
Supporting Programmable Autoscaling Rules
for Containers and Virtual Machines on Clouds

József Kovács

Received: 19 November 2018 /Accepted: 14 August 2019
The Author(s) 2019

Abstract With the increasing utilization of cloud

computing and container technologies, orchestra-

tion is becoming an important area on both cloud

and container levels. Beyond resource allocation,

deployment and configuration, scaling is a key

functionality in orchestration in terms of policy,

description and flexibility. This paper presents an

approach where the aim is to provide a high

degree of flexibility in terms of available monitor-

ing metrics and in terms of the definition of elas-

ticity rules to implement practically any possible

business logic for a given application. The aim is

to provide a general interface for supporting pro-

grammable scaling policies utilizing monitoring

metrics originating from infrastructure, application

or any external components. The paper introduces

a component, called Policy Keeper performing the

auto-scaling based on user-defined rules, details

how this component is operating in the auto-

scaling framework, called MiCADO and demon-

strates a deadline-based scaling use case.

Keywords Cloud . Virtual machine . Container .

Docker . Autoscaling . Distributedmonitoring

1 Introduction

Nowadays, cloud [1] computing tends to be the de-facto

standard for building flexible, easily maintainable, scal-

able infrastructure. The usage of commercial and private

clouds [2] however requires more and more intelligent

orchestration technologies to utilize the elasticity [3] of

the clouds and to support the requirements of the appli-

cations. As the number of ported applications is grow-

ing, orchestration technologies are facing with new

challenges. One of the key challenges of the orchestra-

tion technologies and tools is how tominimize the usage

of resources while satisfying the capacity requirements

of the application. On commercial clouds this feature

may save costs for the user while on private clouds this

feature may save costs for the operators of the cloud.

The most important functionalities supported by

the orchestration technologies are resource

allocation/ deallocation, application deployment/

undeployment, configuration/ reconfiguration, mon-

itoring, failure detection/ handling/ healing and

resizing/ scaling. In order to save costs, orchestra-

tion must focus on efficient resource allocation and

scaling. Since for each application efficiency can

be reached in a different way, it is hard to imple-

ment them with the same scaling mechanism.

Therefore, an approach is needed where the goal

is to provide maximum flexibility in performing

decision on scaling. The motivation behind flexible

decision making is coming from the users and

operators of private and commercial clouds our

lab is in connection with.

J Grid Computing (2019) 17:813 829

https://doi.org/10.1007/s10723-019-09488-w

J. Kovács (*)

Institute for Computer Science and Control, Hungarian Academy

of Sciences, Kende u. 13-17, Budapest 1111, Hungary

e-mail: jozsef.kovacs@sztaki.mta.hu

–

/ Published online: 30 August 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-019-09488-w&domain=pdf
http://orcid.org/0000-0002-7293-3016

A nation level community cloud in Hungary is the

MTA Cloud [4] that is financed by the Hungarian Acad-

emy of Sciences in order to serve all the scientists of the

academy. This cloud is built as an open alliance of cloud

sites. Currently two sites are set up by two academic

institutes (MTA SZTAKI and MTA Wigner Data Cen-

ter) but the open framework enables other institutes to

join with their own clouds. The only expectation is that

the joining partner must use Openstack as the IaaS [2]

cloud software stack. The motivation behind the selec-

tion was to use an on-premise cloud software with

strong ecosystem. Having the same cloud software on

each site increases compatibility, integrity and makes

migration much easier for the users. Since the number of

scientific projects, users of MTA Cloud [5] and the

quantity of resource demand are increasing much faster

than the capacity of the cloud, a kind of over-

commitment is applied on resource allocation i.e. the

aggregated quota of the users is greater than the capacity

of the cloud. Since most of the users are not familiar

with orchestration, it is more and more important for the

operations team to increase the efficiency of resource

utilization by providing and disseminating automatic

scaling solutions for the cloud users.

