

Supporting Online Material for

High-Frequency Holocene Glacier Fluctuations in New Zealand Differ from the Northern Signature

Joerg M. Schaefer,* George H. Denton, Michael Kaplan, Aaron Putnam, Robert C. Finkel, David J. A. Barrell, Bjorn G. Andersen, Roseanne Schwartz, Andrew Mackintosh, Trevor Chinn, Christian Schlüchter

*To whom correspondence should be addressed. E-mail: schaefer@ldeo.columbia.edu

Published 1 May 2009, *Science* **324**, 622 (2009) DOI: 10.1126/science.1169312

This PDF file includes:

Materials and Methods SOM Text Figs. S1 to S4 Tables S1 to S4 References

Materials and Methods

I. Samples, geochemistry and analyses

Samples

Large boulders are common on the Holocene moraines near Mt. Cook, and are predominantly hard, quartzo-feldspathic, fine-grained greywacke sandstone. Rock samples were taken from the most stable-looking section (typically from the center) of flat-topped, large greywacke boulders embedded in the tops of moraines (Fig. S3). We focused on sampling the top 2 cm. Target rocks were measured, described and photographed. The greywacke lithology is very resistant to erosion (e.g. (S1)), therefore we assume the erosion of the sampled surface to be close to zero over the relatively short time-scales discussed here. All samples were processed at the cosmogenic dating laboratory of the Lamont-Doherty Earth Observatory. At the laboratory, the rock samples were crushed to $125 \,\mu$ m – $710 \,\mu$ m.

Geochemistry

We separated and decontaminated quartz from the whole-rock samples and measured the ¹⁰Be concentration from the quartz using isotope dilution techniques. In the past, fine-grained greywacke has proven very problematic to process for ¹⁰Be SED, primarily because it is difficult to clean the quartz to levels required by standard processing protocols without digesting most of the quartz. In order to separate sufficient quartz material (up to 100 g) from the whole rock for the low-level ¹⁰Be analysis, it was necessary to process up to 2500 g of whole rock (table S2). Accordingly, we designed an updated geochemical processing protocol based on the strategies presented by Licciardi (S2) and by the cosmogenic dating group at University of Washington, Seattle (http://depts.washington.edu/cosmolab/chem.html). Boiling of the crushed rock sample in Ortho-Phosphoric Acid prior to successive leaching in diluted hydrofluoric/nitric acid on the shaker table and in a heated ultrasonic bath has proven to be the key for the successful 10 Be processing of greywacke samples for SED (http://www.ldeo.columbia.edu/res/pi/tcn/LDEO Cosmogenic Nuclide Lab/Chemistry.ht ml)

Also fundamental to the success of this work is the low process blank at the Lamont cosmogenic nuclide laboratory. It is based on a ⁹Be spike from a natural, deepmine beryl crystal, that is very pure ($^{10}Be/^{9}Be$ ratio of about 5 x 10⁻¹⁶ (table S2)). We added between 0.18-0.2 ml of the ⁹Be spike to each sample and measured a process blank (a ⁹Be spike processed identically to the samples) with each sample batch. The 20 process blanks range between 5-20 x 10⁻¹⁶ (table S2), corresponding to a low ¹⁰Be contamination during the chemical sample processing between 6,000 to 26,000 ¹⁰Be atoms/g.

AMS analysis of very low ¹⁰Be/⁹Be ratios

The ¹⁰Be/⁹Be analyses were performed at the Accelerator Mass Spectrometry (AMS) facility at the Lawrence Livermore National Laboratory (LLNL). Due to the self-designed ion source at the AMS facility at the LLNL and high purity of the samples, ⁹Be

currents for our samples were high (table S1; ⁹Be currents range from 7 to 33 µA with a mean of $18 \pm 6 \mu A$), yielding high precision of the ¹⁰Be measurement. Individual AMS sample targets were measured between 2-5 times in total, providing an internal control of the stability of the AMS. The corrections for boron -10 (¹⁰B), an interfering isobar of ¹⁰Be, were typically lower than 1%, but were 3% or higher for six samples out of 75) thanks to chemical suppression of the boron levels in the quartz samples and good separation of the ¹⁰Be and ¹⁰B peaks in the detector (Fig. S4). Overall background corrections, including boron correction, correction for process blank, and sensitivity variations of the AMS during analysis, range from a few % (for most of the samples) up to >20% for six out of 75 samples (table S2). However, the consistent ¹⁰Be process blank over the various AMS runs measured with uncertainties of 10% or better for the 'high background' samples leaves us confident that even for the six samples with highest background correction, the reported ¹⁰Be/⁹Be ratio is precise within given uncertainties. Because the LLNL AMS facility allows for ¹⁰Be/⁹Be measurements in the 1x10⁻¹⁴ range within about 5% (1 σ), the analytical uncertainties of a single AMS analysis for samples exposed for 500 years and longer (at 700 m altitude) correspond to less than 50 years. Even for the youngest samples only 150 years in age the 1- σ uncertainty is better than 10 %, translating into an error (1σ) of 15 years. All analytical details and errors are given in table S2.

II. ¹⁰Be Surface Exposure Dating of the Holocene moraines of Mueller, Hooker and Tasman glaciers

Reviews of the method of surface exposure dating (SED) using cosmogenic nuclides are given in (S3-6). In this study, we present ¹⁰Be dating of very young moraines (from several thousand years in age down to 150 years, at elevations of less than 1000 m), pushing the ¹⁰Be technique to new limits. ¹⁰Be is the appropriate cosmogenic nuclide for SED on the short timescales discussed here due to the very low blanks and the excellent analytical precision. All input parameters needed to calculate the ¹⁰Be ages discussed in this paper are given in table S2. Table S2 also presents all geochemical and analytical details. We present all the ages based on different, currently accepted scaling schemes summarized in (S7) (table S3). A recently completed ¹⁰Be production rate calibration study by Balco et al. (S8) obtained production rates, for latitudes above 40° and elevations below 1000m, that are about 7% to 12% lower than the global calibration data set (S7). We include ages based on this revised production rate in table S3 and base our discussion on those ages (errors of moraine ages include 1σ analytical error and 5% production rate uncertainty given by (S8), see also Fig. S1). Note that the age differences depending on the scaling scheme are small, not affecting any of the conclusions drawn here.

The data show excellent internal consistency and agreement between chronology and stratigraphic position (Figs. 1, 2, 3, S1). As the ages were derived from three different glacier systems and 74 individual boulders of differing settings, shapes and surface lithologies, it appears that none of the geomorphic processes listed in the 'Supporting Text- Section II ' (below), which may affect individual boulders to differing degrees, contributed significantly to the exposure ages obtained. However, the presented data are precise enough to provide evidence for a small pre-exposure (inheritance) signal discernable in some of the youngest boulders, corresponding to less than 100 years, reflected in the trend towards higher χ^2 values for the ¹⁰Be age distributions for the younger moraines (in particular the '400 year' and the '270 year' moraines, see Fig. S1). We discuss this issue in detail below (Section II of the 'Supporting Text').

The unprecedented consistency and the general lack of outliers of this ¹⁰Be chronology warrant explanation. We consider that it reflects the rapid rate of uplift-driven erosion in the Southern Alps, providing continuous supplies of freshly exhumed rock debris (S9). The main source of large boulder input to these glaciers is by large rockfall events (rock avalanches) which are common in the Southern Alps (S10). Such rockfalls are deep-seated and of large volume (S11), meaning that most of the failed rock material was not exposed at the rock outcrop surface prior to the rockfall event. This implies that a large proportion of the rockfall material has no pre-exposure to cosmic radiation. We consider that this accounts for the consistency of this ¹⁰Be chronology of the Holocene moraines of the Mt. Cook area.

It is likely, however, that considerable rockfall onto the large Mt. Cook valley glaciers occurs in the ablation zone, because valley walls are steep, with large extents of exposed rocks. Most of the debris falling onto the ablation zone will be transported supraglacially and exposure during transport on the glacier is likely to account for some of the multi-decade variations in boulder ages from individual moraines. Additionally, reworking of a boulder exposed on a previouly-formed moraine cannot be excluded and may account for the few instances of 'old' outliers in the data set (see Section II of the 'Supporting Text').

III. Radiocarbon dating of till stratigraphy in moraine walls

Downwasting of the Tasman Glacier has exposed the deposits within its lateral moraines, including sequences of buried soils. Each soil represents a period of reduced ice surface height, which allowed the moraine to stabilize and become vegetated, followed by a rise in the ice height which deposited till over the soil (see (S12)). Table S4 summarizes the data from (S12) (and references therein), recalculated to modern standards and calibrated using INTCAL04, including the Southern Hemisphere correction for samples younger than 1,175¹⁴C years BP. We have normalized the AD/BC calibrated ages to years before AD 2005, when most of the ¹⁰Be samples were collected for this study. In Figure S2 we show probability distributions and statistics of these individual ages obtained from the three most widely recognized ¹⁴C dated soils. Calculated arithmetic means with 1 σ uncertainty from these ¹⁴C ages are normalized to AD 2005 to allow direct comparison with the presented ¹⁰Be ages (table S4, Fig. 3).

Supporting Text

I. Setting of the Southern Alps and their glaciers

Physiography

The Southern Alps are an elongate mountain chain on the western side of the South Island of New Zealand. This 500 km long and 60 km wide belt of mountains, with peaks typically exceeding 1800 m, is deeply dissected by formerly glaciated valleys. A well-defined drainage divide, universally known as the Main Divide, lies about 20 km east of the western margin of the mountain range (i.e. 40 km west of the eastern margin). Midway along the chain are the highest peaks of the Southern Alps, with many rising to more than 3000 m, including Mt. Cook (3764 m). Temperate glaciers are widespread on the highest parts of the range near the Main Divide. More than 3000 individual glaciers cover an area of 1158 km² and volume of 53 km³ (S13). Locally, the ice fields coalesce to form valley glaciers that drain east or west off the range.

Geology

The western margin of the Southern Alps is the Alpine Fault, the local boundary between the Australian and Pacific plates. Strike-slip displacement with a minor reverse component has been instrumental in formation of the Southern Alps. The bedrock of the Southern Alps is Mesozoic-age greywacke, but near and west of the Main Divide, this passes into increasingly metamorphosed schist. The combination of ongoing rapid uplift, high precipitation and rapid erosion has produced deep, high-sided valleys. Rockfall is the main source of sediment generation, and major earthquakes occur every 200 to 300 years on the Alpine Fault (e.g. (S11)). In this study area on the eastern side of the Main Divide near Mt Cook, the rock is greywacke, with subsidiary low-grade schist.

