
Supporting Product Selection with Query Editing
Recommendations

Derek Bridge
Department of Computer Science

University College Cork
Cork, Ireland

d.bridge@cs.ucc.ie

Francesco Ricci
Faculty of Computer Science

Free University of Bozen-Bolzano
Bozen-Bolzano, Italy

fricci@unibz.it

ABSTRACT
Consider a conversational product recommender system in
which a user repeatedly edits and resubmits a query until
she finds a product that she wants. We show how an advi-
sor can: observe the user’s actions; infer constraints on the
user’s utility function and add them to a user model; use
the constraints to deduce which queries the user is likely to
try next; and advise the user to avoid those that are unsat-
isfiable. We call this information recommendation. We give
a detailed formulation of information recommendation for
the case of products that are described by a set of Boolean
features. Our experimental results show that if the user is
given advice, the number of queries she needs to try before
finding the product of highest utility is greatly reduced. We
also show that an advisor that confines its advice to queries
that the user model predicts are likely to be tried next will
give shorter advice than one whose advice is unconstrained
by the user model.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Query for-
mulation

General Terms
Human Factors

Keywords
recommender systems, user models

1. INTRODUCTION
Recommender systems are intelligent e-commerce appli-

cations that suggest products or services which best suit a
user’s needs and preferences, in a given situation and con-
text [1, 2]. They have been successfully exploited for rec-
ommending travel services, books, CDs, financial services,
insurance plans, news, and in many other application mar-
kets. From a technical point of view, recommender systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys’07, October 19–20, 2007, Minneapolis, Minnesota, USA.
Copyright 2007 ACM 978-1-59593-730-8/07/0010 ...$5.00.

emerged as supervised learning approaches using a data set
of numerical ratings on products (e.g., from 1=bad to 5=ex-
cellent), expressed by a collection of users on a catalogue of
products, to make a prediction for products not yet rated
by the target user, i.e., the user for whom a recommenda-
tion is sought. Prediction algorithms include collaborative-
filtering, content-based filtering and case-based reasoning [1,
2, 3]. However, these classical approaches typically support
a simple human-computer interaction model, which basically
first collects user related information (ratings or product
preferences) and then exploits the background knowledge to
make ratings’ predictions and derive product recommenda-
tions.

More recently, a number of conversational approaches have
been proposed. In conversational recommender systems the
advisor not only suggests and ranks products, it also guides
the user by asking for more information about her prefer-
ences or providing information about the product and the
search process, e.g., explaining the rationale of the ranking
or explaining the failure of a search initiated by the user [8,
5, 3, 9, 10, 11, 7]. The user may not know, or may not be
aware, of all her preferences at the start of the interaction.
Preferences are revealed, or even constructed, during the in-
teraction as the product space is explored. By contrast, the
user of a non-conversational (‘single-shot’) recommender is
expected to be able to articulate all preferences up-front.

In this paper, we introduce the idea of information rec-
ommendation, bringing the concept of conversational recom-
mender systems to its more radical interpretation. A conver-
sational recommender can use information recommendation
to suggest actions that help the user to efficiently search
for products, as well as using product recommendation to
suggest products that the user may like.

Consider a conversational product recommender system in
which a user repeatedly edits and resubmits a query until she
finds a product that she wants [9, 5]. An advisor can infer
constraints on the user’s utility function by observing the
user’s actions. For instance, the system might infer that the
features constrained by the user query are more important,
for the user, than the features not yet used in the query.
The advisor can add these constraints to a particular kind
of dynamic user model [4, 8]. The advisor can then use
the constraints to deduce new preference relations between
product features and ultimately to rank the next possible
search actions of the user, rather than, or as well as, using
the preference relations to select and rank products in the
catalogue. In other words, in information recommendation,
the advisor uses the user model to determine the feasibility

65

of actions (the satisfiability of queries in this case) that it
thinks the user is more likely to try. It can then advise the
user of which to try or which to avoid.

In the rest of this section we compare the use that infor-
mation recommendation makes of its user model with the
use that product recommendation makes. In the Adaptive
Place Advisor, for example, the user model is used for prod-
uct selection [11]. The advisor infers feature weights and
defaults, and uses them in product retrieval. Similarly, in
the work of Pu et al., the system uses its knowledge of users
and of the product space to select sets of products, albeit sets
that it hopes will provoke the user into volunteering further
preferences [7]. In collaborative filters also, the user model
(the ratings profile) is for product retrieval and ranking.

But in information recommendation, the user model is
used to guide the user’s search rather than to retrieve or rank
products. Work on question selection in dynamic dialogues
can be seen as an example of information recommendation.
The system dynamically selects questions to elicit user pref-
erences. Its goal is to choose a sequence of questions that
most effectively homes in on desirable products. In most
such work, questions are selected based on the user’s partial
query and the product distribution. But, Schmitt’s simVar
system also builds and uses simple user models too [10].
Reilly et al.’s use of the query history to dynamically rec-
ommend compound critiques can also be regarded as infor-
mation recommendation [8]. In their work, the system shows
the user some products which the user can critique, but it
also advises the user by displaying dynamically-computed
critiques that are known to be satisfiable, which the user
can select.

Section 2 describes our assumptions about how products
and queries are represented; it describes users’ utility func-
tions; and it describes the idea of a conversational product
recommender in which the user repeatedly edits and resub-
mits her query in a search for the products of highest utility.
The section also explains the assumptions we make about
user rationality. Section 3 explains how the advisor can infer
the constraints that it adds to the user model and it explains
different strategies for giving advice to the user. Section 4
presents our experimental methodology and results.

