemost effec vely exploi ng the available resources,
demands the appliance of efficient scheduling algorithms, properly supplemented by schedula-
bility analysis or similar techniques. Such techniquesmust provably assure that ming constraints
will always be met by a given scheduler during system’s ac vity. For be er understanding the
scheduling theory referred all over this document, next sec on introduces scheduling and real-
me terminology.

2.2 Terminology and periodic task model

The term job refers to a schedulable and executable unit of work. Schedulablemeans that it can
be allocated to a resource (e.g. processor) in a par cular sequence determined by the scheduling
algorithm being used and it will meet its ming constraints. A set of related jobs defines a task,
while a collec on of tasks is called task set.

The necessary me to run a single job on a given pla orm is called execu on me. The me
instant at which a job is required to complete its execu on is denominated as deadline or as
absolute deadline, as it is successively calculated for each job. A rela ve deadline, in turn, is
its maximum allowable response me. Addi onally, the recurrent nature of real- me ac vi-
es is expressed by a period. The period represents the expected me of arrival between jobs,

whether they are cyclic or event-driven. The moment a job becomes available for execu on is
called release me. However, for the par cular case of the first job release, that me instant is
denominated offset.
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The frac on of one processor’s capacity that must be allocated to a task is its u lisa on. This
does not mean, however, that a task can only execute on one processor. Straigh orwardly, the
sum of all tasks’ u lisa on within a task set gives its denoted total u lisa on. A procedure that
determines if a task set is schedulable under a given scheduling algorithm is a schedulability test.
Whenever exists an algorithm able to deem a task set schedulable, this task set becomes feasible.
A scheduling algorithm can be considered op mal if, on a m processors system, a task set with
total u lisa on at mostm is schedulable.

Depending on the consequences of missing ming constraints, real- me tasks are commonly
classified as either1 hard or so . An Hard Real-Time (HRT) task must always meet its deadline
due to its cri cal nature where an overrun in response me may lead to a fatal flaw, e.g. loss
of life or big financial damage. Hence, a judicious Worst-Case Execu on Time (WCET) has to be
assigned to them. When deadline viola ons are tolerable to a limited extent (tardiness2 must
be bounded to be schedulable), but not desirable, as they entail performance degrada on, a
task is said to be So Real-Time (SRT). This type of tasks does not require a execu on me so
rigid, therefore it employs an average execu on me. For instance, the airbag featuremen oned
above clearly fits in the former classifica on, whereas a mul media interac ve game suits the
la er one, provided an underlying failure (perceived as sluggishness) does not have catastrophic
consequences, although it results in a not smooth gameplay, and consequently in unsa sfied
end-users.

Table 2.1: A summary of the periodic task model’s constraints and nota on

Nota on Interpreta on Constraint / Defini on
τ A task set τ = τ1, . . . , τn
τi The ith periodic task 1 ≤ i ≤ n

Ji,j The jth job of task τi j ≥ 1
Ji An arbitrary job of Ti

Ci τ ′is per-job WCET Ci > 0
Oi τ ′is offset Oi ≥ 0
Ti τ ′is period Pi > Ci

Di τ ′is rela ve deadline Di ≥ Ci

ui τ ′is u lisa on ui = Ci/Ti

ai,j J ′
i,js release me ai,j ≥ ai,j−1 + Ti

di,j J ′
i,js absolute deadline di,j = ai,j +Di

fi,j J ′
i,js comple on me fi,j ≥ ai,j

Besides cri calness, tasks can also be classified based on their periodicity. Tasks which ex-
hibit irregular ac va ons are called aperiodic, whilst periodic are the ones requiring symmetrical
arrival mes. Periodic tasks are typically used in control and signal-processing applica ons and
o en have hard deadlines, since they have to be executed at constant ra os for stability and up-
date purposes. On the other hand, aperiodic tasks commonly have so deadlines and are used to
handle random processing requirements such as displaying ac vi es. When aperiodic tasks have
hard deadlines they are denominated sporadic. Note that for these tasks, period is replaced by
a minimum interarrival me in order to enable deadlines’ fulfillment [Mok, 1983]. In this thesis,

1More specific classifica ons can be found in the literature.
2Tardiness refers to how far a er deadline a task has finished its execu on.
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we address a task model for parallel HRT tasks similiar to the periodic one, whose nota on is
shown in Table 2.1. Henceforth, every me we men on RTS we refer to HRT scenarios, unless
we specifically say otherwise.

Furthermore, literature differen ates three levels of constraint on task deadlines:

• Constrained deadlines - Task deadlines cannot be greater than their periods (Di ≤ Ti).

• Implicit deadlines - All task deadlines must be equal to their periods (Di = Ti).

• Arbitrary deadlines - Task deadlines may take any value.

When considering a RTS as a whole, there are several important aspects that should be taken
into considera on in order to ensure the meliness of all tasks with ming requirements. In
par cular, the Opera ng System (OS) plays a major role in the management of all concurrent
ac vi es running on a single or mul processor device, both taking care of task management,
through the use of scheduling mechanisms that handle the priority of each task, and managing
memory alloca ons, by taking into account the ming requirements of the tasks. When designing
a RTS, every detail must be carefully analysed in order tomake it as determinis c and predictable
as possible, both in terms of me and space.

2.3 Real- me scheduling

In any mul tasking RTS, scheduling is the fundamental component since it is responsible for: (i)
providing an algorithm that defines a set of rules concerning how to commit resources (mostly
processors) between tasks; (ii) establishing whether a temporal specifica on is guaranteed to
be sa sfied under such algorithm, through exhaus ve worst-case behaviour analyses; (iii) max-
imising system u lisa on; and (iv) ideally minimising each task’s response me. Therefore, it is
of paramount importance to understand its nomenclature, proposed approaches, and problems
facing its theory for mul -core processor systems.

A standard set of simplifica ons are commonly assumed to eliminate every poten al source
of unpredictabilitywhendevising an algorithmanddeveloping corresponding schedulability anal-
ysis:

• Every task is independent - besides processors, no hardware or so ware resources are
shared.

• Determinis c ming behaviour - there is no dri on tasks’ ming behaviour. Tasks are
release at, and execute for, exactly the me they are supposed to.

• Jobs do not self-suspend - a pending job is always either execu ng or ready for execu on.

• No run me overheads - migra ons, context switches and other scheduling decisions take
negligible me or are subsumed into the WCET of each task.
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Nevertheless, this idealised task behaviour does not hold in prac se and it is indeed problem-
a c. Although these simplifying assump ons definitely help to formally express an algorithm’s
logic and perform schedulability tests on it, as one very hardly would get anywhere if he tried to
weight all unpredictable factors. Then, upon implementa on, these can be a enuated by adding
extra features to deal with them. In fact, as stated in Chapter 1, this implementa on awareness
is a driving mo va on underlying the work presented herein.

Generally, scheduling algorithms are categorised as sta c or dynamic, depending on the
method used for task priority assignment. Sta c schedulers, also known as Fixed-Priority (FP)
schedulers, enact at design me a constant priority to each task, which is then applied to all of
its jobs. In contrast, dynamic schedulers assign at run me a priority directly to the jobs based on
the current system state. Basically, this categorisa on affects when and in what order each job
shall execute.

Furthermore, scheduling algorithms can also be classified, as follows, according to when pre-
emp ons are enable.

• Preemp ve - jobs may be preempted by higher priority ones at any me instant.

• Non-preemp ve - preemp on is not allowed and, therefore, once a job is scheduled for
execu on it will not be swapped out un l comple on.

• Coopera ve - there are specific preemptable sec ons within a job execu on.

In this thesis, we focus ondynamic andpreemp ve scheduling algorithms for implicit-deadline
real- me tasks. Since we have also restricted our work to homogeneous mul processor systems
(i.e. systemswith iden cal processors), we only briefly address uniprocessor real- me scheduling
for contextualisa on and completeness. A detailed historical perspec ve of the most important
research advances in this field can be found in [Sha et al., 2004].

The seminal research into uniprocessor real- me scheduling dates back to the late 1960s and
early 1970s, and it was primarily applied to schedule computer programs during the first manned
space flight to the moon [Liu, 1969, Liu and Layland, 1973]. Remarkably, Liu and Layland [1973]
introduced provably op mal3 sta c and dynamic algorithms for the scheduling of periodic tasks,
which later became known as Rate Monotonic (RM) and EDF. respec vely. During the 1980s
and 1990s, these policies were improved to adopt more realis c models of synchronisa on [Sha
et al., 1990], ming constraints [Lehoczky, 1990] and overheads [Katcher et al., 1993], for exam-
ple. Today, this theory can be considered mature and successfully put in prac se for industrial
purposes.

As a reference point, and since we have chosen G-EDF as our task-level policy, this sec onwill
relatewith EDF schedulers, whenever feasible, to illustrate or describe howdifferently scheduling
algorithms can be designed, extended, and implemented, and how that will affect the system’s
performance and its schedulability boundaries.

EDF is the most studied dynamic, or Job-Level Fixed-Priority (JLFP) as o en mes referred,
real- me scheduling algorithm. It is very intui ve, since it schedules in order of urgency. That

3Regarding the specific scenario it is intended to.
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is, in contrast to RM which priori ses tasks based on their periods, EDF assigns priori es to tasks
according to the deadlines of their current requests, in a form that the task with the nearest
deadline becomes the highest priority task in the system and, therefore, the one to be selected
for execu on. Regardless of priori es changing at run me, no manual assignment is required.

The acceptance test

usum(τ) =
n∑
i

ui ≤ 1 (2.1)

clearly shows that EDF is op mal in an HRT context as it fully u lises the processor capacity,
unlike RM whose maximum demand of processor me is limited to ln(2) ≈ 69, 3%. Moreover,
EDF is also op mal for SRT constraints, seeing that a task set HRT schedulable implies bounded
tardiness.

A simple example may clarify how EDF works. Let us consider the task set detailed in Table
2.2, which has four tasks and u lisa on: usum(τ) = 2

13 +
3
13 +

2
15 +

3
17 = 72.2%. Fig. 2.1 shows

the meline execu on for the first job of each task. The only task released at instant 0 is τ4, so
it starts execu ng immediately. At instant 1, τ3 arrives with an earlier deadline. Since τ4 needs
more 2 mes units to finish its instance, it is preempted by τ3. It goes like this un l instant 6,
when τ1 finishes his job. Now that the remaining three tasks are ready, the earliest deadline task
is selected for execu on: τ3. The schedule goes on this descending way un l instant 10 when
the last first job terminates.

Table 2.2: A task set example for EDF schedule

Task Ci Ti Di Oi

τ1 2 11 11 3
τ2 3 13 13 2
τ3 2 15 15 1
τ4 3 17 17 0

Figure 2.1: An EDF schedule example

Nonetheless, EDF is not preferable over RM for prac cal uses. One plausible reason is the
conceptual difficulty associated to an efficient implementa on of EDF [Short, 2010], mainly be-
cause it is not straigh orward the mapping of deadlines to priority arrays or bitmaps pervasively
used in OS for scheduling purposes, and when a emp ng to do so it demands frequent and
costly recomputa ons. Supposed RM advantages in prac se, namely less run me overhead and

10



2.3. REAL-TIME SCHEDULING

more predictability under overload, arose frommisconcep ons or specific situa ons as Bu azzo
[2005] conclusively debunked. Hence, there is no reasonable jus fica on, quite the contrary, for
the absence of EDF-alike schedulers in a Real-Time Opera ng System (RTOS).

Unfortunately, mul processor real- me scheduling theory has not yet enjoyed such a success
as it did on a uniprocessor. As early as in the 1969, Liu [1969] observed the intrinsic complexity
of mul -core scheduling and how hardly uniprocessor algorithms could be extended to it:

”Few of the results obtained for a single processor generalize directly to the mul -
ple processor case; bringing in addi onal processors adds a new dimension to the
scheduling problem. The simple fact that a task can use only one processor even
when several processors are free at the same me adds a surprising amount of diffi-
culty to the scheduling of mul ple processors.”

Table 2.3: A task set example causing the Dhall effect

Task Ci Ti ui

τ1 2ϵ 1 → 0
τ2 2ϵ 1 → 0
τ3 1 1 + ϵ → 1

Figure 2.2: A Dhall effect schedule example

In fact, few years later, Dhall [1977] reported that when globally enforcing a RM or EDF
scheme on a mul -core host, some task sets may miss deadlines even though low system u li-
sa on is requested. To provide an understanding of the so-called Dhall effect, let us consider an
example. Consider a system with 2 processors (m = 2) and 3 implicit-deadline tasks (n = 3), as
specified by Table 2.3, to be scheduled according to the EDF policy. Since all tasks are released
at t = 0, the first job of τ1 and τ2 with deadline 1 will have higher priority over the first job of
τ3, whose deadline is 1 + ϵ. Consequently, processors P1 and P2 are assigned to J1,1 and J2,1

during the me interval [0, 2ϵ], leaving a maximum of 1 - ϵ me units for J3,1 before its deadline,
which is not enough for it to be completely executed (see Fig. 2.2). Hence, this task set cannot be
feasibly schedule by the EDF scheduling algorithm on a 2-processor compu ng system although∑n

i ui < 2, as ϵ → 0,
∑n

i ui → 1.
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This finding led research community to look at global scheduling algorithms, where tasks can
execute in any processor as an obsolete approach and, therefore, guided its course to par oned
ones, where tasks are sta cally allocated to processors in a fixed manner. Global scheduling
algorithms recovered their popularity two decades later when it was realised that the Dhall effect
is mostly related to heavy tasks scheduling, i.e. tasks with high u lisa on, and not intrinsically a
global approach problem [Phillips et al., 1997].

(a) Global scheduling (b) Par oned scheduling (c) Clustered scheduling

Figure 2.3: Mul -core scheduling approaches for 4 CPUs that share L2 chaches in pairs of two

As slightly men oned before, there are two fundamental classes of mul -core scheduling
schemes: global and par oned. However, not every scheduling scheme fits into one of these
dis nct categories but instead employ both [Carpenter et al., 2004], as depicted in Fig. 2.3c.
Due to their wide variety, such hybrid approaches have many classifica ons (e.g. clustered, task-
spli ng), being semi-par oned the prevalent term for them. In the general case, each τi may
execute on a subset P (τi) of P , with overlapping permi ed. Whenever |P (τi)| = 1 par oning
is at the table, while |P (τi)| = m implies global scheduling. Thus, global and par oned schemes
are restricted instances of the above model.

2.3.1 Global

Under global scheduling, there is a single priority-ordered queue serving the en re system,where
all ready jobs are stored (see Fig. 2.3a). At any me instant, the global scheduler can then select
for execu on the highest priority pending jobs since it has a full overview of the system and every
jobmaymigrate among processors. Clearly, two pivotal benefits arise from this broad knowledge
and centralisa on: op mal scheduling decisions are easily achieved and load balancing is auto-
ma cally handled. Moreover, queueing theory results report that be er average response mes
are produced by a single-queue scheduling than queue-per-core scheduling [Kleinrock, 1976].
Therefore, analy cally speaking, global schedulers are superior to any par oned algorithm as
even op mality can be accomplished (for implicit-deadline tasks at least).

A class of global rate-based4 schedulers called Propor onate Fair (Pfair) scheduling, intro-
4Rate-based means that the scheduler is invoked at steady points in me, which are pre-computed based on

integers mul ples of an input quantum.
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duced by Baruah et al. [1996], provides the only known op mal method for scheduling HRT tasks
onmul processors. The idea behind Pfair is that each task progresses propor onate to its u lisa-
on and not only based on its deadline. For that, Pfair algorithms break a task intomany unit-size

sub-jobs, assign an individual deadline to them, and finally schedule them sequen ally following
a pure EDF strategy. In order to excel in performance, in the sense that if tasks request no more
than the available processor capacity, and task set’s u lisa on is at most m, then all deadlines
are met, an appropriate granularity must be defined. Unfortunately, if the execu on me of a
task is large compared to this unit-size then the preemp on overhead becomes unreasonably
large, which makes Pfair scheduling unfeasible in prac se.

On the other hand, let us consider the scheduling algorithm G-EDF, where the uniprocessor
EDF scheduler is globally applied to a single shared queue. Despite G-EDF is vulnerable to severe
algorithmic capacity loss in the HRT case, since it is subject to the Dhall effect, resul ng in an total
u lisa on bounded by (m + 1)/2 for periodic task sets [Andersson et al., 2001], which is also
extensible to any global JLFP scheduler, for SRT systems G-EDF is op mal because it guarantees
bounded tardiness for any sporadic task set as long as usum(τ) ≤ m [Devi and Anderson, 2008].

