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ABSTRACT

Our experience with Internet-based scientific collaboratories

indicates that they need to be user-extensible, allow users

to add tools and objects dynamically to shared workspaces,

permit users to move work dynamically between private

and shared workspaces, and be easily accessible over a net-

work. We present the software architecture of an environ-

ment, called CBE, for building collaboratories to meet such

needs. CBE provides user-extensibility by allowing a col-

laborator to be constructed as a coordinated collection of

group-swam applets. To support dynamic reconfiguration

of shared workspaces and to allow access over the Internet,

CBE uses the metaphor of rooms as the high-level grouping

mechanism for applets and users. Rooms may contain ap-

plets, users, and arbitrary data objects. Rooms can be used for

both asynchronous and synchronous collaboration because

their state persists across synchronous sessions. Room par-

ticipants may have different roles in a room (such as adminis-

trator, member and observer), with appropriate access rights.

A prototype of the model has been implemented in Java and

can be run from a Java-enabled Web browser.
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INTRODUCTION

We have created and used an experimental multi-institution

testbed, called the Upper Atmospheric Research Collabo-

rator (UARC) [13], to examine issues in supporting syn-

chronous, collaborative scientific work over wide-area net-

works. NeXT-based prototypes of UARC provide users with

access to scientific data, allow them to maintain synchronized

data display windows with telepointing using DistView [12],

and provide collaborative tools such as multi-user chat.
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The successful usage of the various prototypes of UARC has

led us to redesign the facilities used in UARC so that they can

be used for building additional collaboration environments.

In this paper, we describe solutions used to meet the follow-

ing needs of collaboration environments:

support for multiple tools (e.g., domain-specific view-

ers, multi-user chat, shared whiteboard, etc.) in shared

workspaces;

support for both private and multiple shared workspaces

and the ability to dynamically move both tools and data

between the workspaces;

access to collaboration environments over the Web from

multiple platforms;

provide user-extensibility. Users cart add collaborative

tools and Uniform Resource Locators (URLs) to their

suites for collaboration purposes;

support for user roles, particularly observers, so that

open access over the Web to a collaborator is not in-

trusive to the scientific work, and

provide mechanisms for access control, particularly for

use over the Web.

The work presented in this paper is a part of the Collabora-

tor Builder’s Environment (CBE), a toolkit for creating ex-

tensible collaboration environments. It is being used to build

a Java-based version of the UARC system.

To support extensibility, we structure client application soft-

ware as a set of applets (mini-applications). The applets

include domain-specific services (such as data viewers in

UARC) and domain-independent tools (such as multi-user

chat, whiteboard, etc.) that are useful for collaboration. CBE

allows users to dynamically add new applets and URLs to

their collaboratories.

CBE uses the metaphor of rooms to denote shared

workspaces consisting of multiple applets and data (URLs).

We describe high-level mechanisms for managing a collec-

tion of applets so that both private and shared rooms can be

established in a simple way. Also users can dynamically cre-

ate rooms. They cart also move work-in-progress, including

applets with their current state and data, between private and
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shared workspaces, depending on the extent of sharing they

desire with other users and the purpose for which rooms are

being used.

CBE is designed to build collaboratories that cart be accessed

via standard Web browsers. All the client software, i.e., the

applets, are written in Java so that it can be executed from a

Java-enabled browser.

To provide both scalability (in terms of performance) and to

allow users control over access to a room, we provide sup-

port for user roles. Users can have different roles, such as

observer, member, or administrator, in a shared workspace.

Users in different roles have different access control rights

to a room and can be provided different levels of reliability

guarantees in the presence of network failures.

We examine the impact of workspace-level access control

features on the design of the lower layers of the commu-

nication infrastructure. In current systems, access con-

trol is largely based on trust — that users will not bypass

workspace-level access controls by directly accessing under-

lying communication services or file systems. Once collabo-

ratories are made available over the Internet and targeted to

support potentially large number of observers, the issue of en-

forcing access control becomes more relevant.

The rooms in CBE can be used to support both asynchronous

and synchronous work. Previously, we proposed a toolkit

called DistView to support synchronous, window-level shar-

ing of workspaces [12] in a single application. This paper

addresses the issue of workspace sharing in a larger context

when a user’s workspace consists of multiple applets. We

also extended DistView facilities in order to allow state of

rooms to persist across collaborative sessions, so that rooms

can be used for asynchronous collaboration.

