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Abstract. In this paper general mechanisms and syntactic restrictions
are explored in order to specify and merge rule bases in the Semantic
Web. Rule bases are expressed by extended logic programs having two
forms of negation, namely strong (or explicit) and weak (also known as
default negation or negation-as-failure). The proposed mechanisms are
defined by very simple modular program transformations, and integrate
both open and closed world reasoning. These program transformations
are shown to be appropriate for the two major semantics for extended
logic programs: answer set semantics and well-founded semantics with
explicit negation. Moreover, the results obtained by both semantics are
compared.

1 Introduction

The Semantic Web [3] aims at defining formal languages, and corresponding
tools, enabling automated processing and reasoning over (meta-)data available
from the Web. Logic and knowledge representation play a central role, but the
distributed and world-wide nature of the Web bring new interesting research
problems. In particular, the widely recognized need of having rules in the Seman-
tic Web [13, 17] has restarted the discussion of the fundamentals of closed-world
reasoning and the appropriate mechanisms to implement it in rule systems, such
as the computational concept of negation-as-failure.

The classification if a predicate is completely represented or not is up to the
owner of the knowledge base: the owner must know for which predicates there is
complete information and for which there is not. Unfortunately, neither classical
logic nor standard Prolog supports the distinction between “closed” and “open”
predicates. Classical logic supports only open-world reasoning. On the contrary,
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most Prolog systems support only closed-world reasoning, as negation-as-failure
is the only negation mechanism supported (a notable exception is XSB [18]). We
resort to two major semantics of extended logic programs, namely answer set
semantics [10], and well-founded semantics with explicit negation [15, 1], which
have two forms of negation: weak and strong. Weak negation is an appropriate
rendering of the mechanism of nonmonotonic negation-as-failure, and strong
negation allows the user to express negative knowledge and is monotonic. The
combination of these two forms of negation allow the distinction between open
and closed predicates, as will be illustrated by their application to the declaration
and construction of rule bases in the Semantic Web.

The paper is organized as follows. In Section 2, the use of extended logic pro-
gramming is explored to represent open and closed world reasoning, providing
general mechanisms for achieving this. Section 3 defines new language mecha-
nisms for sharing and integrating knowledge in the Semantics Web. In Section
4, the transformational semantics is provided for the constructs presented. The
paper finishes with comparisons and conclusions.

2 Open and Closed World Assumption

Rule bases are sets of extended logic programming rules of the form

L0 ← L1, . . . , Lm,∼ Lm+1, . . . ∼ Ln (1)

where each Li (with 0 ≤ i ≤ n) is an objective literal, i.e. either an atom
A(t) or the strong negation of an atom ¬A(t), where t is a sequence of terms.
Variables are prefixed with a question mark symbol (?), therefore names for
predicates, constants and function symbols can start with small and capital
letters. It is assumed that a fixed first order logic alphabet is given, and only
extended Herbrand interpretations are considered (sets of objective literals). In
particular, a non-ground rule in an extended logic program stands for the set
of ground rules obtained by instantiating logical variables with elements from
the Herbrand universe. Notice that implicitly we are using a domain closure
assumption which might not be acceptable in some situations. Without loss of
generality, only ground programs are considered in the subsequent theoretical
results. Furthermore, we restrict the discussion to DATALOG programs over a
finite number of constants in order to guarantee decidability of reasoning. We
define by CSEM (P ) the set of objective literals which are obtained from the
extended logic program P under semantics SEM , where SEM = WFSX or
SEM = AS. Here we consider only sceptical answer set semantics [10], denoted
by subscript SEM = AS, and well-founded semantics with explicit negation [15,
1], denoted by subscript SEM = WFSX. For inconsistent programs, both these
semantics adopt an explosive approach by letting CSEM (P ) be the set of all
objective literals. The reader is referred to the literature for details.

Example 1. Consider the following program expressing immigration laws of an
imaginary country. Notice that all the rules are objective, i.e. do not use weak
negation.
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Enter(?p) ← CountryEU(?c), citizenOf(?p,?c).

Enter(?p) ← ¬ CountryEU(?c), citizenOf(?p,?c), ¬ RequiresVisa(?c).