2. SEARCHING FOR PRODUCTS

2.1 Products and Queries
We assume a very simple product data model. Products

are described by a fixed number of n Boolean features. For
instance, hotels may have: a sauna, a pool, parking, etc.
Hence, each product can be represented by a fixed-length
string of bits, p = p1, . . . , pn, where pi = 1 means that the
product has the ith feature and pi = 0 means that it does
not have the feature.

User queries are defined by a product pattern q = q1, . . . , qn,
where qi is either 1 or 0, i = 1, . . . , n. If qi = 1, the user is
interested in products that have the ith feature; if qi = 0,
the user has not (yet) declared any special interest in the ith
feature. It must be kept in mind that, e.g., q = 1010 does
not mean that the user wants to see products that lack the
second and fourth features; it simply means that the user
wants a product that has the first and the third features.

Given query q, the query engine retrieves products P

where if qi = 1 then pi = 1, for all pi ∈ P . In other words,
each retrieved product must possess at least all the features

that are explicitly requested in the query, but may possess
other features too. For example, q = 1010 is matched by
products such as 1011 and 1111 as well as 1010; it is not
matched by products such as 0010. We describe a query as
satisfiable if it is matched by at least one product; otherwise,
we call it unsatisfiable. Given query q, we expect the query
engine to at least tell the user whether q is satisfiable or not.

2.2 Utility
We assume the user has a fixed utility function. The util-

ity of product p = p1, . . . , pn is defined as follows:

U(p) = w1p1 + . . . + wnpn

where (w1, . . . , wn) is a vector of weights. We assume only
that the weights are non-negative and do not exceed 1 (0 ≤
wi ≤ 1) and that there is at least one non-zero weight
(
�

wi > 0). The weight of a feature says how strong the de-
sire of the user for that feature is. If a weight wi is zero, then
the user has no desire for the ith feature; if wi > wj , then
the ith feature is preferred to the jth; if wi = wj (i 6= j),
then the user is indifferent between the ith and jth features.
We assume that the goal of the user is to find a product that
maximises the utility function.

We can also define the utility of a query q = q1, . . . , qn.
In fact, we define two types of query utility. The potential
utility of query q is given by

U(q) = w1q1 + . . . + wnqn

Hence, the potential utility of a query is the utility to the
user of a product that offers exactly the features requested
in the query, whether such products exist or not.

The actual utility of query q is given by

V (q) =

�
0 if q is unsatisfiable

U(q) otherwise.

Hence, the actual utility of a query is zero if no product
matches the query; otherwise, the actual utility equals the
potential utility.

2.3 Utility Gain
In the kind of conversational recommender that we are

considering in this work, the user is engaged in an inter-
active, incremental search process. The states of the search
space are different queries. The successors of state (or query)
q, succ(q), will be the queries that the user obtains by editing
q. succ(q) will depend on the actions that the user interface
makes available, e.g., it might allow the user to add a feature
to a query, to delete a feature from a query, to restart, etc.
The user’s goal in query editing is to move to a state with
higher actual utility.

We assume a certain rationality in user behaviour. A min-
imal requirement is that a user will not search for products
that are less preferable than those already selected:

Axiom 1. If q is the user’s current query and q′ is a suc-
cessor query, q′ ∈ succ(q), then the user will try q′ if and
only if U(q′) ≥ U(q), and may choose to accept q′ if and
only if V (q′) 6= 0.

In other words, we assume that the user will only try q′

(i.e. issue the query to the query engine) if its potential util-
ity is greater than or equal to q’s; and then the user may
choose to accept q′ (i.e. move to this state) if q′ has higher

66

or equal actual utility (i.e. if the query engine reports that
q′ is satisfiable). A rational user will satisfy a second axiom:

Axiom 2. If q is the user’s current query and the user is
contemplating a set Q ⊆ succ(q) of successor queries each of
whose potential utility is greater than or equal to q’s (U(q′) ≥
U(q) for q′ ∈ Q), then the user will try a member of Q∗ ⊆ Q,
where Q∗ contains those members of Q that have maximal
potential utility:

Q
∗ = {q′ ∈ Q : ∀q

′′ ∈ Q, U(q′) ≥ U(q′′)}

In this axiom we are saying that the user will choose to try
one of the queries that has maximal potential utility from
those successor queries Q that the user is contemplating.
Of course, this leaves open the question of which succes-
sor queries are in the ‘contemplation set’, Q, at any point
in the user’s search. This will depend on the user’s back-
ground knowledge, what she has learned so far during the
interaction and her cognitive resources (e.g. her memory and
reasoning capabilities).

In fact, an advisory system may not know exactly how the
user computes her contemplation set at any point in the in-
teraction. But, it can infer user preferences by observing the
queries the user tries. If the user tries query q′, the system
may infer that U(q′) ≥ U(q′′) for all q′′ ∈ Q′, where Q′ is
the set that the system assumes the user is contemplating.
But if the set the user actually contemplated is a proper
subset of Q′ then the system may make wrong inferences: it
may incorrectly infer U(q′) ≥ U(q′′) for all q′′ ∈ Q′. Hence,
in the following we will make some assumptions about the
nature of the user’s contemplation set and, from the queries
the user issues, we will derive constraints on the definition
of the user’s utility function.