Climate

The Southern Alps forms a 500 km long barrier to the prevailing westerlies, in a temperate maritime montane climate. The mountain chain induces a strong orographic precipitation regime. Mean annual precipitation increases rapidly from 3000 mm along the narrow western coastal plains to a maximum of more than 10,000 mm on the western flank of the Southern Alps close to the Main Divide. Further eastward, there is an approximately exponential decline in precipitation to about 1,000 mm at the eastern margin of the Southern Alps (S14). New Zealand's temperate climate reflects the interaction of sub-tropical and sub-polar air and water masses. Contemporary annual to multi-annual variability results from the El Nino-Southern Oscillation (ENSO). El Nino conditions bring a greater frequency of southwesterly winds, increased precipitation in the Southern Alps, and generally cooler air and sea surface temperatures (S15). Its contrasting condition (La Nina) brings more frequent northerly winds, warmer air and sea surface temperatures and less precipitation in the Southern Alps. An Interdecadal Pacific Oscillation (IPO) (S16) has recently been proposed as a lower-frequency pattern within ENSO (S17). Positive phases of the IPO comprise more frequent and more prolonged El Nino events, while negative IPO phases are characterized by a predominance of La Nina conditions (S15).

Glacier behavior

Numerical modelling indicates that Southern Alps glaciers are primarily sensitive to temperature change and less responsive to changes in precipitation (S18, 19). Historical and climatic data from the 20^{th} century indicate some correlation between mass-balances of glaciers in the Southern Alps and ENSO patterns. In the late 1970s the IPO switched from a negative phase, which had persisted since the 1940s, to a positive phase which continues today. During the negative phase, substantial glacier retreat occurred throughout the Southern Alps. The present positive phase has been accompanied by substantial advance of the steep, fast-flowing, Franz Josef and Fox glaciers west of the Main Divide. To the east, except for glaciers whose equilibrium has been disrupted by the formation of terminal lakes into which the glaciers calve, the glaciers have generally ceased retreating and re-advance is evident in some places (S20).

II. Mueller, Hooker, and Tasman glaciers and their moraine records

Setting

Mueller, Hooker and Tasman are large, valley glaciers draining the eastern slopes of the Main Divide (for details see table S1). All three glaciers receive intense precipitation in their upper reaches (largely as snow during all seasons except summer) but precipitation volumes decrease progressively eastward to around 4500 mm/yr at the glacier termini. The terminal moraines lie at relatively low altitudes (700 to 900 m). Contemporary snow cover is slight, with a 1 m snowfall being an exceptional event and melting within a few weeks. For most of the winter, the moraines are free of snow. The lowermost few kilometres of the glacier trunks have surface debris covers that, although extensive, are rarely more than 1 m thick (S21).

Historic behavior

Mt Cook glaciers began downwasting in the late 1800s, while elsewhere in New Zealand, a very slow retraction of glaciers began that was replaced by very rapid retreat commencing in the late 1930s (S22-S24). From the early 1980s, lakes began to develop at the termini of Mueller, Hooker and Tasman glaciers, and have progressively expanded up valley. The most responsive of New Zealand glaciers (Fox and Franz Josef) began to advance at that time, and remain in advanced positions today. Similarly, the retraction of glaciers east of the Main Divide has largely ceased over the last 10 years (S17) and some have begun to re-advance. In contrast, Swiss glaciers began to retreat rapidly about AD 1860 and, when they temporarily stabilized in the 1920s, had accomplished about half of their retreat to today's positions. Further retreat, continuing today, was punctuated by a re-expansion in the 1970s and 1980s. Although the initiation of retraction in about AD 1860 appears to have been a globally-widespread phenomenon, the detail of glacier response in both regions has been attributed to regional climatic influences (S24, 25).

Holocene moraine records

The most comprehensive moraine sequence is preserved around the Mueller Glacier. The Hooker Glacier has a less well preserved suite of Late Holocene moraines. The Tasman is dominated by a loop of historic moraines (mid/late 19th to late 20th)

century) with remnants of older Holocene moraines in a localized area near its rightlateral terminus (Fig. 1). Individual moraine ridges are typically at least 10 m high and have several hundred meters lateral continuity. The Mueller Glacier Holocene moraine record (Fig. 1) is divided into 8 distinct age groups, at least two of which comprise more than one successive moraine ridge, and thus are of 'composite age'. Collectively, the Mueller moraine sequence reflects at least 10 distinct moraine-forming events. Fewer sets of ridges are preserved around the Hooker and Tasman glaciers (Fig. 1).

Published chronologies for the Holocene moraines of the Mt. Cook area rely to a considerable extent upon relative dating methods of surface geomorphologies, particularly lichenometry and weathering-rind dating (see review in (6)). Recently, Schmidt hammer techniques have been applied (17). The only direct numeric calibration of the relative dating methods applied to the morainal deposits near Mt Cook is radiocarbon dating (11); however it has not been possible to robustly compare the ¹⁴C data of subsurface deposits at Mt Cook to the characteristics of ground surface proxies such as lichen size or rock weathering rinds. It is not our intent in this paper to reexamine the published ages derived from relative dating methods. However, the ¹⁰Be ages presented here provide some direct numeric constraint that could be used elsewhere to re-evaluate and improve the local calibration of the relative dating methods.

Interpretation of moraine records

Our conceptual model is that lateral or terminal moraine ridges are constructed at times when a glacier is in, or close to, equilibrium with prevailing climate. The reaction of a glacier in equilibrium to a superimposed climate change is almost immediate. Surface sediments on a moraine ridge represent the culmination of construction of the ridge, and we assume that ridge construction ceased due to withdrawal of the glacier from that position. Thus, we regard the surface exposure age of a boulder on a moraine ridge as recording the onset of a glacier retreat. There are at least four potentially complicating 'geologic' factors:

- A boulder may have an inherited age, representing prior exposure to cosmic radiation, for example if it had been part of an exposed rock face, had been reworked from the surface of a previously formed moraine, or was transported on top of the glacier surface (boulder gives an age older than the time of its deposition on the moraine);
- Boulders on a single morphologic ridge may not necessarily be from a single depositional event; ice may have reoccupied a pre-existing moraine ridge, and deposited boulders without leaving distinctive morphologic indicators. Boulders on a moraine of composite age should show at least two age populations, if within the resolution of analytic uncertainties.
- A boulder may have been moved after retreat of the glacier, for instance due to melting of stagnant ice buried within the moraine (boulder gives an age younger than the time of its deposition on the moraine);
- A boulder may have been deposited after formation of the moraine, by nonglaciogenic processes such as rock-fall from nearby slopes.

Other surficial processes can produce exposure ages that are younger than the boulder-deposition age, such as erosion, snow-cover, and post-depositional exhumation

of boulders. The exceptional consistency of ages obtained in this study, and presence of very few outlier ages provides confidence that such complications do not introduce discernable variation at this study site.

Therefore, apart from the possible small influence of pre-exposure (see below), we conclude that exposure ages of surface sediments on moraines represent the onset of glacier retreat in immediate response to a climate signal, i.e. we date 'terminations' of glacier advances.

In this study we assume that the Mueller, Hooker and Tasman glaciers have experienced similar and simultaneous responses to climate signals during the Holocene. Our justifications are that their catchments are side by side, have similar aspect and altitudes, and that the amounts and timing of their downwasting in response to the climate changes of the past century have been approximately the same.

Pre-exposure of rock surfaces

The precision of the reported ages allows for consideration of small effects of preexposure/inheritance. Supraglacial transport of boulders will undoubtedly result in cosmic radiation during their travel on the ice. Such boulders are likely to be reoriented continuously during transport, by processes such as ice surface deformation via pressure ridges, and dynamically-varying ice surface relief generated by differential ablation. Boulder reorientation reduces the likelihood of pre-exposure being concentrated on any particular part of a boulder surface, but also means that all parts of a supraglacial boulder are more likely to carry some degree of pre-exposure.

Prominent innermost moraines of the Mueller Glacier were assessed by previous workers as being of historic age (i.e. younger than approximately AD 1860, when the first European explorers described the area). There are differing interpretations of specific moraine ages (e.g. (S26) versus (S27)) due to equivocal evidence. Perhaps the clearest evidence comes from a photo looking across the Mueller Glacier terminus taken in AD 1895 by J. J. Kinsey, cited by (S27) and accessible online at National Library of New Zealand, reference number: PA1-q-137. Combining this photograph with a perspective from a similar location accessed in Google Earth, it appears unambigous that the innermost moraine dated in this study (samples Kiwi-942, -943, -944) was outboard of the glacier in AD 1895. The glacier did not re-advanced beyond this 1895 ice-front position subsequently (S28). Thus, from historical evidence, the age of this moraine, at the sample sites and relative to the sampling year AD 2005, is at least 110 years. The arithmetic mean age of samples Kiwi-942, -943, -944 is 160 ± 30 years. At face value, this implies a mean pre-exposure of no more than 80 years. A maximum estimate of preexposure of 97 years, based on this limited data set of three samples, comes from sample -943 whose older bound is 207 years.

For comparison, we derive an indicative estimate of transport time for rocks on the Mueller Glacier surface. There is no record of flow rate measurements on the Muller Glacier in the 19th century, when the glacier was in an advanced state, presumably at or close to equilibrium with climate. However, a mean cross-sectional flow rate of 30 m/yr was measured on Hooker Glacier in 1889 (S29). The Hooker and Mueller glaciers are of comparable length and topographic setting. We assume to a first approximation that the lower half (i.e. 6.85 km) of the 13.7 km long Mueller Glacier equates to its ablation zone. The reason for considering just the ablation zone is that a boulder falling within the accumulation zone would be buried by snow and would become incorporated within the glacier ice. Adopting the flow rate of 30 m/yr for Mueller Glacier under equilibrium conditions, the transport time down the lower half of the glacier, for a rock sitting on the ice surface, would be 228 years. For any part of such a rock to gain the full 228 years of exposure to cosmic rays would require that it be transported without any rotation, and come to rest in the moraine with the same surface facing upward. Thus, we regard such a value as being a conservative upper limit of pre-exposure that is likely to have been gained by any supraglacial boulder during transport on the Mueller Glacier. In addition, any population of boulders in a terminal moraine is likely to include some which were transported largely or entirely englacially. Thus within a moraine boulder population, the inheritance age gained during transport on Mueller Glacier would lie between 0 and a conservative upper limit of 228 years. Hence, these estimates are broadly compatible with the estimates of pre-exposure of rocks on the historic moraines, as implied by the ¹⁰Be results (see above).