Scalability is the central issue to explore in the EU

H2020 COLA [6] project where more than 20 different

industrial applications are targeted to adapt for various

cloud systems in a highly scalable way. The clouds and

interfaces selected to be supported in the project include

EC2 (for AWS and Opennebula), Nova (for Openstack),

Cloudsigma, Azure and CloudBroker. The industrial ap-

plications ported to these clouds are significantly different

in terms of their nature (web services, job execution), their

requirements (memory, cpu or network load), and their

technologies (container and/or virtual machine). The aim

in this project is to design an orchestration tool to provide

scaling solution for a wide variety of requirements.

To summarize the motivation described in this paper,

we need a scaling solution which is able to orchestrate

both virtual machines and containers while the two level

scaling can be independent or cooperative. Even more

virtual machine level scaling or container scaling may

be utilized alone since virtual machines represent re-

sources while containers represent applications in this

approach. The motivation behind scaling at both levels

is to perform application-level (container) scaling to-

gether with automating resource (virtual machine) allo-

cation which perfectly fits to the requirements of the EU

H2020 COLA project.

Due to the wide variety of aspects there should be no

limitation regarding the metrics forming the base of a

scaling decision. Practically, we need the possibility to

form a scaling logic based on the value of any monitor-

ing metrics regardless its origin. The monitoring metrics

forming the inputs of the scaling decision must be able

to arrive from any location e.g. from external source not

belonging to the resources and infrastructure executing

the application. Please, note that most of the scaling

solutions have this limitation. Finally, the scaling mech-

anism should support more general expression based

scaling than the currently wide-spreaded trigger and

threshold based scaling mechanisms.

This paper is organized as follows. The next

section overviews several related works which

show similarities to the developments described

in this paper. Section 3 presents the concept and

design principles aims to introduce a scaling solu-

tion that is general in terms of scaling logic spec-

ification and in terms of scaling metrics. The

specification of scaling logic is described in

Section 4 while section 5 details how the scaling

policies are realized in the component called Pol-

icy Keeper. Then the integration of the Policy

Keeper into MiCADO (cloud and container orches-

trator in COLA) is shown in Section 6 while its

supported scaling scenarios are summarized in

Section 7. Finally, an example scaling policy deal-

ing with job deadline is presented in Section 8

before the conclusion outlined in Section 9.

2 Related Work

There are numerous solutions for scaling either on cloud

or on container levels, however it is hard to mention

tools which provides scaling functionality on both levels

in a combined way.

One of the most used de-facto standard scaling ser-

vice is the one provided by AWS Auto Scaling [7]. In

this environment triggers determine how to act over an

application for which CPU utilization, network usage or

disk operation related metrics are beyond a predefined

threshold. There are a few predefined scaling policies

(e.g. “target tracking”, “step”, “simple”,” sched-

uled”,…) to ease the utilization of the scaling function-

ality, however new application business strategies be-

yond the provided policies which do not fit into the

trigger based scaling is not supported.

J. Kovács814

Another work worth mentioning here is RightScale

[8] which is realized as a broker between cloud pro-

viders and users by providing unified interfaces. Its

autoscaling solution is based on triggers and thresholds.

They support many different and popular scaling related

metrics like for example Mysql active connections and

http server requests. However, these scaling indicators

may not be able to support all types of application

business strategy.

The work described in [9] realizes a programmable

framework, where the scaling logic can be implemented

inside the application. The predefined primitives for

scaling are implemented as a programming library.

The elasticity controller becomes part of the application

which provides high-flexibility for implementing busi-

ness logic for scaling for the sake of (re)programming

the application code.

One of the most widespread environment pro-

viding scaling at virtual machine and at container

level is Kubernetes [10] which was originally a

Google product and now is hosted by Cloud Na-

tive Computing Foundation [11]. The Kubernetes

horizontal pod autoscaler supports reactive

threshold-based rules for CPU utilization metric

and with its plugins supported metrics can be

extended. The user specifies thresholds for the

values of metrics and actions to be taken in order

to change the replica number. For virtual machine

level scaling Kubernetes provides Cluster scaling.

Fixed algorithm is provided where parameters may

slightly influence the basic operation. Whenever

pods are suffering from insufficient resources, fur-

ther worker nodes are instantiated. Supported

clouds are GCE, AWS and Azure.