2.4 Query Editing
As we noted above the contemplation set is a subset of

the successor queries that the user interface make available.
Hence, following the above discussion, one way to keep the
contemplation set small, thereby making it less likely that
the system makes incorrect assumptions, is to keep also
succ(q) as small as possible by offering only a small num-
ber of easily-understood editing operations. Since real user
behaviour in query editing processes tends to proceed with
minimal modifications, restricting moves to ones of limited
‘reach’ will not impose a true limitation on real users.

Hence, here we assume that just three editing operations
are available:

Op1 — Add a feature This means changing a 0 in q to
a 1. This corresponds to requesting a feature that is
additional to the ones in q. We will write Op1 (q, i) to
mean that the user adds feature i to query q.

Op2 — Switch a feature for another This means simul-
taneously changing a 1 in q to 0 and a 0 to 1. This
operation corresponds to switching one feature for an-
other. We will write Op2 (q, i, j) to mean that the user
discards feature i and introduces feature j.

Op3 — Trade a feature for two features This means si-
multaneously changing a 1 in q to 0 and two 0s to 1s.
This operation corresponds to making a compromise
by losing one feature for two others. We will write
Op3 (q, i, j, k) to mean that the user discards feature i

and introduces features j and k.

We now discuss the rationale for considering only these
three moves.

The first move is quite obvious: given non-negative weights,
an Op1 move will never decrease the potential utility. In
fact, if q′ = Op1 (q, i), then the gain in potential utility is:

U(q′) − U(q) = wi

We note that Op1 moves may not change the actual utility
by this amount since the new query might be unsatisfiable,
in which case actual utility will fall from U(q) to 0.

Consider now the second move. If q′ = Op2 (q, i, j), the
effect on utility is

U(q′) − U(q) = −wi + wj

In general, this sum can be negative. But Axiom 1 says that
a user will try this editing operation only if −wi + wj ≥ 0,
i.e. if there is no loss in potential utility.

In the case of the third move, if q′ = Op3 (q, i, j, k), this
has the following effect on the utility:

U(q′) − U(q) = −wi + wj + wk

In general this sum can also be negative. But Axiom 1 says
that a user will try this editing operation only if −wi +wj +
wk ≥ 0, i.e. if the gain in potential utility brought by the
two features added is greater than or equal to the loss in
potential utility due to the feature removed.

We do not consider the move of deleting a feature from
the current query since this always has a zero or negative ef-
fect on the potential utility. In principle, we could also allow
the user to apply more complex transformations, for exam-
ple discarding two features while adding three new features.
But, as explained above, restricting the available editing op-
erations helps both the user and the system.

It is worth noting that there are situations where an Op3
move can be preferred to an Op1 move. If for instance
the current query q is 100 and the user knows that both
Op1 (q, 2) = 110 and Op1 (q, 3) = 101 are unsatisfiable but
Op3 (q, 1, 2, 3) = 011 is not known to be unsatisfiable, then
the Op3 move is the best option for the user. It is also
worth noting that there are cases where an Op2 move is
useful, even in the presence of the Op1 and Op3 operations.
For lack of space we shall not describe here an example of
this situation.

It might then be thought that we could restrict our atten-
tion to a system that offers only Op1 and Op2 edits, since
an Op3 edit can be composed of an Op1 and an Op2 : e.g.
Op3 (q, i, j, k) = Op3 (Op2 (q, i, j), k). This is true but the
Op2 move required to obtain the given Op3 move may not
be rational, i.e. it may decrease the potential utility.

A final observation is that with these three edit operations
the user is not guaranteed to reach the global optimum state.
For lack of space we shall not describe an example. But we
note, happily, that such examples are quite contrived and
therefore unlikely to arise in practice for rational users.

2.5 Rationality Implications
Assumptions about the ‘rationality’ of the user (Axioms 1

and 2) allow an observer to deduce knowledge about that
user’s utility function. In this section, we will focus on this
issue. First, let us introduce some notation. If q = q1, . . . qn

is a query and i is an index (1 ≤ i ≤ n) and qi = 0, then we
shall denote with q + i the query obtained by setting qi to 1;
if qi = 1, then we shall denote with q − i the query obtained

67

by setting qi to 0. Further, let idx0(q) = {i : qi = 0} and
idx1(q) = {i : qi = 1}, the indexes of the bits in q that are
0 and 1, respectively.

Proposition 1. Assume that the user tries an initial query
q. For all i ∈ idx1(q) and j ∈ idx0(q), then wi ≥ wj unless
V (q − i + j) = 0.

Proposition 1 says that the user will not add to her initial
query a feature i that is less preferable than another feature
j that is not included in the query, unless the query that
contains j and not i is unsatisfiable. This proposition derives
from Axiom 2 and the observation that the user could have
chosen the query q − i + j instead of q, hence it must be the
case that U(q − i + j) ≤ U(q), and this is true if and only
if wi ≥ wj . Here we are ‘playing safe’ by assuming that if
V (q− i+ j) = 0, then the user knows it. Obviously the user
may not know all these unsatisfiable queries and, from the
initial query, we could derive more inequalities. For instance,
we could simply assume that all the features included in the
query are preferred to the features not included, i.e. wi ≥ wj

for all i ∈ idx1(q), j ∈ idx0(q). But this is not safe because
in fact the user may have background knowledge that some
feature combinations are not possible and therefore she has
not tried these combinations in her initial query.