Enter(?p) ← ¬ CountryEU(?c), citizenOf(?p,?c),

RequiresVisa(?c), HasVisa(?p).

Predicate Enter/1 captures the following laws:

– A citizen of European Union can enter the country.
– A non European Union citizen can enter the country if a visa is not required.
– A non European Union citizen can enter the country if a visa is required and

he/she has it.

These rules are complemented with the following knowledge, where it is assumed
that the list of European Union countries is exhaustive:

CountryEU(Austria).
...

¬ CountryEU(China).

¬ CountryEU(Djibuti).

¬ RequiresVisa(Bulgaria).

¬ RequiresVisa(?c) ← CountryEU(?c).

RequiresVisa(China).

Some facts about Anne, Boris, Chen and Dil finish the program:

citizenOf(Anne,Austria).

citizenOf(Boris,Bulgaria).

citizenOf(Chen,China). HasVisa(Chen).

citizenOf(Dil,Djibuti). HasVisa(Dil).

The arbitrary uncontrolled use of weak negation in the Semantic Web is re-
garded problematic and unsafe. However, local closed world assumptions and
scoped negation-as-failure have been identified as desirable and necessary for the
Semantic Web [11, 14, 16, 23, 2]. The difficulty lies on the definition of simple
mechanisms that can be easily explained to ordinary users, and have nice math-
ematical properties. For this reason, we propose a classification of predicates
which cover the whole gamut of alternatives. The classes of objective, open and
closed predicates impose some restrictions on the use of weak negation in the
rules defining a predicate A in the Semantic Web, which are summarized in Fig-
ure 1. The top-half boxes contain the user’s predicate definitions and are always
sets of objective rules, i.e. rules which do not contain weak negation but might
contain strongly negated literals, in particular the head of rules might be A(t) or
¬A(t). The bottom-half boxes contain special rules, added by the system, which
characterize each type of predicate. Additionally, it is required that objective,
open and closed predicates do not use (directly or indirectly) unrestricted pred-
icates on their definitions. This prevents unintended use of weak negation in the
Semantic Web. The unrestricted predicates are designated normal (or ordinary)
predicates, adopting the usual logic programming accepted terminology.

Thus, objective predicates are defined by rules which do not contain weak
negation at all. Since strong negation is monotonic, then these predicates can
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L0 ← L1, . . . , Lm

...

| {z }

L0 ← L1, . . . , Lm

...

A(x̄) ← ∼ ¬A(x̄)
¬A(x̄) ← ∼ A(x̄)

| {z }

L0 ← L1, . . . , Lm

...

A(x̄) ← ∼ ¬A(x̄) or ¬A(x̄) ←∼ A(x̄)

| {z }
Objective predicate Open Predicate Closed Predicate

Fig. 1. Declarations for a predicate A (the predicate of L0 is A)

be freely used in the Semantic Web without any restriction. These predicates
are partial since it may be the case that neither A(c) nor ¬A(c) hold in a
model (see [12, 2] for more details), where c is a sequence of constants. On the
other hand, open predicates have the following two additional rules, denoted by
openRules(A):

A(x) ←∼ ¬A(x) ¬A(x) ←∼ A(x)

In answer set semantics, these specify that either A(c) is true or ¬A(c) is true
in each model (answer set), thus forcing totalness.

Finally, closed predicates are complemented by one and only one of the pre-
vious two rules, called default closure rules, and denoted by negClosure(A) and
posClosure(A), respectively. This provides a mechanism for making closed world
assumptions: either by making true what is not concluded false or by making
false what is not concluded true.

Example 2. Returning to Example 1, start by assuming that all predicates are
objective. The following conclusions are obtained from the original program,
both with AS and WFSX semantics:

Enter(Anne) Enter(Chen)

Interestingly, Enter(Boris) is not concluded because it is not known that
Bulgaria is a European Union country and also it is not known that it is not
a European Union country! One way to circumvent this situation is to state
that predicate CountryEU/1 is open. Notice that it does not make sense to state
that CountryEU/1 is closed since EU is evolving and new countries in the near
future might integrate EU, namely Bulgaria5. By declaring CountryEU/1 open,
the following two rules are added:

CountryEU(?c) ← ∼ ¬ CountryEU(?c)

¬ CountryEU(?c) ← ∼ CountryEU(?c)

5 This is a simple-minded solution to the problem of knowledge update.
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From the new program and using AS semantics, it is concluded that Boris
can enter the country. The argument is the following: if Bulgaria is a member
of EU, then by the first rule Boris can enter the country; if Bulgaria is not a
European Union country, since a Visa is not required for Bulgaria, then Boris
can also enter the country. WFSX semantics is not capable of doing this case
analysis and therefore this conclusion is not obtained.