Although the theore calworst-case performanceofG-EDF in anHRT context cannot behigher
than (m+ 1)/2, when umax(τ) is considerably less than one, a higher u lisa on guarantee can
be assured. Thus, new schedulability tests based on the presence of high-u lisa on tasks have
been derived. The first, and of primary interest to us, was introduced by Goossens et al. [2003],
who showed that a set of independent periodic tasks with implicit-deadlines can be successfully
schedulable by G-EDF onm processors if

usum(τ) ≤ m− (m− 1)umax(τ). (2.2)

Furthermore, several tweaks to the G-EDF algorithm and respec ve worst-case analysis were
developedwith the sameprinciple inmind. Srinivasan andBaruah [2002] proposed EDF-US[ζ], an
algorithm that assigns the highest (fixed) priority to task of u lisa on greater than some thresh-
old ζ, and schedule the remaining tasks according to the standard EDF policy. By se ng ζ to
m/(2m− 1), an u lisa on bound umax(τ) free is obtained:

usum(τ) ≤ m2/(2m− 1). (2.3)

Besides deriving a u lisa on bound and showing that it is ght, Goossens et al. [2003] also
proposed an algorithm that sets as highest priority tasks the k ones with highest u lisa on. This
approach was named EDF(k), and a sufficient schedulability condi on for it was shown to be

m ≥ (k − 1) + ⌈usum(τ)− uk
1− uk

⌉, (2.4)

where uk is given by the kth task u lisa on with tasks order by decreasing u lisa on.

Either EDF-US[ζ] and EDF(k) were examined by Baker [2005], who showed that the op mal
threshold used in EDF-US[ζ] with respect to maximising the u lisa on bound is 1/2, as it results
in a sufficient test equally to themaximum possible bound for this class of scheduling algorithms:
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usum(τ) ≤ (m+ 1)/2. (2.5)

Concerning EDF(k), Baker [2005] revealed that there exists a minimum value of k (kmin) for
which theworst-case guaranteed schedulable u lisa on in Equa on 2.6 also holds. Nevertheless,
when accoun ng the number of task sets schedulable, EDF(kmin) outperforms EDF-US[1/2]

However, in prac se, global scheduling algorithms are tradi onally eschewed by OS develop-
ers due to the non-determinis c conten on, poten ally excessive overheads, implementa on
complexity, scalability issues and cache invalida on, whose impact and costs scheduling theory
become accustomed to neglect.

As men oned earlier, Pfair algorithms are imprac cal because making scheduling decisions
(e.g. preemp ons,migra ons) at each ght meslice, further the associated loss of cache affinity,
plus the general communica on and synchroniza on required, entail very high overheads. On
the other hand, G-EDF does not incur such problema c overhead but s ll encompasses a single
centralised queue whose access is disputed bym processors. Global structures like this must be
protected by a lockmechanism to prevent concurrent datamanipula on (race-condi ons), which
translates directly into serious conten on and lack of scalability when the number of processors
compe ng for the resource increases significantly.

These inherent issues cons tute the reasons why global algorithms have drawn li le inter-
est from research community and have been discarded from most modern implementa on. Al-
though global scheduling remains controversial as a concept it is extremely appealing.

2.3.2 Par oned

The alterna ve to global scheduling is par oned scheduling, inwhich each processor has its own
private queue and tasks are sta cally and permanently allocated to them during an offline phase
such that no overload occurs (see Fig. 2.3b). This permits schedulability to be verified using a
wealth of thoroughly studied real- me scheduling analyses techniques for uniprocessor systems,
as well as eliminates scalability bo lenecks. Precisely, as par oned scheduling is simple and
scalable, the Linux scheduler was rewri en to adopt this approach in kernel v2.6, significantly
boos ng its performance for many-cores machines. Yet, no true real- me scheduling policies
are na vely supported by Linux.

However, the moment you treat each processor as an isolated domain and you are forced to
choose a priori where to allocate the tasks, you run into a bin-packing problem which is known
to be NP-hard in the strong sense [Garey and Johnson, 1990]. Heuris cs must then be used in
order to find a fast sa sfactory solu on, as an exhaus ve search for an op mal one is imprac cal.
Most common ones are First-Fit (FF) and Best-Fit (BF). FF selects the first non-empty queue with
enough resources remaining, while BF looks for the queue where the least amount of resources
are le a er alloca ons.

S ll, even an op mal alloca on may leave some processors par ally idle. Hence, most par -
oned schedulers employ load balancing mechanisms (inter-domain migra ons) for distribu ng

the work evenly between domains and handling load-transients. Needless to say, this clashes
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with the par oning philosophy itself, since poten ates cache misses and overheads, causing
yet another non-determinis c latency.

Following the global algorithm trend, there exists task setswithusum(τ) atmost (m+1)/2+ϵ

that cannot be schedulable on m processors by par oned algorithms regardless of the alloca-
on heuris c used. However, par oned scheduling has reached the best possible results. López

et al. [2000] showed that when using EDF the lowest u lisa on bound of any reasonable alloca-
on algorithm is equal to Equa on 2.2, while the highest u lisa on bound for the same scenario

is given by

usum(τ) ≤ (⌈1/umax(τ)⌉m+ 1)

(⌈1/umax(τ)⌉+ 1)
, (2.6)

where it is assumed that n > m/(⌈1/umax(τ)⌉), being n the number of task in τ .
They also proved that EDF-FF and EDF-BF, like all reasonable alloca on algorithms that or-

der tasks by decreasing u lisa on, achieve the higher limit. For the unrestricted case, where
umax(τ) = 1, Equa on 2.6 is a ained. Therefore, EDF-FF and EDF-BF are op mal par oning
approaches in the limited sense that their guaranteed ght u lisa on bound is as large as it could
feasibly be.

2.4 Summary

This chapter introduced RTSs, where the key concept is not to be fast, but deliver determinism
and predictability to real- me applica ons with stringent ming constraints. An HRT system can-
not miss deadlines under any circumstance, whereas a SRT system may tolerate short latencies.
A erwards, relevant real- me terminology and the periodic task model were presented. Finally,
we addressed real- me scheduling theory by discussingmain scheduling concepts and by proving
a brief historical overview about real- me scheduling algorithms and their schedulability tests.
Emphasis was given to EDF schedulers, since our work embraces G-EDF.
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Chapter 3

Background

Now that embedded, mainstream, and high-end computers are being deployed on
mul -core chips, the huge challenge facing parallel programming for performance
and produc vity improvements has taken on a new urgency. Many high-level paral-
lel programming models, languages, and tools have emerged in order to exploit par-
allelism in the most efficient way by easing programmers’ burden when transform-
ing or wri ng applica ons in a simple, well-defined, scalable, and portable mul -
threaded form.

However, these high-level frameworks leave the actual scheduling of resul ng threads
to be performed at run me. Therefore, if the underlying system cannot efficiently
map those threads on the available cores, then the performance achieved will be
significantly lower than the desired one.

This chapter is divided in twomajor sec ons. In sec on 3.1, we discuss parallel com-
pu ng benefits and concerns, and we jus fy our approach to schedule fine-grained
parallel applica ons. We address, roughly speaking, two main ways of expressing
parallelism by covering some par cular models. Finally, this sec on presents work-
stealing, a provably efficient scheduling algorithm for dynamic and irregular parallel
computa ons. Sec on 3.2 introduces the Linux scheduler, focuses on the essen als
of the modular scheduling framework internals, and finishes by presen ng supple-
mentary patches that provide enhanced real- me scheduling capabili es.

3.1 Parallel compu ng

Parallel compu ng is more than just a promising approach to boost applica ons’ performance,
or to meet the demanding modern computa onal requirements, by execu ng each applica on
simultaneously on mul ple processors. It is a compelling vision for how computa on can seam-
lessly scale from a single processor to virtually limitless compu ng power [Dongarra et al., 2003].
Unfortunately, expressing and achieving an highly efficient parallel computa on is not trivial.
In fact, the scaling of applica ons’ performance to match the any me available parallelism is a
long-las ng open problem with many related issues that need to be appropriately addressed,
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namely: (i) how to design parallel algorithms, (ii) when to par on an applica on into threads1

and to what amount, (iii) when, and in what way, do threads coordinate, communicate, and syn-
chronise, and (iv) how to schedule threads onto the processors [Gajski and Peir, 1985, Quinn,
1994]. Therefore, the development of parallel applica ons relies largely on the availability of
suitable so ware tools and environments. Consequently, much of the parallelizing burden and
responsibility falls on the applica on’s developer.

In this sense, there are twomain strategies to develop parallel applica ons [Diaz et al., 2012]:
automa c parallelisa on and parallel programming. In the former, exis ng sequen al source
code is automa cally parallelized by a proper compiler. Thus, it relieves the programmer from
the parallelizing burden as all it takes is the code recompila on. Nevertheless, the amount of
parallelism reached by current compiler technology is considerably low since such generic au-
toma c conversion is extremely complex to obtain. In contrast, the la er involves developing
a parallel applica on from scratch. This allows programmers to efficiently express parallelism
and also to freely choose the programming model and the language. However, such coding is
difficult, some mes unproduc ve and painful, as data par oning highly depends on algorithms
design, and compiler assistance techniques have limited applicability. All in all, parallel program-
ming leads to a be er performance than automa c paralleliza on but at the expense of more
programming efforts.

Parallel programming itself may also differ in ease and efficiency depending on the approach
adopted. Implicit threading abstracts the programmer from task decomposi on and placement
details, as these are le to the compiler and run me system. Thus the programmer just has to
iden fy and annotate poten al parallel regions on the applica on. Such annota ons act simply
as hints that can be ignored and safely replaced with sequen al counterparts whenever the com-
piler finds them not worthwhile. Instead, explicit threading assumes that the programmer is wise
enough to be the best judge of how a par cular applica on can be parallelized and integrated in
the system in order to extract the best a ainable performance. Hence, the programmer takes
full control and responsibility for par oning the computa on into threads, mapping them onto
processors, defining the communica on structure, etc..

3.1.1 Parallel programming models

A parallel programming model is an abstract parallel machine describing how parallelism can be
expressed, managed, andmatched to the underlying system. Is is designed to separate so ware-
development concerns from effec ve parallel-execu on concerns, providing abstrac on and sta-
bility [Skillicorn and Talia, 1998]. Hence, it is not ed to any specific type of machine: any model
can (theore cally) be implemented on any underlying hardware.

However, unlike sequen al programming, where the von Neumann model dominates, sev-
eral different models can be found in different parallel computa ons. This is a natural outcome
when modelling such an isola on layer because the level of abstrac on employed may vary sig-
nificantly (e.g. closer to par cular exis ng hardware architectures). Furthermore some parallel

1A thread refers to any independent flow of control within an applica on. In a parallel real- me task model, each
job spawns several threads, becoming itself the master thread.
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algorithms are easier to express in certain models. In addi on, one or several parallel program-
ming languages, or libraries, are o en associated with the parallel programming model that they
realise. Thus, the choice of model is determined by the available parallel compu ng resources,
by the ul mate goal of the system, and by the type of parallelism inherent to the problem.

Due to the heterogeneity of levels of abstrac on involved, it is extremely hard to categorise
and compare parallel programming models neatly. In this thesis, we just consider the most rele-
vant ones within a classifica on based on process communica on and computa on decomposi-
on proper es. For a comprehensive presenta on or a thorough classifica on, the reader is re-

ferred to literature such as Maggs et al. [1995], Skillicorn and Talia [1998], Asanovic et al. [2006]
and Diaz et al. [2012].

Process communica on

Process communica on relates to the mechanisms by which parallel processes are able to in-
teract with each other. The most common models of communica on are shared memory and
message passing. In the shared memory model, a set of threads, created when the computa on
enters a parallel region, have access to a common memory. Threads communicate implicitly by
wri ng to and reading from a shared address space. However, as threads run asynchronously,
coordina on must be handled by the programmer, and the system underneath, to manage po-
ten ally conflic ng accesses. Despite the necessary synchronisa on constructs for concurrent
threads, a user-friendly programming perspec ve to memory is provided, since it can be seen
as an extension of sequen al programming methodology. Moreover, data sharing between pro-
cesses is both fast and uniform due to the proximity of processors to memory. Nevertheless, as
processors must contend for access to the physical memory (typically via bus), adding processors
increases memory latency as well as traffic associated with cache management, which naturally
affects scalable performance. Performance also suffers from the lack of locality exploita on. This
model is a natural match for a sharedmemory architecture (illustrated in Fig. 3.1), where a single
global address space exists in which all data resides, as the one present in Symmetric Mul pro-
cessing (SMP) systems, commonly used in today’s desktops.

Figure 3.1: Shared memory mul processor Figure 3.2: Distributed memory mul processor

On the other hand, in the message passing model, a set of processes have their local private
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data structures, which belongs and can be addressed only by the corresponding processor. Any
communica on between processes has to be explicitly performed by exchanging messages with
special send and receive commands. Data distribu on must be carefully handled. As processors
do not share an address space, they do not have to worry about concurrent accesses or external
data manipula on from other processors. Therefore, the concept of cache coherency does not
apply. Furthermore, the lack of a common bus translates in no inherent limita on on the number
of processors; the size of the system becomes constrained only by the network structure used to
connect processors to each other. The major drawback of this model is precisely the difficulty
and costs involved in interprocessor communica ons, and consequently in programming, as the
programmer is responsible for defining how and when data is communicated. Distributed mem-
ory architectures (illustrated in Fig. 3.2), such as supercomputer clusters, where each processor
has its own local memory, are a natural match for the message passing model.

Naturally, hybrid models do exist, where a global address space is logically par oned into
por ons, and each por on is local to one processor. The goal is to combine the produc vity of
the shared memory model with the performance of the message passing one.

Computa on decomposi on

Any parallel applica on is composed of simultaneously execu ng processes. Computa on de-
composi on relates to the way in which these processes are formulated and several models can
be employed for that ma er. Here, we discuss the tradi onal Single-Programming-Mul ple-
Data (SPMD) and the increasingly popular task parallelism. An applica on following the SPMD
model executes on mul ple processors, but each processor deals with different por ons of data,
though the code is the same. The number of parallel ac vi es (e.g. processes, threads) remains
constant throughout applica on execu on. This is, a er the ini al distribu on, no further par-
allelism can be expressed. In this model, the programmer has the responsibility for mapping the
parallel ac vi es onto the available processor and load balancing. While this somehow limits
flexibility and is more cumbersome at development me, it indeed reduces run me overhead,
since dynamic scheduling is no longer necessary. The standard MPI is based on SPMD as well as
some parallel programming languages such as UPC.

An applica on under the task parallelismmodel spawns parallel ac vi es dynamically accord-
ing to the complexity of the problem faced by it. This is, the number of parallel ac vi es may
vary largely during execu on (so does the amount of work contained by each one of them) and
thereby adapts to the currently available parallelism. Hence, the programmer focus on decom-
posing the applica on into sub-computa ons that can, but are not mandated to, run in parallel.
Thus, all these ac vi es need to be mapped to processors at run me by either the language’s
run me system, the OS, or even a thread package. The programmer is then released from the
onus of scheduling and balancing the load. Therefore, task parallelism is steadily gaining pop-
ularity as a parallel programming model, as demonstrates its implementa on in the standard
OpenMP, in several languages (e.g. Cilk, Chapel) and libraries (e.g. TBB, StackThreads/MP), and
the introduc on and dissemina on of lightweight processes packages such as Portable Opera ng
System Interface (POSIX) threads.
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3.1.2 Fine-grained parallelism

Despite the large availability of implicit-threading technologies with lightweight processes imple-
menta ons, most parallel applica ons are s ll wri en in a coarse-grained manner, typically with
one thread per core - task-level parallelism. Each thread is rela vely big in terms of code size
and execu on me, so data is transferred among cores infrequently. In contrast, a fine-grained
applica on dynamically spawns threads according to the problem size, rather than the number
of cores, commonly resul ng in a large amount of short-living threads - data-level parallelism.
Nevertheless, other levels of parallelism can be detected in an applica on (see Table 3.1).