Cloudify [12] is an open-source model-driven

cloud native orchestration platform. It operates

based on an application description following the

TOSCA [13] de-facto modeling language. The user

describes the resources, applications, services and

their deployment together with their linked scaling

rules. Scaling is realized by a built-in workflow

(like all other application-related operations install/

start/stop/heal etc. are implemented). For scaling,

upper and lower thresholds are introduced which

can be parameterized (metrics, plugins for moni-

toring) and actions (to increase/decrease the num-

ber of instances) can be associated to be taken

upon reached thresholds. The most outstanding

features of Cloudify are the high-level description

language and cloud independence. Scaling is defi-

nitely supported, however with a simple trigger-

threshold mechanism.

The approach which is hard to find among the related

works is to provide a general interface for implementing

flexible scaling decisions where scaling can be realized

in a combined way for virtual machines and containers.

3 Concept and Design Principles

Policy Keeper is intended to perform a decision on

scaling by calculating the optimal number of instances

needed to be created. The scaling decisionmust bemade

on two levels:

1. Virtual machine level: Scaling up or down the

number of virtual machines (on which Docker

Swarm [14] cluster is realized and the container

application is running) realizes adding or removing

resources from the cluster. Whenever virtual ma-

chine level upscaling happens, a new Docker node

is attached and the Docker cluster grows. Down-

scaling at virtual machine level means removing

Docker nodes from the Docker Swarm cluster i.e.

the Docker cluster loses resource.

2 . Container level : I n Docke r Swa rm a

(micro)service is realized by containers run-

ning on the nodes of Docker Swarm in a

distributed way. In order to add more re-

sources to a particular microservice, the num-

ber of instances of the containers (realizing

the Docker Service) must be increased. Dock-

er Swarm makes sure the containers are exe-

cuted in parallel on the nodes of the cluster

and the user requests arriving to the service is

distributed among the containers for process-

ing. Scaling up and down the number of con-

tainers of a given service increases the paral-

lelism of the request handling at containers

level i.e. increases the resources associated to

the given service.

To implement scaling, there are control loops realized

on virtual machine and container levels. Control loops

are depicted in Fig. 1.

The virtual machines (i.e. nodes) are represented

by boxes entitled Node1 and Node2. First, infor-

mation is collected on the nodes by the monitoring

Supporting Programmable Autoscaling Rules for Containers and Virtual Machines on Clouds 815

system realized by Prometheus [15]. As a decision

maker service, the Policy Keeper component holds

the list of monitored parameters (extracted from

Prometheus) and the scaling rules describing the

decision on scaling. Once a decision is made, a

lightweight cloud orchestration tool realized by

Occopus [16] performs the scaling of the nodes,

i.e. launches or destroys virtual machines and at-

taches them as workers to the Docker Swarm

cluster. This mechanism realizes the virtual ma-

chine level control loop.

The containers labelled by Cont A, B, C, D are

forming a container infrastructure and realizing

services for the users. Various types of parameters

are monitored and collected by Prometheus which

can be used for decision making. Policy Keeper

holds the scaling rules for each service and per-

forms the decision in function of the value of the

incoming parameters. The decision of container

scaling is finally realized by Docker Swarm.

The Policy Keeper decisions are based on the

inputs provided by the monitoring system realized

by Prometheus, while scaling is implemented by

Occopus (on cloud level) and Swarm (on container

level). To complete the control loop either at the

level of nodes or at the level of containers, design

decision must be made on the following:

& what are the parameters to be monitored on the

observed object (node or service);

& what is the scaling rule which provides a decision

based on the actual value of the monitoring

parameters.

3.1 Major Design Principles

To avoid limiting the monitoring parameters, the

first design principle is to let the monitoring pa-

rameters be defined dynamically for each submit-

ted application. This must be true for parameters

not supported by the current monitoring setup. The

key principle is to make the monitoring system

dynamically extendable in terms of data sources

and monitoring parameters.

To make the scaling rule (which defines the

decision making algorithm in Policy Keeper in

terms of scaling) as flexible as possible, the scal-

ing rule is considered as an input. It is a more

flexible solution than predefining a fixed algorithm

or providing selection possibility from a predefined

list of scaling rules. The key design principle is to

make the scaling rule specifiable by the user in a

flexible way.