Summarizing these different considerations, we infer that for the Mueller moraines, the surface boulders would, on average, have less than 100 years worth of preexposure. Thus, the mean ages may overestimate the time since ice retreat from that moraine by not more than 100 years. We assume to a first approximation that such values are also applicable to the moraines of the Hooker Glacier and right-lateral moraines of the Tasman Glacier.

As a reality check, it is instructive to consider the c. 1,000 year old moraine, best preserved around Hooker Glacier, but with possible correlatives at Mueller and Tasman glaciers (Fig. S1(vii) – mean age 1,020 \pm 70 years). There is a widely represented buried soil of about the same age (Fig. S2(iii) – mean age 1,000 \pm 80 years). Conceptually, the model is that the advancing glaciers overrode and buried the soils, after which the glaciers constructed latero-terminal moraines. The surface boulders on the moraines represent the withdrawal of ice after construction of the moraines. Although not a necessary assumption given the error limits, if we were to assume that there is an average of 100 years pre-exposure in the boulder population, it would imply an age of 920 \pm 70 years for ice withdrawal from the moraines. This would fit better with burial of the soils during the initial advance, prior to construction of the moraines. It would also provide a tighter match to a period of reduced summer temperatures indicated by tree ring records between about 1,000 and 900 years ago (21 – see Fig. 3).

Incompleteness of moraine records

Moraine sequences represent discontinuous records of glacier behavior. A moraine ridge formed at the culmination of a glacier advance may be overwhelmed and obliterated during subsequent, more extensive ice advance(s). Latero-terminal moraines are potentially vulnerable to erosion by meltwater streams or burial by aggrading sediment. These factors make it unlikely that any moraine sequence contains a complete record of glacier behavior. This is illustrated in this study, where the Tasman and Hooker glaciers have a less complete sequence of moraines than does the Mueller. In all cases, we regard the number of preserved moraine sets as representing a minimum estimate for Holocene glacier advances in the Mt Cook area.

III. Potential non climatic drivers of glacier events

Recent hypotheses propose large rock fall events onto glaciers as an important cause of glacier advance and subsequent moraine construction in New Zealand's Southern Alps (e.g. (S21, S30)). Larsen et al. (S31) point to an apparent correlation between the timing of glacier advances and great earthquake events on the Alpine Fault, which independent evidence points to having occurred most recently at ~ AD 1717, AD 1620, AD 1425 and AD 1220 (S32). While rock fall is clearly an important source of sediment input to mountain glaciers, considerable reliance should be placed on the well-established empirical and observational connections between climate and glacier behavior. We assume that all of the moraines in this study represent glacier margin positions associated with climatic fluctuations. Our reasons for not favoring the hypothesis that rock falls are a primary cause of Holocene glacier fluctuations at Mt Cook, particularly in response to large earthquakes on the Alpine Fault, include:

- At least two sets of moraines are associated with glacier advances of the last ~200 years, and thus are younger than the most recent earthquake on the Alpine Fault.
- A very large rock avalanche (12 million cubic meters) onto the Tasman Glacier in 1991 has had no discernable effect on the behavior of the glacier (S21).
- There is no direct evidence that large earthquakes on the Alpine Fault have caused widespread rock falls throughout the catchments of the three glaciers included in this study.
- The historic observation that the Mueller, Hooker and Tasman glaciers have downwasted approximately simultaneously during the 20th century is difficult to reconcile with an earthquake-induced landslide driver.

Fig. S1. Probability distributions of ¹⁰Be boulder and moraine ages.

Individual boulder ages (table S3) are shown by thin black curves within 2σ -uncertanties, the thick black line represents the probability distribution of the respective boulder age population from the moraine (normalized to 1). Arithmetic means of all distributions are indicated by the vertical blue line, 1σ range is given by grey, 2σ range given by red, and 3σ range given by green lines. The individual sample names of each distribution from young to old are listed in the header of each plot. We give different means within respective uncertainties. For the moraine ages we use the arithmetic mean within standard deviation (1σ) of all boulder ages from one moraine and include the production rate uncertainty given by (S8) of 5% (numbers underlined below). We also give the reduced χ^2 statistic for each age population. This number indicates to what extent the measured scatter in the ¹⁰Be ages of boulders from one moraine can be explained by the analytical 1σ uncertanties. A reduced χ^2 value below 2 is considered good, many published ¹⁰Be data sets show a reduced χ^2 value around 10 or higher (S8).

(i) The 6,500 year moraine (n=6: Kiwi-610-2, -801B, -915, -609, -627, -626-2); Mueller and Tasman glaciers

note that, in agreement with the stratigraphy, the two younger samples -902 and -905 (~ 3100 years) are from the inner part of the moraine ridge, while -938 and -937 (~ 3300 yr) are from the outer part of the moraine ridge (Figs. 1 and 2).

Arithmetic mean/1 sigma uncertainty:	$3,230 \pm 150$ yrs
Including production rate uncertainty:	$3,230 \pm 220$ yrs
Weighted mean/weighted uncertainty:	3,210 ± 70 yrs
Peak Age:	3,210 yrs
Median/Interquartile Range:	3,250 ± 250 yrs
Reduced χ^2 :	1.3

(iii) The 2,000 year moraine (n=2: Kiwi-955, -956); Mueller Glacier

note that one sample from the right later moraine, Kiwi-X66, yielded a consistent age of $2,100 \pm 100$ years (see Fig. 2)..

Arithmetic mean/1 sigma uncertainty:	$2,000 \pm 110$ yrs
Including production rate uncertainty:	$2,000 \pm 150$ yrs

Weighted mean/weighted uncertainty:	$2,000 \pm 60 \text{ yrs}$
Peak Age:	1,990 yrs
Median/Interquartile Range:	$2,000 \pm 150$ yrs
Reduced χ^2 :	1.5

(iv) The 1,800 year moraines (n=7: Kiwi-X70, -X74, -X73, -X79, -957, -926, -X71); Mueller Glacier

Arithmetic mean/1 sigma uncertainty:	$1,840 \pm 90 \text{ yrs}$
Including production rate uncertainty:	$1,840 \pm 130$ yrs

Weighted mean/weighted uncertainty:	$1,820 \pm 20 \text{ yrs}$
Peak Age:	1,800 yrs
Median/Interquartile Range:	$1,820 \pm 130$ yrs
Reduced χ^2 :	2.6

Note that these samples come from at least two distinct moraine ridges within the outermost left lateral Mueller moraine sequence (Fig. 1), but their ages are statistically indistinguishable.

(v) The 1,650 year moraine (Kiwi-628, -971, -700_1 & -700_3 (weighted mean of 700_1 and 700_3)); Tasman Glacier

Statistics:

Arithmetic mean/1 sigma uncertainty:	$1,650 \pm 70 \text{ yrs}$
Including production rate uncertainty:	$1,650 \pm 110 \text{ yrs}$

Weighted mean/weighted uncertainty:	$1,680 \pm 30 \text{ yrs}$
Peak Age:	1,620 yrs
Median/Interquartile Range:	$1,620 \pm 100 \text{ yrs}$
Reduced χ^2 :	2.0

Arithmetic mean/1 sigma uncertainty:	$1,370 \pm 170$ yrs
Including production rate uncertainty:	$1,370 \pm 180$ yrs

Weighted mean/weighted uncertainty:	$1,310 \pm 20 \text{ yrs}$
Peak Age:	1,430 yrs
Median/Interquartile Range:	$1,420 \pm 200$ yrs
Reduced χ^2 :	24

Statistics (based on 5 samples; Kiwi-X51, outlier defined at 1σ level, excluded):

Arithmetic mean/1 sigma uncertainty: $1,430 \pm 100$ yrs Including production rate uncertainty: $1,430 \pm 120$ yrs

Weighted mean/weighted uncertainty:	$1,440 \pm 20$ yrs
Peak Age:	1,430 yrs
Median/Interquartile Range:	1,430 ± 110 yrs
Reduced χ^2 :	2.4

(vii) The 1,000 year moraine (n=5: Kiwi -X76, -X54, -969, -X77, -932-1); Hooker Glacier

Arithmetic mean/1 sigma uncertainty:	$1,020 \pm 50 \text{ yrs}$
Including production rate uncertainty:	$1,020 \pm 70$ yrs

Weighted mean/weighted uncertainty:	$1,000 \pm 20$ yrs
Peak Age:	990 yrs
Median/Interquartile Range:	$1,000 \pm 80 \text{ yrs}$
Reduced χ^2 :	1.4

Tasman Glacier

A single sample from a Tasman Glacier moraine ridge, Kiwi-972, yielded an arithmetic mean/2 σ uncertainty of 970 ± 100 years (2 σ uncertainty is given because it is a single sample).

Hooker Glacier inner moraine ridge

A single sample from a small ridge just inside the 1000 yr moraine on the Hooker right lateral (Kiwi-927), yielded an age or 810 ± 70 years. It might date a remnant of moraine from a readvance of the glacier about 800 years ago. Soil evidence from Tasman Glacier left lateral moraines (Table S4) indicates that the Tasman Glacier readvanced after about 850 yr. It is possible that the moraine ridge sampled by Kiwi-927 formed during a coeval advance of Hooker Glacier, with this ridge providing the only morphologic remnant of this event so far found preserved.