Table 3.1: Parallelism granularity

Grain size Level of parallelism Code example Mostly parallelised by
Very fine Instruc on-level Opera on Processor
Fine Data-level Loop Compiler

Medium Control-level Func on Programmer
Coarse Task-level Heavyweight process Programmer

In order to a ain the best speed-up, the best trade-off between scheduling flexibility and
overheads needs to be found. If the granularity2 is too fine, the performance may be limited by
poor locality or excessive communica on. On the other side, if the granularity is too coarse, the
performance may be limited by load imbalance.

In this thesis, we focus on moderate fine-grained parallelism, where intra-task parallelism is
expressed at a reasonable granularity, to amor ze thread opera on costs (e.g. crea on and syn-
chronisa on), provide locality, and yet yield enough flexibility for good load balancing. Nonethe-
less, this s ll leads to a large number of threads crea on, and has the following advantages over
coarse-grained approaches [Narlikar and Blelloch, 1998]:

• Simplicity - Programmers can express all theworthwhile parallelism in the formof lightweight
threads, without specifying their mapping to cores. This results in a simpler, shorter,
clearer code, par cularly for applica ons with irregular and dynamic parallelism.

• Portability - The resul ng applica on is architecture independent (as long as the language
in which it was wri en also is), since the parallelism is not sta cally mapped to a fixed
number of cores.

• Load balance - Since the number of threads spawned is o en of a much higher degree
than the number of cores that will be used, the load can be transparently and effec vely
balanced by the implementa on.

• Flexibility - Unlike coarse-grained applica ons, where any change to the execu on order of
heavyweight threads may involve considerable programming efforts because it is explicitly
coded, fine-grained ones can be dynamically rescheduled just by tuning the underlying
scheduler.

2In parallel compu ng, granularity is a qualita ve measure of the ra o of computa on to communica on.
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Although the fine-grained threads model allows programmers to easily expose all the paral-
lelism in the applica on, scalable performance is not guaranteed. Actually, it heavily relies on
the underlying system because an efficient scheduler to map threads to processors at run me is
mandatory. Typically, such schedulers focus on providing good data locality, keeping the over-
all overhead low, and balancing the workload to deliver good me performance [Chandra et al.,
1993, Hummel and Schonberg, 1991].

However, if the same schedulers do not take into considera on the poten al memory us-
age of parallel applica ons, a dynamic, fine-grained one may end up genera ng excessive ac ve
parallelism, which leads to a huge space requirement [Blumofe and Leiserson, 1993, Narlikar
and Blelloch, 1998]. Moreover, a space-inefficient scheduler o en mes degrades applica ons
performance due to more memory page misses and consequently more memory-related system
calls. Hence, reducing the memory requirements of a parallel computa on is as important as
reducing the execu ng me itself.

Work-stealing is a well-studied run me scheduling paradigm that can both analy cally and
empirically provide a fair combina on of the above demands. Due to its high success in schedul-
ing dynamically growing mul -threaded applica ons, we decided to extend it to the real- me
realm.

3.1.3 Work-stealing scheduler

Work-stealing by Blumofe and Leiserson [1999] is a simple scheduling algorithm for fully-strict3

mul -threaded computa ons which is provably efficient in terms of me, space, and communi-
ca on. Unlike its variant work-sharing, where newly spawned threads are distributed amongst
(hopefully idle at that moment) processors, in work-stealing idle processors take the ini a ve:
they a empt to ”steal” threads from other processors. Thus, when all processors have work to
do, there is no need to migrate threads, and when they do not, most of the effort involved with
acquiring more work is undertaken by the idle ones.

A work-stealing scheduler employs a fixed number of worker threads (henceforth referred as
justworkers), usually and preferably one per core tominimise the overhead for context switching.
Each of those workers has a local double-ended queue, called deque, to store ready threads. As
soon as a master thread is assigned to a worker and starts to be executed, it can enter a parallel
region at any me. Newly spawned threads are enqueued at the head of the worker’s deque. For
example, as Fig. 3.3 depicts, task 1 spawned three new threads, which were enqueued at the
head of deque A, while task 2 is s ll on a sequen al region. When a worker finishes or suspends
the execu on of a thread, it looks for more work at the head of its deque. Therefore, workers
treat their own local deques as a stack, pushing and popping threads from the bo om in a Last-In
First-Out (LIFO) order. Consequently, since most threads (primarily in fine-grained applica ons)
share some data with their parents, it is very likely that the data required by a recently created
thread is s ll in cache [Acar et al., 2000].

So far, all opera ons performed by the workers are completely local and no synchronisa on

3All data dependency edges from a thread go to the thread’s parent.
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Figure 3.3: Work-stealing scheduler on a 4-core system

is necessary. Interac on between workers is required only when a deque runs out of work. Thus,
threads created on a processor remain stored there unless load balance is demanded, which ef-
fec vely increases scheduling granularity, and hence provides good data locality and low schedul-
ing conten on [Narlikar, 1999]. In this case, the idle worker becomes a thief and a empts to
work-steal from a vic m worker randomly chosen. If the vic m’s deque is not empty, then the
thief dequeues the thread at the tail and starts execu ng it; else, the thief restarts the process,
selec ng another vic m uniformly at random to steal from. The principle is to move load bal-
ancing costs from the busy worker to the idle one, which would otherwise be was ng CPU cycles
anyway. In Fig. 3.3, workers B and D each steal a thread from deque A. Note that the order is
totally unpredictable as randomness is the key property on the stealing strategy in order to re-
duce conten on, which is aggravated when many processors are idle at the same me. Locality
is favoured again by stealing in a First-In First-Out (FIFO) manner because the first threads are
the ones with higher probability to generate future workloads [Frigo et al., 1998]. Furthermore,
by having thieves opera ng on the opposite end of the deque than the worker they are steal-
ing from, non-blocking deques can be implemented [Arora et al., 1998, Chase and Lev, 2005,
Hendler et al., 2006] to minimise the synchronisa on cost. Clearly, all deque manipula ons run
in constant- me O(1), independently of the number of threads in the deque.

Following Blumofe and Leiserson [1993], we denote T∞ as the minimum execu on me of
a fully strict computa on on an infinite number of processors and T1 as its minimum serial exe-
cu on me. It is proved that the expected me Tp to execute the mul -threaded computa on,
on an ideal machine with no scheduling overhead, on p processors verifies Equa on 3.2.

Tp ≤
T1

p
+ T∞. (3.1)

This me appears asympto cally op mal in the case of very parallel applica onswhereT∞ ≤
T1. Moreover, Blumofe and Leiserson [1993] proved that the necessary space Sp for the execu-
on sa sfies
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Sp ≤
S1

p
, (3.2)

whereas the expected total communica on of the algorithm is at most T∞SmaxP , being
Smax the largest ac va on record of any thread.

One approach to schedule parallel applica ons using work-stealing is to include the calls to a
user-space run me library thatmanages the threads themselves explicitly in the applica on. This
technique places a lot of onus on the programmer, requiring that the programmer is fully aware
of the run me library and the details of scheduler, which in turn affects the produc vity. Hence,
work-stealing schedulers generally resort to an alternate approach where the parallelism is ex-
pressed at a higher-level of abstrac on using some parallel constructs in a language. This code
is then transformed into an equivalent version with appropriate calls to the work-stealing run-
me library using a compiler. Several frameworks for parallel programming, such as TBB and Cilk,

employ this technique. However, the compiler needs to do a good job of mapping the threads
appropriately in order to match the performance of a good hand-wri en applica on with direct
calls to run me.

Therefore, implemen ng a work-stealing scheduler at the kernel level, by exploi ng the OS’s
capabili es, allows one to finally switch from the current support of user-space run me libraries
or compilers to na ve support from the opera ng system. Furthermore, exis ng user-level work-
stealing schedulers are not effec ve in the increasingly common se ng where mul ple applica-
ons me-share a single mul -core, suffering from both system throughput and fairness prob-

lems [Ding et al., 2012].

3.2 The Linux scheduler

Linux is, in simplest terms, a non-commercial General-Purpose Opera ng System (GPOS). It was
originally developed by Linus Torvalds, in 1991, specifically for the Intel 80386 microprocessor.
Since then, Linux has evolved and grown at a spectacularly high pace due to the early adop on
of the GNU General Public License (GPL), which makes its source code open and available to
anyone to study andmodify (as hundreds of developers worldwide do and aswe did in this work).
Witnessing this tremendous success is the fact that, today, Linux runs on more than 90% of the
500 fastest supercomputers, leads the servers’ segment, and has a strong presence on embedded
systems such as smartphones (yes, Android is built on Linux!), watches, televisions and network
routers.

The Linux kernel is the heart of every Linux system. The kernel is the lowest-level so ware
layer that interfaces with the hardware, and expertly manages the limited resources. One of
the most important kernel subsystems is the process scheduler, or simply the scheduler as here-
ina er designated. The scheduler decides which process4 to run at any me instant, and it is
its responsibility to share the finite resource of CPU me among all runnable processes in the
system.

4In this thesis, task and process are used as synonyms.
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How the scheduler works affects how the system behaves. Because Linux is a mul tasking
system, the scheduler must give to users the impression that the CPU is always available. Even on
a mul -core machine, where processes can actually execute concurrently, when there are more
processes than CPUs, the scheduler is responsible for switching between processes at very short
me frames to give the illusion of simultaneous processing. Of course different processes have

different needs, and the scheduler has to play with that in an unno ceable way. Yet, a scheduling
policy may favour task switching in order to provide an interac ve system, it may privilege batch
processes and hence allow them to run longer, it may also decide that some processes are vital
for the system and should never be blocked by non-cri cal ones. A real- me scheduler forcibly
follows this last strategy.

In the remainder of this sec on, we cover the essen als of the scheduler internals5, with
emphasis on its modular design, and we discuss several real- me extensions to the Linux kernel
proposed by research ins tu ons and independent developers. The purpose of this sec on is nei-
ther delve deep into the core scheduler logic nor describe the implementa on of the scheduling
policies. For that, and much more about the Linux kernel, the reader is referred to these two
outstanding books by Bovet and Cesa [2005] and Mauerer [2008].

3.2.1 Modular scheduler core

The Linux schedulerwas completely redesignedby IngoMolnar as a scalable andmodular schedul-
ing framework, which makes the core scheduler quite extensible in a hierarchical manner. This
new modular scheduler was introduced in the kernel 2.6.23, replacing the old O(1) scheduler,
and become known as the Completely Fair Scheduler (CFS). However it does not mean that the
scheduler is broken into loadablemodules, as theword ”modular” tradi onally suggests. There is
no mechanism to add modules on-the-fly. Each of these modules translates in a scheduling class
that encapsulates specific scheduling policies logic about which the core scheduler does not as-
sume much. The core scheduler is ”just” a dispatcher that drives the overall flow and performs
low-level task switches. Scheduling policies rule how and when tasks will be scheduled. While a
scheduling class may be responsible for several policies, a task belongs exactly to a single policy.

As the core scheduler hierarchically queries the scheduling classes which task is supposed to
execute next, without any knowledge about their internals, they have to provide a generic bind
between the core scheduler logic and individual scheduling strategies. Thus, each opera on that
can be requested by the scheduler is represented by one func on pointer, independently on how
they are (if they are) actually implemented by each class. The set of func on pointers available
is collected in a special data structure called sched_class6. Without extensions necessary for
mul -core systems (we will talk about this later), the opera ons that can be provided are as
follows:

• enqueue_task() adds a new task to the runqueue. This func on is called whenever a task
enters a runnable state.

5All references to the kernel content relate to its status in the version studied (2.6.36), not the current one.
6Defined in include/linux/sched.h.
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• dequeue_task() removes a task from the runqueue. This func on is invoked whenever a
task switches from a runnable into a not runnable state.

• yield_task() yields the CPU giving room for the execu on of other tasks. This func on is
called whenever a task wants to relinquish control of the CPU voluntary.

• check_preempt_curr() checks whether the currently running task should be preempted.
This func on is invoked a er every enqueue opera on.

• pick_next_task() selects themost appropriated task eligible to be executed next. This func-
on is called a er a task has been taken away from the CPU.

• put_prev_task() makes a execu ng task no longer execu ng. This func on is invoked be-
fore the currently running task is replaced with another one.

• set_curr_task() is mostly called whenever the scheduling policy of a task is changed.

• task_ ck() is invoked by the scheduler at a very short periodic rate, which is defined by the
HZ macro.

• task_fork() is triggered whenever a running task spawns a new task.

Besides these func onpointers, asched_class instance also contains a pointer, callednext,
which establishes how classes are related in a flat priority hierarchy. As Fig. 3.4 depicts, the stock
kernel is released with the core scheduler logic plus three scheduling classes, suppor ng five
scheduling policies in total. The real- me class deals with POSIX FP real- me scheduling and,
therefore, is the highest priority one, followed by the CFS class which provides fairness to regular
tasks by picking, at any moment, the task with the gravest need for execu ng (i.e. priori es are
adjusted periodically). The idle class is the last one to be invoked by the core scheduler as it
holds no scheduling policy but handles logic for idle tasks that are ac ve on a CPU when there is
nothing be er to run. A brief descrip on of each scheduling class is given below.

1. SCHED_RR. A round robin real- me policy that will let a task run un l it has exhausted
its me slice if no higher priority task becomes runnable in the meanwhile. When a task
exhausts its me slice, it gets inserted at the end of its runqueue level. This way it ensures
fair assignment of CPU me to all SCHED_RR tasks of the same priority but blocks any task
below it.

2. SCHED_FIFO. A first-in, first-out real- me policy whose behaviour is iden cal to SCHED_RR
but it has no concept of me slice. Thus, as long as a task is not blocked by a higher priority
one it will execute for as long as it wishes and then leaves its runqueue.

3. SCHED_NORMAL. The default policy in a Linux system and the reasonwhy the Linux sched-
uler is today called CFS. The idea here is to runnormal tasks concurrently at preciseweighted
speeds so that each task receives a fair amount of processor share.
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Figure 3.4: The linux modular scheduling framework

4. SCHED_BATCH. A policy for CPU-intensive batch tasks which do not require interac vity.
Since these tasks want to execute for a long period of me, they cannot disturb interac ve
tasks. Hence they are disfavoured in scheduling decisions and typically remi ed to the
background.

5. SCHED_IDLE. The last policy to be handled by the CFS class as its tasks always have a mini-
mal rela ve weight (low importance). Note that SCHED_IDLE has ,despite its name, a dif-
ferent purpose than the idle class.

3.2.2 Main scheduling structures

The scheduler contains a series of data structures to represent, sort, track and manage the tasks
in the system. How the scheduler operates is strictly linked with the design of these structures.
The most important ones are: process descriptor, scheduling en ty, and runqueue.

The runqueue is the key data structure of the scheduler since it manages all ac ve tasks. In
this new scheduler, each CPU has its own runqueue data structure called rq7. Nevertheless, each
ac ve task appears on one, and just one, runqueue. Indeed, it is not possible to run a task on
several CPUs at the same me unless this task is parallelized. In this case, the task spawns threads
which are allowed to execute on different CPUs, as task scheduling makes no relevant dis nc on
between tasks and threads - they are both scheduling en es. Furthermore, a runnable task can
only be executed by the CPU owning the runqueue to which that task is associated. However,

7Defined in /kernel/sched.c.
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a runnable process may migrate to other runqueue than the one originally assigned, mostly for
load balancing purposes. Some interes ng fields that can be found inside rq are:

• lock is a spin lock that protects the integrity of the runqueue and its tasks.

• nr_running accounts the runnable tasks in the runqueue.

• curr is a pointer for the currently execu ng task on the CPU.

• clock provides a per-runqueue me.

The most important fields on the runqueue are those that somehow relate to the set of
runnable tasks in the system. Yet, tasks are not directly managed by the general elements of
the runqueue. Instead, a class-specific sub-runqueue is embedded into the main runqueue,
so each scheduling class can implement it on a different way. For example, struct cfs_rq
holds any me sub-runqueue status of the CFS class as well as the disposal of its enqueued tasks.
struct rt_rq works analogously. To highlight, cfs_rq uses a me-ordered red-black tree to
store runnable tasks and consequently build a ” meline” of future task execu on. Fig. 3.5 shows
all this at first sight confusing things.