The rest of the paper is organized as follows. We first give an

example of a CBE-based collaborator to illustrate its con-

cepts from a user perspective. Next, we present the CBE’S

key concepts of rooms, applet-groups, applets, and users, as

well as the relationships between them. Then, we discuss the

current design and implementation. We also describe how ac-

cess control can be enforced in insecure environments such as

the Internet. Next, we present how the proposed architecture

is used to meet various needs in a collaborator. Finally, we

present conclusions and directions for future work.

AN EXAMPLE OF CBE USE

Figure 1 illustrates the use of a multi-applet shared

workspace in our current Java-based system that uses

CBE. A session manager displays a list of the available

rooms (top-right corner). The rooms shown include the Uarc

room, automatically-created private rooms (one per user),

and the Lounge room. The interface provides commands

to allow users to join one or more rooms, leave a room,

create rooms, add applets or URIS to a room, and to move

URLs/applets dynamically from one room to another.

Users can enter rooms to collaborate with other users in the

same room. They can also enter a room to simply view URLs

or use applets in that room. URLs can be references to ar-

bitrary objects (e.g., files, images, single-user applets, etc.)

which can be display using a Web-browser. For URLs, only

the reference to URL is shared among users in a room — not

the view of the URL.

In Figure 1, the user has entered the Uarc room. The ap-

plets/URLs in the room are shown under Uarc. The user is

currently using a group-aware applet, chat and a URL that

instantiates radar, a standard Java applet. The room also

contains another group-aware applet, draw, but that applet

is not being used actively.

Rooms are persistent in the sense that they exist beyond a

synchronous collaboration. Any URLs in rooms are saved

across collaborative sessions. Also, the chat applet on

bottom-left, provide a Save Messages command so that

its state can be persistently saved in the room. If the same ap-

plet is later restarted, it starts with the last saved state. Thus,

rooms can be used to support asynchronous collaboration.

The interface provides some basic group-awareness features,

such as the applets available and the users who are present in

a room. The list of all the users is also available because a Pri-

vate room corresponding to each user is created when users

login to the collaborator. Users cannot enter other users’ pri-

vate rooms, but they can use them and the user list to send

messages to other users.

The applets can be placed anywhere on the desktop. Applets

display the room to which they belong to.

A user can move a group-aware applet, e.g., draw, from a

shared room to their private room. This has the no effect on

other users; it simply causes the user’s applet to stop commu-

nication of the changes to its state to other users.

A user can also move a group-aware applet from a private

room to a shared room. In such a case, the applet state be-

comes available to other users in that room. Other users in

that room can invoke the applet to jointly interact with the

applet’s state.

Other interfaces can be built using CBE and in fact the cur-

rent user interface is still evolving. CBE simply provides the

infrastructure for building collaboration environments, and

does not dictate a particular user interface choice.

DESIGN CONCEPTS

A shared workspace consists of four major components; ap-

plets, users, applet-groups, and moms.

Appleta

An applet is a small application that typically provides a GUI

interface to a particular user for viewinglupdating some data.

A user would typically use multiple applets to collaborate

with other users. It can be implemented as a process or thread

on the user’s desktop. As an example, if users wish to col-

laborate using a shared whiteboard and a multi-user chat with

other users, a whiteboard applet and a chat applet will be cre-

ated on each user’s machine. An applet in our terminology is

used in a somewhat different way than the same term in Java.
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The applets in our model can be implemented as either Java

applets or Java applications, for example.

Applet-Groups

An applet-group consists of a set of applets of the same

type that provide a shared workspace to users in the room.

The whiteboard applets on each user’s desktop constitute an

applet-group because they keep their displays or data syn-

chronized as they are interacted with by the users. In our

implementation, each applet-group member joins the same

communication multicast group, similar to those provided by

ISIS [1] and Corona [7], for state coordination purposes.

URLS

URLs can be placed in a room and can be accessed by users

in the room. This enables users to share references to objects

on the Web, like files and images, with other users.