Node1 Node2

Swarm

Prometheus

Cont A

Policy

Keeper Collect value of

the monitored

parameters

Cont C
Scale

container(s)

Monitoring

parameters on

nodes and

containers

Update number of

Container instances

Policy descrip�on

- Monitored

parameters

- Rules

Cont D

Occopus

Scale

node(s)

Update number of

Node instances

C
o

n
ta

in
e

r

in
fr

a
st

ru
ct

u
re Cont B

Fig. 1 Control loops to scale virtual machines and containers

J. Kovács816

3.2 Monitoring Parameters

Most typical scaling rules require performance-

related parameters of the executing nodes at virtual

machine level. Monitoring the cpu-, memory- and

network load of the nodes provides most of the

parameters for a typical scaling rule. However,

there are situations where an application (realized

by a container infrastructure) requires scaling

based on parameters that are not on the list of

predefined monitored parameters. For example,

the application may require significant disk capac-

ity on the node to cache some data, or may re-

quire other types of resources inside the virtual

machine that are not among the list of predefined

monitored parameters to ensure proper scaling.

The main goal of Policy Keeper is to provide

maximum flexibility in terms of monitored param-

eters. To do that, Policy Keeper aims to support

dynamically configured list of monitored parame-

ters instead of a selection from already configured

parameters. To do that, user is allowed to dynam-

ically specify new parameters that will be moni-

tored, even if the current monitoring setup is not

able to gather the value of these new parameters.

This dynamic extension of the monitoring system

is supported by Prometheus through its query lan-

guage, query API and dynamically configurable

exporters [17] realizing the data extraction.

Scaling rules on the level of application may

require the handling of more complex scenarios.

These scenarios may rely on monitoring parame-

ters which are not predefined and provided by the

default built-in monitoring system. Moreover, if an

application scaling rule requires some information

which exists inside the application’s internal state,

a special data collection component is required to

be attached to the monitoring system as data

source.

Dynamic extension of exporters provides further

advantages in this autoscaling mechanism. The

most widespread autoscaling systems do not focus

on collecting monitoring information from external

systems which are not part of the application or of

the resources and of the infrastructure associated to

it. For example, when autoscaling depends on a

parameter that is held by a remote server, design-

ing a scaling logic is not so trivial without the

support for monitoring external components. Just

think of processing emails coming from an exter-

nal email server where the speed of processing

may depend on the number of emails waiting in

the queue at the moment. In this situation the

email server is not part of the infrastructure exe-

cuting the application, but we need to monitor it

and feed the value to the scaling logic.

3.3 Scaling Rules

Scaling rules are intended to calculate the required

number of replicas of containers for a certain

service and/or the required number of instances

of virtual machines. A scaling rule should express

the direction (up/down) and quantity (instance

number) of scaling. A scaling rule may be

reutilized by different applications provided that

the application characteristics are similar and the

business policy needed by the operator/user of

Policy Keeper is similar. A complex scaling rule

has the task of coordinating the resource capacity

available for an application (virtual machine level

scaling) and the resource usage by the application

(container level scaling). For both, the aim of the

Policy Keeper is to provide maximum flexibility,

configurability. The complexity of the scaling

rules, and the variety of user requirements may

easily result in insufficient support from scaling

rules in case Policy Keeper tries to provide a

predefined set of scaling rules.

Using predefined scaling rules may perfectly

support some groups of applications. However,

the variety of requirements will always result in

more complex rules to be implemented. To support

scaling rules and policies for diversity of applica-

tions and requirements, Policy Keeper supports

scaling rules to be defined as user inputs. Han-

dling the scaling rules as inputs provides maxi-

mum flexibility for the user and removes limita-

tions in relation to the supported types of applica-

tions and scaling logic.

The scaling rule for the Policy Keeper must be

an expression that can be automatically evaluated

with the monitoring parameters as input, and the

output of the evaluation is the decision on scaling

i.e. the number of instances. To give the user as

much freedom as possible, the scaling rule should

be able to formalize arithmetic, logic and control

expressions.