To illustrate this issue, consider the following simple ex-
ample. Let us imagine that the user knows that there is no
golf course in the centre of the city to which she is travel-
ling. Suppose hotels are described by three features, and in
decreasing order of preference for this user they are centre,
golf and parking. Then from an initial query in which cen-
tre = 1, golf = 0 and parking = 1, an observer would be
wrong to infer that parking is preferred to golf ; the observer
would be wrong because the switch from parking to golf is
not satisfiable.

Proposition 2. If the user tries to add a feature i to the
current query q, i.e. she applies Op1 (q, i), then wi ≥ wj for
all j ∈ idx0(q) i 6= j, unless V (q + j) = 0.

Proposition 2 says that the user will not have added a feature
whose additional utility is lower than that of another feature
also not yet in the query, unless she knows that adding the
feature with greater additional utility would result in an
unsatisfiable query. There are similar motivations to that
mentioned in the previous case for ‘playing safe’ by assuming
that the user knows which are the unsatisfiable queries.

Proposition 3. If the user tries to switch feature i to
feature j, i.e. she applies Op2 (q, i, j), then wi ≤ wj; and
wj ≥ wk for all k ∈ idx0(q) k 6= j unless V (q − i + k) = 0.

Proposition 3 says that the user will not switch a feature for
one that has inferior preference; and the feature to which the
user is switching must not have utility inferior to any other
feature not constrained in the query, unless this alternative
query is unsatisfiable.

Proposition 4. If the user tries to trade feature i for
features j and k, i.e. she applies Op3 (q, i, j, k), then wi ≤
wj + wk; and for all j′, k′ ∈ idx0(q) such that {j, k} 6=
{j′, k′}, then wj+wk ≥ wj′+wk′ unless V (q−i+j′+k′) = 0.

Finally, Proposition 4 says that the user will not discard a
feature for two features having inferior sum of preference;

and the two features added must not have sum of utility
inferior to two other features not constrained in the query,
unless this alternative query is unsatisfiable.

Note how several of these propositions assume only a lim-
ited amount of reasoning capability of the user. In fact,
if the user is more fully rational, we could deduce more.
For example, in the case of Proposition 4, we could also
deduce that the selected Op3 (q, i, j, k) is better than all the
other satisfiable Op3 (q, i, j′, k′) moves, i.e. if the user applies
Op3 (q, i, j, k), then for all i′ ∈ idx1(q) and j′, k′ ∈ idx0(q)
such that {i, j, k} 6= {i′, j′, k′}, −wi + wj + wk ≥ −wi′ +
wj′ + wk′ , unless V (q − i′ + j′ + k′) = 0.

Using the same reasoning we can also infer that a selected
Op2 move is better than or equal to all the satisfiable Op1
moves, and a selected Op3 move is better than or equal to
all the satisfiable Op1 and Op2 moves.

These are what we might infer if we attribute ever greater
rationality to the user. In this paper, we are not going to
attribute these higher levels of rationality to the user, and
hence we will infer only what is stated in Propositions 1–
4. An important observation is that it is not a problem
to our proposed methods if we assume that users are less
rational than they really are. The reason this does not pose
a problem to our proposed methods is that assuming users
are less rational than they really are will result only in us
making fewer deductions when observing their moves; it will
not result in us drawing incorrect inferences. In fact, it is
more dangerous to assume a fully rational user, who can
really take the best move, since this will cause us to draw
inferences that may be incorrect.

3. INFORMATION RECOMMENDATION

3.1 The Advisor
We now describe the help that an advisory system can

provide to the user to let her more effectively find the prod-
ucts that have maximal actual utility.

If the system could somehow know the user’s utility func-
tion then it could use a simple search procedure to identify
the product(s) with highest actual utility. But in our work,
we are assuming that the system does not know the user’s
utility function and it is not going to ask the user about fea-
ture preferences (weights). Instead, the advisor infers con-
straints on the user’s utility function by observing the user’s
moves, and adds these constraints to a user model.

In addition to telling the user the findings of the query
engine, i.e. how many products, or which products if any,
match the current query, the advisor is also capable of telling
the user about the satisfiability of related queries (especially
those that it thinks that the user is likely to try). We note
that in contrast with query relaxation, e.g., [5, 6], where the
goal is to repair an unsatisfiable query (especially in non-
conversational recommenders), our focus is on methods that
support the user in avoiding the generation of unsatisfiable
queries in a conversational setting.

Imagine for instance a user whose current query requests
hotels that have air-con and golf, and the advisor knows
that, while the user’s query is satisfiable, there are no such
hotels located in the city centre but there are some that also
have swimming pools. In this situation the system could
help the user in the search process by supplying exactly this
information: this will dissuade the user from fruitlessly try-
ing to add to her query a request for a city centre location,

68

1111

1110 1101 1011 0111

1100 1010 1001 0110 0101 0011

1000 0100 0010 0001

0000

Figure 1: Example of all queries on four Boolean
attributes; shaded queries are ones we are taking
to be unsatisfiable in this example. Op1 moves are
shown as solid lines; Op3 moves are shown as dashed
lines. Op2 moves are not allowed in this example.

and it will enable her to realise that she can satisfy a desire
for a pool. Moreover, if it is satisfiable to have air-con, golf
and a sauna but the advisor has inferred from earlier actions
that a sauna is less preferable than a pool, then it is better
to tell the user that there are no hotels with air-con and golf
in the centre but there are some that have a pool rather than
to tell her that there are no hotels with air-con and golf in
the centre but there are some that have a sauna.