(viii) The 570 year moraine (n=12: Kiwi-940, -912, -901, -911, -936, -909, -903, -941, -939, -X65, -900, [-904]); Mueller Glacier

Arithmetic mean/1 sigma uncertainty:	590 ± 90 yrs
Including production rate uncertainty:	$590 \pm 100 \text{ yrs}$

Weighted mean/weighted uncertainty:	$600 \pm 10 \text{ yrs}$
Peak Age:	600 yrs
Median/Interquartile Range:	$600 \pm 70 \text{ yrs}$
Reduced χ^2 :	8.0

Statistics (based on 11 samples; Kiwi-904, outlier defined at 2\sigma level, excluded):

Arithmetic mean/l sigma uncertainty: 570 ± 60 yrs Including production rate uncertainty: 570 ± 70 yrs

Weighted mean/weighted uncertainty:	580 ± 10 yrs
Peak Age:	600 yrs
Median/Interquartile Range:	590 ± 80 yrs
Reduced χ^2 :	3.4

(ix) The 400 year moraine (n=9: Kiwi-X44, -X42, -X43, -X45, -X63, -X36, -X62, -X46, -X38); Mueller Glacier

Statistics:

Arithmetic mean/1 sigma uncertainty:	400 ± 70 yrs
Including production rate uncertainty:	400 ± 70 yrs

Weighted mean/weighted uncertainty:	390 ± 10 yrs
Peak Age:	410 yrs
Median/Interquartile Range:	$410 \pm 80 \text{ yrs}$
Reduced χ^2 :	11

Note

These samples were collected from a moraine complex of composite morphology and age. The mean age is an average age that encompasses at least two separate glacier retreat events. This is reflected in the large reduced $\chi 2$ value.

(x) The 270 year moraine (n=10: Kiwi-X57, -908, -913, -X61, -914, -X58, -X59, -907, -906, [-X60]); Mueller Glacier

Statistics (based on all 10 samples):

Arithmetic mean/1 sigma uncertainty:	$300 \pm 100 \text{ yrs}$
Including production rate uncertainty:	$300 \pm 100 \text{ yrs}$

Weighted mean/weighted uncertainty:	$270 \pm 10 \text{ yrs}$
Peak Age:	280 yrs
Median/Interquartile Range:	$280 \pm 70 \text{ yrs}$
Reduced χ^2 :	28

Statistics (based on 9 samples; Kiwi-X60, outlier defined at 2\sigma level, excluded):

Arithmetic mean/1 sigma uncertainty: 270 ± 50 yrs Including production rate uncertainty: 270 ± 50 yrs

Weighted mean/weighted uncertainty:	$260 \pm 10 \text{ yrs}$
Peak Age:	280 yrs
Median/Interquartile Range:	$270 \pm 70 yrs$
Reduced χ^2 :	12

Note

These samples were collected from a moraine complex of composite morphology and age. The mean age is an average age that encompasses at least two separate glacier retreat events. This is reflected in the large reduced $\chi 2$: value.

(xi) The 220 year moraine (n=2: Kiwi-958, -959); Mueller Glacier

We give the details below although statistics based on n=2 is questionable; to stress the difference in reliability, we plot the number in italic;

Arithmetic mean/1 sigma uncertainty: 220 ± 10 yrs Including production rate uncertainty: 220 ± 10 yrs

Weighted mean/weighted uncertainty: 220 ± 10 yrsPeak Age:220 yrsMedian/Interquartile Range: 220 ± 10 yrsReduced χ^2 :0.7

(xii) Mid/late 19th century moraine (n=3: Kiwi-942, -944, -943); Mueller Glacier

Statistics:

Arithmetic mean/1 sigma uncertainty:	$160 \pm 30 \text{ yrs}$
Including production rate uncertainty:	160 ± 30 yrs

Weighted mean/weighted uncertainty:	$160 \pm 10 \text{ yrs}$
Peak Age:	180 yrs
Median/Interquartile Range:	$160 \pm 40 \text{ yrs}$
Reduced χ^2 :	7.5

Fig. S2. Probability distributions of the ¹⁴C ages of the three best dated soils at Tasman Glacier from(S12); see also table S4. Consistent to Fig. S1, individual ¹⁴C ages are given within 2σ analytical uncertainties, the arithmetic mean within standard deviation is used for the 'soil age' and plotted in Fig. 3.

(i) The 1,000 year soil (n=8: NZ- 4509, -4507, -5505, -4405, -4404, -4403, -5329, -5507); Tasman and Mueller glaciers

Statistics:

Arithmetic mean/1 sigma uncertainty: $1,000 \pm 80$ yrs

Weighted mean/weighted uncertainty:	990 ± 20 yrs
Peak Age:	960 yrs
Median/Interquartile Range:	$990 \pm 80 \text{ yrs}$
Reduced χ^2 :	1.7

(ii) The 1,650 year soil (n=3: NZ- 5500, -5332, -4406); Tasman Glacier

Statistics:

Arithmetic mean/1 sigma uncertainty: $1,650 \pm 80$ yrs

Weighted mean/weighted uncertainty:	$1,650 \pm 40 \text{ yrs}$
Peak Age:	1,620 yrs
Median/Interquartile Range:	$1,610 \pm 100 \text{ yrs}$
Reduced χ^2 :	1.1

(iii) The 3,400 year soil (n=4: NZ- 5508, -5503, -5502, -5501); Tasman Glacier

Arithmetic mean/1 sigma uncertainty: $3,400 \pm 150$ yrs

Weighted mean/weighted uncertainty:	$3,450 \pm 40 \text{ yrs}$
Peak Age:	3,500 yrs
Median/Interquartile Range:	$3,440 \pm 230$ yrs
Reduced χ^2 :	3.3

Fig. S3. Example of a boulder on a Holocene moraine: Kiwi-907, embedded in the right lateral section of the '270 year moraine' of Mueller Glacier (see also Fig. 1).

Fig. S4. Detector spectrum of the CAMS facility showing the good separation of ¹⁰Be (yellow dots) from ¹⁰B (white dots) during a low level ¹⁰Be measurement ($^{10}Be/^{9}Be \approx 4 \times 10^{-16}$) **File Load Configure Options Help 14:47**

🧉 🚔 File Load Configure Options	Help				14:47 🤏
504 872	760 128	10 ₁₀₁₁₁₁₁		1024	 □ 1 □ 5 ● 2 □ 6 ○ 3 ○ 7 ○ 4 ○ 8 □ Ln Scale ☑ Autoscale
• • • • •	Anode	2	Gated	:0	Up Dn
	● 1	Go / G	New / N	Scope	Zoom
	03	Halt / H	Clear / K	Unscope	Unzoom
616 - 1 - 1	None	Repeat/R	Save/S	Gate	Locate
Anode 1 vs. E Gated: 3	O Pink	Collecting	data (group	1)	
	Pos: 1 Linetir Analyz Cum. 1	7 Name: BL ne: 146.7 zed: 8883 I (nC): 1691	K-140805 ID 70 . 	0: Be21149 0.9972 3 41.3333	:LvFr :Gated : (µA)
64.00µ	A Ratio(: (cts/)	s): 1C) = 0.00 %): 57.7 4	0000591 ¥ 67.14	106.67 12982.22 60.00	Sc.1 Sc.2 Sc.3
	DCount	. Limits: 1 1	000	Max. Time:	300sec.

	Tasman Glacier	Mueller Glacier	Hooker Glacier
Location	-43.53, 170.30	-43.74, 170.00	-43.60, 170.11
Orientation (ablation zone)	South	South East	South
Area	98.3 km ²	18.5 km^2	16.5 km^2
Elevation (maximum)	3690 m	2895 m	3754 m
Elevation (minimum)	730 m	760 m	870 m
Elevation (mean)	2210 m	1830 m	2310 m
Length (maximum)	28.5 km	13.7 km	13.1 km
Length (mean)	20 km	6.5 km	9.9 km
Width (mean)	1.9 km	0.8 km	1.1 km
Thickness (mean)	158 m	72 m	68 m
Thickness	~600 m	~180 m	~200 m?
(maximum measured)			

Table S1. Characteristics of the Tasman, Mueller and Hooker glaciers. Data are from a glacier inventory compiled by Trevor Chinn in 1978 (S33) except for ice thickness measurements of Mueller Glacier (S34).

Table S2. Geographical and analytical data for the 75 samples. 20 procedural blanks, consisting of 0.18-0.20 ml ⁹Be carrier, were processed as samples with each batch yielding ratios of ${}^{10}\text{Be}/{}^9\text{Be} = (5 - 20) \times 10^{-16}$, corresponding to blank levels of about 6,000 to 26,000 atoms ${}^{10}\text{Be}$ compared to typical levels of 70,000 to 1,000,000 atoms ${}^{10}\text{Be}$ in our samples (background correction is given for each sample). We also measured an unprocessed ⁹Be carrier with each sample batch yielding ratios of about 5 x 10⁻¹⁶. All ${}^{10}\text{Be}/{}^9\text{Be}$ values and ${}^{10}\text{Be}$ concentrations are normalized to the KNSTD3310 standard.