Supporting Programmable Autoscaling Rules for Containers and Virtual Machines on Clouds 817

In Policy Keeper, the scaling policy contains the

list of monitoring parameters together with their

definition and the scaling rules referring to the

parameters. The policy is described in YAML

[18] and the selected language for expressing the

scaling rule is Python. The simplicity of the lan-

guage and the easy evaluation resulted in introduc-

ing the support of Python language in the scaling

rule definition.

3.4 Modularity of the Environment

Docker Swarm, Occopus and Prometheus have

been mentioned during the introduction of the

concept as selected tools for realizing the contain-

er execution framework, the cloud orchestrator

and monitoring services. One of the advantages

of this concept is the support for modularity ap-

proach, since any of the mentioned tools can be

replaced. For example, Occopus can be replaced

by any other cloud orchestrator tools like

Terraform [19], while Kubernetes can be an alter-

native for Docker Swarm. The necessary features

for cloud and container orchestrators are deploy-

ment and scaling. In case of monitoring systems

Policy Keeper requires an API towards which

expressions can be sent for evaluating monitoring

metrics and the possibility to dynamically add

new data sources to the monitoring network.

4 Policy Definition

The Policy Keeper component takes a policy de-

scription as input for handling the monitoring

sources (Prometheus exporters), the monitoring

queries (Prometheus expressions), the monitoring

alerts (Prometheus alerts) and the scaling rules

(decision making in Python). The policy descrip-

tion is structured to address sections for each of

these topics. Policy description uses YAML syntax

and has the following structure:

J. Kovács818

The variable called is required to identify

the Docker stack to be manipulated through Docker

Swarm. Under the section named , all Prome-

theus query and alert related settings can be specified.

The section called contains the scaling

related specification, both for i.e. to scale at

virtual machine level and for Docker i.e.

to scale at container level. A more detailed description of

the policy, will be provided in the next sections.

4.1 Data Sources

Dynamic attachment of an external exporter can be

requested under the ‘source’ subsection by adding a list

itemwith the ip address and port number of the exporter.

The following YAML structure shows an example:

E a c h i t e m f o u n d u n d e r t h e

subsection is configured

under Prometheus which starts collecting informa-

tion provided/exported by the exporters. Once

done, the values of the parameters provided by

the exporters become available as input for a query

expression.

4.2 Metrics

To utilize one of the exporters i.e. to query the value of a

metric collected by the newly configured exporter, a

Prometheus query expression must be defined. Prome-

theus queries must be listed under the

subsection under the section of scalability

policy. An example is shown below:

I n t h i s e x amp l e , two v a r i a b l e s c a l l e d

‘REMAININGTIME’ and ‘ITEMS’ have been defined

with their corresponding Prometheus query expressions.

Each time the Policy Keeper instructs Prometheus to

evaluate the queries, the returned value is associated to

the variable name and can be referred in the scaling rule.

4.3 Constants

As it can be seen in the previous example, for

variable, a predefined constant

has been referred. Each referred constant, specified un-

der the , subsection is replaced by its

associated value. The following YAML structure shows

an example:

Referring a constant, Jinja2 [20] type syntax (i.e. using

double brackets around the name of the constant) must be

used. Here is an example to refer to the value of a constant:

4.4 Alerts

Prometheus supports alerting mechanism. Alerts can be

considered as notifications over events which are impor-

tant in relation to scaling. For example, an event which

describes that a certain service became overloaded can be

configured in order to trigger an up-scaling procedure

reducing the load on the actual containers.

To utilize the alerting system of Prometheus, alerts can

be defined in the Policy Keeper scaling policy description

under the subsection of with a list of

d i c t i o n a r y o f t h r e e p i e c e s o f k e y - v a l u e

() pairs. The fol-

lowing YAML structure shows an example (together with

constants to make it clear) where an alert is configured to

fire whenever the average cpu usage for all the containers

belonging to the given service is above a certain threshold

for at least 30 s.

Supporting Programmable Autoscaling Rules for Containers and Virtual Machines on Clouds 819

A named alert (‘alert’) is a logical expression (‘expr’)

which is evaluated by Prometheus and the alert is fired

when the expression remains “True” for a period of time

defined by the third key (‘for’).