Finally, consider the situation where Enter/1 and ¬RequiresVisa/1 are
exhaustive. These predicates can be closed, by introducing the following rules:

¬ Enter(?p) ← ∼ Enter(?p)

RequiresVisa(?c) ← ∼ ¬ RequiresVisa(?c)

The first rule expresses that if by the immigration laws cannot be concluded
that a person can enter the country, then that person cannot enter the country.
The second rule states that the list of countries, for which it is not requested a
Visa, is closed. This means that it is requested a Visa for the non-listed countries.
Both under WFSX and AS semantics, it is now concluded that Dil can enter the
country.

Notice that in the move from all predicates being objective to some being
open and then closed, new conclusions might be obtained, as the following major
Theorem shows:

Theorem 1. Let A be an objective predicate in extended logic program P where
all predicates are either objective or open. Then,

– CSEM (P ) ⊆ CSEM (P ∪ openRules(A))
– CSEM (P ∪ openRules(A)) ⊆ CSEM (P ∪ posClosure(A))
– CSEM (P ∪ openRules(A)) ⊆ CSEM (P ∪ negClosure(A))

with SEM = AS or SEM = WFSX.

For the case of WFSX semantics the first containment is in fact an equality,
i.e. CWFSX (P ) = CWFSX (P ∪ openRules(A)). The previous theorem cannot
be generalized when some predicate is closed in P . This is expected due to the
non-monotonic nature of weak negation under both AS semantics and WFSX
semantics.

Example 3. Consider the original program of Example 1 but now Enter/1 is
declared closed with the rule:

¬ Enter(?p) ← ∼ Enter(?p)

It can be concluded with WFSX and AS semantics that ¬ Enter(Boris) and
¬ Enter(Dil). Now by declaring CountryEU/1 open, ¬ Enter(Dil) is not con-
cluded anymore with WFSX and AS. As previously, Enter(Boris) is concluded
with AS but not with WFSX.

Notice that under WFSX no new objective conclusions are obtained by
declaring predicates open. This is expected since entailment in WFSX can be
computed in polynomial time, while entailment in AS is coNP-complete. This is
the tradeoff between expressivity and complexity of reasoning. However, WFSX
and AS semantics are not unrelated:
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Theorem 2. [15] Let P be an extended logic program, then CWFSX (P ) ⊆
CAS (P ).

WFSX is a tractable semantics which approximates AS semantics, and therefore
is a good candidate for defining the semantics of rule bases in the Semantic Web.
However, the existence of an undefined truth-value in WFSX might affect the
intuition in some particular cases, namely for closed predicates; this is the price
to pay for guaranteeing tractability of reasoning. Aside that, both semantics
assure the monotonicity of reasoning in the presence of only objective and open
predicates:

Theorem 3. Let P and Q be two extended logic programs where all predicates
are either objective or open. Then,

– CAS (P ) ⊆ CAS (P ∪Q)
– CWFSX (P ) ⊆ CWFSX (P ∪Q)

Obviously, the previous result does not hold whenever closed predicates are
included in P or Q. The above theorems are explored in the next section for
defining modular programming techniques to be used in the Semantic Web.