Sample	Latitude	Longitude	Elevation	Elv/pressure	Thickness	Density	Shielding	Erosion	["Be]	1 sigma	Qz	³ Be carrier	"Be/Be	1 sigma	³ Be current	boron correction	background correction	¹⁸ Bel ³ Be standard used
	(DD)	(00)	(m)	flag	(cm)	(g cm ⁻²)	correction	(cm yr ⁻¹)	(atoms g ⁻¹)	(atoms g ⁻¹)	(9)	(mg)		(%)	(uA)	(%)	[2]	in AMS analysis
mid/late 19 ¹⁶ century morain	e Mueller																	
Kiwi-942	-43.7155	170.0995	766	std	1.67	2.7	0.981	0	1,152	80	72.69	0.1820	6.892E-15	6.9	21	1.0%	18.9%	07KNSTD3110
Kiwi-944	-43.7155	170.0980	776	std	2.09	2.7	0.980	0	1,433	97	73.86	0.1802	8.796E-15	6.8	15	0.6%	14.8%	07KNSTD3110
Kiwi-943	-43.7151	170.0973	781	std	1.56	2.7	0.983	0	1,644	94	71.63	0.1810	9.740E-15	5.7	20	0.6%	13.3%	07KNSTD3110
220 yr moraine Mueller																		
Kiwi-958	-43.7085	170.0993	797	std	2.28	2.7	0.975	0	1,923	88	100.23	0.1816	1.590E-14	4.6	24	0.3%	8.2%	07KNSTD3110
Kiwi-959	-43.7093	170.0997	799	std	10.73	2.7	0.974	0	1,900	110	63.54	0.1621	1.115E-14	5.8	22	0.5%	11.7%	07KNSTD3110
270 year moraine Mueller																		
Kiwi-X57	-43.7110	170.0833	861	std	7.34	2.7	0.977	0	1,500	105	63.56	0.1807	7.163E-15	7.0	19	1.2%	11.6%	07KNSTD3110
Kiwi-908	-43.7165	170.0987	782	std	1.90	2.7	0.986	0	1,978	210	30.06	0.2032	4.382E-15	10.6	15	3.0%	50.9%	KNSTD3110
Kiwi-913	-43.7158	170.0972	789	std	3.60	2.7	0.982	0	2,205	181	40.04	0.2035	6.497E-15	8.2	13	2.8%	34.3%	KNSTD3110
Kiwi-X61	-43.7097	170.0823	883	std	3.08	2.7	0.980	0	2,582	110	65.58	0.1814	1.268E-14	4.2	19	0.8%	6.6%	07KNSTD3110
Kiwi-914	-43.7148	170.0966	804	std	2.00	2.7	0.977	0	2,387	217	30.07	0.2039	5.272E-15	9.1	15	2.2%	42.3%	KNSTD3110
Kiwi-X58	-43.7111	170.0833	861	std	2.37	2.7	0.978	0	2,756	151	51.03	0.1817	1.051E-14	5.5	21	1.4%	7.9%	07KNSTD3110
Kiwi-X59	-43.7103	170.0828	867	std	2.96	2.7	0.976	0	2,989	179	45.73	0.2008	1.019E-14	6.0	24	0.5%	13.2%	07KNSTD3110
Kiwi-907	-43.7166	170.1000	782	std	1.50	2.7	0.984	0	2,723	229	30.02	0.1956	6.258E-15	8.4	14	1.8%	35.6%	KNSTD3110
Kiwi-906	-43.7165	170.1004	781	std	1.20	2.7	0.981	0	3,004	201	40.10	0.1961	9.200E-15	6.7	12	2.2%	24.2%	KNSTD3110
Kiwi-X60	-43.7100	170.0825	880	std	2.10	2.7	0.975	0	5,058	213	68.87	0.2013	2.591E-14	4.2	25	0.2%	5.2%	07KNSTD3110
400 year moraine Mueller																		
Kiwi-X44	-43.7115	170.1022	783	std	2.92	2.7	0.967	0	2,397	149	43.04	0.2026	6.914E-15	6.2	22	1.1%	10.8%	07KNSTD3110
Kiwi-X42	-43.7109	170.1024	788	std	2.66	2.7	0.967	0	2,867	186	34.78	0.2011	6.733E-15	6.5	20	1.5%	12.3%	07KNSTD3110
Kiwi-X43	-43.7110	170.1024	786	std	2.62	2.7	0.976	0	3,453	263	25.09	0.1808	6.506E-15	7.6	20	2.2%	5.5%	07KNSTD3110
Kiwi-X45	-43.7079	170.1019	815	std	1.29	2.7	0.922	0	3,416	170	40.74	0.2016	9.375E-15	5.0	21	1.3%	8.0%	07KNSTD3110
Kiwi-X63	-43.7168	170.1016	781	std	3.18	2.7	0.988	0	3,637	213	50.79	0.1819	1.379E-14	5.9	18	1.1%	6.0%	07KNSTD3110
Kiwi-X36	-43.7126	170.1042	784	std	1.83	2.7	0.931	0	3,554	370	18.90	0.1796	5.081E-15	10.4	20	2.5%	7.1%	07KNSTD3110
Kiwi-X62	-43.7168	170.1016	781	std	2.92	2.7	0.987	0	3,935	222	35.09	0.1809	1.037E-14	5.6	21	1.7%	3.5%	07KNSTD3110
Kiwi-X46	-43.7076	170.1018	819	std	1.49	2.7	0.938	0	4,168	246	30.07	0.1801	9.451E-15	5.9	18	1.2%	3.8%	07KNSTD3110
Kiwi-X38	-43.7128	170.1043	781	std	0.97	2.7	0.936	0	4,059	188	35.25	0.2019	9.624E-15	4.6	21	1.1%	8.6%	07KNSTD3110
570 year moraine Mueller																		
Kiwi-940	-43.7180	170.1041	761	std	2.12	2.7	0.975	0	3,861	360	45.24	0.2075	1.260E-14	9.3	10	1.8%	8.3%	07KNSTD3110
Kiwi-912	-43.7185	170.0982	769	std	3.74	2.7	0.980	0	4,027	278	25.04	0.2017	7.487E-15	6.9	16	1.6%	29.8%	KNSTD3110
Kiwi-901	-43.7122	170.0821	883	std	2.40	2.7	0.961	0	4,889	440	15.24	0.1983	5.627E-15	9.0	11	9.1%	7.1%	KNSTD3110
Kiwi-911	-43.7133	170.0888	904	std	1.90	2.7	0.968	0	5,366	333	21.94	0.1461	1.207E-14	6.2	7	4.0%	3.3%	KNSTD3110
Kiwi-936	-43.7121	170.0821	883	std	2.40	2.7	0.959	0	5,256	336	40.14	0.2037	1.551E-14	6.4	13	1.9%	7.0%	KNSTD3110
Kiwi-909	-43.7138	170.0922	905	std	2.30	2.7	0.986	0	5,748	345	13.88	0.1518	7.873E-15	6.0	9	6.8%	5.1%	KNSTD3110
Kiwi-903	-43./185	170.1008	767	std	2.20	2.7	0.979	0	5,204	281	30.13	0.1961	1.197E-14	5.4	20	0.8%	18.6%	KNSTD3110
Kiwi-941	-43.7177	170.1031	766	std	2.41	2.7	0.979	0	5,205	243	45.12	0.2063	1.705E-14	4.7	22	0.3%	6.1%	07KNSTD3110
Kiwi-939	-43.7185	170.1037	760	std	1.70	2.7	0.979	0	5,295	201	45.10	0.1977	1.809E-14	3.8	22	0.5%	5.8%	07KNSTD3110
Kiwi-X65	-43.7140	170.0883	884	std	4.11	2.7	0.981	0	5,709	214	42.12	0.2012	1.623E-14	3.7	21	0.4%	5.1%	07KNSTD3110
Kiwi-900	-43.7121	170.0824	882	std	4.10	2.7	0.969	0	6,020	319	11.94	0.2046	5.262E-15	5.3	13	4.6%	7.6%	KNSTD3110
Kiwi-904	-43.7184	170.1008	767	std	1.67	2.7	0.979	0	6,903	251	41.01	0.1872	2.265E-14	3.6	22	0.2%	4.6%	07KNSTD3110