Obviously the advisor could tell the user the satisfiability
of all the possible moves, but such a list would not be of
much use, as it could potentially be very long. Hence the
advisor must put in place methods to minimise the quantity
of information that is passed to the user during their inter-
action. In other words, the advisor must pass to the user
the information that has the greatest value for the user.

The information that has the greatest value is here con-
sidered to be that which minimises the total quantity of in-
formation exchanged and the interaction length, while still
finding the product(s) having maximal actual utility.

3.2 Example
In this section we illustrate with an example the typical

human-computer interaction we want to support. Figure 1
depicts all possible queries on four Boolean features, i.e. all
16 possible feature combinations. The shaded boxes repre-
sent queries we will take to be unsatisfiable in this example,
i.e. no products match those queries. The arrows represent
Op1 and Op3 editing operations. To simplify the example
and to keep it relatively concise, we are going to assume that
the query engine does not support Op2 editing operations.

Let us assume that the user has issued an initial query
q = 1100. This means that she is looking for a product
that has the first two features, and we can see that this is
satisfiable.

From this query the advisor infers that w1 ≥ w3, w2 ≥ w3,

and w2 ≥ w4, but it does not infer that w1 ≥ w4 because
switching the first and fourth features produces an unsatis-
fiable query. As we have discussed previously, the advisor
‘plays it safe’, in case the user somehow already knew that
0101 was unsatisfiable. It also cannot deduce anything about
the relationship between w1 and w2 because they have been
introduced simultaneously in the same initial query.

The advisor knows that 1110, 1101 and 1111 have a higher
utility for the user (if the weight of the added feature is non-
zero) or the same utility (if the weight of the added feature is
zero) but they are all unsatisfiable. Conversely, the advisor
is still uncertain whether 1011 and 0111 have a higher, equal
or lower utility than that of 1100, although it does know that
0111 is unsatisfiable.

In this situation, the advisor can, for instance, take a con-
servative approach and tell the user about the satisfiability
or unsatisfiability of each of the queries that can be obtained
by a single Op1 or Op3 operation applied to 1100. In this
case, it would tell the user that 1110, 1101 and 0111 are
unsatisfiable but 1011 is satisfiable.

Then there follow three possibilities. If for this user in fact
w2 < w3+w4, then the user at the next step can immediately
find the optimal solution, i.e. she can decide to edit using
Op3 and retrieve the products satisfying 1011; if for this user
in fact w2 > w3 +w4, then the user will know she is already
at an optimal solution; and if for this user w2 = w3 + w4,
then she must try the Op3 edit in case subsequent edits are
available that can increase utility. Hence in the best case she
will do zero moves and in the worst case one. Unfortunately
the advisor, at this point, cannot know whether w2 < w3 +
w4: for some users it will be true and for others it will not.

On the other hand, the advisor could tell the user only
the unsatisfiable next queries (1110, 1101 and 0111).

For the user, the same reasoning applies. If for the user
w2 < w3 + w4, then she will use Op3 to move to 1011; if
w2 > w3 + w4, she can stay in 1100; if w2 = w3 + w4, she
must try the edit to see whether it brings opportunities to
subsequently improve utility. Hence, this is a better behav-
iour for the advisor: it reveals information about only three
queries (one fewer than before), yet there is no extension of
the interaction in both the worst and best cases.

Suppose instead the advisor tells only the unsatisfiability
of the Op1 moves (i.e. that 1110 and 1101 are unsatisfiable).
Then the user may require (in the worst case) two moves,
i.e. a move to 0111 (with an Op3 move), only to learn that it
is unsatisfiable, and then the alternative move to 1011 (also
with Op3). The best case is always 0 moves.

Finally, suppose the advisor (with an even more incom-
plete strategy) were to tell of the unsatisfiability of just the
second Op1 move (i.e. that 1101 is unsatisfiable, without
mentioning the unsatisfiability of 1110). Then the user will
always try 1110 since, without the knowledge that 1110 is
unsatisfiable, it has a utility no worse than the two Op3
moves for the user. In the worst case in this scenario, the
user will need three moves (1110, 0111 and 1011) to get
the optimal query. A similar situation occurs if the system
reveals only that 1110 is unsatisfiable.

In this simple example, we have seen that there is a trade-
off between the quantity of information revealed by the ad-
visor and the length of the interaction. Moreover, we have
seen that there are actions made by the advisor that are not
minimal, in the sense that revealing less information will
result in the same interaction length.

69

3.3 User Models and Advice
Every user model can contain the facts that weights are

assumed to be non-negative and to not exceed 1: 0 ≤ wi ≤ 1.
And every user model can contain the fact that at least one
weight is non-zero:

�
wi > 0. Beyond this, the advisor will

infer the constraints that it can deduce according to Propo-
sitions 1–4. Let us denote the contents of a user model, i.e.
the set of constraints the advisor has collected at a certain
point in the interaction, by C.

We assume that, after each query submitted by the user,
the query engine tells the user whether the query is satis-
fiable or not. And, after each satisfiable query, the advisor
tells the user whether certain (related) queries that the user
has not yet tried but is likely to try would be satisfiable or
not. Note that we assume that the advisor only needs to
give advice when the user’s query is satisfiable as only in
this case can it be further extended (unsatisfiable queries
will not change the current query).

The goal is to identify, at each step of the interaction,
the queries whose (un)satisfiability the advisor should re-
port to the user such that the user will find the products
that maximise her utility function in a process with mini-
mal cost, where the cost of the process is a monotone func-
tion of the number of queries tried and the number of query
(un)satisfiabilities revealed by the advisor to the user.