In case of alert triggering event the value “true”

will be associated to the variable defined in sec-

tion “alert”. Similarly to the queries expression,

the alert definition may also refer to constants

included in {{}} brackets. To check if an alert is

firing, the scaling rule simply refers to the name

of the alert as a Boolean variable. The following

YAML code shows an example:

4.5 Scaling Rules

A scaling rule in the policy description expresses

the decision on scaling i.e. it is realized by a code

snippet. A scaling rule must be defined for nodes

(i.e. to scale at virtual machine level) and for

services (i.e. to scale at container level). The fol-

lowing YAML code shows the structure of the

scaling section inside the policy description:

Policy Keeper supports the specification of the

scaling rule by a Python expression under the

keyword. The Python expression

mus t b e f o rma l i z ed w i t h t h e f o l l ow ing

conditions:

& Each constant defined under the ‘constants’ section

can be referred; its value is the one defined by the

user

& Each variable defined under the ‘queries’ sec-

tion can be referred; its value is the result

returned by Prometheus in response to the que-

ry string

& Each alert name defined under the ‘alerts’ sec-

tion can be referred, its value is a logical

‘True’ in case the alert is firing, ‘False’

otherwise

& Expression must follow the syntax of the Python

language

& Expression can be multiline

& The following predefined variables can be referred;

their values are defined and updated by Policy

Keeper:

… m_nodes: Python list of nodes belonging to

the Docker Swarm cluster.

J. Kovács820

… m_node_count: the target number of nodes.

… m_container_count: the target number of

containers for the service the evaluation be-

longs to.

…m_time_since_node_count_changed: time

in seconds elapsed since the number of nodes

has changed

& In node level scaling rule, the name of the

variable to be set is ‘m_node_count’; as an

effect the number stored in this variable will

be set as target instance number for the virtual

machines.

& In container level scaling rule, the name of the

variable to be set is ‘m_container_count’; as an

effect the number stored in this variable will be

set as target instance number for the given

container service.

The next example shows a YAML embedded Py-

thon code to scale up and down based on the events

‘service_overloaded’ and ‘service_underloaded’ can

be done simply as shown in the next YAML code:

The scaling rule (specified under the

keyword) is evaluated periodically. Before each evalua-

tion, the values of the variables and alerts are updated

based on Prometheus queries. The Python expression is

expected to update the necessary variables

(‘m_container_count’ in this case) to express the need

for scaling.

When the expression is evaluated and the target

number of containers or nodes are calculated, each

calculated values are limited between and

values defined for the particular node or

container. As a consequence, Policy Keeper always

keeps the target number between the minimum and

maximum regardless of the value returned by the

scaling expression.

5 Internal Operation

Policy Keeper implements the scalability decision ser-

vice by monitoring, evaluating and instructing. The

policy keeping functionality has been developed from

scratch in Python using Flask [21] for implementing the

service endpoint.

The Flask based Python code is running in a contain-

er and communicates to Prometheus (for evaluating

queries and alerts), to Occopus to realize node scaling

and to Docker to realize Docker service scaling.

The user-defined input for Policy Keeper is a YAML-

based description specified in Section 4. The internal

operation of Policy Keeper is illustrated in Fig. 2. The

following paragraphs details the internal operation.

The operation of Policy Keeper starts with the invo-

cation of the start method of its RESTAPI (Step1 in Fig.

2). The parameter is a scaling policy description in

which Policy Keeper first resolves the text where refer-

ences are used. At this step Jinja2 is used to resolve

variable references.

The next phase (Step2 in Fig. 2) configures Prome-

theus. Configuration involves the registration of the

user-defined exporters through the configuration file of

Prometheus. The Prometheus configuration file written

in YAML contains a section called “scrape_config”

specifying a set of monitoring data exporters (called

targets) from which data should be scraped from. For

each scrape target, a job name (“job_name” attribute)

must be specified. Policy Keeper registers with its own

name:

There are several parameters (e.g. “scrape_interval”)

which are optional and can be fine-tuned in each scrape

job definition. The subsection named “static_configs”

contains the “targets” keyword, which is a list of end-

points for the Prometheus exporters. To configure Pro-

metheus to scrape i.e. to collect metric information from

the exporters, endpoint values must be inserted into the

list specified by the “targets” keyword.