Rooms

A room may contain URLS (Uniform Resouce Locators) and

applet-gmups, A room provides shared data objects and tools

to users around which they can establish collaborative ses-

sions. A room also provides collaboration awareness features

to the users who enter the room, so that they are aware of ap-

plets/URLs and other users present in the room.

We use the notion of room as simply a high-level grouping

mechanism for identifying applets and objects in a shared

workspace. We do not imply the use of a particular user-

interface metaphor, such as that described in [8]. Also, the

applets within the room can be placed anywhere on the user’s

desktop. Another alternative would have been to present

rooms as URLs in an HTML page. In principle, we leave it

up to the user-interface designers of a particular collaborator

to decide how the notion of rooms is presented to end-users.

A shared workspace can consist of multiple rooms. The

rooms are virtual in the sense that users can enter multiple

rooms simultaneously. Room services may require users to

be authenticated before they can enter the room.

Figure 2 shows an example of a room. In this example, two

users A and B are collaborating in a room. There are two

applet-groups – whiteboard and chat - that are being used in

the shared workspace. If now a user T enters the room, the

two applet-groups in the room are made available to T; the

applets corresponding to the two applet-groups get created on

T’s desktop and they join their respective applet-groups, in

order to synchronously share tools and data within the group.

If there were no room facility, the user T would have had to

do all the work of establishing a shared workspace manually.

Below, we present semantics of rooms and their relation to

users, applet-groups, and other rooms.

Applet-Room Relationship

We allow any number of applet-groups to belong to a room.

However, an applet-group can belong to exactly one room.

This is not a limiting constraint, because we allow users to be
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Figure 2: A collaborator room

members of multiple rooms simultaneously. Thus, if users in

different rooms wish to view the same applet, they could do

so by moving the applet to a new common room or entering

a room that provides the applet.

The following operations may be performed on rooms to

change the binding between applets and rooms:

Put an applet in a mom: If a user creates or put an applet

in a room, a new applet-group is created and the applet

joins that applet-group implicitly. This applet-group be-

comes available for users in the room to join.

Create an applet corresponding to an applet-gmup in

the mom: This operation creates an applet in a user’s

workspace of the same type as the applets in the applet-

group. This applet joins the applet-group, normally

leading to a synchronization of state and displays asso-

ciated with the applets in the applet-group.

Delete an applet: This operation destroys an applet in

the room from the user’s workspace. Applets of other

users may continue to exist, even if they were part of the

same applet-group as that of the deleted applet.

Delete an applet-group: This operation destroys the

communication group to which members of an applet-

group belonged. The applets in the applet-group receive

a notification that they are no longer part of the group,

and will typically be designed to destroy themselves or

become private applets. For instance, if the whiteboard

applet-group is deleted from a room, all the correspond-

ing whiteboard applets either will be destroyed or will

become private applets of their users.

Move an appletfrom one mom to another: As a result

of this operation, the applet will leave the applet-group

it had belonged to. Then, it will be put in the destina-

tion room. As a consequence, a new applet-group will

be created in the destination room. Applets can be made

private by moving them to a private room.
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● Move an applet-groupfrom one room to another: This is

equivalent to moving an applet belonging to the applet-

group to the destination room and destroying the applet-

group in the source room.

Room-Room Relationship

Nesting of rooms within one another is not currently allowed.

To facilitate navigation from rooms to related rooms, links

to other rooms can be easily implemented using the existing

model. Links can be provided by a link applet that maintains

a collection of references to other rooms. At the present time,

users of the collaborator have not indicated a need for nest-

ing of rooms. We may consider such support in the future, if

a need arises. In such a case, rooms most likely will be mod-

eled after directories in file systems such as in the Andrew

File System,

User-Room Relationship

A user can be inside any number of rooms simultaneously.

We see no reason at present for the underlying architecture

to restrict users to a single room, and indeed see several po-

tential benefits for users such as being able to better utilize

their time, transfer results of collaboration from one room to

another, etc.

Each user is implicitly assigned a private room which only

that user may enter, A private room serves as a placeholder

for applets that are not currently shared with other users.