Given a user model (a set of inequalities) C, we can com-
pute (using linear programming techniques) a partial order
≥C on a set of queries Q, where for each q, q′ ∈ Q, q ≥C q′

iff we can derive from C that U(q) ≥ U(q′). Let us de-
note by Best(C, Q) the set of queries that are maximal in
Q according to the partial order defined by C. We have the
following:

Proposition 5. If the current query is q and the user
model at this point is C, the next query that the user will try
is a member of Best(C, succ(q))

where succ(q) as before is the set of queries that can be
generated by modifying q with a single Op1 , Op2 or Op3
operation. This proposition says that the partial order that
the advisor builds from the user model is compatible with
the user’s utility function, and that the best move, i.e. the
one maximising the potential utility, is among those that
are reachable by Op1 , Op2 or Op3 and that are maximal
according to this partial order.

Hence, we expect the user to try a move that belongs to
Best(C, succ(q)). Actually this is a superset of the moves
that the user will consider since the information that the
system has derived from the interaction can only partially
reveal the user’s utility function. This is one reason why
the system can only deduce a partial order on the queries,
whereas the user will have a set of one or more equally good
best next actions.

We can decompose Best(C, succ(q)) according to two or-
thogonal distinctions. First, there are three types of queries
in Best(C, succ(q)), i.e. Op1 , Op2 and Op3 moves. We will
denote these by Best(C, succ1(q)), Best(C, succ2(q)) and
Best(C, succ3(q)), respectively. Second, the advisor will know
that some of the queries are satisfiable and some are un-
satisfiable. We will denote these by Best(C, succ(q))+ and
Best(C, succ(q))−, respectively.

Hence, the advisor has 3 × 2 = 6 types of information
that it can reveal, and it must decide what to tell the user
given a query history. If the advisor provides only a subset

Table 1: Three databases of hotels
Name Features Hotels Products
Marriott-NY 9 81 36
Cork 10 21 15
Trentino-10 10 4056 133

of the best next moves, then the user may still try one of
the moves that she was not told about and it may prove to
be unsatisfiable.

One rational strategy, which we call the Complete Recom-
mendation on Maxima Strategy, is to reveal either
Best(C, succ(q))−, i.e. all moves that are unsatisfiable (and
advise the user to avoid them), or Best(C, succ(q))+, i.e. all
moves that are satisfiable (and advise the user to confine
her attention to them). To minimise the amount of advice
which is given we assume this strategy involves telling the
user about the smaller of the two sets.

Another strategy, which we call the Incomplete Recom-
mendation on Maxima Strategy, is to tell the user about
Op1 moves (again choosing to tell the user either about the
satisfiability of Best(C, succ1(q))

+ or the unsatisfiability of
Best(C, succ1(q))

−, whichever is the smaller set) and only if
there is no satisfiable Op1 move to provide advice about the
Op2 and Op3 moves (again, the satisfiable queries or unsat-
isfiable queries, whichever is the smaller set). This is clearly
an incomplete strategy since there might be an Op3 move
with a higher utility gain than the Op1 moves suggested.

4. EXPERIMENTS

4.1 Strategies, Products and Users
We have evaluated five information recommendation strate-

gies in a simulation. Two of the five are the Complete and In-
complete Recommendation on Maxima Strategies described
in the previous section. We also have three ‘baseline’ strate-
gies. The first is Null Recommendation, i.e. providing no
advice at all. The other two are based on the Complete
and Incomplete Strategies but they use succ(q) in place of
Best(C, succ(q)), i.e. they form their advice from all next
possible moves, hence they generate longer advice: their ad-
vice is not confined to queries that, according to the user
model, will be favoured by the user. By comparing the two
strategies that use the maxima with the ones that use all
next moves, we can see how much shorter the advice is when
the advisor exploits a user model.

We use three separate product databases, each describing
hotels by their amenities expressed as Boolean features such
as airport shuttle, pets permitted, restaurant on-site, etc. De-
tails of the product databases are given in Table 1. Many
hotels offer the same amenities, which explains the differ-
ence between the number of (physical) hotels and, from an
amenities point of view, the number of (distinct) products.

Our evaluation uses three different types of simulated user:
optimizing, prioritizing and random. They have several things
in common. They do not try queries that they have tried
before; they only try Op1 , Op2 and Op3 moves that do
not lessen potential utility; and they take heed of all advice
given, i.e. if the advisor tells them to confine their queries
to a certain set or to avoid queries in a certain set, then
they do so. They differ in the way they select from moves

70

that remain. An optimising user chooses the best possible
move from the set, as per Axiom 2. In the event of ties
(more than one equally good best move), the user uses ran-
dom tie-breaking. A prioritising user has a preference for
Op1 moves. It will first try to use Op1 to add the most
useful feature to its current query (again with random tie-
breaking). If no satisfiable move results from adding each
most useful feature, its next moves will be to try to add each
second most preferred additional feature (with random tie-
breaking). Only when all Op1 moves have been exhausted
(in decreasing order of usefulness) will it try Op2 or Op3
moves, in descending order of potential utility gain. A ran-
dom user chooses its next move randomly.

In the experiments, we pair each of the three user types
with each of the five advisors. In pairings which include ran-
dom users with advisors that use user models, the advisor
will assume greater rationality of the user than the user actu-
ally exhibits. In such pairings, the inferences that the advi-
sor draws may be incorrect. Worse, the user model may be-
come inconsistent, at which point we take Best(C, succ(q))
to be equal to succ(q), i.e. the advice degenerates to that
which would be given with no user model at all.