In case the source is an external exporter (not

running under Docker Swarm autoscaled by Policy

Keeper) the configuration finishes with the inser-

tion of the endpoints. However, for internal

Supporting Programmable Autoscaling Rules for Containers and Virtual Machines on Clouds 821

exporters, Policy Keeper instructs Docker to let the

Prometheus service attach to the (Docker) network

of the exporter service, otherwise Prometheus

would not reach the internal exporter. The next

step, is the generation of the rule files based on

the alert definition specified in the policy file. At

the end of this phase, Prometheus is notified to

reload its configuration i.e. to activate the changes.

At this point, all preparation has been done, the

periodic maintenance (evaluation and scaling) cycle

can start. Each cycle starts with the node maintenance

followed by the container maintenance. Predefined time

separates consecutive cycles.

Node maintenance (Step3 in Fig. 2) starts with

collecting all the inputs necessary to evaluate a scaling

rule (specified by the policy). The first step is to evaluate

the variables defined in the “queries” section of the

policy. For each item a Prometheus query expression is

defined which is sent to Prometheus for evaluation.

When all variables are evaluated the calculation

Fig. 2 Internal high-level operation of Policy Keeper

J. Kovács822

continues with collecting the state of alerts if any has

been specified.

When an alert is fired the Policy Keeper is notified by

Prometheus through a special extension of Prometheus

called Alert Manager. These notifications are registered

inside the Policy Keeper and evaluated later when the

status of alerts are referred by the scaling rules. For this

purpose, a Boolean variable will be generated and asso-

ciated for each alert (see Section 4.4).

The final step in collecting inputs for the evaluation is

the update of values of the built-in variables (specified in

Section 4.5).

Evaluation of the scaling rule for the node means the

execution of the Python code specified in the scaling

policy specified in Section 4.5. The evaluation is done

by a separate module in Policy Keeper. The result of the

evaluation is the required number of instances to scale

the nodes to. The final step is to notify Occopus about

the scaling decision and set the number of Docker

worker nodes accordingly.

The next stage of the operation is the maintenance of

the Docker Services (Step4 in Fig. 2). The procedure

described in details through the following paragraphs is

performed for each individual Docker Service specified

in the scaling policy. Practically, it has the same pattern

as a for the node maintenance, since the same steps are

performed for the Docker Service.

Scaling a Docker Service starts with the collec-

tion of respecting inputs to evaluate the scaling

rule including the evaluation of the queries by

Prometheus, reading the status of the alerts and

updating the internal variables. Following the pat-

tern drawn by the node maintenance the scaling

rule for the Docker Service will be evaluated and

the outcome of the evaluation may instruct the

Docker Swarm to scale the Docker Service to the

calculated number of replicas.

When the Policy Keeper is instructed to stop

the maintenance (Step5 in Fig. 2) maintenance

loop (Step3 and Step4 in Fig. 2) terminates. As

a consequence, Policy Keeper rolls back all the

changes made in Step2, i.e. removes changes

from the configuration file of Prometheus, de-

taches Prometheus from any network it has been

attached to, removes rule files containing the

alerts and notifies Prometheus to reinitialize its

(original) configuration. Finally, Policy Keeper

becomes inactive and waits for further instruc-

tions through its REST API.

6 Integration with MiCADO

The overall architecture of MiCADO [22, 23] has been

initially designed by the COLA EU project [6]. The

main components are Prometheus for monitoring,

Docker Swarm for container orchestration, Occopus

for virtual machine orchestration, Submitter to handle

TOSCA-based descriptions and finally the Policy Keep-

er to perform decision on scaling. This section focuses

on the implementation of Policy Keeper and the sur-

rounding components connected to it. A detailed archi-

tecture of the Policy Keeper and its environment can be

seen in Fig. 3.