When a user successfully enters a room, the applet-groups

within the room become accessible to the user’s session man-

ager. For each such applet-group, a session manager will typ-

ically instantiate an applet of the appropriate type and send

a request to the applet to join the applet-group, thus making

available the shared context of the room to the user.

When a user leaves a room, user’s applets that are part of the

room implicitly leave their applet-groups.

To control the access of users to a room, users are given roles

with respect to a room, which is described in the following

section in detail.

Persistence of Applets, Applet-groups, and Rooms

Our experience with the work in collaboratories indicates that

support for asynchronous collaboration can be essential be-

cause not all participants may be available at the same time

due to scheduling conflicts. We therefore provide features

for persistence of state of a collaboration across synchronous

collaboration sessions.

In our current system, rooms continue to persist even if there

are no users within the room. Thus rooms can be used as de-

positories of information that is being shared among users.

In the future implementations, we plan to allow users to de-

clare a timeout value for a room so that room is automatically

deleted after a timeout if it is not being actively used.

To support asynchronous collaboration, applets also need

to be designed so that their state can be saved across ses-

sions. We use DistView’s (Java-based version) mechanisms

to save the applet identifier, its applet-group name, and

its state with the Room Manager, upon request of a user.

DistView requires applets to provide access to their state any-

way for replication purposes when new applets are added to

an applet-group. For persistence, the same state is saved with

the room manager.

If a user enters a room with no other users later, the applet-

group, along with the last saved state, is still available. The

user can instantiate applets that join the saved applet-group,

initializing themselves to the last saved state.

User Roles in a Room

For the purpose of room access control, a user may assume

one of the following roles:

Administrators who are allowed to change the access con-

trol on a room, create/delete applet-groups from the

room, and interact with the applets in the room.

Members who have all the rights of administrators, except

that they cannot modify access controls on the room.

Observers who are only allowed to observe the state of

group-aware applets in a room but not allowed to affect

the state of these applets in anyway.

Restricted who are not allowed to enter the room.

Each room is associated with its own Access Control List

(ACL). There are five levels of privilege in the ACL corre-

sponding to each of the roles. Table 1 shows the operations

allowed for each privilege level.

A model with finer levels of access control, say, along the line

of Andrew File System, could have been used, but the above

model appears adequate for the time being and is simple to

understand and enforce.

Rooms are created by users (in our implementation, by the

session manager, on their behalf). The creator of the room be-

comes a permanent administrator of the room (to ensure that

a room always has at least one administrator).

DESIGN AND IMPLEMENTATION

Our architecture uses a session manager to coordinate the

various applets on a user’s desktop, as shown in Figure 3.

One session manager exists per user. The session manager

presents a common interface to the various applets and pro-

vides facilities for querying about the status of the collabora-

tor. The session manager and the applets may communicate

with each othe~ the session manager can send commands to

the applets, such as requesting them to quit, and provide them

information on collaborator status for group-awareness pur-

poses.

Users can access a collaboratory’s home page on the World-

Wlde Web and download a session manager to a platform

with a Java-enabled Web browser (e.g., Netscape). The ses-

sion manager downloads group-aware Java applets (e.g., chat

applet, draw applet) using the Web browser to establish a

shared workspace for users.
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Privileges

Operations ADMIN MEMBER OBSERVER RESTRICTED

Enter a room Y Y Y N

Look up a room Y Y Y N

Leave a room Y Y Y N

Destroy a room Y N N N

Join applet-group Y Y Y N

Add applet Y Y N N

Move applet-group Y Y N N

Delete local applet Y Y Y N

Delete applet-group Y Y N N

Get room ACLS Y Y Y N

Set room ACLS Y N N N

Table 1: Operations allowed for each privilege level
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Figure 3: Client Architecture – clients consist of applets and

a session manager

Run-T]me Communication Architecture

Figure 4 shows the run-time communication architecture of

a collaborator. Each user’s workspace consists of one or

more applets (small, individual applications, such as white-

board, chatbox, and scientific data viewers). Corresponding

applets (e.g,, whiteboard applets of different users) commu-

nicate with each other through group communication server,

as users perform actions in order to maintain a common in-

terface to the group.