3 Modularity in the Semantic Web

In this section we study the mechanisms in order to be able to express the nec-
essary context to use strong and weak negations safely in the Semantic Web
environment. The discussion is abstract and independent of any rule engine.
Currently, there is no notion of scope or context in the Semantic Web: all knowl-
edge is global and all kinds of unexpected interactions can occur. The success of
the Semantic Web is impossible without any form of modularity, encapsulation,
information hiding and access control. The issue of modularity in logic program-
ming has been actively investigated during the 90s, for a survey see [4]. Here we
follow a typical approach similar to the import/export mechanisms of Prolog,
but we will be concerned with the combination of open and closed world reason-
ing and other particularities of the Semantic Web. In particular, the following
four levels of context and their interaction must be taken into account:

– The Semantic Web context;
– The application context, corresponding to the context where a user or Se-

mantic Web agent loads, asserts or consumes the knowledge provided by rule
bases in the Semantic Web;

– The rule base context, where the Semantic Web developer encapsulates a set
of related rules and facts (predicates);

– The predicate context, which can be either global or local;

Rule bases are made available in the Semantic Web, and users or applications
load or assert them explicitly into their application contexts. The connection
to an external knowledge base should always be equivalent to loading it locally,
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DefinesDecl ::=
[RuleBaseIRI ] "defines" [ScopeDecl ] PredList ["visible to" RuleBaseList ] "."

UsesDecl ::= [RuleBaseIRI ] "uses" PredList ["from" RuleBaseList ] "."

ScopeDecl ::= "global" | "local" | "internal"
PredList ::= PredicateDecl ("," PredicateDecl)*
RuleBaseList ::= RuleBaseIRI ("," RuleBaseIRI )*
PredicateDecl ::= ["objective" | "open" | "closed" ["¬"] | "normal"] PredicateInd
PredicateInd ::= AbsoluteIRI ["/" Arity]
Arity ::= Natural
RuleBaseIRI ::= AbsoluteIRI

Fig. 2. The defines and uses declarations

but without the need to explicitly do that. When a user or application loads
or asserts knowledge, it may express that nonmonotonic reasoning forms may
be rejected or allowed, or can force the deduction mechanisms to use only rules
which extract safe knowledge in the Semantic Web context. The knowledge base
programmer may use nonmonotonic constructs, knowing that these constructs
might be inhibited or forbidden. The producer of knowledge might also express
that the predicates he/she is declaring cannot be defined elsewhere, and may de-
clare hidden predicates which are not visible in the Semantic Web. Furthermore,
a knowledge base might use all the available knowledge in the application con-
text, or get it explicitly from particularly loaded rule bases. By default, reasoning
in the Semantic Web must be monotonic.

The challenge is to provide simple mechanisms in order to guarantee the
fulfilment of the previous requirements. Obviously, the syntax of extended logic
programs should be augmented with declarations to state the visibility of a pred-
icate, its context, and whether it is normal (i.e. unrestricted), objective, open
or closed. It is also necessary to express how external information to the knowl-
edge base is incorporated into it. These can be attained with the declarations
defines and uses with the syntax in BNF notation presented in Figure 2. The
defines declaration specifies which predicates are defined (and exported) in the
knowledge base, their scope and visibility, as well as type. The uses declaration
describes which predicates are used (imported) from other rule bases or from the
Semantic Web, and might change the original type of the predicate. Notice that
predicates and rule bases are all identified by absolute IRIs (Internationalized
Resource Identifiers [7]). When a predicate A is declared closed (resp. closed
¬) then the posClosure(A) (resp. negClosure(A)) rule is implicitly added to
the program. If the predicate is declared open, then both rules are added, as
described in the previous section.

The scope plays a fundamental part, and describes what is the context of
the predicate(s) and may take one of the following values, with the following
corresponding limitations and meaning:

"global": a predicate declared global is visible outside the knowledge base, and
intends to capture predicates being defined in the Semantic Web. Moreover,
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the predicate can be defined elsewhere in other rule bases but it must be
either objective or open6. Additionally, it can be optionally declared which
rule bases can use the predicate; if omitted, it can be used everywhere.

"local": a local predicate can be used outside the rule base where it has been
defined, but cannot be defined by any other knowledge base in the Seman-
tic Web. A local predicate can be of any type (objective, open, closed and
normal) and, as before, the user can state the rule bases where it can be
used.
The rule base defines the scope for a closed predicate, and the closure rule
may be inhibited by the consumer of the knowledge in the uses statement.
If the predicate is normal, any form of negation can be used in its definition,
and its use can be forbidden by the consumer of the knowledge, again with
the uses statement.