Table S2 continued

Sample	Latitude	Longitude	Elevation	Elv/pressure	Thickness	Density	Shielding	Erosion	[*Be]	1 sigma	Qz	³ Be carrier	"Be/Be	1 sigma	³ Be current	boron correction	background correction	¹⁰ Bel ³ Be standard used
	(DD)	(DD)	(m)	flag	(cm)	(g cm ⁻²)	correction	(cm yr ⁻¹)	(atoms g ⁻¹)	(atoms g ⁻¹)	(g)	(mg)		(%)	(uA)	(%)	(%)	in AMS analysis
1,000 year moraine Hooker&Ta	sman(-972)																	
Kimi-927	-43,6304	170.0967	880	std	2.89	27	0.370	0	7,432	.3222	25.65	a 1826	1578E-M	4.3	18	0.6%	2.7%	07KNSTEI3110
Kiwi-X76	-43.6896	170.1084	968	std	2.28	2.7	0.953	0	9,506	280	51.30	0.2016	3.633E-14	2.9	21	0.2%	2.9%	07KNSTD3110
Kiwi-X54	-43.6888	170.1092	976	std	1.26	2.7	0.947	0	9,917	311	35.54	0.1794	2.951E-14	3.1	20	0.4%	1.4%	07KNSTD3110
Kiwi-969	-43.6927	170.1054	933	std	3.60	2.7	0.965	0	9,470	767	15.07	0.1915	1.116E-14	8.1	15	1.9%	9.7%	KNSTD3110
Kiwi-X77	-43.6923	170.1056	930	std	3.07	2.7	0.956	0	10.052	350	31,27	0.1735	2.721E-14	3.5	20	11%	1.5%	07KNSTD3110
Kiwi-932 1	-43.6937	170.0945	868	std	2.04	2.7	0.975	0	10.058	2.142	8.55	0.1522	8.457E-15	21.3	16	12.2%	26.4%	KNSTD3110
Tasman Kiwi-972	-43.6942	170.1645	767	std	2.54	2.7	0.976	0	8.805	435	20.06	0.2015	1.313E-14	4.9	18	0.8%	4.8%	07KNSTD3110
1.400 year moraine Hooker																		
Kiwi-X51	-43.6931	170.1057	942	std	1.57	2.7	0.956	0	10.372	284	40.75	0.1800	3.527E-14	2.7	22	0.6%	2.6%	07KNSTD3110
Kiwi-967	-43.6925	170.1063	960	std	1.90	2.7	0.970	0	12.735	841	15.05	0.2045	1.404E-14	6.6	13	1.9%	7.7%	KNSTD3110
Kiwi-968	-43.6925	170.1063	961	std	3.10	2.7	0.943	0	13.684	835	15.11	0.2042	1.516E-14	6.1	15	1.3%	7.1%	KNSTD3110
Kiwi-X49	-43,6929	170,1059	944	std	2.20	27	0.952	0	13.540	342	52.00	0.2006	5 272E-14	2.5	22	0.2%	16%	07KNSTD3110
Kiwi-X52	-43.6891	170,1096	993	std	2.86	27	0.951	0	14 647	464	36.75	0.1720	4 701E-14	32	21	0.2%	2.0%	07KNSTD3110
Kiwi-X53	-43.6889	170.1098	997	std	169	27	0.947	ů n	15 411	492	38.37	0.1804	4 923E-14	32	20	0.2%	19%	07KNSTD3110
1650 sear moraine Tasman				514			0.011	- ·	10,111	102	00.01	0.1001	I.OLOL II	0.2		0.27		011100120110
KIWI-628	-43.6943	170.1637	781	std	5.00	27	0.990	0	13 624	598	40.28	0.2014	4.076E-14	4.4	30	0.5%	5.2%	KNSTD310
KIWL971	-43 6924	170 1633	763	std	143	27	0.979	0	13 749	549	20.18	0.2036	2.041E-14	4.0	21	0.4%	7.6%	07KNSTD3110
Kini-700.1	42 6952	170 1644	792	std	6.90	27	0.991	0	15,620	610	16.50	0.2000	1900E-14	4.1	17	0.9%	2.6%	KNSTD240
Kiwi-100-1	-43.6353	170.1644	792	etd	160	2.1	0.001	0	14,929	501	22.19	0.2030	2.515E-14	2.4	15	0.5%	14%	KNSTD310
Kini-700 um	43 6953	170 1644	792	std	160	27	0.991	0	15 120	294	02.10	0.2002	0.0102 11	0.1	10	0.171		Nilo Polito
1 800 sear moraines Mueller	-40.0000	110.1011	102	5(0	1.00	6.1	0.001	•	10,100									
Kini-X70	.43 6999	170.0958	860	std	2.63	27	0.984	0	15.916	461	4159	0.2031	4 397E-14	29	21	0.2%	19%	07KNSTD310
Kini-Y74	-43.6985	170.0942	865	std	2.00	2.1	0.004	0	16,010	421	35.17	0.2001	2.842E-14	2.0	22	0.2%	2.2%	07KNSTD310
Kinai-X73	-43.6985	170.0942	865	std	3.32	2.1	0.000	0	16,625	506	30.07	0.1961	3 4635-14	3.0	23	0.2%	24%	07KNSTD3110
Vini-Y79	42 6977	170.0944	961	std	2.54	27	0.000	0	16,620	449	25.24	0.2042	2 9055-14	27	21	0.2%	2.1%	07//NSTD2110
Kimi-957	.43.6991	170.0959	956	etd	2.72	2.1	0.303	0	16,002	710	16.47	0.2042	2.015E-14	4.2	19	0.2%	2.17.	07KNSTD310
Kimi 930	-43.6975	170.0940	000	std	2.12	2.1	0.079	0	17 649	647	20.14	0.2033	2.0100-14	7.0	17	0.3%	7.0%	VNCTD210
Viui 971	42 6999	170.0950	001	std	5.50	2.1	0.373	0	17,040	647 E07	20.14	0.2027	A 201E 14	0.1	21	0.4%	2.0%	07///02102110
2 000 rear moraine Mueller	-40.0000	110.0000	001	Std	0.00	6.1	0.000	•	11,100	301	00.01	0.2012	4.2012-14	0.0		0.274	2.0%	UNRIGITESTIC
Z,000 gear moralle r-idener	42 6976	170.0959	049	etd	2.00	27	0.976	0	17.260	701	25.09	0.2029	2 1965 14	4.5	20	0.2%	2.24/	07//NSTD2110
Viui 950	42.6970	170.0959	040	ctd	4.02	2.1	0.370	0	10 212	770	20.03	0.2033	2.7625-14	4.0	19	0.2%	2.3%	07///0310310
Viui Vee	-43.0302	170.0385	070	ctd	9.00	2.7	0.373	0	19,212	476	20.07	0.2030	0.0675.14	7.0	22	0.4%	0.9%	07///0310310
2 200 sear moraine Mueller	-10.1110		010	5(0	2.01	6.1	0.300	•	13,320	410	00.31	0.2011	0.0312-14	2.7		0.4%	0.3%	0111101103110
5,200 gear moralle r-ideller	-43.7167	170.0940	906	etd	1.10	27	0.995	0	26.992	1052	11 59	0.2059	2 2755-14	29	•	27%	191/	VNSTD2110
Kimi-302	-43.7173	170.0945	790	etd	170	2.1	0.992	0	27,505	1.115	9.50	0.2000	2 6065-14	4.1	11	2.0%	15%	KNSTD310
Viui 020	-43,7171	170.0911	700	std	2.70	2.1	0.303	0	21,101	1,115	15.10	0.1464	2.000E-14	4.1	17	2.0%	2.4%	KNSTD310
Viui 027	-43.7165	170.0900	007	std	2.10	2.1	0.373	0	20,220	1,213	11.14	0.1332	3.207E-14	4.0	10	0.3%	3.4% 4.5%	KNSTD310
6 500 sear moraine Muellert Ta			007	Stu	3.10	2.1	0.301	0	20,000	1,332	11.14	0.2031	2.3702-14	4.0	10	0.774	4.5%	KNGTEGIIU
Visi ett 2	-43,7007	170.1603	692	ctd	2.10	27	0.979	0	50.049	1201	12.27	0 1969	A 672E 14	26	12	0.9%	0.9%	VNSTD2110
KIWI-610-2	-43.7207	170.0920	700	stu	3.10	2.7	0.973	0	50,048	1,301	2.07	0.1360	11065-14	2.0	12	0.3%	0.3%	KNSTD310
Kiwi-80IB Kiwi-915	-43,7007	170,1603	693	std	1.80	2.7	0.360	0	52 085	1354	12.07	0.1962	4.8515.14	2.6	10	15%	0.8%	KNSTD310
KIM-500	-43.7005	170.1601	691	std	4.00	27	0.979	0	51364	1272	17.61	0.1002	6 716E-14	2.0	33	0.2%	3.2%	KNSTD310
KIM-603	-43.7008	170.1604	692	std	10.00	2.1	0.973	0	49 322	1267	20.09	0.2017	7.371E-14	2.0	29	0.2%	2.2%	KNOTD310
Kiwie627	-43.7005	170.1601	600	std	4 30	2.1	0.301	0	#0,022 53.333	1297	20.00	0.2012	8.016E-14	2.0	20	0.2%	2.37	KNSTD310
"Outliers" Hooter			031	stu	4.30	£.r	0.302		00,000	1,201	20.14	0.2007	0.0102-14	2.7	32	0.27	2.0%	KNOTDONU
Kimi.921	-43 6926	170 0942	877	std	2 15	27	0.976	0	4.249	306	25.00	0.2034	7.8225.15	72	21	11%	28.5%	KNSTD3110
Viui.990	-43 6921	170 0940	000	etd	160	2.1	0.971	0	6 790	692	9.07	0.2034	6 014E-15	10.2	10	10%	20.0%	VNSTD910
NWP330	10.0021	110.0010	000	5(0	1.00	6.1	0.011	•	0,100	0.02	0.01	0.1001	0.0146-10	10.2	10	1.074	91.026	Kitoribano

Table S3. ¹⁰Be ages in years of all 75 samples based on six different scaling protocols documented in(S7): 'St/Lal ntd' based on (S35), giving an update to (S6), scaling parameters assumed constant with time; 'St/Lal td' being the time dependent version of 'St/Lal ntd'; 'Du': scaling according to (S36); 'Li': scaling according to (S37); 'De': scaling given by (S38); and 'De updated PR: scaling according to (S38), updated by a new production rate calibration experiment relevant for latitudes higher 40° and altitudes below 1000m, yielding about 7-10% lower production rate values in this case (S8).

	St/Lal ntd	2 sigma	ext error	St/Lal td	2 sigma	Du	2 sigma	Li	2 sigma	De	2 sigma	De, updated PR	1 sigma	2 sigma
mid/late 19 th century moraine	Mueller										, i i i i i i i i i i i i i i i i i i i			
Kiwi-942	122	16	13	124	16	121	16	119	16	123	16	132	9	17
Kiwi-944	151	20	17	153	20	150	20	147	19	153	20	164	11	22
Kiwi-943	171	20	18	174	20	170	20	167	20	173	20	185	11	22
220 year moraine Mueller														
Kiwi-958	200	18	20	204	18	199	18	195	18	203	18	217	10	20
Kiwi-959	211	24	22	215	24	210	24	206	23	215	24	230	13	26
270 year moraine Mueller														
Kiwi-X57	154	22	17	157	22	152	22	150	21	156	22	167	12	24
Kiwi-908	205	44	28	209	45	204	44	201	43	208	45	223	24	48
Kiwi-913	232	38	28	236	39	230	38	226	37	235	38	251	21	41
Kiwi-X61	251	22	24	256	22	248	22	244	21	254	22	272	12	24
Kiwi-914	246	44	31	250	45	244	44	240	43	249	45	266	24	48
Kiwi-X58	272	30	28	277	31	269	30	264	29	275	30	294	16	32
Kiwi-X59	295	36	31	301	37	292	36	287	35	299	36	320	20	39
Kiwi-907	282	48	34	288	49	281	48	276	47	287	49	307	26	52
Kiwi-906	312	42	34	318	43	310	42	305	41	317	43	339	23	46
Kiwi-X60	491	42	47	500	43	486	42	477	41	497	43	532	23	45
400 year moraine Mueller														
Kiwi-X44	255	32	27	260	33	254	32	249	31	259	33	277	17	35
Kiwi-X42	304	40	33	309	41	302	40	296	39	308	41	330	22	43
Kiwi-X43	363	56	42	370	57	361	56	354	55	368	57	394	30	61
Kiwi-X45	367	36	37	374	37	364	36	357	35	372	36	398	20	39
Kiwi-X63	381	44	40	388	45	379	44	372	43	387	45	414	24	48
Kiwi-X36	389	82	53	397	84	387	82	380	80	395	83	423	45	89
Kiwi-X62	412	46	43	420	47	409	46	402	45	418	47	447	25	50
Kiwi-X46	439	52	46	448	53	436	52	428	51	445	53	476	28	56
Kiwi-X38	440	40	43	449	41	438	40	430	39	447	41	478	22	43
570 year moraine Mueller														
Kiwi-940	413	78	53	421	80	411	78	404	76	420	79	449	42	85
Kiwi-912	431	60	48	440	61	429	60	422	59	438	61	469	33	65
Kiwi-901	482	86	60	491	88	476	85	468	84	487	87	521	46	93
Kiwi-911	514	64	55	524	65	508	63	499	62	520	65	556	35	69
Kiwi-936	519	66	56	529	67	513	65	504	64	525	67	562	36	71
Kiwi-909	542	66	57	553	67	536	65	527	64	549	67	587	36	72
Kiwi-903	552	60	56	563	61	550	60	541	59	563	61	602	33	65
Kiwi-941	554	52	54	565	53	552	52	542	51	564	53	603	28	57
Kiwi-939	563	42	53	574	43	562	42	552	41	574	43	614	23	46
Kiwi-X65	559	42	53	570	43	554	42	544	41	567	43	607	23	46
Kiwi-900	597	64	61	610	65	593	64	583	62	607	65	649	35	70
Kiwi-904	729	52	69	746	53	732	52	720	51	748	53	800	29	57