Figure 3.5: The CFS runqueue

In a nutshell, a red-black tree is a type of self-balancing binary search tree whose nodes are
sorted by a key. The le most node is then the one with a lowest key value. Red-black trees allow
for efficient management of the nodes they contain, and their typically opera ons (i.e. inser on,
lookup and dele on) take O(logn) me to complete, where n here is the number of elements
present in the tree. The Linux kernel provides this data type as a standard.

Each task is represented by an instance of a structure denominated task_struct8, the pro-
cess descriptor, which maintains up-to-date informa on about it. There are several scheduling-
relevant fields included in a task_struct; among others:

• state describes the current state of the task. Fig. 3.6 depicts the main process states and
transi ons.

8Defined in /include/linux/sched.h.
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• prio and normal_prio denote the dynamically computed priori es of the task, whereas
static_priority is the rela ve priority assigned to the task when it was created (it can
bemodified by the user but not by the kernel). There is also rt_prioritywhich is a sta c
priority for a real- me task.

• sched_class as we have already seen connects the task to its scheduling class.

• By turn, policy denotes the scheduling policy applied to the task.

Figure 3.6: Transi ons between process states

However, the scheduler does not operate directly on tasks because is not restricted to sched-
ule tasks. In fact, it can schedule awhole groupof them. The concept of scheduling en ty denotes
this generality. Such an en ty is implemented in a modular fashion as well due to the inevitable
class-dependency. Therefore each processor descriptor contains an instance of sched_entity
and sched_rt_entity structures, which serve the CFS class and the real- me one, respec vely.
These structures typically encompass sta s cal elements, group scheduling fields and, of course,
the actual and some historical task details. For instance, in sched_entity, on_rq indicates if
the en ty is currently enqueued in a runqueue, while sum_exec_runtime records the consumed
CPU me when the en ty is execu ng.

Note that despite a task is necessarily a scheduling en ty the inverse statement is not true in
general. In our work we equate both since we are concerned only with task scheduling.

3.2.3 Mul processor-dedicated logic

So far, all that has been said is totally general and, therefore, can be applied to single core and
mul -core systems as well. Naturally, Linux provides several pivotal enhancements to efficiently
make use of mul processor machines, whatever form they come. No ce, however, that these
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enhancements, specially scheduling related ones, addmuch complexity to the scheduler, so they
must be any me addressed carefully. Here we will just consider some mechanism in a simple
way to show the essen al principle.

In order to ensure good scheduling on mul -core systems, the scheduler must address a few
addi onal issues:

• As we have discussed in previous sec ons, the CPU load must be distributed as evenly as
possible over the available cores. It is a completely waste of resources, and a significantly
decrease in throughput, if four concurrent applica ons are assigned to one CPU, while
there is one dealing with the idle task.

• It has to be possible to set the affinity of a task to a specific CPU or a subset of CPUs.
This allows one, for example in a 4-cores system, to dedicate one CPU to a single batch
applica on, whilst binding the remaining tasks to the others three CPUs.

• Last but not least, the scheduler must be able to migrate tasks across CPUs. However, this
feature may severely impair performance if used in an ad-hoc manner. For instance, cache
misses are the biggest concern on a small SMP system, whereas on a large system a CPU
can be located literally somemeters away from the targetmemory, resul ng in a extremely
costly access opera on.

Needless to say that a mul processor Linux kernel (one configured with CONFIG_SMP) re-
quires extensions to the afore-men oned data structures to sa sfy the above condi ons.

task_struct includes the cpus_allowed field which is a bit mask represen ng the affinity
of a task to par cular CPUs. By turn, sched_class is augmented by addi onal func ons:

• select_task_rq() selects the best suited runqueue for a task. This func on is invokedwhen-
ever a new task enters the system or wakes-up.

• set_cpus_allowed() is called to modify a given task’s CPU affinity. Depending on the new
parameters, it may be responsible for ini a ng a task migra on.

• load_balance() checks if the runqueue is balancedwithin its scheduling domain (explained
a erwards); a empts to move tasks when the answer is nega ve.

• pre_schedule() performs scheduling decisions before the actual schedule. This func on is
invoked inside the main schedule rou ne.

• post_schedule() differs from the previous func on only in the invoca on moment, which
is a er the actual schedule.

Linux s cks to the SMPmodel in a sense that the kernel should not have any bias toward one
CPU with respect to the remaining ones. Nonetheless, as mul -core machines come in many
different flavours (e.g. hyper-threading chips, SMP and NUMA architectures, permuta ons be-
tween the three), the scheduler behaves accordingly for system performance benefit. This is,
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in order to extract the best perform out of a mul -core system the scheduler sophis catedly
takes into considera on the topology of the CPUs, specially for load balancing purposes, so it
can migrate tasks intelligently. For that, the no on of scheduling domains is supported by the
kernel, and each runqueue (CPU) is associated to one scheduling domain through the addi on
of a sched_domain9 structure pointer (field sd) inside rq.

Long-story short, a scheduling domain is a set of CPUs, which share some hardware charac-
teris cs, and whose workloads should be kept balanced by the scheduler. Scheduling domains
are hierarchically organised: a mul -level system will have many levels of domains, and each
level may contain different domains. A small SMP system, like the one considered in our work,
typically has a single domain which spans every CPU available. Thanks to this hierarchy, the
runqueue balancing algorithm can be easily tuned for any type of mul -core architectures, or
technologies, and therefore it can be performed in a rather efficient way.

3.2.4 Real- me scheduling on Linux

The exis ng real- me scheduling policies perform very well in their own domain of applica on,
however, they cannot provide the ming guarantees a real- me system requires as no concept
of actual ming constraints (e.g. deadlines) can be associated to tasks. Moreover, the latency
that may be experienced by a task cannot be bounded, since it highly depends on the number
of runnable tasks assigned to that par cular scheduling policy at that me. These issues are of
paramount cri calness when running me-sensi ve or control applica ons. Therefore, without
a true real- me scheduler, one cannot derive a feasibility analysis of the system under develop-
ment.

Due to this lack of real- me support in the mainstream, some companies started deploying
modified versions of the Linux kernel with enhanced real- me capabili es. Although, these non-
standard versions of Linux have commercial purposes. Thus, they are not free and their develop-
ment is restricted to a small community. Fortunately, following the GNU spirit, several real- me
extensions have been proposed to the Linux kernel mainly by research ins tu ons and indepen-
dent developers. Among these research projects, which have been invaluable in demonstra ng
the capabili es and limita ons of new mul -core resource alloca on techniques on actual hard-
ware, the works more related (so-to-say) to our proposal of suppor ng full deadline scheduling
for real- me parallel computa ons in the Linux kernel are LITMUSRT and SCHED_DEADLINE.

LITMUSRT [Calandrino et al., 2006] is a plugin-based scheduling framework for the Linux
kernel, which supports the sporadic task model under a wide variety of implemented real- me
policies, targe ng both global and par oned scheduling. The project focus primarily on the
experimental evalua on of mul processor scheduling algorithms and synchronisa on protocols
for real- me system, from a research point of view. In that regard it simplifies such prototyping
by providing abstrac ons and interfaces within the kernel.

SCHED_DEADLINE (originally named SCHED_EDF) [Faggioli et al., 2009] is a scheduling class
for the Linux kernel that mimics the standard real- me class but employs an EDF policy. It im-

9Defined in include/linux/sched.h.
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plements par oned, global and clustered scheduling by applying CPU affini es and by allowing
dynamic task migra ons across CPUs, using push and pulls opera ons. This scheduling policy can
handle periodic, sporadic or aperiodic tasks once it uses the Constant Bandwidth Server (CBS)
[Abeni and Bu azzo, 1998] to provide bandwidth isola on (i.e. no task is permi ed to execute
longer than its budget every deadline length me interval). Therefore hard and so real- me
tasks can cohabit in the same environment as they do not interfere with each other even when
they misbehave.

Nevertheless, none of those patches directly supports parallel real- me tasks. It has also to
be said that both of them haven’t become part of the official Linux kernel yet. While this is clearly
the aim of SCHED_DEADLINE, as its implementa on is (at the me of this wri ng) being kept lined
up with the mainstream kernel and is POSIX-compliance, LITMUSRT does not share this concern
which eventually make it obsolete by now.

Despite any real- me scheduler whatsoever being added, Linux intrinsically presents some
limita ons for real- me systems since as a GPOS its primary design goal is to op mise the average
throughput. Namely unpredictable latencies, non-preemptable sec ons, and coarse-grained m-
ing resolu on are poten al issues for real- me applica ons [Scordino and Lipari, 2006]. Thank-
fully some meaningful efforts have been redirected into this direc on.

In fact, even HRT tasks can be scheduled on Linux by adop ng the so called interrupt ab-
strac on approach. This approach consists of crea ng an abstrac on layer of virtual hardware
between the standard Linux kernel and the computer hardware. The resul ng system is a mul -
threaded RTOS in which the standard Linux kernel is the lowest priority thread, therefore, it exe-
cutes only when the real- me kernel is inac ve. The main advantage is to a ain very low laten-
cies, hence it is efficient, whereas the major drawback is its invasiveness. RTLinux, Xenomai and
RTAI are notable examples where this solu on was successfully implemented.

PREEMPT_RT is a quickly evolving set of patches maintained by a restrict group of skilled
kernel developers, currently led by Thomas Gleixner. The philosophy is to minimize the amount
of kernel code that is non-preemp ble, while also minimising the amount of code that must be
changed in order to provide this added preemp bility. In order to accomplish an almost fully pre-
emp ble kernel, most kernel spinlocks are replaced by mutexes that support priority inheritance
protocol [Sha et al., 1990], which solves the problem of unbounded priority inversion. Moreover,
all interrupts aremoved to kernel threads so they become schedulable. By a aining a predictable
behaviour in cri cal kernel ac vi es, a more determinis c Linux kernel is obtained, which is the
most important property of any RTOS.

A priority inversion happens when a higher priority task is blocked on a shared resource
owned by a lower priority task. If the lower priority task task is preempted by a medium pri-
ority task while holding the resource, the higher priority one will have to wait for an unbounded
me.

Some features from the PREEMP_RT patch series, such as generic IRQs and hr mers, have
found their way into themainline kernel. Other useful features remain as add-ons because, while
increasing determinism, they o en result in higher kernel overheads, and consequently lower
throughput, which goes against the GPOS principles governing Linux.
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3.3 Summary

In this chapter we saw how parallelism can be explored by programmers and in what way that
may affect produc vity and performance. As we are concerned with the scheduling of highly
heterogeneous real- me parallel applica ons for shared memory architectures, we highlighted
the characteris cs of the followed models to generate work, namely the task parallelism model
and shared memory one. In order to efficiently schedule such fine-grained and dynamic parallel
computa ons, a me-, space-, and communica on-aware scheduler must be employed. Work-
stealing, which we explained in detail, not only provably assures that, but also automa cally
balances the workload in the system. The scheduler we present in the next chapter is a variant
of this scheduling algorithm, typically implemented in a language run me system.

In this chapter, we inves gated how to implement our proposal in Linux, due to its free and
open-source nature. Namely, we discussed the Linux modular scheduling framework, we looked
at the main data structures of the Linux scheduler, as well as its support for mul processor sys-
tems. At the end, we pointed out few of the limita ons it faces regarding real- me support,
while men oning some patches that a empt to overcome those cases. The SCHED_DEADLINE
scheduling class, whose implementa on inspired our work, was briefly described here.
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Chapter 4

Real-Time Work-Stealing

The mo va on for this project was outlined in Chapter 1. Based on that, the next
chapters discussed the main theory behind our proposal. In Chapter 2, we covered
the real- me scheduling world, poin ng out the chosen direc ons for our model.
Chapter 3 introduced parallel compu ng strategies to effec vely exploit parallelism,
explaining howwe can efficiently map threads to cores. This guided our design from
top to bo om. Furthermore, Chapter 3 has also laid down the founda on for our
implementa on by describing the Linux scheduler. It is now me to bringing it all
together.

Meant to be used na vely as an OS scheduler, RTWS is a novel scheduling approach,
which combines the G-EDF policy with a priority-based locality-aware work-stealing
load balancing scheme, enabling parallel real- me tasks to run on more than one
processor at a given me instant.

In this chapter, we provide a detailed descrip on of all the work devised regarding
the RTWS scheduler and jus fy our op ons. The next sec on describes the state-
of-art in parallel real- me scheduling, shortly comparing to the system model we
present in Sec on 4.2. Then, Sec on 4.3 follows by discussing the algorithm de-
sign, with emphasis being given to: (i) data structures, (ii) major rules, and (iii) sub-
policies. The last major contribu on of our work is the RTWS implementa on in the
Linux kernel. The core of this complex proceeding is analysed in Sec on 4.4.

4.1 Related work

Task-level parallelism is a form of paralleliza on of code across mul ple processors in parallel
compu ng environments. Many real- me applica ons have a lot of poten al parallelism which
is not regular in nature and which varies with the data being processed. Parallelism in these
applica ons is o en expressed in the form of dynamically generated threads of work that can be
executed in parallel. The goal is to allow the programmer to express all the available parallelism
and let the run me system execute the program efficiently.

Considerable work on scheduling of parallel tasks can be found in [Agrawal et al., 2008, Arora
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et al., 1998, Blelloch et al., 1999, Hummel and Schonberg, 1991, Polychronopoulos and Kuck,
1987, Turek et al., 1994]. However, it cannot be applied to real- me systems since ming con-
straints are not contemplated. Real- me scheduling of parallel tasks started to be addressed
in 1989 when Han and Lin [1989] have shown the NP-hardness of preemp ve scheduling paral-
lel jobs, and the intractability of many parallel scheduling problems. The non-preemp ve case
was later studied byWang and Cheng [1992] which proposed a heuris c based on the makespan
metric. Ludwig and Tiwari [1994] also took makespan into considera on for scheduling parallel
malleable tasks and their rela on to non-malleable ones. However, these early works impose
many limita ons on the number and configura on of processors allo ed to a task.

From an op misa on point of view, some research has studied cache-aware schedulers for
mul -threaded tasks [Anderson and Calandrino, 2006, Calandrino and Anderson, 2009]. Ander-
son and Calandrino [2006] consider Pfair algorithm and encourage tasks of the same weight to
be co-scheduled in order to minimise cache misses. Calandrino and Anderson [2009] show a
significant performance improvement, with a slight overhead trade-off, when their cache-aware
scheduler does accurately profiling. Nevertheless, in both works the parallelism degree of a job
cannot be greater than the number of processors in the system.

Most prior work in parallel real- me scheduling makes simplifying assump ons about task
models [Colle e et al., 2008, Jansen, 2004, Kato and Ishikawa, 2009, Lee and Lee, 2006, Mani-
maran et al., 1998], assuming that the parallelism degree of jobs is known beforehand and using
this informa on when making scheduling decisions. In prac ce, this informa on is not easily
discernible, and in some cases can be inherently misleading. For instance, Jansen [2004], Lee
and Lee [2006] and Colle e et al. [2008] focus on malleable tasks, where tasks can efficiently
execute on any number of processors and change it at run me. On the other hand, Manimaran
et al. [1998] and Kato and Ishikawa [2009] inves gate the scheduling of moldable tasks, where
the number of processors allo ed to a task is defined before execu on. The la er work, in its
Gang EDF algorithm, also restricts the number of parallel threads within a task to its associated
number of processors, while the formerwork considers non-preemp ve EDF scheduling but does
not allow the number of processors simultaneously used by a task to be posteriorly changed.

Recently, Lakshmanan et al. [2010] proposed a scheduling technique for a synchronous par-
allel task model. In this model, every task is an alternate sequence of parallel and sequen al
regions, with each parallel region consis ng of mul ple threads of equal length that synchronise
at the end of the region. In their model, all parallel regions are assumed to have the same num-
ber of parallel threads, which must be no greater than the number of processors. Saifullah et al.
[2011] considered amore general task model, allowing different regions of the same parallel task
to contain different numbers of threads and regions to contain more threads than the number of
processor cores. It s ll requires, however, that each region of a task contains threads of execu-
on that are of equal length. In contrast, this thesis considers a more general model of parallel

real- me tasks where threads can take arbitrarily different amounts of me to execute.
Furthermore, bothworks handle scheduling parallel tasks by decomposing them into sequen-

al subtasks. In [Lakshmanan et al., 2010], this technique requires a resource augmenta on
bound of 3.42 under par oned Deadline Monotonic (DM) scheduling. For the synchronous
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model with arbitrary numbers of threads in parallel regions, the work in [Saifullah et al., 2011]
proves a resource augmenta on bound of 4 and 5 for G-EDF and par oned DM scheduling, re-
spec vely. Instead, we try to minimise the scheduling overhead by genera ng parallelism only
when required, i.e. when a processor becomes idle.