"internal": predicate is internal to the rule base and cannot be used outside
the rule base. Again, the rule base defines the scope for the evaluation of
weak negation.

By default a predicate is global and open, and visible to any rule base in the
Semantic Web. Also, all predicates in the RDF and RDFS vocabularies are
global and open. Thus, the user doesn’t have to state explicitly the scope and
type of predicates in all rule bases. Furthermore, this guarantees monotonicity
of reasoning. It is not practically possible to guarantee that a local predicate is
not redefined multiple times in the Semantic Web. However, any implementation
will not allow loading knowledge bases which define a local or global predicate
defined local in another loaded rule base.

The visibility provides a basic security mechanism, but trust and authoriza-
tion could be much improved, for instance using the PeerTrust language [9].
These issues are orthogonal to present proposal but can be easily integrated due
to the logical nature of our work. The uses declaration specifies the rule bases
providing the definitions of global and local predicates that can be used by the
importing rule base. The scope of the imported predicated is given by a corre-
sponding defines statement in the rule base, whenever it exists. If the from list
in the uses declaration (Fig. 2) is omitted then these predicates can be imported
from any available knowledge base. Notice that the importer can specify what
types of predicates (reasoning) he/she is willing to accept, and the default type
is open. The exporter must provide the answers according to the cases specified
in Table 1.

For instance, suppose that a rule base < RBA > defines a closed predicate
P with: < RBA > defines local closed P .

However, the uses statement in rule base < RBB > declares that it is only
willing to accept the conclusions obtained by opening the predicate P in
< RBA >: < RBB > uses open P from < RBA >.

Rule base < RBA > should only provide answers to queries of P from
< RBB > as if all closed predicates in < RBA > were open. If < RBB >

6 For simplicity, this constraint is not enforced in the grammar.
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Table 1. Combination of reasoning modes

normal objective open closed normal 

closed objective open closed error 

open objective open open error u
s
e
s

 
(i

m
po

rt
er

) 

objective objective objective objective error 
  objective open closed normal 
  defines (exporter) 
 

uses predicate P of < RBA > in objective mode, then all predicates in rule
base < RBA > are considered objective when computing the queries to P from
< RBB >. In other words, the reasoning mode should also be propagated to the
predicates used in < RBA >, whenever these predicates are necessary to answer
the original query. Finally, we would like to note that there are subtle issues
involved in the above mechanisms, namely the possibility of mutual dependencies
between rule bases, which should be addressed in implementations. A runtime
error is thrown when the exporter declares a local predicate normal but the
importer uses one of the limited predicate reasoning forms: objective, open or
closed. This behaviour corresponds to rejecting by the importer the uncontrolled
use of weak negation in the Semantic Web. Note again that according to the
results of the previous section, the default declarations guarantee that reasoning
is monotonic.

A knowledge base might define and use the same predicate, but not all combi-
nations are possible. The various allowed combinations are presented in Table 2.

Table 2. Defining and using the same predicate

global allowed error error 

local error error error 

d
e
f
i
n
e
s

  

internal allowed allowed error 

  global local internal 

  uses 
 

Obviously, it is an error to globally or locally define a used local predicate;
this goes against the notion that there is a sole provider for a local predicate.
However, it is allowed to internally redefine a local predicate of a different rule
base, since it is not made public. In particular, one might close an objective local
predicate of a different provider since this is only for internal use.

The several combinations are illustrated with the next example.
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Example 4. Consider the knowledge bases in the Semantic Web identified by IRIs
<http://www.eu.int>, <http://gov.country> and <http://security.int>.
We use the namespace prefixes eu, gov and sec to simplify writing of IRIs in
the code of Figure 3.

<http://www.eu.int>

defines local closed eu:CountryEU/1.

eu:CountryEU(Austria).
...

eu:CountryEU(UnitedKingdom).

<http://security.int>

sec:citizenOf(Anne,Austria).

sec:citizenOf(Boris,Bulgaria).

sec:citizenOf(Chen,China).

sec:citizenOf(Dil,Djibuti).