The room manager and the group group communication are

implemented as Java applications and run on a server ma-

chine. The session manager is implemented as a Java applet

that runs on each user’s machine. Through the H’fTP server,

ht tpd, also running on the same server machine, users can

access a CollaboratorY’s home page on the World-Wide Web

and download the session manager to their desktop with a

Java-enabled Web browser (e.g., Netscape).

Figure 5 shows the actions that occur when a group-aware ap-

plet (e.g., chat applet) needs to be started on a user’s desk-

top. The numbers near the arrows show the sequencing of

messages. First, the session manager gives a URL to the

browser to request the downloading of the applet from the

HITP server. The URL contains the name of the name of the

Java-applet class, the unique id to be assigned to the Java-

applet, the unique id assigned to the session manager, and

the address with port number of the server where the group

communication is running. Next, the ht tpd server starts a

CGI script on the server which, in turn, produces a virtual
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Figure 4: Run-time communication architecture in a collab-
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Figure 5: Starting an applet in a collaborator
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HTML document (a document created on the fly) that con-

tains HTML tags to start the applet and parameter tags, to

pass the applet id, session manager id, and the group commu-

nication server’s port, to the applet. Then, This HTML doc-

ument is returned to the browser.

Upon receiving the HTML document containing the refer-

ence to the applet, the browser displays the HTML document,

causing the applet to be downloaded from the HTTP server,

if it is not available locally. The applet sends a message to the

session manager on the user’s machine (via the group com-

munication server because of the current security restrictions

on Java applets), gets the the applet-group id to join from the

session manager, and joins the applet group, thereby estab-

lishing a shared workspace with other applets belonging to

that group.

An Example of Run-T~me Communication

Figure 6 illustrates the message communication among an

applet, a session manager and the room manager, when a user

enters a room.

When a user requests the session manager to enter a room,

the following sequence of events occur.

1.

2.

3.

4,

5.

6.

7.

8,

The session manager performs the operation of enter a

room which sends a message to the room manager.

The room manager checks the access control of the

room in order to verify the privilege level of the user as-

sociated with the room. If the user is allowed to enter

the room, the room manager updates the room structure

to put the user inside the room and sends the result back

to the session manager.

When the user gets inside the room, the session manager

performs the operation of looking up a mom and gets the

available applet groups in the room from the room man-

ager.

For each applet group the user has selected, the ses-

sion manager instantiates an applet which belongs to the

applet-group.

Each applet created by the session manager according to

the user’s input sends a message to the session manager

that says it has started.

Upon receiving this message, the session manager tells

the applet which applet-group the applet should join,

When the applet receives this message, the applet calls

thejoinGroup primitive [7] to join the applet group and

then sends the group id back to the session manager to

let it know that it has successfully joined the applet-

group.

Upon receiving this message from the applet, the ses-

sion manager performs the operation of add applet to

tell the room manager to add the applet entry in the

applet-group in its room data structure.

Session
Applet

Room

msnsger msnsger

Entera rmm

*

Lookupa room

jol.Gr..p *

!2dmiad
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Time

Jointhe appletqm.

jolnGro.p
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t

Andappbt dd an appbt emry in a room

Figure 6: InterProcess communication among applet, session

manager, and room manager when a user enters a room

9. The room manager checks the privilege level of the user

with respect to the room. If the user is allowed to cre-

ate an applet in the room, the room manager updates its

room data structure and multicasts the changes to the

room view to all the session managers. Upon receiving

these messages, the session managers update their room

views.

The mechanism of leave a mom is straightforward. Basicidly,

it involves removing the applet entry from its applet group

in the room structure and making the applet leave its applet

group.

A preliminary prototype of the model has been implemented

in Java. Primitives except for access control have been im-

plemented and the implementation of access control is cur-

rently in progress.

Enforcing Access Control

We next show the extensions to the above protocol of enter-

ing a room in order to enforce access control in an unsecure

environment. In this protocol, we assume that the room man-

ager is a principal trusted by all users. The protocol is de-

signed for a public key cryptosystem [6], so we assume that

all users can securely obtain each other’s and the room man-

ager’s public keys and that they and the room manager pos-

sess trusted cryptographic software. All principals keep their

private keys secret.