We believe that achieving predictable good performance for fine-grained task-level paral-
lelism in embedded real- me systems is important for several reasons: (i) an efficient implemen-
ta on of fine-grained parallelism allows more parallelism to be exploited, which is especially
important with the expected increase in core counts in future processors; (ii) the programming
model is simplified if programmers do not need to avoid spawning small tasks, which is very diffi-
cult when task execu on mes can not be predicted in advance; and (iii) many real- me systems
have periodic serialisa on points when input is consumed and output is produced. A natural way
to program such a system is to parallelize each interval, which then becomes a parallel region.

4.2 System model

We consider the scheduling of implicit-deadline periodic independent real- me tasks onm iden-
cal processors p1, p2, . . . , pm using G-EDF. With G-EDF, each task ready to execute is placed in a

system-wide queue, ordered by non-decreasing absolute deadline, from which the firstm tasks
are extracted to execute on the available processors.

We primarily consider a synchronous task model, where each task τ1, . . . , τn can generate a
virtually infinite number of mul -threaded jobs. A mul -threaded job is a sequence of several
regions, and each region may contain an arbitrary number of parallel threads which synchronise
at the end of the region (see Fig. 4.1). For any region with more than one thread, the threads
on that region can be executed in parallel on different cores. All parallel regions in a task share
the same number of processors and threads inherit the parent’s deadline. For now, our work is
focused on systems where all parallel threads are fully independent, i.e. except for them-cores
there are no other shared resources, no cri cal sec ons, nor precedence constraints.

Figure 4.1: A mul -threaded job with 5 regions

The jth job of task τi arrives at me ai,j , is released to the G-EDF queue at me ri,j , starts to
be executed at me si,j with deadline di,j = ri,j+Ti, with Ti being the period of τi, and finishes
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its execu on at me fi,j . These mes are characterised by the rela ons ai,j ≤ ri,j ≤ si,j ≤ fi,j .
Successive jobs of the same task are required to execute in sequence.

During the course of its execu on the jth job of task τi can enter in a parallel region and
dynamically generate an arbitrary number of parallel threads which synchronise at the end of
that region. A thread is denoted wk

i,j , 1 ≤ k ≤ ni, where ni is the total number of threads
belonging to the jth job of task τi. We assume ni ≥ 2 holds for at least one task τi in the system.
Otherwise, the considered task set does not have intra-task parallelism.

The execu on requirements of a thread wk
i,j of task τi is denoted by eki,j . Therefore, the

WCET) Ci of task τi on a mul -core pla orm is the sum of the execu on requirements of all of
its threads, if all threads are executed sequen ally in the same core.

Contrary to regular jobs of a task, dynamically generated parallel threads are not pushed to
the G-EDF queue, but instead maintained in a local priority-based work-stealing double-ended
queue (deque) of the core where the job is currently being executed, thus reducing conten on
on the global queue. For any busy core, parallel threads are pushed and popped from the bo om
of the deque and these opera ons are synchronisa on-free.

The frac on of the capacity of one processor that is assigned to a task τi is defined as its
u lisa on ui = Ci

Ti
. We further define UΠ =

∑n
i ui as the system u lisa on on the iden cal

mul processor pla orm Π comprised of m unit-capacity processors and uΠ = max1≤i≤nui as
the maximum task u lisa on.

A task set Γ is said to be schedulable by algorithm A, if A can schedule Γ such that every
τi ∈ Γ can meet its deadline di. With G-EDF, a task τi executed on the iden cal mul processor
pla orm Π comprised ofm unit-capacity processors never misses its scheduling deadline under
the following condi ons Goossens et al. [2003]:

uΠ ≤ 1;

UΠ ≤ m− uΠ(m− 1) (4.1)

Naturally, if only so real- me tasks are considered, jobsmaymiss their deadlines by bounded
amounts, elimina ng such restric ve u lisa on limits. It has been shown that, when using G-EDF
to schedule sporadic so real- me tasks on m processors, deadline tardiness is bounded, pro-
vided total u lisa on is at mostm Valente and Lipari [2005].

4.3 Design

Dynamic scheduling of parallel computa ons by work-stealing [Blumofe and Leiserson, 1999] has
gained popularity in academia and industry for its good performance, ease of implementa on
and theore cal bounds on space and me. Work-stealing has proven to be effec ve in reducing
the complexity of parallel programming, especially for irregular and dynamic computa ons, and
its benefits have been confirmed by several studies Navarro et al. [2009], Neill and Wierman
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[2009].

However, the need to support tasks’ priori es and deadlines fundamentally dis nguishes the
problem at hand in this thesis from other work-stealing choices previously proposed in the liter-
ature Guo et al. [2010], Vrba et al. [2009, 2010]. With classical work-stealing, threads wai ng for
execu on in a deque may be repressed by new threads, which are enqueued at the bo om of
the worker’s deque. As such, a thread at the top of a deque might never be executed if all work-
ers are busy. Consequently, there is no upper bound on the response me of a mul -threaded
real- me job.

Therefore, considering threads’ priori es and using a single deque per core would require,
during stealing, that a worker iterate through the threads in all deques un l the highest priority
thread to be stolenwas found. This cannot be considered a valid solu on since it greatly increases
the the me and, subsequently, the conten on on a deque.

Using a single global concurrent priority-based deque is also not viable. While priority queues
are o en used in single core schedulers, when moving to a parallel context, concurrent priority
queues are hard to make both scalable and fast Lenharth et al. [2011]. Furthermore, the se-
man cs of priority queues naturally suggest an ordered inser on method, which is against the
work-stealing deque philosophy.

Our proposal is to replace the single per-core deque of classical work-stealing with a per-core
priority queue, each element ofwhich is a deque. A deque holds one ormore threads of the same
priority. At any me, a core picks the bo om thread from the highest-priority non-empty deque.
If it finds its queue empty, it steals a thread from the top of the highest-priority non-empty deque
of the chosen core’s queue. Fig. 4.2 provides a first depic on of the overall design.

Figure 4.2: Overview of the RTWS data structures design

No ce that with this design all queue manipula ons are straigh orward since empty deques
do not actually remain stored (we just men on non-empty deques for ease of understanding).
Thus, no benefit from tradi onal work-stealing proper es is lost while we assure determinism
and predictability.
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Among the various possible alterna ves for designing a global real- me scheduler [Branden-
burg and Anderson, 2009], the simplest and most commonly used ones are: (i) a single global
queue from where tasks are consecu vely dispatched to cores, and (ii) a distributed approach
where each core has its own queue and tasks are dynamically allo ed to those queues through
migra ons. Advantages of the former are the easymanagement of the unique queue, no need to
synchronise between clocks of different CPUs, and, most of all, op mal picking of work because
the scheduler has not to decide where to enqueue ready tasks. Moreover, the selec on of what
task to run next is straigh orward, assuming a somehow ordered global queue. Nevertheless,
such an approach has a serious drawback: performance degrada on when the number of cores
accessing it increases. This happens because in order to keep the queue consistent (i.e. to ensure
that only one core concurrently manipulates the queue), it must be protected by a lock mech-
anism. Naturally, as a SMP system gets larger, the lock conten on overhead considerably gets
higher, eventually becoming the scalability bo leneck.

On the other hand, the la er case has the benefit of solving this scalability problem since each
core selects runnable tasks only from its queue. Hence, conten on received by any local queue
is much lower and independent of the addi on of CPUs. However, as a distributed approach
implies the allotment of tasks to CPUs in the first place, this raises several disadvantages. Queue
management is rather costly and complex due to the indispensable dynamic task migra on and
consistence of scheduling data informa on. Furthermore, making a good global scheduling de-
cision is technically difficult due to the lack of synchronisa on between CPUs’ clocks.

As depicted in Fig. 4.2, our proposal adopts a single global queue for job-level scheduling,
and, in last resort, a global distributed approach alike for parallel threads scheduling (this will be
explained in the next sec on). Thisway the probability of acquiring a contended lock isminimised
and threads are seldom migrated (only when a CPU would otherwise be idle). Thus, we mi gate
both approaches drawbacks, while we conciliate and extract the best out of them.

4.3.1 Rules

The correctness and efficiency of a scheduling algorithm cannot be assured just by the data struc-
tures used by it and the flow connec ng them. A set of rules to determine which m tasks must
be executed on them available CPUs is compulsory.

The proposed RTWS scheduler encompasses a G-EDF scheduling policy combined with a
priority-based work-stealing load balancing scheme, used to allow parallel tasks to execute on
more than one processor at any moment. The goals are to fit a wide-range of parallel real- me
systems, reduce scheduling overheads, improve system performance by efficiently managing dy-
namic parallelism, and guarantee the schedulability of the system by G-EDF. Needless to say, in
order to accomplish such goals some rules must be defined. We describe the major ones below.

• Rule A: a single global ready queue exists in the system, ordered by non-decreasing abso-
lute deadlines. At each instant, the higher priority (with shorter absolute deadline) jobs
are scheduled for execu on.

• Rule B:whenever a job of a task τi being executed at a processor p enters a parallel region
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and dynamically generates a set of parallel threads, those threads are not pushed to the
G-EDF queue but instead maintained in the processor’s local priority queue.

• Rule C: as soon as a job spawns parallel threads, it starts to be handled as a thread.

• Rule D: each entry in the processor’s local priority queue is a deque, holding one or more
threads of the same priority. At any me, a processor first looks into its local queue, picking
the bo om thread from the highest-priority non-empty deque.

• Rule E: if the local queue is empty and there is no thread to pick, then a processor searches
for jobs in the G-EDF queue.

• Rule F: s ll, if there is no eligible job in theG-EDF queue, the processorwill steal the earliest
deadline eligible thread from the top of the chosen busy processor’s deque.

• Rule G: threads will never preempt any other en ty. Only arriving jobs may cause a pre-
emp on.

• Rule H: opposed to a local thread, a stolen thread preempted by a job with a shorter dead-
line is enqueued in theG-EDF queue (like a preempted job is) and not back to the respec ve
deque of the processor’s local priority queue.

Each released job is enqueued in a system-wide global queue ordered by non-decreasing
absolute deadlines, with es broken by FIFO. At t = 0, all them cores are idle and them higher
priority jobs are selected for execu on. By following a global approach, cores are responsible for
dequeuing the highest priority jobs from the global queue, therefore, eschewing the bin-packing
problem of par oned approaches, and achieving op mal scheduling decisions.

When entering a parallel region, a job generates an arbitrary number of threads, possibly
with different execu on requirements. To reduce conten on on the global queue and to avoid
uncontrolled priority inversion when stealing, each core has a deadline-ordered queue, each ele-
ment of which is a deque. Therefore, each dynamically generated thread is enqueued, following
a LIFO order, in the bo om of the respec ve deque, so that data locality is favoured and com-
munica on and synchronisa on among cores are minimised.

For each core, the local deques are the first place to look for work, not only due to the fact
that if they have work it means that there is a deadline to be met, but also to take advantage
of caches and keep overhead low. If the local deques are empty, the global queue is searched.
This step assumes that no ma er how many threads the other cores in the system s ll have to
execute, they are able to finish their work within the deadline (the schedulability of the task set
is assured by G-EDF). Clearly, this step favours jobs in the G-EDF queue, with respect to parallel
threads generated on other cores, by reducing their latency. Recall that we try to minimise the
scheduling overhead by genera ng parallelism only when required, i.e. when a processor would
be otherwise idle. Moreover, we focus on reducing the worst-case response me of the tasks
and not the best, since real- me is not about fast compu ng but compu ng every task in me.

41



CHAPTER 4. REAL-TIME WORK-STEALING

Finally, if no work has yet been found, a stealing opera on takes place, ensuring that the top-
right parallel thread (i.e. the oldest highest priority thread), in the chosen core is stolen. As the
oldest element in its deque, it is a good candidate for stealing because it is likely that related-data
is no longer cached. This last step helps to reduce the overall average response me and to keep
the load balanced. By having a thief opera ng on the opposite end of the deque than the vic m,
both can perform ac ons on the deque concurrently as synchronisa on-free mechanisms can be
implemented. Furthermore, the load balancing opera on cost is imputed to a core that would
otherwise be was ng CPU cycles. The process flow diagram for this task selec on procedure is
shown in Fig. 4.3.

Figure 4.3: Process flow diagram represen ng rule E and F

Whenever a new job is released and enqueued in the G-EDF queue, and all cores are busy,
the scheduler verifies if the core execu ng the lowest priority job/thread, among all the execut-
ing jobs/threads, has a higher deadline than the newly arrived job. If this condi on is true, the
job/thread is preempted. One of three possible situa ons occurs, depending on the proper es
of the preempted en ty:

1. A job is enqueued back in the global queue because it has not yet entered a parallel region.

2. A local thread (i.e. a thread currently running on the core where it was spawned) is en-
queued back in the respec ve deque in the core’s local priority queue. Moving all related
parallel threads would be too costly. This is the reason why we have a per-core queue of
deques.

3. A stolen thread is enqueued in the global queue in order to prevent starva on and, there-
fore, a possible deadline miss.

The process flow diagram for this task preemp on procedure is shown in Fig. 4.4. Note that
spawned threads will never cause a preemp on because system predictability does not rely on
their parallel execu on. This substan ally reduces the number of context switches, while also
contributes to retard accesses to the global queue.

4.3.2 Sub-policies

In designing a work-stealing scheduler there are two scheduling sub-policies to consider: work-
first and help-first. Under the work-first policy, as soon as a job spawns a thread, it will be
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Figure 4.4: Process flow diagram represen ng rule G and H

swapped out, so the respec ve core starts working on the spawned thread eagerly. Conse-
quently, unless the spawned thread creates more threads itself, there is only the master thread
available for work-stealing. Work-first shines when computa ons are recursive (e.g. following
divide-and-conquer paradigm).

In contrast, the help-first policy dictates that a core con nues execu ng the master thread
and leaves spawned threads to be stolen, so as many idle cores as spawned threads may imme-
diately par cipate on the computa on execu on. This strategy fits be er in computa ons that
present flat parallelism (e.g. following a basic fork-join model).

RTWS supports both work-first and help-first scheduling sub-policies. However, since nested
parallelism is beyond the scope of our work, we will neglect work-first in the remaining of this
thesis, with an excep on raised for the implementa on discussion.

So far we have not discussed how do we elect the processor to steal from. Two approaches
are possible for selec ng the vic m: (i) a probabilis c approach, where the vic m is chosen ran-
domly; or a (ii) determinis c approach, where the core is chosen by the priori es of the threads
wai ng to be executed in the deques.

Blumofe and Leiserson [1999] demonstrate that a random choice of the stolen core is fair
and presents the advantage that the choice of the target does not require more informa on
than the total number of cores in the execu on pla orm. However, random selec on, while
fast and easy to implement, may not always select the best vic m to steal from. As core counts
increase, the number of poten al vic ms also increases, and the probability of selec ng the best
vic m decreases. This is par cularly true under severe cases of work imbalance, where a small
number of coresmay havemorework than others [Bha acharjee et al., 2011]. Moreover, when a
thief cannot obtain tasks quickly, the unsuccessful steals it performs waste compu ng resources,
which could otherwise be used to execute wai ng threads. In fact, if unsuccessful steals are not
well controlled, applica ons can easily be slowed down by 15%–350% [Blumofe and Leiserson,
1999].

It is crystal clear that a blind probabilis c approach (i.e. a random choice where all cores
are considered) is not suitable for a real- me scheduler. Nevertheless, since in our model the
schedulability of the task set is guaranteed by G-EDF, no specific task needs to be executed in
parallel. In other words, even execu ng sequen ally every task in the system is guaranteed to
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meet its deadline under any circumstance, which makes RTWS robust to small devia ons from a
strict priority schedule. In fact, some priority inversion may be actually acceptable, provided it
helps reduce conten on, as well as synchronisa on and coordina on between parallel threads.
Thus, if we discard idle cores and steal randomly only among busy cores, applica ons will not
suffer any performance loss. Hereina er, we will refer to this as Busy-Aware Stealing (BAS).