<http://gov.country>

defines local closed gov:Enter/1.

defines internal objective gov:HasVisa/1.

defines internal closed ¬ gov:RequiresVisa/1.

defines internal open eu:CountryEU/1.

uses objective eu:CountryEU/1 from <http://www.eu.int>.

defines internal objective sec:citizenOf/2.

uses objective sec:citizenOf/2.

gov:Enter(?p) ← eu:CountryEU(?c), sec:citizenOf(?p,?c).

gov:Enter(?p) ← ¬ eu:CountryEU(?c), sec:citizenOf(?p,?c),

¬ gov:RequiresVisa(?c).

gov:Enter(?p) ← ¬ eu:CountryEU(?c), sec:citizenOf(?p,?c),

gov:RequiresVisa(?c), gov:HasVisa(?p).

¬ gov:RequiresVisa(Bulgaria).

¬ gov:RequiresVisa(?c) ← eu:CountryEU(?c).

gov:RequiresVisa(China).

gov:HasVisa(Chen).

gov:HasVisa(Dil).

¬ eu:CountryEU(China).

¬ eu:CountryEU(Djibuti).

Fig. 3. Sharing of Knowledge in the Semantic Web

The simpler rule base, identified by <http://www.eu.int>, defines the list of
European Union countries, and this list is closed. Notice that this is a proper log-
ical definition of the CWM [5] construct log:definitiveDocument. The second
rule base, <http://security.int>, provides citizenship of people, and could be
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implemented in a ordinary relational database. Since no defines declaration is
present, predicate sec:citizenOf/2 is a global and open predicate.

The third rule base defines the immigration policies of country
<http://gov.country>, supported by the knowledge of the other two rule bases.
The first three defines statements are according to the discussion in Exam-
ple 1; it should be noticed the mechanism for closing negative instances in
gov:RequiresVisa/1 with ¬. The country is not willing to accept the local
closure of eu:CountryEU/1 performed in <http://www.eu.int>. Therefore, it
uses the predicate forcing objective mode and, in this example, only facts are
requested to <http://www.eu.int>. Furthermore, eu:CountryEU is made open,
for use in this rule base; this can be done since the predicate is defined to be in-
ternal. Complementary additional facts to predicate eu:CountryEU/1 are stated
in the rule base. Predicate sec:citizenOf is used from any providers in the
Semantics Web, but it is made objective for internal use only.

The code of the figure is unsatisfactory from a security point of view. In
an additional rule base, it could be added a fact stating that, for instance,
sec:citizenOf(Chen,France). Since rule base <http://gov.country> is care-
lessly using sec:citizenOf/2 from the Semantic Web it imports any existing
available knowledge independently of the providing rule base. This can be cor-
rected with the statement:

uses objective sec:citizenOf/2 from <http://security.int>.

If more sources are trusted, these can be added to the from list. Also,
<http://security.int> is providing confidential information to any requester.
This can also be improved by specifying the authorized consumers of this knowl-
edge base in the visible to list, e.g.:

defines global open sec:citizenOf/2 visible to <http://gov.country>.

4 Transformational Semantics

In this section, we define a modular program transformation capturing the se-
mantics of each of the proposed constructs described in the previous section. For
capturing the intended semantics, a single extended logic program is constructed.
In order to control visibility and scope of the predicates, predicate names are
transformed into a pair containing the rule base IRI and the predicate IRI7. In
our transformation, a rule will be translated into four rules, one for each possible
reasoning mode: definite (objective), open, closed and normal. This permits a
modular way of independently composing the several rule bases, i.e. adding the
transformational rules corresponding to a rule base does not require changing
the form of the transformational rules of already handled rule bases. Suppose
that a rule base r contains the rule:

L0 ← L1, . . . , Lm,∼ Lm+1, . . . ,∼ Ln. (2)

7 In order to avoid name clashes it is assumed that IRIs always appear between de-
limiters ’<’ and ’>’.
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Accordingly, the rule is translated into the following four rules:

r:d L0 ← r:d L1, . . . , r:d Lm,∼ r:d Lm+1, . . . ,∼ r:d Ln.
r:o L0 ← r:o L1, . . . , r:o Lm,∼ r:o Lm+1, . . . ,∼ r:o Ln.
r:c L0 ← r:c L1, . . . , r:c Lm,∼ r:c Lm+1, . . . ,∼ r:c Ln.
r:n L0 ← r:n L1, . . . , r:n Lm,∼ r:n Lm+1, . . . ,∼ r:n Ln.