Table S3 continued

		St/Lal ntd	2 sigma	ext error	St/Lal td	2 sigma	Du	2 sigma	Li	2 sigma	De	2 sigma	De, updated PR	1 sigma	2 sigma
1,000 year mora	nine Hooker&Ta	nsman(-972)													
	Kiwi-927	736	64	71	753	65	735	64	723	63	752	65	805	35	70
	IZana V7C	001	50	01	002	50	070	50	005	E1	000	50	062	20	57
		001	52	01	303	50	0/3	52	000	57	900	50	905	20	63
	Kiwi-A04	912	146	107	004	150	903	146	004	1/2		149	097	90	160
	Kiwi-303	902	69	90	324	70	001	69	0.00	14J 67	922	70	1056	27	74
		964	400	30	900	70	304	400	949	07	1012	70	1030	221	462
Teemen	KIWI-932_1	900	420	227	000	431	990	422	974	410	000	432	1004	Z31 51	402
1 400 woor more	i Kiwi-372	940	92	94	963	94	947	93	933	91	900	30	1030	51	101
1,400 year mora		070	54	00	000	rr.	070	54	070	50	000	<i>FF</i>	1000	20	50
	KIWI-AST	97.3	54	107	990	150	973	54	950	53	996	55	1000	30	
	KIWI-967	1164	154	127	1194	158	1173	155	1150	152	1195	158	1279	85	169
	KIWI-968	1298	158	138	1331	162	1314	160	1285	156	1335	163	1428	87	1/4
	KIWI-X49	1280	64	116	1313	66	1296	65	1269	63	1317	66	1409	35	70
	KIWI-X52	1341	84	124	1375	86	1357	85	1327	83	1378	86	14/4	46	92
	Kiwi-X53	1398	90	129	1434	92	1417	91	1385	89	1438	93	1539	50	99
1,650 year mora	aine Tasman														
	KIWI-628	1447	128	141	1483	131	1484	131	1450	128	1502	133	1607	71	142
	KIWI-971	1455	116	139	1491	119	1493	119	1459	116	1511	120	1617	64	129
	Kiwi-700-1	1680	138	161	1722	141	1735	143	1692	139	1751	144	1874	77	154
	Kiwi-700-3	1529	104	142	1567	107	1572	107	1534	104	1589	108	1700	58	116
	Kiwi-700_wm	1560	82	141	1599	84	1605	84	1566	82	1622	85	1736	46	91
1,800 year mora	aines Mueller														
	Kiwi-X70	1554	90	142	1593	92	1594	92	1554	90	1611	93	1724	50	100
	Kiwi-X74	1585	82	143	1624	84	1626	84	1585	82	1643	85	1758	45	91
	Kiwi-X73	1635	100	150	1676	103	1680	103	1638	100	1697	104	1816	56	111
	Kiwi-X79	1640	88	149	1681	90	1686	90	1644	88	1703	91	1822	49	98
	Kiwi-957	1650	142	160	1691	146	1697	146	1654	142	1713	147	1833	79	158
	Kiwi-926	1736	128	163	1779	131	1789	132	1743	129	1804	133	1930	71	142
	Kiwi-X71	1786	118	166	1830	121	1843	122	1795	119	1857	123	1987	66	131
2.000 year mora	nine Mueller														
	Kiwi-955	1726	156	169	1769	160	1780	161	1734	157	1795	162	1921	87	174
	Kiwi-956	1857	158	180	1903	162	1921	163	1871	159	1935	165	2070	88	176
	Kiwi-X66	1882	92	170	1928	94	1945	95	1893	93	1959	96	2096	51	102
3.200 year mora	nine Mueller														
o,200 your more	Kiwi-902	2733	214	260	2792	219	2850	223	2781	218	2864	224	3064	120	240
	Kiwi-905	2809	230	270	2870	235	2931	240	2862	234	2946	241	3152	129	258
	Kiwi-938	3004	258	291	3068	263	3130	269	3061	263	3149	270	3369	145	289
	Kiwi-937	2990	276	294	3054	282	3114	287	3045	281	3133	289	3352	155	309
6 500 year more	ine Mueller (.8	01\&Tasman	210	204	3034	202	5114	201	0040	201	5155	200	3332	155	303
0,500 year mora		5737	680	603	5783	685	6903	700	5909	689	5951	705	6368	377	755
	Kiwi 610.2	5,57	296	51G	5705	2003	5970	205	5791	301	5001	209	6333	165	320
	Kiwi-010-2	5050	230	510	5002	200	CO 40	215	5701	210	0000	210	6513	170	240
	1/10/1600	5000	200	531	5903	200	6074	301	5343 E97E	200	6120	303	6549	162	340
		5093	202	532	5050	234	C002	201	5000	290	6120 6144	203	6574	102	324
		5910	304	530	5959	300	0090	313	5990 C100	300	0144	310	03/4	109	330
	KIVVI-626-2	6116	298	551	6150	300	6296	307	6199	302	6341	309	6785	165	331
10.40 ····													6333	165	
"Outliers" Hook	er			47	101	01	100	50	100	50	440		447		05
	KIWI-931	414	60	4/	421	61	409	59	402	58	418	61	44/	32	65
	Kiwi-930	659	134	88	673	137	656	133	645	131	671	136	718	73	146

Table S4. Radiocarbon data of wood buried in soil, covered by till ((S12)and references therein). To be able to directly compare given ${}^{14}C$ and ${}^{10}Be$ ages, we have nomalized the AD/BC calibrated ${}^{14}C$ ages to years before AD 2005, when most of the ${}^{10}Be$ samples were collected for this study.