4.2 Results
For each product database, we randomly generate 50 weight

vectors (where weights are randomly-chosen real numbers
to one decimal place in [0, 1]) and a satisfiable initial query
compatible with each weight vector. The use of a set of
random queries gives us fair coverage of the query space,
but it would be useful in the future to incorporate a bias
towards the kinds of queries and weight vectors that real
users exhibit.

For each user-advisor pairing, we ran 50 dialogues starting
from each of the initial queries. The results, in Table 2, show
the following, averaged over the 50 interactions:

A) The number of queries the user tries;

B) the number of queries the user tries that are successful,
i.e. satisfiable (and this is also the number of times ad-
vice is given since advice is given when the user moves
to a new query and the user moves to a new query
when a query it tries is satisfiable);

C) the total number of queries whose (un)satisfiability is
reported by the advisor during the interaction (i.e. in-
dividual items within the advice); and

D) the amount of utility, if any, by which the final query
that the user reaches falls short of the product of high-
est utility that can be reached from the initial query.

We will focus to begin with on Optimising users (Opt) and
Complete on Maxima strategies (CoM). We can clearly see
the advantage of giving advice. Compare the figures for Null
advisors with the rest. The number of queries that the user
must try on average (column (A)) is substantially reduced if
the user receives advice: from 21.24 to 4.67 (Marriott-NY);
from 37.14 to 5.55 (Cork); and from 16.12 to 6.09 (Trentino-
10). Furthermore, with Null advisors the majority of queries
the user tries are unsatisfiable (column (B)).

We can also clearly see the advantage of using a user model
to restrict the advice to the moves that we infer the user
will try next. Compare the figures for advisors that base

their advice on all next moves (CoAN) with those that com-
pute the maxima (CoM). The number of queries in the ad-
vice (column (C)) is substantially reduced when the maxima
is used: from 75.36 to 45.96 (Marriott-NY); from 96.84 to
59.02 (Cork); and from 109.20 to 69.88 (Trentino-10).

A similar story can be told for the incomplete strategies.
But, furthermore, the number of queries within the advice
given by incomplete strategies is much lower (and more rea-
sonable) than that given by corresponding complete strate-
gies. Consider, for example, the Complete and Incomplete
on Maxima strategies (CoM and IoM): from 45.96 to 5.14
(Marriott-NY); from 59.02 to 8.51 (Cork); and from 69.88
to 6.27 (Trentino-10). And this comes at only fairly modest
increases in the number of queries that the user must try:
from 4.67 to 5.98 (Marriott-NY); from 5.55 to 12.13 (Cork);
and from 6.09 to 9.36 (Trentino-10). Of course, some of
these extra queries are unsatisfiable (column (B)).

Finally, let’s look across the three types of users. Un-
surprisingly, Random users suffer longer interactions (col-
umn (A)) and may fail to find the product of highest util-
ity, although the average shortfalls in utility (column (D))
are small. But Optimising users do not gain substantially
over Prioritising users. The latter prefer Op1 moves, and
this could lead to suboptimal behaviour. But in practise
we are not seeing much of this on these datasets. It turns
out (observing detailed simulation logs) that rarely are Op2
and Op3 moves tried (either because they are not satisfiable
or because they worsen utility). This helps explain why,
at least for these hotel databases, prioritising users and in-
complete strategies fare no worse than optimising users and
complete strategies.

We might conclude that the Incomplete on Maxima strat-
egy strikes the best balance: interactions are not much longer
than interactions with the corresponding Complete strategy,
and the amount of advice it gives is much lower.

5. CONCLUSIONS AND FUTURE WORK
We have described information recommendation, a process

by which an advisor observes the actions of the user of,
for example, a conversational product recommender system;
builds a user model, in this case, by inferring constraints
on the user’s utility function; and then gives advice about
actions it thinks the user is likely to try. We have given a
detailed formulation of this in the case where products and
queries are described by sets of Boolean features.

Our experimental results show that information recom-
mendation can dramatically reduce interaction length and
that the length of the advice given is much shorter when
the advice is constrained by the user model than when it
is not. For our hotel data, an incomplete advice strategy
strikes a good balance between amount of advice and length
of interaction.

Efficiency is an issue that requires further investigation.
The cost of finding which successor queries are unsatisfiable
is polynomial. But the major computational cost in our
approach is, given a query q, deciding whether, according
to the user model that we have built so far, each successor
query q′ has larger potential utility than each other successor
q′′. We are currently using linear programming techniques
in deciding this, but we plan to compare with alternative
techniques such as constraint satisfaction.

There remain many other avenues to explore, including:
inferring richer user models and further considering how to

71

handle the case where users are less rational than the advi-
sor assumes; allowing user models to be carried over from
one dialogue to another, or from one user to another, with
the risk that they incorrectly characterise the user’s prefer-
ences; and testing the ideas with real users. We also need
to extend the approach to product databases where features
are multi-valued. Formally, this can be done by considering
each feature-value to be a new Boolean feature, and then
applying the methods we have described in this paper. In
some domains, this might even be a practicable approach;
in other domains, it will result in too many Boolean fea-
tures and unreasonably long advice. For these domains, we
may need to develop a more concise formalism, and ways of
generalising the advice to make it shorter.

6. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineering,
17(6):734–749, 2005.