where if A(t) is an atom of the original rule base r, the literal r:x ¬A(t) in the
translated rules is replaced by ¬r:x A(t) (for x ∈ {d, o, c, n}). The prefixes d, o,
c and n are used to distinguish the reasoning mode for the rule, that is, definite,
open, closed, and normal, respectively. The meaning of a predicate A in a rule
base r is always given by the instances of r:n A(c) and ¬r:n A(c) which are true
in all intended model(s), under one of the adopted semantics WFSX or AS.
Recall that WFSX is always an approximation of AS semantics, obtaining less
conclusions.

Due to space limitations, our transformational semantics ignores errors, which
should be syntactically treated a priori. For example, in the case that a predi-
cate A in rule base r is defined as objective, open, or closed then for every rule
(2) with L0 = A(t) or L0 = ¬A(t), it should hold n = m. All the syntactical
restrictions are discussed in Section 3.

The defines declaration is translated according to the following. First, for
global and local predicates the following rules are introduced. Notice that by
declaring a predicate global or local, the rule base component of the name is
removed and this makes the predicate accessible to the outside world.

d A(x) ← r:d A(x). ¬d A(x) ← ¬r:d A(x).
o A(x) ← r:o A(x). ¬o A(x) ← ¬r:o A(x).
c A(x) ← r:c A(x). ¬c A(x) ← ¬r:c A(x).
n A(x) ← r:n A(x). ¬n A(x) ← ¬r:n A(x).

If predicate A is declared open in rule base r, the following rules are added
(see column “open” of Table 1):

r:o A(x) ←∼ ¬r:o A(x). ¬r:o A(x) ←∼ r:o A(x).
r:c A(x) ←∼ ¬r:c A(x). ¬r:c A(x) ←∼ r:c A(x).
r:n A(x) ←∼ ¬r:n A(x). ¬r:n A(x) ←∼ r:n A(x).

Compare with the case when A is declared to be closed ¬ (negatively closed)
or closed (positively closed) in rule base r (see column “closed” of Table 1):

r:o A(x) ←∼ ¬r:o A(x). and ¬r:o A(x) ←∼ r:o A(x).
r:c A(x) ←∼ ¬r:c A(x). or ¬r:c A(x) ←∼ r:c A(x).
r:n A(x) ←∼ ¬r:n A(x). or ¬r:n A(x) ←∼ r:n A(x).

The rules in the first line make the predicate open, which corresponds to the
case where the importing rule base forces open reasoning mode (see row “open”
of Table 1). When the predicate is declared objective or normal, no additional
rules are required.

The uses declaration is easier to treat, generating rules that also respect
Table 1.
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r uses objective A from s declaration:

r:d A(x) ← s:d A(x). ¬r:d A(x) ← ¬s:d A(x).
r:o A(x) ← s:d A(x). ¬r:o A(x) ← ¬s:d A(x).
r:c A(x) ← s:d A(x). ¬r:c A(x) ← ¬s:d A(x).
r:n A(x) ← s:d A(x). ¬r:n A(x) ← ¬s:d A(x).

r uses open A from s declaration:

r:d A(x) ← s:d A(x). ¬r:d A(x) ← ¬s:d A(x).
r:o A(x) ← s:o A(x). ¬r:o A(x) ← ¬s:o A(x).
r:c A(x) ← s:o A(x). ¬r:c A(x) ← ¬s:o A(x).
r:n A(x) ← s:o A(x). ¬r:n A(x) ← ¬s:o A(x).

r uses closed A from s declaration:

r:d A(x) ← s:d A(x). ¬r:d A(x) ← ¬s:d A(x).
r:o A(x) ← s:o A(x). ¬r:o A(x) ← ¬s:o A(x).
r:c A(x) ← s:c A(x). ¬r:c A(x) ← ¬s:c A(x).
r:n A(x) ← s:c A(x). ¬r:n A(x) ← ¬s:c A(x).

r uses normal A from s declaration:

r:d A(x) ← s:d A(x). ¬r:d A(x) ← ¬s:d A(x).
r:o A(x) ← s:o A(x). ¬r:o A(x) ← ¬s:o A(x).
r:c A(x) ← s:c A(x). ¬r:c A(x) ← ¬s:c A(x).
r:n A(x) ← s:n A(x). ¬r:n A(x) ← ¬s:n A(x).