The secure enter a room protocol is a variation of the

Needham-Schroeder authentication protocol [10]. This pro-

tocol uses a trusted authority (in this case, the room manager)

to assign keys for a pair of users to interact. We modify the

protocol to enable a group of users with different access rights

to interact. Because of the variation in privileges, asymmet-

ric secrets, such as private/public key pair, are used to au-
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thenticate a principal, Symmetric keys can also be used (with

greater performance improvement), but the distribution pro-

tocol is more complex [9].

In step 1, the session manager sends a message to the room

manager to enter a room. This message contains the collab-

orator’s name, the room name, and a random number. The

user’s session manager creates a digital signature (private key

transformation) of this message using his private key and en-

crypts it using the room manager’s public key. Therefore,

only the room manager can read the message.

In step 2, the room manager decrypts the message and verifies

the signature of the message and checks the access control list

of the room. If the signature is verified and the user is per-

mitted to enter the room, then the room manager determines

a short-term privateJpublic key pair for the user in the room

(called thepnvate room key and the public user-room key, re-

spectively). The room manager creates a return message con-

taining the room id, the key pair, and the user’s random num-

ber. The room manager adds its digital signature of that mes-

sage and encrypts it with the user’s public key, so that only

the user’s session maanger can obtain the key pairs. Only the

room manager could have decrypted the step 1 message to

obtain the random number, so the user’s session manager can

safely assume that it is interacting with the room manager.

In a step 3, the user’s session manager sends a message to re-

quest the room status by invoking the operation to lookup a

room. The session manager’s message simply contains the

user name and the room id. The session manager sends the

message and its digital signature created using his new pri-

vate room key to the room manager.

In step 4, the room manager verifies the signature. If the sig-

nature is verified, then the room manager can add the user to

the room. The room structure is modified to add an entry con-

taining the user’s name, role, and the public user-room key.

Other users obtain this public key from the room manager (in

a message signed by the room manager) when they want to

verify a signed message from that user. By using the room

manager to store the public keys, the well-known replay at-

tack against the Needham-Schroeder protocol is avoided [4].

MEETING THE NEEDS OF A COLLABORATORY

Below, we discuss several ways in which the model described

can support different needs of collaboratories:

. User-extensibility: The architecture allows users to add

their own collaborative applets as long as they provide

an interface required by the session manager, In our im-

plementation, an abstract class is provided that specifies

the methods that each applet should support. Examples

of methods include request by the session manager to

the applet to join a particular applet-group, to leave a

group, to iconify itself, to kill itself, etc.

● Group-awareness: The session manager mu-rentlyman-

ages information about users and objects in a room. It

also provides an API to applets to allow them to query

b

●

●

b

about the state of the collaborator, such as information

about the rooms they belong to, users who are in a room,

etc. Applets can use that information to provide addi-

tional context to users.

Link applets: To allow users to move from one room

to another in an hypertext (or Web-like) manner, as dis-

cussed earlier, a link applet that maintain a list of related

rooms can be used.

Common utility applets: Such applets include chat,

whiteboard, mail, and audiolvideo conferencing tools.

In our implementation at present, we provide chat,

whiteboru-d, mail (via the browser), and some UARC-

specific applets.

Support for asynchronous collaboration: Persistent

rooms that contain persistent applet-groups can be used

to support asynchronous collaboration. In our current

prototype, rooms and applets such as multi-user chat

and whiteboard support persistence.

More open, scalable collaboratones: The access con-

trol model encourages more open collaboratories. It al-

lows scientists to be receptive to the idea of making the

collaborator openly accessible over the Internet since

they can work in rooms that can be made reasonably se-

cure and support non-obtrusive observers.

There are certainly other challenging issues that need to be

addressed in supporting the model described in this paper

for large-scale collaboratories to be practical. For instance,

scalable communication protocols are needed so that large

number of observers can be supported, and performance per-

ceived by members of a room can be given higher priority

than the performance perceived by observers in a room. The

work on the Corona system [7] aims to address that problem.

RELATED WORK

Some important examples of collaboration systems include

Suite [5], DistView [12], Rendezvous [11] and MMConf

[2]. They provide generic facilities for establishing a shared

workspace and implementing various floor control policies.

In these systems, facilities for conference management are

usually tightly integrated with the application. Multi-applet

workspaces, like CBE, require that the session management

service be outside any individual applet and be usable by

multiple applets simultaneously.