Location	Lab No. (1)	Latitude (2)	Longitude (2)	CRA (1)	Calendric younger bound (AD/-BC) (3)	Years before AD 2005 - younger bound (4)	Calendric older bound (AD/-BC) (3)	Years before AD 2005 - older bound (4)	Mid-point of age range (years before AD 2005) (5)	2-sigma uncertainty of age range (years) (5)	Stratigraphic context (6)	Interpretation (5)	Reference (6)
Tasman Glacier, Ball Hut	NZ-5504	-43.6167	170.1933	-189+/-79		o cuita (4					Twigs and organic soil buried by till, 2 m below moraine crest	Either post-1950, or contaminated with post-1950 carbon	b
<325 yr soil providing maxir	num age for an a	dvance of 1	asman Glaci	er									
Tasman Glacier, Ball Hut	NZ-5506	-43.6167	170.1933	88+/-54	1956	49	1679	326	188	139	Branches from surface of soil, buried by 2.5 m thick flow till	Dates a period of glacier expansion	ь
< 550 yr soll providing maxi Tasman Glacier, Novara	NZ-5330	-43.6154	170.2156	343+/-55	1793	212	1455	550	381	169	Branches from surface of buried soil, 10.5 m below moraine crest	Records glacier expansion following a period of soil and vegetation development	b
~ 650 yr soil providing maxi	mum age for an a	advance of	Tasman Glac	ier									
Tasman Glacier, Ball Hut	NZ-5535 (NZ-711)	-43.6167	170.1933	663+/-61	1420	585	1280	725	655	70	5 cm of soil with branches, on till, buried by till	Records glacier expansion following a period of soil and vegetation development	a, b
 - 600 yr soll providing minit Hooker Glacier, Hooker Hut 	NZ-5253	-43.6624	170.1117	685+/-35	ge 1393	612	1290	715	664	52	Leaves and soil on sand deposited against	Minimum age for moraine formation	ь
addamatic mean/4 alama									660	A	moraine ridge. Soil buried by colluvium		
-850 yr soils providing max	imum age for adv	ance of Tar	man Glacier						2007	×			
Tasman Glacier, Novara	NZ-5331	-43.6154	170.2156	864+/-57	1291	714	1046	969	837	123	Branches from surface of buried soil, 17 m below	Records a soil buried by glacier expansion. Assumed to be part of the same sloping	b
Tasman Glacier, Novara	NZ-6254	-43.6154	170.2156	933+/-57	1263	742	1028	977	860	118	moraine crest Soil on till, buried by till, 14 m below moraine	soils surface as dated by NZ-5254 Records a soil buried by glacier expansion. Assumed to be part of the same sloping	b
-											crest	soils surface as dated by NZ-5331	
anthmetic mean/1 sigma									848	<u>16</u>			
~900 to ~1100 yr solls provid	ling maximum ag	le for advar	ces of Lasma	an and Muelle	r glaciers	001	004	1011	~~~	106	Provid how where in a work we fill have a her till	Decode decision of the second of a decoder being decision of	-
Tasman Glacier, Ball Hut	142-4009	-43.0107	170.1933	33040-00	1,204	801	334	1011	306	105	Small branches in a soli on till, buned by till	Records glacier expansion tollowing a period of soil and vegetation development	а
Mueller Glacier, left lateral	NZ-4507	-43.6967	170.0876	1007+/-45	1177	828	995	1010	919	91	Twigs & roots in a soil on till buried by till, 14 m below moraine crest	Prominent soil 1 m lower than NZ-5329 soil. Records glacier expansion following a period of soil and vegetation development	а
Tasman Glacier, Ball Hut	NZ-5505	-43.6167	170.1933	1033+/-57	1184	821	903	1102	962	141	Branches from surface of a soil on till, buried by till, 12-20 m below moraine crest	Records glacier expansion following a period of soil and vegetation development. Assumed to part of a single signing soil surface, also sampled by NZ-5507	ъ
Tasman Glacier, Ball Hut	NZ-4405	-43.6167	170.1933	1077+/-47	1148	857	895	1110	984	127	Small branches in a soil on till, buried by till	Lowest of 3 buried soils at one site. May approximate fluctuating level of glacier surface	а
Tasman Glacier, Ball Hut	NZ-4404	-43.6167	170.1933	1100+/-47	1133	872	890	1115	994	122	Small branches in a soil on till, buried by till	Middle of 3 buried soils at one site. May approximate fluctuating level of glacier surface) a
Tasman Glacier, Ball Hut	NZ-4403	-43.6167	170.1933	1112+/-47	1130	875	883	1122	999	124	Organic material in soil on till, buried by till, about	Highest of 3 buried soils at one site. May approximate fluctuating level of glacier	8
Mueller Glacier, left lateral	NZ-5329	-43.6987	170.0876	1129+/-40	1025	980	889	1116	1049	68	Soil on till buried by till, 14 m below moraine crest	Thin soil 1 m higher than NZ-4507 soil. Records glacier expansion following a period of	b
Tasman Glacier, Ball Hut	NZ-5507	-43.6167	170.1933	1193+/-100	1016	989	661	1344	1167	178	Branches from surface of soil on till, buried by till, 3-5 m below local moraine crest	Records glacier expansion following a period of soil and vegetation development. Assumed to part of a single sloping soil surface, also sampled by NZ-5505	ь
anthmetic mean/1 sigma									1000	<u>80</u>			
~1600 to ~1700 yr soils provi	iding maximum a	ge for an a	Ivance of Ta	sman Glacier									
Tasman Glacier, Novara	NZ-5500	-43.6154	170.2156	1662+/-59	536	1469	261	1754	1612	143	Twigs from above soil on till, buried by till, 21.5 m below moraine crest	Records glacier expansion following a period of soil and vegetation development. Inferred by Burrows to be part of same sloping burried soil surface as at NZ-5332	b
Tasman Glacier, Novara	NZ-5332	-43.6154	170.2156	1622+/-60	567	1438	258	1747	1593	155	Branches from surface of a soil on till, buried by till, 26 m below moraine crest	Records glacier expansion following a period of soil and vegetation development. Inferred by Burrows to be part of same sloping burried soil surface as at NZ-5500	b
Tasman Glacier, Ball Hut	NZ-4406	-43.6167	170.1933	1742+/-48	410	1595	139	1966	1731	136	Small branches in a soil on till, buried by till, about 40 m below moraine crest	Records glacier expansion following a period of soil and vegetation development	а
arithmetic mean/1 sigma									1650	80			
-2300 yr coil providing max	imum age for an	advance of	Tasman Glac	ior									
Tasman Glacier, Ball Hut	NZ-5335	-43.6167	170.1933	2284+/-41	-207	2212	-405	2410	2311	99	Wood in soil on till, buried by till, 50 m below moraine crest	Records glacier expansion following a period of soil and vegetation development	b
~3200 to ~3300 yr sons provi	bing ages for pro	diessive ex	170 1920	2009 ±/ 00	020	2042	1424	2420	2101	249	Coll good 8 brins or 61 buried by 61 10 m	Describe phasics expression following a marine of and unpertation development	D
Tasman Clacker, Ball Bluff	N7.6503	-43.6230	170.1930	2105+/66		2045	.1529	3633	2275	169	below AD1880 moraine crest	Burrows infers to represent a slow glacier expansion that progressively buried a soil Decode glacier expansion following a paried of oil and wontestively buried a soil	
Tasman Glacier, Dall Diuff	142-3303	-43.6230	170.1930	312341-00	-1212	3217	-1520	3033	3375	130	15 m below AD1880 moraine crest	Burrows infers to represent a slow glacier expansion that progressively buried a soil	
Tasman Glacier, Ball Bluff	NZ-55U2	-43.6230	1/0.1930	3216+/-66	-1321	3526	-1664	3069	3498	1/2	18 m below AD1880 moraine crest	Records glacter expansion following a period of soil and vegetation development. Burrows infers to represent a slow glacter expansion that progressively buried a soil	5
Tasman Glacier, Ball Bluff	NZ-5501	-43.6230	170.1930	3224+/-52	-1410	3415	-1619	3624	3520	105	Branches from surface of soil on till, buried by till, 38 m below AD1880 moraine crest	Records glacier expansion following a period of soil and vegetation development. Burrows infers to represent a slow glacier expansion that progressively buried a soil	ь
anthmetic mean/1 sigma	l .	and for a 4	month of T-	man Glas'					3400	150			-
Tasman Glacier, Novara	NZ-6333	-43.6154	170 2166	3361+695	-1447	3462	-1896	3891	3672	220	Enigmatic soil-like water-laid deposit 43 m below	Presumably coreal with or post-dating an advance	h
Tasman Glacier, Novara	NZ-5334	-43.6154	170.2156	3445+/69	-1540	3645	-1940	3945	3745	200	moraine crest Branches from surface of a soil on till huried by	Records placier expansion following a period of soil and wegetation development	
anthroatic manuff signa	The second	40.0104			-1040		-1040		2709	52	till, 70 m below moraine crest	3 volument mountil a banks of som and refloration generalment	, ,
NOTES									27.92	<u>106</u>			
(1) All analyses performed at F	Rafter Radiocarbon	Laboratory.	3NS Science.	New Zealand (a	and its precessors). Lab	oratory numbers and C	onventional Radiocar	bon Age (CRA), recalcul	ated to modern standards, from	n the Rafter 14C database	e, accessed 2004.		
(2) Locations are digital degree	s in terms of WGS	\$84 datum ba	sed on inform	ation in Referen	ices (note 6).								
(3) Calendar ages (2 sigma un	certainty) derived fr	om INTCALD	4, using CALIE	5 5.0.1, with So	outhern Hernisphere com	ection for samples with	median CRA < 1175	years, and otherwise up	sing Northern Hernisphere atm	osphere curve. Negative v	alues denote BC.		
(4) rime etapsed between the (5) Miscoint of time elected is	caleridinc date and etween AD 2005 ~	nd older/your	mer colondrio	haunde with a	renciated uncertainty								
(b) Stratigraphic context and in	street no 2003 al	aconted in th	references:	a) C. J. Burrows	 New Zealand Journal c 	Geology and Geophy	mice 23, 239 (1990)	b) C. J. Burrown, New 7	aaland Journal of Geology and	Geochysics 32, 205 (196	19)		

Supplementary References

- S1. P. W. Birkeland, *Geological Society of America Bulletin* **93**, 433 (1982).
- S2. J. M. Licciardi, PhD, Oregon State University (2000).
- S3. T. E. Cerling, H. Craig, Annual Reviews of Earth and Planetary Sciences 22, 273 (1994).
- S4. J. C. Gosse, F. M. Phillips, *Quaternary Science Reviews* 20, 1475 (2001).
- M. D. Kurz, E. J. Brook, in *Dating in exposed and surface contexts* C. Beck, Ed. (University of New Mexico Press, 1994) pp. 139-159.
- S6. D. Lal, Earth and Planetary Science Letters 104, 424 (1991).
- S7. G. Balco, J. O. Stone, N. A. Lifton, T. J. Dunai, *Quaternary Geochronology* 3, 174 (2008).
- S8. G. Balco, J. P. Briner, J. Rayburn, J. C. Ridge, J. M. Schaefer, *Quaternary Geochronology* 4, 93 (2009).
- S9. R. J. Norris, A. F. Cooper, Eds., *A continental plate boundary: tectonics at South Island, New Zealand* (AGU Geophysical Monograph 175, 2007), pp. 159-178.
- S10. I. E. Whitehouse, New Zealand Journal of Geology and Geophysics 26, 271 (1983).
- S11. S. C. Cox, D. J. A. Barrell, GNS Science, New Zealand (2007).
- S12. C. J. Burrows, New Zealand Journal of Geology and Geophysics 39, 205 (1989).
- S13. T. J. Chinn, Institute of Geological and Nuclear Sciences (1991).
- S14. R. D. Henderson, S. M. Thompson, *Journal of Hydrology (New Zealand)* **38**, 309 (1999).
- S15. B. B. Fitzharris, G. R. Clare, J. Renwick, *Global and Planetary Change* 59, 159 (2007).
- S16. M. Salinger, J. Renwick, A. B. Mullan, *International Journal of Climatology* 21, 1705 (2001).
- S17. A. Lorrey, A. M. Fowler, J. Salinger, *Palaeogeography, Palaeoclimatology*, *Palaeoecology* 253, 407 (2007).
- S18. B. Anderson, A. Mackintosh, *Geology* 34, 121 (2006).
- S19. J. Oerlemans, Science 264, 243 (1994).
- S20. T. Chinn, J. Salinger, B. B. Fitzharris, A. Willsman, Bulletin of the Federated Mountain Clubs of New Zealand 171, 1 (2008).
- S21. M. P. Kirkbride, C. R. Warren, Global and Planetary Change 22, 11 (1999).
- S22. C. J. Burrows, *Julius Haast in the Southern Alps* (Canterbury University Press, Christchurch, New Zealand, 2005), pp. 215.
- S23. A. F. Gellatly, T. J. H. Chinn, F. Roethlisberger, *Quaternary Science Reviews* 7, 227 (1988).
- S24. M. Kirkbride, Geografiska Annaler Series A-Physical Geography 77A, 147 (1995).
- S25. G. H. Denton, W. S. Broecker, Quaternary Science Reviews 27, 1939 (2008).
- S26. C. J. Burrows, New Zealand Journal of Geology and Geophysics 16, 831 (1973).
- S27. A. F. Gellatly, The Geographical Journal 151, 86 (1985).
- S28. A. F. Gellatly, New Zealand Journal of Geology and Geophysics 26, 311 (1983).
- S29. M. P. Hochstein, I. M. Watson, B. Malengrau, D. C. Nobes, I. Owens, *New Zealand Journal of Geology and Geophysics* **41**, 203 (1998).

- S30. D. Santamaria Tovar, J. Shulmeister, T. R. Davies, *Nature Geoscience* 1, 520 (2008).
- S31. S. H. Larsen, T. R. Davies, M. J. McSaveney, New Zealand Journal of Geology and Geophysics 48, 311 (2005).
- S32. A. Wells, M. D. Yetton, R. P. Duncan, G. H. Stewart, *Geology* 27, 995 (1999).
- S33. T. J. Chinn, New Zealand Journal of Geology and Geophysics 39, 415 (1996).
- S34. K. Röhl, University of Otago, PhD (2006).
- S35. J. Stone, Journal of Geophysical Research 105, 23753 (2000).
- S36. J. T. Dunai, Earth and Planetary Science Letters 176, 157 (2000).
- S37. N. A. Lifton et al., Earth and Planetary Science Letters 239, 140 (2005).
- S38. D. Desilets, M. Zreda, Earth and Planetary Science Letters 206, 21 (2003).