[2] S. S. Anand and B. Mobasher. Intelligent techniques
for web personalization. In S. S. Anand and
B. Mobasher, editors, Intelligent Techniques for Web
Personalization, pages 1–36. Springer, 2005.

[3] D. Bridge, M. Göker, L. McGinty, and B. Smyth.
Case-based recommender systems. The Knowledge
Engineering review, 20(3):315–320, 2006.

[4] G. Fisher. User modeling in human-computer
interaction. User Modeling and User-Adapted
Interaction, 11:65–86, 2001.

[5] D. McSherry. Retrieval failure and recovery in
recommender systems. Artificial Intelligence Review,
24(3-4):319–338, 2005.

[6] N. Mirzadeh, F. Ricci, and M. Bansal. Supporting
user query relaxation in a recommender system. In
Procs. of the 5th International Conference on
Electronic Commerce and Web Technologies, pages
31–40. Springer, 2004.

[7] P. Pu, P. Viappiani, and B. Faltings. Increasing user
decision accuracy using suggestions. In Procs. of the
SIGCHI conference on Human Factors in computing
systems, pages 121–130. ACM Press, 2006.

[8] J. Reilly, K. McCarthy, L. McGinty, and B. Smyth.
Dynamic critiquing. In Procs. of the 7th European
Conference on Case-Based Reasoning, pages 763–777.
Springer, 2004.

[9] F. Ricci, D. Cavada, N. Mirzadeh, and A. Venturini.
Case-based travel recommendations. In D. R.
Fesenmaier et al., editors, Destination
Recommendation Systems: Behavioural Foundations
and Applications, pages 67–93. CABI, 2006.

[10] S. Schmitt. simVar : A similarity-influenced question
selection criterion for e-sales dialogs. Artificial
Intelligence Review, 18:195–221, 2002.

[11] C. A. Thompson, M. Göker, and P. Langley. A
personalized system for conversational
recommendations. Journal of Artificial Intelligence
Research, 21:393–428, 2004.

Table 2: Results: averages for 50 dialogues between
different users (Opt = Optimising; Pri = Prioritis-
ing; Rnd = Random) and different advisors (Null =
no advisor; CoM = Complete on Maxima; IoM =
Incomplete on Maxima; CoAN = Complete on All
Next; IoAN = Incomplete on All Next)

D
a
ta

b
a
se

U
se

r

A
d
v
is
o
r

Q
u
er

ie
s

tr
ie

d
(A

)

S
u
cc

es
sf

u
l

q
u
er

ie
s

(B
)

Q
u
er

ie
s

in
a
d
v
ic

e
(C

)

U
ti
li
ty

sh
o
rt

fa
ll

(D
)

Opt Null 21.24 5.16 0.00 0.00
Opt CoM 4.67 4.67 45.96 0.00
Opt IoM 5.98 4.70 5.14 0.00
Opt CoAN 5.16 5.16 75.36 0.00
Opt IoAN 6.42 5.16 14.12 0.00
Pri Null 20.42 5.14 0.00 0.01
Pri CoM 4.70 4.70 46.80 0.01
Pri IoM 4.70 4.70 5.00 0.01
Pri CoAN 5.12 5.12 75.08 0.01
Pri IoAN 5.14 5.14 13.64 0.01
Rnd Null 33.34 7.94 0.00 0.00
Rnd CoM 3.60 3.60 36.10 0.32
Rnd IoM 7.50 4.14 4.59 0.28
Rnd CoAN 7.76 7.76 110.36 0.01

M
a
rr

io
tt

-N
Y

Rnd IoAN 10.90 8.08 29.08 0.00
Opt Null 37.14 5.72 0.00 0.00
Opt CoM 5.55 5.55 59.02 0.00
Opt IoM 12.13 5.64 8.51 0.00
Opt CoAN 5.72 5.72 96.84 0.00
Opt IoAN 12.20 5.72 10.00 0.00
Pri Null 35.20 5.66 0.00 0.02
Pri CoM 5.66 5.66 60.50 0.02
Pri IoM 5.66 5.66 8.88 0.02
Pri CoAN 5.66 5.66 94.36 0.02
Pri IoAN 5.66 5.66 11.12 0.02
Rnd Null 49.48 7.88 0.00 0.04
Rnd CoM 4.42 4.42 40.68 0.02
Rnd IoM 13.36 4.50 7.21 0.04
Rnd CoAN 7.80 7.80 139.02 0.02

C
o
rk

Rnd IoAN 27.76 7.46 12.64 0.02
Opt Null 16.12 6.46 0.00 0.00
Opt CoM 6.09 6.09 69.88 0.00
Opt IoM 9.36 6.27 6.27 0.00
Opt CoAN 6.42 6.42 109.20 0.00
Opt IoAN 9.60 6.44 9.68 0.00
Pri Null 14.66 6.44 0.00 0.00
Pri CoM 6.32 6.32 71.42 0.01
Pri IoM 6.32 6.32 6.46 0.01
Pri CoAN 6.44 6.44 108.38 0.00
Pri IoAN 6.44 6.44 10.08 0.00
Rnd Null 21.10 8.82 0.00 0.00
Rnd CoM 4.21 4.21 49.64 0.14
Rnd IoM 8.83 4.83 5.25 0.17
Rnd CoAN 8.68 8.68 151.14 0.00

T
re

n
ti
n
o
-1

0

Rnd IoAN 13.92 8.84 13.28 0.00

72