Naturally, a determinis c approach (henceforth called PAS) is an obvious solu on when real-
me scheduling is at stake. Priority-Aware Stealing (PAS) can be defined as follows.

Defini on 1 The set of processors Ps eligible for work-stealing among the set ofm iden cal pro-
cessors P = {p1, p2, . . . , pm} is given by Ps = {Ps|Ps ∈ P, npi ≥ 1}, where npi is the number
of threads in the local priority queue of processor pi.

Having Ps, an idle processor steals the earliest deadline thread wedf among the ones in the
top of the highest-priority non-empty deques (first entry in each of the processor’s local priority
queue) from the set of eligible processors Ps.

Defini on 2 The earliest deadline threadwedf from the set of eligible processors Ps is defined as
∃1wedf ∈ Ps : mindr

k
(Ps), Ps ̸= ∅.

Note that the ∃1 rela on is guaranteed by themin func on which, whenever there is more
than one thread with the same earliest deadline, always returns the first thread on the list.

However, this determinism may turn in large conten on overhead, affec ng performance
scalability. For instance, if at the same me instant 10 CPUs become idle, and there are several
CPUs with ready threads, all idle ones will disputed the access to a single queue, resul ng in
considerable blocking me for 9 CPUs which could undoubtedly be be er availed. A scenario like
this is much unlikely to happen using BAS.

As BAS and PAS fit well in different real- me systems, our proposal encompasses these two
stealing sub-policies. Yet, both will always select the rightmost thread from the highest-priority
non-empty deque of the target queue.

4.3.3 Scheduling mul -threaded jobs with RTWS

Consider the following task set, described by WCET and period, τ1 = (5, 10), τ2 = (10, 20), and
τ3 = (4, 19). Task τ1 executes sequen ally for three me units and then spawns two threads
which have an execu on requirement of one me unit each. Task τ2 has a sequen al execu on
requirement of two me units and then spawns four threads, with the first and third threads
having an execu on requirement of one me unit, whereas the second and fourth threads have
an execu on requirement of three me units. Finally, task τ3 only executes sequen ally. Note
that the task set is schedulable under G-EDF, uΠ = 0.5 and UΠ = 1.21.

Fig. 4.5 depicts a possible schedule generated by RTWS for those three tasks in two iden cal
processors, when applying help-first and PAS sub-policies.

All tasks are released at t = 0. The ones with a lower deadline, τ1 and τ3, are selected for
execu on in the two cores. In the interval t = [0, 5] none of the cores is idle. Therefore, task
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Figure 4.5: A RTWS schedule example

τ1 executes sequen ally, although it spawns parallel threads. At t = 5, task τ2 is scheduled for
execu on in core 1. Its sequen al part executes un l t = 7 and then it spawns four threads. As
core 2 is idle at me t = 7 and there is pending work in the priority queue of core 1, it is able to
work-steal. Therefore, at t = 7, core 2 steals w2

2,1 from the highest-priority non-empty deque of
core 1.

At t = 10, a job from task τ1 is released and preempts w3
2,1, which has a lower priority.

According to the RTWS policy, w3
2,1 is enqueued in the global queue un l one of the cores is able

to finish its execu on. In the depicted example, w3
2,1 is executed at t = 11 in core 1.

As core 2 is idle a er t = 12, threads generated by the second job of task τ1 can be executed
in parallel by both cores, by work-stealing at me t = 13.

4.4 Implementa on

Based on the design principles presented in sec on 4.3, we have implemented RTWS in the stan-
dard Linux kernel 2.6.36 as a new scheduling class called SCHED_RTWS. In this sec on, we will
dive into the code: (i) presen ng the added data structures, (ii) analysing the main implementa-
on logic, and (iii) showing the differences between theory and prac se.

As we have seen in sec on 3.2.1, the Linux kernel has three na ve scheduling classes, hi-
erarchically organised to establish a priority order between them. In order to create our new
scheduler module, we need to code it in a separate file (kernel/sched_rtws.c) and posi on
it anyhow in the module’s hierarchy. Not surprisingly, the RTWS class is placed on the top of the
hierarchy, becoming the highest priority module in the system, as shown in Fig. 4.6. The reason
is because wewill be dealing with me-sensi ve real- me parallel tasks which cannot be delayed
by ordinary tasks.

Figure 4.6: Priority hierarchy of scheduler modules

Before informing the core scheduler about the newhighest prioritymodule, a set of func ons
specified in the sched_class structure must be implemented. Lis ng 4.1 shows the defini on
of rtws_sched_class, which realises the RTWS scheduler module.

The first field (next) is a pointer to the second highest priority scheduling class in the hierar-
chy. Accordingly, rt_sched_class, which implements the two POSIX real- me policies, will be
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queried every me RTWS fails to return a task. The other fields are func ons that act as callbacks
to specific events. Sec on 4.4.2 will narrowly analyse the most relevant ones. The reader may
wonder why there is no CONFIG_SMP direc ve isola ng the mul processor func ons. Well, we
neither intent to merged this first approach into mainline Linux, nor POSIX-compliance is a goal,
so we just focused on the scheduling features for simplicity.

1 s t a t i c con s t s t r u c t s c h e d _ c l a s s r tw s _ s c h ed_ c l a s s = {
. nex t = &r t _ s c h e d _ c l a s s ,

3 /* main f u n c t i o n s */
. enqueue_task = enqueue_task_r tws ,

5 . dequeue_task = dequeue_task_r tws ,
. check_preempt_cur r = check_preempt_cur r_ r tws ,

7 . p i c k _ n e x t _ t a s k = p i c k _ne x t _ t a s k _ r tw s ,
/* secondary f u n c t i o n s */

9 . p u t _p r e v_ t a s k = pu t_p rev_ t a s k_ r tws ,
. s e t _ c u r r _ t a s k = s e t _ c u r r _ t a s k _ r tw s ,

11 . t a s k _ t i c k = t a s k _ t i c k _ r tw s ,
. t a s k _ f o r k = t a s k _ f o r k _ r tw s ,

13 . t a sk_dead = task_dead_r tws ,
. sw i t ched_f rom = swi t ched_f rom_r tws ,

15 . sw i t ched_ to = sw i t ched_ to_ r tws ,
/* mu l t i p r o c e s s o r f u n c t i o n s */

17 . s e t _ cpu s_a l l owed = se t_cpus_a l l owed_ r tws ,
. task_woken = task_woken_rtws ,

19 } ;

Lis ng 4.1: RTWS scheduling class

To differen ate tasks bound to our scheduling policy from other tasks in the system, we refer
to them as RTWS tasks, or RTWS jobs due to these tasks con nuous recurrency. Further, we use
the term pjob when referring to a parallel thread of a job. Recall that RTWS tasks are periodic
and, therefore, are poten ally endlessly releasing new instances. They present a code structure
similar to the algorithm present in Lis ng 4.2 because their periodicity is typically me-triggered
and not event-triggered as most sporadic tasks. Note that, in this example, we ignore the com-
puta on itself (i.e. no parallelism is expressed), and focus only on the periodic behaviour.

1 s t a r t : = time_now ( ) + o f f s e t ;
wh i l e ( t r ue ) {

3 d e l a y _ u n t i l ( s t a r t ) ;
compute ( ) ;

5 s t a r t : = s t a r t + pe r i od ;
}

Lis ng 4.2: RTWS task algorithm example

4.4.1 Data structures

Following the scheduler code conven on, we do not embed required data fields directly on the
exis ng structures but instead create our own. Thereby, each process descriptor is provided with
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a struct sched_entity_rtws which is an en ty to schedule RTWS tasks (detailed in Lis ng
4.3). Remember that we neglect group scheduling, so an en ty equals to a task, or a thread, as
in Linux there is no substan al difference, they are both represented by a task_struct. This
en ty manages the general parameters of a RTWS task and some informa on about its status.
Furthermore, an addi onal data structure is created to manage RTWS job specific parameters
(struct rtws_job), tough a task only tracks the current job.

s t r u c t r tws_ j ob {
2 a tom i c_ t nr ; /* t a s k i n s t a n c e number */

u64 dead l i n e ; /* ab so l u t e dead l i n e */
4 u64 r e l e a s e ; /* ab so l u t e r e l e a s e t ime */

} ;
6

s t r u c t s c h ed_ r tw s _ en t i t y {
8 s t r u c t h r t ime r t ime r ;

s t r u c t rb_node task_node ;
10 u64 r tw s_dead l i n e ; /* r e l a t i v e dead l i n e */

u64 r tws_pe r i od ; /* r e l a t i v e pe r i od */
12 s t r u c t s c h ed_ s t a t s _ r tw s s t a t s ;

s t r u c t r tws_ j ob job ;
14 uns i gned long n r_p j ob s ; /* number o f spawned th r ead s */

16 /* s p e c i f y i n g the s c hedu l e r behav iou r : */
uns i gned i n t f l a g s ;

18 i n t h e l p _ f i r s t , t h r o t t l e d , s t o l e n ;

20 /* p a r a l l e l t h r ead s f i e l d s : */
s t r u c t rb_node pjob_node ;

22 s t r u c t rb_node s t e a l a b l e _p j ob_node ;
s t r u c t s c h ed_ r tw s _ en t i t y * pa ren t ; /* po i n t e r to the RTWS e n t i t y t h a t spawned

i t */
24 } ;

26 s t r u c t t a s k _ s t r u c t {
v o l a t i l e l ong s t a t e ; /* −1 unrunnable , 0 runnab le , >0 stopped */

28 . . .
s t r u c t s c h e d _ en t i t y se ;

30 s t r u c t s c h e d _ r t _ e n t i t y r t ;
s t r u c t s c h ed_ r tw s _ en t i t y r tws ;

32 . . .
} ;

Lis ng 4.3: RTWS scheduling en ty

struct hrtimer represents a high resolu on mer which is used to set and trigger tasks’
periodicity at precise instants. It also contains a pointer to a callback func on, so ac ons can be
performed as soon as a task is released. Note that all ming parameters are set using nanosecond
me unit. task_node, pjob_node and stealable_pjob_node are required to organise RTWS

on three red-black trees serving different purposes. struct sched_rtws_stats holds sta s c
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informa on about the successive jobs execu on of a RTWS task. help_first and stolen act
as binaries to indicate whether an en ty employs the help-first scheduling sub-policy and has
been stolen, respec vely, while flags and throttled are barely used to boost or thro le en ty
status. The remaining fields are quite self-explanatory.

Each per-processor main runqueue is provided with a struct rtws_rq which is a sub-
runqueue holding all RTWS runnable en es assigned to that processor (detailed in Lis ng 4.4).
Each rtws_rq points to a global runqueue (struct global_rq) where all RTWS ready jobs
are maintained before they get scheduled. Although we could access global_rq directly, we
decided to embed it for the sake of consistency. No ce, however, that any inner affilia on is
just logical because it boils down to sort pointers: the actual process descriptors are all, with no
excep on whatsoever, stored in a circular doubly-linked list, called the task list.

1 s t r u c t g l o b a l _ r q {
r aw_ sp i n l o c k _ t l o c k ; /* g l o b a l runqueue l o c k */

3 s t r u c t r b_ roo t t a s k s ;
s t r u c t rb_node * l e f tmo s t _ t a s k ;

5 uns i gned long n r_ runn i ng ; /* number o f ready j ob s */
i n t d e t e rm i n i s t i c ;

7 } ;

9 s t r u c t r tws_ rq {
s t r u c t g l o b a l _ r q * g l o b a l ;

11 s t r u c t r b_ roo t p job s ;
s t r u c t rb_node * l e f tmo s t _ p j o b ;

13 uns i gned long n r_ runn i ng ; /* number o f c u r r e n t l y s t o r ed t a s k s */

15 s t r u c t r b_ roo t s t e a l a b l e _ p j o b s ;
s t r u c t rb_node * l e f tmo s t _ s t e a l a b l e _ p j o b ;

17 u64 e a r l i e s t _ d l ;

19 s t r u c t r q _ s t a t s _ r tw s s t a t s ; /* a c coun t i n g f o r runqueue ope r a t i o n s */
} ;

21

s t r u c t rq {
23 r aw_ s p i n l o c k _ t l o c k ; /* runqueue l o c k */

. . .
25 s t r u c t c f s _ r q c f s ;

s t r u c t r t _ r q r t ;
27 s t r u c t r tws_ rq r tws ;

. . .
29 } ;

Lis ng 4.4: RTWS runqueues

All ready RTWS jobs are stored and sorted by increasing absolute deadline, with es broken by
FIFO, in a red-black tree represented by its root tasks. This is the first difference between theory
and prac se, because while queues (translated in linked lists under Linux) are much easier to
understand, red-black trees are more efficient for priority-ordered data management. Another
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big difference relates to the fact that each local queue of deques is implemented as two red-
black trees (pjobs and stealable_pjobs). One red-black tree is not enough because it would
required a thief to do a depth search in order to find the suitable thread, and once found, it would
demand a costly rearrangement of the tree balance.

pjobs red-black tree is ordered by increasing absolute deadline, with es broken by LIFO,
and it contains all local pending threads plus the en ty currently execu ng. Therefore, unless
there is a context switch taking place, the le most element is always the en ty running on that
par cular CPU. Note that, in theory, this aspect is omi ed since many sources of overhead are
considered non-existent. In the other hand, stealable_pjobs red-black tree is also sorted by
increasing absolute deadline, but es are broken by FIFO and the en ty currently execu ng is
le out. This way the le most element is assured to be the top-right thread from the design
previously discussed. Thus, the desired thread from both corresponds to a leaf and pick it is
straigh orward because leftmost_task, leftmost_pjob and leftmost_stealable_pjob
operate like a cache for the respec ve le most element.

Only one stealing sub-policy is adopted by all tasks. Whether it is PAS or BAS depends on the
binary behaviour applied todeterminism, whichmatches to 1 and0, respec vely. earliest_dl
is not always the deadline of leftmost_task. It is used to keep the previous earliest deadline
un l we perform the last update on rtws_rq global status. Finally, lock fields are spinlocks to
effec vely synchronise runqueues. As these lock mechanisms keep spinning un l acquire the
resource (they do not sleep like semaphores), great care must be taken in order not to delay
real- me scheduling decisions. The same goes for hierarchical locking, as deadlock situa ons
may arise due to interrupts being enable or concurrent inverse lock acquisi ons.

4.4.2 Features

Let us now turn our a en on to how the scheduling features provided by the RTWS scheduler are
implemented. First of all, in prac se, we do not straightly insert every arriving job in the global
queue, wai ng for CPUs to pickwork, as themodel suggests. Since a mer interrupt is individually
handled by a CPU, the other CPUs have no idea about the arrival of a new job. In fact, they can
no ce it by checking constantly the global queue. However, constantly means at each local ck,
which might be considerably late compared to the me when the job was released. And we all
know by now that even very short delays ma er in a RTS. Therefore, as Fig. 4.7 illustrates, we
employ a dispatching mechanism that we called dispatcher agent.

The dispatcher agent starts by verifying if the current CPU is free of RTWS tasks, so that the
released job can be schedule right away. In case of failing, it verifies whether there is any idle
rtws_rq or a CPU execu ng a lower priority task. When both condi ons return false, the job
is enqueued in global_rq and waits for its turn. However, if one condi on is sa sfied, the
job is enqueued on the eligible rtws_rq and the kernel na ve resched_task func on is in-
voked on that specific CPU to perform a task switch. It must be said that to the idle condi on
is given preference over the other one. By adop ng this par cular sequence of steps, we as-
sure that jobs are scheduled when they should and where they are less costly. Thus, func on
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Figure 4.7: Dispatcher agent role

check_preempt_curr_rtws just has to check preemp ons locally.
It goes without saying that the dispatcher agent also has to deal with waking up tasks, since

in prac se many kernel subsystems rely on wait mechanisms to deliver correctness and perfor-
mance. Nevertheless, it is not worth to be illustrated here to avoid too much confusion.

Two func ons are available to move elements to and from the rtws_rq:
enqueue_task_rtws and dequeue_task_rtws. Let us concentrate only on placing new tasks
on the runqueue because removing is basically the inverse but way simpler. Fig. 4.8 shows the
code flow diagram for enqueue_task_rtws.