If the importing rule base list is absent from the uses declaration, then instead
of s:d A(x), s:o A(x), s:c A(x) and s:n A(x) in the body of the previous rules,
it should be used instead, respectively, d A(x), o A(x), c A(x) and n A(x). The
effect is to import all the existing knowledge regarding the predicate and which
is publicly available from the several rule bases (due to space limitations, here
we ignore visibility issues).

The major issue remaining to be discussed is the scope of the weak nega-
tion operator. For simplicity of discussion, it is assumed that the variables of
the transformational rules corresponding to a rule base r are instantiated ac-
cording to the constants appearing in r. This is the mechanism that implements
scoped negation-as-failure (for a possible implementation see for instance [8]).
The syntax necessary to explicitly declare predicate domains will be described in
a subsequent paper, but basically it gets translated to domain predicates in the
bodies of rules in order to guarantee correct instantiation of variables in rules
(e.g. by using rdf:type, rdf:domain and rdf:range properties).

5 Comparison and Conclusions

The notion of localized closed world assumptions has been proposed for instance
in [11]. The idea is to have syntactic mechanisms in the Semantic Web languages
(like DAML+OIL or OWL) to express that a predicate is closed, i.e. something
which cannot be inferred can be assumed false: this is a usual assumption in logic
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programming (negation-as-failure, by default, or weak) and relational databases
(the set difference operation of relational algebra). The major problem with
the proposal of Heflin and Munoz-Avila is the use of a Clark’s completion like
approach, which is well-known to suffer from serious problems when applied to
knowledge based systems [21, 20], even without negation.

The notion of scoped negation-as-failure has also been suggested by several
authors, see for instance [14, 16], and systems like FLORA-2 [24] do support it.
Both FLORA-2 and TRIPLE [22] support modularity constructions, which are
essential for deployment of inference engines in the Semantic Web. Alternative
proposals are already present in the dlvhex system [8], where the reader can find
detailed discussion about applications to Semantic Web. This answer-set pro-
gramming system has features like high-order atoms and external atoms which
are very flexible. For instance, closure rules similar to our ones are expressed
with high-order statements of the form

C ′(X) ← o(X), concept(C), concept(C ′), cwa(C, C ′),∼ C(X)

where concept(C) is a predicate which holds for all concepts C, cwa(C, C ′) states
that C ′ is the complement of C under the closed world assumption, and o(X) is
a predicate that holds for all individuals occurring in the knowledge base.

However, in contradistinction to the existing systems, we define the notion
of objective, open and closed predicates, their semantically compatible defini-
tion, as well as languages constructs for controlling knowledge in the Semantic
Web. The combination of open-world and closed-world reasoning in the same
framework is also proposed in [2], where the ERDF stable model semantics of
Extended RDF knowledge bases is developed, based on partial logic [12]. How-
ever, modularity issues are not considered there. The existence and combination
of all our proposed mechanisms in a single language is a novelty, to the best of
our knowledge.

The language is intuitive to use and gives absolute freedom to producers and
consumers of knowledge in the Semantic Web. It can be implemented with the
existing technology, and can support and integrate different inference engines
ranging from relational databases to state-of-the-art inference engines, including
description logic reasoners. Both tractable and more complex forms of inference
are also easily syntactically identified and delimited. The semantics of the con-
structs can be defined via immediate program transformations, for which the
rationale and corner-stone elements have been introduced in this paper.

There are still some important practical problems to be addressed at the im-
plementation level for which solutions exist, but for lack of space cannot be pre-
sented in this work. Furthermore, the issue of contradiction is not addressed here,
but the results of Section 2 can be adapted for existing paraconsistent semantics
for extended logic programs, namely [1, 6, 19]. A prototypical implementation is
underway, using immediate extensions to RuleML markup language [17].
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