Another use of the room concept has been described in [8]

with the goal of dividing the user’s desktop into a suite of vir-

tual workspaces, similar to the rooms in the real-world. In

[8], rooms are primarily meant to facilitate management of

one’s workspace. In our case, rooms are used as a means for

providing a shared context to a group of users.

Multi-User Dungeons (MUDS)provide a notion of a place for

collaboration [3]. Traditional MUDS are text-based systems

in which users use text-based commands to modify objects in
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a room. Recent projects, such as the Jupiter project at Xerox

Pare have augmented MUDS to add support for collaboration

using video and audio.

The wOrlds [16] system and the TeamRooms [15] system

organize applets into “locales” and “team rooms” respec-

tively, which are similar to rooms in this paper. Both wOrlds

and TeamRooms, like CBE, support shared workspaces with

multiple applets, users, and data objects. One difference

in terms of goals is that our system is intended to sup-

port Internet-based collaboratories. Thus, we focussed in

more detail on specifying constraints on relationships be-

tween users, applets, and rooms, as well as on mechanisms

for access control so that collaboratories can be made more

widely accessible over the Internet. In terms of implementa-

tion, The wOrlds system currently uses a distributed version

of Smalltalk and TeamRooms uses Tcl/Tk. We decided to use

Java, so that clients can access a collaboration environment

over the Web from multiple platforms.

In TeamRooms [15] (which uses GroupKit [14]), all applets

in a room are displayed in one larger window, which effec-

tively then needs to provide its own window management

functions. Thus, TeamRooms also provides a GUI metaphor

for representing rooms, In CBE, the display of applets in

a room is a decision that is left up to the session manager.

The session manager in ourprototypedoes not restrict the ap-

plets in a room to a single window. This has the advantage

that users can use their standard, familiar window manager

to control the placement of applets on their desktop.

A potential advantage of displaying all the applets in a single

window, as in TeamRooms, is to allow a user better control

on the display of rooms on the desktop, if the user is active

in a large number of rooms simultaneously. However, in our

experience, most users actively use only one or two rooms at

a time, with each room containing a large number of applets,

though a larger number of rooms may be available to them.

We therefore decided that it was better to allow users to use

a familiar window manager to control placement of applets,

rather than providing structuring mechanisms to control dis-

play of a large number of rooms. If better control over applets

in an individual room is desired, the session manager can be

used to send control commands (such as quit, iconify, etc.) to

all the applets in a room. A session manager that displays all

the applets corresponding to a room in a single window could

of course be implemented in CBE, since the session manager

design is a policy decision.

Habanero at NCSA, like CBE, uses Java for building group-

ware applications. It provides support for “sessions” that

can contain URLs and group-aware applications. A Ha-

banero session has similarities to a room, but does not al-

low applications to be dynamically added during a session.

Furthermore, CBE allows active applets to be dynamically

moved between private and shared workspaces and provides

server support for saving the state of a room across sessions

to facilitate asynchronous collaboration.

CONCLUSIONS

In this paper, we described an architecture for supporting

collaboratories and shared workspaces. The architecture is

based on the notion of rooms, users, applets, and applet-

groups. We proposed semantics of these concepts, described

their inter-relationships, and presented a simple model of ac-

cess control to rooms.

We also investigated the issue of mapping these higher-level

concepts on lower levels of the infrastructure. In particu-

lar, we showed room-level grouping mechanism which is

mapped to operations on ‘communication-level groups. We

also presented a solution outline for enforcing access control

on rooms by utilizing digital signatures in group communi-

cation protocols.

We showed how these concepts can be used to support a vari-

ety of needs in collaboratories using special applets designed

to support a variety of tasks such as navigation around rooms,

session recording, provide group-awareness, etc.

Prototype versions of the model with several applets, such as

multi-user chat, shared whiteboard, and UARC-specific dis-

plays have been implemented in Java and can be downloaded

to run with a Java-enabled browser. Ongoing work includes

building a critical-mass of applets for the UARC collabora-

tor, refining the user-interface provided by the session man-

ager, and providing scalable, fault-tolerant versions of the

room manager.
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