Figure 4.8: Code flow diagram for enqueue_task_rtws

If the task is already stored, nothing needs to be done. Otherwise, we proceed inser ng the
task on rtws_rqwith enqueue_pjobs, where the scheduler takes the opportunity to update: (i)
the leftmost_pjob in case the task at hand has higher priority; (ii) runqueue related sta s cs;
and (iii) global informa on about current earliest task in this CPU. Then, if our queueing task
is not being executed and there are at least two RTWS runnable tasks, we also add it to to the
stealable_pjob red-black tree and analogously perform updates, so that it becomes available
to be stolen.

50



4.4. IMPLEMENTATION

Selec ng the next task to run is performed in pick_next_task_rtws. This procedure is very
similar to the theore cal design. The code flow diagram is shown in Fig. 4.9.

Figure 4.9: Code flow diagram for pick_next_task_rtws

If no RTWS tasks are currently pending on this CPU as indicated by an empty nr_running
counter, the work is delegated to pull_job which retrieves a job from global_rq if its field
nr_running is higher than zero; else steal_pjob is invoked. We give up and end all the process,
passing the ini a ve to the real- me class, whether there is no eligible CPU for work-stealing.
Otherwise, we choose the CPU vic m according to determinism value, and steal the le most
element from it. Note that it is implicit both pull methods being responsible for triggering se-
lected task dequeuing on target, queueing on source, and then update data.

In contrast, if leftmost_task is available at first place, pick_next_pjob extracts
sched_entity_rtws from that red-black tree. This is done using the container_of mecha-
nism since any RTWS red-black tree manages instances of rb_node that are embedded in those
scheduling en es. Now the task has been picked, but some more work is required to make it
unavailable for stealing in order to prevent concurrent execu on of the same process descriptor,
which would crash the system. This is handled by dequeue_stealable_pjob.

Another key sched_class-specified func on to respect RTWS rules is
put_prev_task_rtws because it is its responsibility to dispatch tasks to the proper runqueues
when they are withdrawn from CPU. Fig. 4.10 presents the code flow diagram.

If the task is not on rtws_rq, then we do nothing because it certainly finished its execu on,
and any necessary clean up or sta s cal accoun ng regarding task termina on can be done in
task_dead_rtws. Otherwise, a preemp on occurred, and when we are dealing with a pjob
spawned on this CPU, we call enqueue_stealable_pjob for the aforemen oned reason. How-
ever, if that is not the case, we push task away to global_rq by invoking dequeue_pjob and
enqueue_job, respec vely. Although, in between those opera ons, we boost pjob status by
se ng flags to RTWS_SPECIAL if stolen equals to 1.

Before we look at how do we link the RTWS scheduler to user-space, a word must be said
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Figure 4.10: Code flow diagram for put_prev_task_rtws

about set_curr_task_rtws. While the content of other func ons implemented by
sched_class_rtws that have not deserved our a en on is quite generic and, therefore, has low
relevance, set_curr_task_rtws one is vital because it sets the absolute deadline for the first
instance, which may start immediately (i.e. task offset is not defined), thus not triggered by the
mer. Anyway, both mer callback and set_curr_task_rtws update scheduling parameters

by calling update_task_rtws:

1 s t a t i c i n l i n e vo i d upda te_ t a s k_ r tws ( s t r u c t rq * rq ,
s t r u c t s c h ed_ r tw s _ en t i t y * r tws_se )

3 {
. . .

5 a tom i c _ i n c (& rtws_se−>job . nr ) ; /* inc rement j ob s counte r */
/* r e s e t i n g f l a g s */

7 r tws_se−>n r_p j ob s = 0 ;
. . .

9 /* update ab so l u t e dead l i n e */
r tws_se−>job . d e ad l i n e = rq−>c l o c k + r tws_se−>r tw s_dead l i n e ;

11 }

Lis ng 4.5: update_task_rtws func on

Note that the job absolute deadline is always set as the sumof current me and rela ve dead-
line, not release me plus rela ve deadline as our systemmodel states. We do so to avoid suffer-
ing from cumula ve mer dri [Burns and Wellings, 2007]. While a produc on-quality RTS can-
not take this shortcut because it would be chea ng the true ming constraints (that’s one of the
reasons to use a RTOS), we just want to validate RTWS in prac se. Moreover, SCHED_DEADLINE
also follows this approach, and it is important that we set equals grounds as wewill experimental
compare both scheduling policies in Chapter 5.
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4.4.3 System calls

A system call is the standard way of allowing user-space code to trigger kernel events in order to
exploit the special capabili es of the kernel. They enable the kernel to be a transparent system
layer from the view of user applica ons - it is always there but never really no ced. System calls
in Linux are fast, mostly because the infrastructure is very efficient, but also due to their reduced
number. Hence, adding a system call must be a though ul and last resort decision. Despite the
internal kernel API is declared unstable as a design-feature, the external API cannot be broken
under any circumstance. Therefore, once a system call is added neither it can ever be removed
nor its signature can ever be changed.

In this project, we only had access to x86 hardware. In x86, we need to modify the file
arch/x86/kernel/syscall_table_32.S in order to register new system calls. All new en-
tries must be placed on the bo om of the list, so we do not break user-space compa bility by
changing the unique iden fier given to each system call. The system call name must be given
the prefix sys_, whereas the func on created to trap the interrupt must use a special macro
where all input-arguments are specified. For instance, the correct macro for a system call re-
quiring three arguments is SYSCALL_DEFINE3. The macro wraps the actual func on, which for
scheduler-related system calls is typically placed in sched.c. It must be said that for other plat-
forms the process differs li le, since the only required change is where we add the table-lookup
address.

Each system call must inform the user applica on if its rou ne was executed and with which
result. This is accomplished bymeans of its return code. Generally, nega ve return values denote
an error, whilst posi ve return values (and 0) indicate successful termina on. In order to copy
data safely from user-space to kernel-space, and vice-versa, func ons like copy_from_user and
copy_to_user, respec vely, must be used.

1 /* *
* s y s _ s c h ed_ s e t s c h edu l e r _ e x − s e t / change the s chedu l e r p o l i c y but wi th

extended sched_param ded i c a t e to r e a l−t ime t im i n g c o n s t r a i n t s .
3 * @pid : the p id i n que s t i on .

* @pol i cy : new p o l i c y .
5 * @len : s i z e o f data po in ted by param_ex .

* @param : s t r u c t u r e c o n t a i n i n g the extended parameters .
7 */

SYSCALL_DEFINE4 ( s ched_ se t s chedu l e r _e x , p id_ t , p id , i n t , p o l i c y ,
9 uns igned , len , s t r u c t sched_param_ex __user * , param_ex )

{
11 i f ( p o l i c y < 0 )

r e t u r n −EINVAL ;
13

r e t u r n do_s ched_ se t s chedu l e r _ex ( p id , p o l i c y , len , param_ex ) ;
15 }

Lis ng 4.6: sched_setscheduler_ex system call

RTWS implementa on provides three system calls:
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1. sched_setscheduler_ex(): ini ally, a RTWS task is created as any task in the system, us-
ing either fork or clone system calls. A er that, it may change its policy by invoking the
na ve sched_setscheduler system call. However, sched_setscheduler has no argu-
ment which supports real- me ming constraints parameters. sched_setscheduler_ex
solves this issue by replacing the tradi onal param structure with a extended one
(param_ex), where Di, Ti and Ci can be specified. A descrip on of the remaining argu-
ments and the system call implementa on can be found above, in Lis ng 4.6. No ce that
all parameters valida on and actual policy change are delegated to
do_sched_setscheduler_ex which we is also not supported na vely.

2. sched_setsubpolicies_rtws(): allows one to change scheduling sub-policy for a par cular
task and stealing sub-policy for the overall system. It takes three arguments: pid_t pid,
int helpfirst, and int pas. pid iden fies the task in ques on, helpfirst replaces
the given task rtws_se->helpfirst, whereas pas sets global_rq->determinism.
As we have seen in Sec on 4.4.1, 0 and 1 are indeed the only acceptable values for these
last two arguments, and the system call returns an error otherwise. By default both are set
to 1, meaning that work-first and PAS are the sub-policies enforced.

3. sched_delay_un l_rtws(): is responsible for se ng the current task’s mer to expire at a
specific point in me, and for pu ng the task to sleep un l then. Therefore, this system
call is intended to simulate a task periodicity. Since the periodic task model dictates that
the first job release can be delayed by an offset, sched_delay_until_rtws provides an
argument (const struct timespec __user * release) where the user can define
the first release me. A er that the kernel takes full control over the ming details, guar-
anteeing periodic correctness, so that the user just has to blindly invoke this system call
at the end of each task instance. Any a empt to set the mer on the past, or invoke the
system call on a parallel thread, will output an error. As soon as the mer expire, the task
is woken up and the mer callback new_job_rtws is triggered.

4.5 Summary

In this chapterwepresented theRTWS scheduler, which combines theG-EDFpolicywith a priority-
based locality-aware work-stealing load balancing scheme, enabling parallel real- me tasks to
run on more than one processor at a given me instant. We introduced the model that supports
RTWS applica ons domain, we provided the ni y-gri y details and jus fica ons about its design,
which was guided with a dis nct purpose: to bring predictability to the provably efficient work-
stealing scheduling algorithm. At last, a thorough discussion concerning RTWS implementa on
in the Linux kernel was given, in which we focused on showing the differences between theory
and prac se.
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Chapter 5

Experimental Evalua on

In the preceding chapter, we introduced the RTWS scheduler for heterogeneous real-
me parallel tasks. As stated, theore cal and prac cal design decisions were taken

to provide efficient scheduling decisions regarding dynamic intra-task parallelism,
without jeopardising real- me guarantees, rather than increase the system’s u l-
isa on bound or boost the performance of applica ons. By efficient we mean a
scheduling policy able to minimise implementa on’s sources of overhead.

Therefore, an overhead-aware evalua on of the proposed scheduling policy is re-
quired to assess its prac cality. Naturally, we also have to evaluate if mixing real-
me principles with parallel compu ng features is worthwhile. Thus, in this chapter,

a er we explain our experimental scenario, a discussion on the results collected is
presented, mainly regarding two major sources of scheduling overhead: migra ons
and context switches. In order to have a comparison base, we present an evalua-
on of SCHED_DEADLINE as well, under the same circumstances. Furthermore, we

inves gate the scalability of our approach, and comment on the load balance dis-
crepancy.

Note, however, that the target of the following analysis is not to prove that our RTWS
implementa on is be er than other real- me policies because they serve different
purposes. Moreover, a scheduling algorithm performance analysis may be influ-
enced by a number of subtle events that affect how the system behaves, introducing
unexpected noise in the collected data.

5.1 Scenario

The experiments reported in this thesis were conducted in a machine equipped with 16 GB of
main memory and an eight-core processor, where each of the cores is running at 2.0 GHz. All
assessments were carried out under both RTWS stealing sub-policies. Hereina er, we use the
terms RTWS-PAS and RTWS-BAS to dis nguish the experiments. Every me we want to make no
dis nc on, we simply use RTWS.

The Linux kernel 2.6.36 was configured as follows: disabled group scheduling, CPU frequency
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scaling, hyper-threading, and ckless system; HZ macro set to 1000; preemp ble kernel selected
as preemp on model. Since our evalua on is also based in a comparison to SCHED_DEADLINE
(version 3), we have disabled bandwidth management on it to set equal grounds.

A set of three major experiments was conducted, where in each of the experiments twenty
random task sets were used [Sousa et al., 2011], running in 2, 4 and 8 cores. In order to dy-
namically generate the task sets, we have defined the minimum task u lisa on (umin) equal
to 0.1, the maximum task u lisa on (umax) equal to 0.5, a minimum period (Tmin) of 700 ms,
and a maximum period (Tmax) of 800 ms. The period Ti of each task was computed as Ti =

Tmin + x ∗ (Tmax − Tmin), where x denotes a random value between 0 and 1.
In order to analyse the scalability of the proposed approach with respect to the number of

tasks/threads in the system, un l the maximum system u lisa on calculated by Equa on 4.1 is
reached, three u lisa on windows ([UΠmin, UΠmax]) were chosen: [0.38, 0.40], [0.58, 0.60] and
[0.73, 0.75]. The ghtness of the chosen intervals is jus fied by the need to ensure similari es
between task sets within the same experiment. With these parameters, we compute each task
u lisa on as follows: ui is given by ui = umin + x ∗ (umax − umin), where

∑n
k=1 uk ≥ UΠmin

and
∑n

k=1 uk ≤ UΠmax. Finally, Ci is given by Ci = Ti ∗ ui.
The number of parallel threads per task was dynamically derived as ni = x∗(m∗2), whereas

the number of tasks (n) was totally dynamic, based on the system u lisa on window condi on
being sa sfied (please refer to Table 5.1). Note that as we keep increasing UΠmax, and umax

remains constant, n scales. We strongly believe that these parameters can deeply assess our
scheduler features.

Table 5.1: Composi on of each experiment

m Total tasks Total threads
38-40% 58-60% 73-75% 38-40% 58-60% 73-75%

2 50 82 98 128 218 216
4 102 158 193 457 703 866
8 217 320 401 1736 2720 3491

Each task was a simple fork-join applica on whose actual work was limited to a series of NOP
instruc ons to avoid memory and cache interferences. Even though RTWS is specially designed
to explore data locality, we let that aside because we will not evaluate cache misses. Each of the
task’s jobs (i) executes sequen ally; (ii) splits into mul ple parallel threads; and (iii) synchronises
at the end of the parallel region, resuming the execu on of the master thread. Sequen al, paral-
lel, and total execu on mes were derived randomly, with the actual total execu on me upper
bounded by Ci.

5.2 Overheads

Data was collected and averaged concerning the number of context switches andmigra ons, pa-
rameters which represent the main sources of scheduling overhead. Fig. 5.1 depicts the average
number of migra ons that occurred for each scheduling policy when all cores were online. In
the case of RTWS, the number of migra ons refers to the number of steals performed by the idle
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cores, while the values collected for SCHED_DEADLINE refer to pure migra ons that occurred
between cores.

Figure 5.1: Average number of migra ons on the 8-core experiments

The overall results show that RTWS outperforms SCHED_DEADLINE in every experiments.
These results can be explained by our decision to favour data locality, genera ng parallelism only
when strictly required, i.e. when a core becomes idle. In fact, the results are far be er for medi-
um/high workloads since load balancing calls are more frequently required on SCHED_DEADLINE
with the greater number of tasks. Remarkably, the number of migra ons barely increases on
RTWS under such heavy circumstances. For lower workloads, the difference becomes slighter
mainly because on our scheduling policy the system lacks parallel threads to keep all cores busy.
Surprisingly, RTWS-PAS caused more migra ons than RTWS-BAS; we expected it to be the other
way around due to the lesser conten on me RTWS-BAS is subject. However, the difference is
so small we cannot conclude anything but blame Linux kernel’s predictability gap.

Figure 5.2: Average number of context switches on the 8-core experiments

Regarding the average number of context switches, depicted in Fig. 5.2, no ma er the con-
sideredworkload rate, RTWS also outperforms SCHED_DEADLINE on the eight-core experiments.
SCHED_DEADLINE blindly assigns new jobs of a task to the core where the last job of that task
was executed, which rather frequently leads to a preemp on of the running job. Contrariwise, in
RTWS, preemp ons are minimised because a released job is assigned to a idle core (if available)
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or inserted into the global queue when its priority is lower than the ones currently execu ng.
Moreover, we do not allow parallel threads to preempt other threads or jobs, unless they have
been stolen. Even though the number of context switches increases with higher system u lisa-
ons, values indicate a less than linear scalability for both policies, which can be seen as a good

behaviour. Stealing sub-policies have no impact on the number of context switches besides the
one directly related with the variance on the number of migra ons. Hence, it is easily under-
standable why RTWS-PAS is shown to trigger more context switch opera ons. There is no need
to blame Linux kernel again.

5.3 Scalability

Before analysing the scalability results introduced by Tables 5.2 and 5.3, let us clarify that the
RTWS-PAS two-core experiments are treated as the base case and, therefore, every other single
experiment relates to that base case resul ng in a factor - the scale up ra o. For example, a
scale up ra o of 2 means that the considered metric has doubled. Furthermore, note that this
kind of scalability is strictly and peculiarly linked to the values presented in Table 5.1 because
the amount of tasks and parallel threads has greater impact on the number of migra ons, and
context switches, than a core increase itself.

Table 5.2: Scale up ra os on number of migra ons

m RTWS_PAS RTWS_BAS SCHED_DEADLINE
38-40% 58-60% 73-75% 38-40% 58-60% 73-75% 38-40% 58-60% 73-75%

2 1 1 1 1.13 1.10 1.08 2.75 3.27 3.08
4 5.88 5.55 5.92 6.13 5.55 5.67 11.38 12 13
8 36.38 33 31.08 34.75 32.46 29,83 45.38 48.36 55.08

According to the values reported in Table 5.2, it becomes crystal clear that the obtained re-
sults suffered from some unexpected noise: even in the two-core experiments, where stealing
randomly or determinis cally produces the same outcome, differences between RTWS-PAS and
RTWS-BAS can be no ced.

S ll, considering the proper es of our experiments, one can conclude that the number of mi-
gra ons is largely influenced by the number of dynamically generated parallel threads. Provided
that we create more tasks when m is increased, the number of threads exponen ally grows as
can be easily seen in Table 5.1. Nonetheless, this growth factor is not directly propor onal to the
scale up ra o. Note the reac on triggered by Ci being constant in every experiment: the more
we parallelize, the less execu ng me will be assigned to each thread, faster threads will finish,
migra ons will scale.

Thereby, we have to mul ply the ra o of the system’s total number of threads by the ra o
of each task’s maximum number of threads to be able to find the linear scalability value. For
example, for m = 4 and a u lisa on interval [0.38, 0.40], the scale up ra o is expected to be
457
128 ∗ 8

4 = 7.14. A er analogously calcula ng for the remaining cases, it is clear that RTWS
efficiently scales as respects to the number of migra ons.

Under G-EDF, context switches occur either when a job is released or when it completes.
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Table 5.3: Scale up ra os on number of context switches

m RTWS_PAS RTWS_BAS SCHED_DEADLINE
38-40% 58-60% 73-75% 38-40% 58-60% 73-75% 38-40% 58-60% 73-75%

2 1 1 1 1.01 1.02 0.99 1.35 1.40 1.33
4 2.91 2.80 3 2.89 2.78 2.95 4.43 4.45 4.74
8 10.60 9.97 10.75 10.26 9.70 10.43 15.93 16.36 18.51

However, not every job releasewill swap the currently execu ng job. Thus, the number of context
switches over a me interval of lengthL is upper bounded by twice the number of jobs’ releases
during that interval. As every experiment has lasted exactly the same me and its periodicity
parameters were constant, the scale up ra o on the number of jobs is given by the scale up ra o
on the number of tasks. Intui vely, for m = 4, RTWS scales in a very efficient manner, as Table
5.3 reflects, since there are approximately twice more tasks (e.g. 158

82 = 1.93) but the scale up
ra os on the number context switches are lower than the upper bounded value of 4.

Following the same logic, form = 8our scheduling algorithmappears to scale poorly because
the amount of tasks is almost four mes higher (21750 ≈ 320

82 ≈ 401
98 ≈ 4). Nevertheless, recall that,

in RTWS, stolen parallel threads may also preempt any schedulable en ty, plus we s ll have to
account each thread’s comple on as a context switch, seriously infla ng the upper bounded scale
up ra o from G-EDF. In this case, it is par cularly no ceable by having to dispatch an incredibly
high number of threads, which in turn also poten ates work-stealing (please refer to Table 5.1
and Fig. 5.2 again).

It must be said that scalable efficiency by itself is meaningless in a RTS. That is, it does not
really ma er if a real- me scheduling algorithm has negligible overhead but is unable to meet all
deadlines. Oppositely, a overhead increase is jus fied by a gain in schedulability. However this
observa on does not hold for this experimental analysis. Besides being overhead-aware, both
RTWS-PAS and RTWS-BAS did not miss any deadline, whilst SCHED_DEADLINE missed a couple.

5.4 Load imbalance

In a RTS, load balancing is not a requirement. As long as a scheduler delivers predictability to
be able to scheduled every feasible task set, it could even execute all tasks in a single proces-
sor. Nonetheless, for several reasons, included energy-wise which is of paramount importance
specially on embedded systems, it is preferable that real- me schedulers assure both. Fig. 5.3
shows the average load imbalance (in terms of overall execu on mes) registered in the 8-cores
experiments.

Although for low systemu lisa ons RTWS is unable to distributed theworkloadwithmore ef-
ficiency than SCHED_DEADLINE, the repor ng results are quite interes ng. Among other things,
work-stealing is known as a load balancing scheme for parallel computa ons, so at first glance
it might be hard to understand why, in some scenarios, it fails to overcome a real- me schedul-
ing policy which has no par cular feature addressing intra-task parallelism. Well, the answer is
not on the work-stealing design but on our implementa on. Since Linux scheduler is a modular
framework, every me RTWS, on a certain CPU, fails to find a stealable task, it passes the lead
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Figure 5.3: Average load imbalance on the 8-core experiments

to the other scheduling classes, which have no knowledge about the global status of RTWS run-
queues. RTWS is invoked again only when RTWS tasks are assigned to that same CPU. Naturally,
this results in scheduling down me when the work available is scarce.

5.5 Response me

The experimental results presented so far where inconclusive in order to understand if one of the
proposed sub-policies outshines the other, or whether they offer a fair trade-off between deter-
minism and low lock conten on. Therefore, in this sec on we turn our a en on to evalua ng
tasks’ response me.

As we have seen early in Chapter 2, response me denotes the me elapsed between the
moment a job becomes ready to be scheduled, and the moment when it finishes its execu on.
Therefore, when we consider a task’s response me using its average value, we get an idea about
how efficiently that task is being executed (parallel vs sequen al performance). On the other
hand, when a task’s response me is measured by its worst-case value, it becomes clear how
strictly the schedule is being respected and how far from the deadline that task is (laxity).

In this sense, we have measured both ways of perceiving a task’s response me, not only for
RTWS-PAS and RTWS-BAS, but also for a pure G-EDF approach, ignoring intra-task parallelism and
execu ng sequen ally for an equivalent amount of me. For the remainder of this sec on, we
refer to this last approach as RTWS-SEQ, and it will enlighten us whether genera ng short-living
threads and scheduling them under RTWS is worthwhile for real- me systems.

The obtained results are depicted in Tables 5.4 and 5.5. Note that, in both tables, a scale up
ra o of 0.5 means that the considered metric has reduced to an half compara vely to the base
case which is RTWS-SEQ two-core experiments.

Table 5.4: Scale up ra os on the average response me

m RTWS-SEQ RTWS-PAS RTWS-BAS
38-40% 58-60% 73-75% 38-40% 58-60% 73-75% 38-40% 58-60% 73-75%

2 1 1 1 0.87 0.88 0.87 0.87 0.88 0.87
4 1.04 0.99 0.97 0.80 0.82 0.80 0.82 0.82 0.81
8 0.98 0.98 0.96 0.69 0.73 0.75 0.70 0.73 0.76
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It was expected that, when considering average response mes, RTWS-BAS would outper-
form RTWS-PAS. However, once again, both sub-policies show iden cal results all over the ex-
periments. By now, it is safe to say that the conducted experiments do not led to concurrent
stealing opera ons as many mes as we wished. Nevertheless, RTWS always achieves be er
performance when intra-task parallelism is expressed than when sequen al execu on is con-
sidered. Moreover, its performance increases as more cores become available for work-stealing.
This allowus to conclude that RTWSprovides an efficient scheduling environment for fine-grained
parallel real- me tasks.

Table 5.5: Scale up ra os on the worst-case response me

m RTWS-SEQ RTWS-PAS RTWS-BAS
38-40% 58-60% 73-75% 38-40% 58-60% 73-75% 38-40% 58-60% 73-75%

2 1 1 1 0.91 0.91 0.91 0.91 0.91 0.91
4 1.04 1.01 0.99 0.93 0.89 0.89 0.93 0.90 0.90
8 0.99 1.01 0.99 0.87 0.91 0.91 0.89 0.91 0.91

Following the previous reasoning, similari es between RTWS-BAS and RTWS-PAS prevail also
for worst-case response mes. Nevertheless, worst-case response mes relate to a wiser choice
of the vic m core when considering task priori es since the earliest deadline ready thread has
less flexibility to support wai ng mes. Also, unlike average response mes, worst-case response
mes do not scale since, with work-stealing, we do not force parallelism, but instead it only takes

place only when a core would otherwise be idle. Recall that we favour predictability over per-
formance. Yet, the mul -threaded version of the experiments always outperforms its sequen al
counterpart.

One final note about the obtained results with RTWS-SEQ. The experimental results were
almost constant, but not strictly iden cal, because there are no threads involved and the number
of tasks n adapts to the increasing number of coresm.

5.6 Summary

In this chapter, we presented the experimental results collected from the Linux kernel 2.6.36,
regarding dynamic generated task sets running under RTWS-PAS and RTWS-BAS. An overhead-
aware and a scalability evalua on were discussed by comparing RTWS to SCHED_DEADLINE.
RTWS was shown to outperform the la er scheduling policy, and to efficiently schedule the ex-
periments provided, at least up to 8 cores. However, due to the underlying OS’s unpredictability,
no conclusions about the impact of the two stealing sub-policies can be taken.

Furthermore, by assessing the load imbalance of both schedulers, we found that RTWS imple-
menta on needs to be tweaked in order to be pro-ac ve concerning the work-stealing strategy.
RTWS was also shown to provide be er performance when considering tasks with intra-task par-
allelism than without, through response me analysis.
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Chapter 6

Conclusion

High-level parallel languages offer a simpleway for applica on programmers to spec-
ify parallelism in a form that easily scales with problem size, leaving the scheduling
of the tasks onto processors to be performed at run me. This thesis demonstrated
how to schedule highly heterogeneous parallel applica ons that require real- me
performance guarantees on mul -core processors. In contrast to prior work on real-
me scheduling of parallel workloads, a more general model of parallel real- me

tasks where dynamically generated threads can take arbitrarily different amounts of
me to execute was considered.

This chapter resumes its most relevant contribu ons and highlights some lines of
future work.

6.1 General conclusions

Modern RTSs increasingly generate heavy and highly varyingworkloads and it is rapidly becoming
unreasonable to expect to implement them as single core systems. In fact, a general shi from
single to mul -core processors can be seen both in the general purpose and embedded domains
as an energy-efficient way to boost applica ons’ performance.

Simultaneously, the prolifera on of mul -core pla orms have transformed parallelism into
a main concern, and dynamic task-level parallelism is steadily gaining popularity as a program-
ming model. The idea behind that model is to encourage applica on developers to expose every
opportunity for parallelism by just poin ng out poten ally parallel regions within the code. All
annota ons provided act simply as hints that can be ignored and safely replaced with sequen al
counterparts by the language implementa on. Hence, how computa ons are actually decom-
posed and mapped to processors is the responsibility of the compiler and run me systems.

By easing the developer from this burden, programming complexity is considerably reduced,
which usually translates in increased produc vity. Nevertheless, if the scheduling mechanism
underneath is not simple and fast to keep the overall overhead low, such fine-grained parallelism
is not worthwhile, and all benefits will be lost.

From a scheduling perspec ve, work-stealing algorithms are increasingly popular, and are
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considered a promising approach to address the so ware challenge in the ongoing trend for
massive parallelism due to their provably me, space, and communica on efficiency. However,
they do not contemplate ming constraints or any other formof priori sing tasks, which prevents
them for being applied to a RTS. Moreover, they are tradi onally employed on the language
run me, crea ng a two-level scheduling system, where predictability cannot be ensured.

In this thesis, we described how work-stealing can be redesigned to fulfill real- me require-
ments, maintaining its basic principles. Long-story short, conven onal deques are replaced by a
queue of deques ordered by increasing priority. We further applied the well-known G-EDF policy
on top of it, mixed the rules, and RTWS was born.

Taking advantage of the modularity offered by the Linux scheduler, we added RTWS to it as
a new scheduling class, in order to prac cally assess if our approach is viable (i.e. provides effi-
ciency and schedulability). Enhance the Linux kernel is a tremendous task, due to the complexity
of the kernel internals and high interdependence between various subsystems. Nevertheless, we
wanted to make sure RTWS is more than a interes ng concept. Moreover, despite Linux is not
a RTOS, it supplies the tools and documenta on we needed to get started, and is open-source.
A representa ve part of this thesis was dedicated to discuss RTWS implementa on, and state
issues like synchronisa on dri s that are not address in theory.

Experimental results showed that RTWS, in comparison to other prac cal work, significantly
reduces the scheduling overhead through an efficient and scalable (at least up to 8 cores) control
of migra ons and context switches, while s ll achieves good dynamic load balancing even with
low communica on costs. Furthermore, RTWS was also shown to provide be er performance
when considering tasks with intra-task parallelism than without, even for short-living computa-
ons. However, during evalua on we realised that RTWS implementa on has a flaw, causing

unacceptable scheduling down me when the system u lisa on is low.
Although we focused on keeping the overhead low and on achieving good data locality, sys-

tem’s schedulability was never neglect by us. In fact, our scheduling algorithm proved to be very
robust as we did not get any deadline miss on the performed experiments. Therefore, we can
pronounce that some priority inversion caused by the BAS stealing sub-policy does not compro-
mise the schedulability goals, and it even helps to reduce conten on as well as to keep global
accounted informa on to a minimum. Yet, RTWS supports a determinis c stealing sub-policy:
PAS. The experimental evalua on did not help to have a clear picture about PAS and BAS conse-
quences.

All in all, we can conclude that RTWS is a promising solu on to efficiently schedule highly
heterogeneous and dynamic parallel real- me tasks, assuming the restric ons defined in our
system model.

6.2 Summary of the main contribu ons

In contrast to prior work on real- me scheduling of parallel tasks, this thesis considered a more
general and portable model of parallel real- me tasks, where dynamically spawned threads may
take arbitrarily different amounts of me to execute. That is, any task may be composed by sev-
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eral sequen al and parallel regions, where each parallel regionsmay contain an arbitrary number
of threads (is not limited to the cores count), and each one of those threads may have arbitrarily
different execu on needs.

Targe ng the aforemen oned model, we proposed RTWS, a novel scheduling algorithm that
combines the G-EDF scheduler with a priority-based locality-aware work-stealing load balancing
policy, allowing parallel real- me tasks to be executed in more than one processor at a given
me instant. The ul mate goal is to provide efficient low-level support for the scheduling of

parallel real- me, mixing real- me determinism and predictability with work-stealing space and
communica on awareness.

Towards this, we implemented RTWS in the standard Linux kernel just as a proof of concept,
since Linux is not a RTOS and, therefore, is not reliable for me-sensi ve applica ons. To the
best of our knowledge, we are the first to: (i) deal with real- me priori es (deadlines) in a work-
stealing scheduler; and (ii) to actually implement support for parallel real- me computa ons in
the Linux kernel. Last but not least, this research work has resulted in two scien fic publica ons.

6.3 Future work

The research on this topic is all but over. First of all, we will address the implementa on flaw
detected. One possible way to sort things out is to retry the steal opera on for a sta c pre-
defined number of mes. Another important topic is to come upwith a solu on, both theore cal
and prac cal, for the nested parallelism limita on. One possible direc on is to consider parallel
mul -threaded tasks to be represented as a Directed Acyclic Graph (DAG) where nodes represent
threads and edges represent dependences between those threads. In its current state, RTWS
does not support this task model. If a stolen thread is able to spawn new threads on a CPU
different than the one who assured its schedulability, whenever a preemp on occurs it would be
too costly to move them all to the global queue.

Furthermore, several improvements on efficiency of the presented implementa on, namely
lock acquisi on points and data structures, should be deeply studied to further reinforce our
results. A key change would be to port RTWS to recent Linux kernel versions and apply it on top
of PREEMP_RT patch set.

Many more metrics, such as cache misses and latencies, are possible to be collected. Nu-
merous experimental analyses should be considered to clarify how the peculiari es of each task
set may influence our scheduler goodness or, at least, enlighten about which stealing sub-policy
suits be er a generic RTS. It would also be of great interest to test real-world applica ons to see
if RTWS misbehaves.

With the complexity of mul -core systems growing, it may be interes ng to evaluate RTWS in
largemul -core systems that are likely to have hierarchical cache layouts. One possible extension
to RTWS for such systems could be a scheduling approach that mixes aspects of par oning and
global scheduling. In par cular, while task migra ons within a cluster of cores that share some
lower level cache might be acceptable, migra ons among processors that are “far apart” in the
cache hierarchy may be too expensive.
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