MiCADO integrates Prometheus as a monitoring tool

on the master node and has two exporters running on

each worker node to collect information on the node and

on the containers running on a given node. With the

support of these two built-in exporters (node exporter

[24] and cadvisor [25]) a long list of parameters

(metrics) can be monitored and queried from

Prometheus.

To monitor a parameter that is not supported

either by the node exporter or by the cAdvisor,

Policy Keeper provides a mechanism to attach (i.e.

register) new user-defined exporters dynamically.

By defining the location of a new exporter, Policy

Keeper can configure Prometheus to collect met-

rics from a user-defined exporter. The new export-

er can be either executed by MiCADO (internal)

or can be executed outside and independently from

MiCADO (external). Deployment of an exporter is

not performed by the Policy Keeper. Once an

exporter is attached, its metrics become available

in Prometheus. Policy Keeper uses the query in-

terface of Prometheus to collect the values of the

parameters originating from the exporters.

Policy Keeper also supports alerting with the

help of Prometheus. When the scaling policy con-

tains definition of alerts, they are registered in

Prometheus to be maintained. Alert manager is a

component part of the Prometheus software pack-

age and handles alerts sent by Prometheus. Alert

manager organizes the alerts and notifies Policy

Keeper through its REST interface when an alert

fires. Upon scaling decision Docker Swarm and

Occopus realizes creation or removal of instances

if necessary.

The overall flow of operation focusing on a per-

formed scaling event is as follows (see Fig. 3):

Supporting Programmable Autoscaling Rules for Containers and Virtual Machines on Clouds 823

& The submitter receives a (TOSCA-based) descrip-

tion of the scaling policy as part of the overall

(TOSCA) description of the container infrastructure

(Step 1). Please, note that TOSCA policies and the

submitter component is out of scope of this paper.

& The submitter uses its Policy Keeper adaptor to

convert the TOSCA based scaling policy format to

the native policy format (see Section 4) of the Policy

Keeper. After the conversion, the policy is sent to

the Policy Keeper through its REST interface for

elaboration (Step 2).

& In the next step, the Policy Keeper registers the

exporters – specified in the policy – with Prome-

theus (Step 3).

& Prometheus immediately starts pulling the metrics

data from the exporters regardless they are built-in

(Step 4a), user-defined internal (Step 4b) or user-

defined external (Step 4c).

& In case the policy contains definition of alerts, Pol-

icy Keeper registers them with Prometheus as well

(Step 5).

& At this point, Prometheus is ready to deliver metric

values from its exporters. Policy Keeper periodically

issues queries towards Prometheus to update the

value of the variables (referred by the scaling rule)

(Step 6).

& Whenever an alert is firing, Prometheus notifies

Policy Keeper through Alert manager (Step 7a)

which registers the event (Step 7b).

& Policy Keeper periodically reevaluates the scaling

rules (Step 8) which contain references to query or

alert based variables.

& As a result of the reevaluation of the scaling rules,

Policy Keeper may instruct Docker Swarm (Step 9a)

to scale up/down a given container (Step 9b).

& The evaluation of the scaling rule may also result

in scaling at virtual machine level. In this case,

Policy Keeper instructs Occopus (Step 10a) for

scaling which in turn asks the target cloud API to

create/destroy instances (Step 10b). Finally – in

case of “create” – a new VM is launched (Step

10c) on which a new worker node is built up and

attached to the master.

This step-by-step operation of Policy Keeper and its

environment ensures the realization of two control loops,

one on virtual machine and the other container levels.

alerts

REST

API

Policy

Keeper

Built-in exporters

(node, cadvisor)

User-defined

internal exporter

Docker

Swarm

Prometheus

scale containers

TOSCA

policies

on scaling

queries

register exporters

Alert

manager

Occopus
scale nodes

no�fica�on

Submi�er

PK adaptor

start/stop

policy
MiCADO

WORKER

NODE

User-defined

external exporter

1

2

3

4b

4a

4c

6

7a

7b

evalua�on8

9a

10a

query metrics

query

metrics

query metrics

MiCADO

MASTER

NODE

Cloud API

C
C

C

9b set container

replicas

10b

create instance

launch VM
10c

register alerts

5

Fig. 3 MiCADO architecture with the integrated Policy Keeper

J. Kovács824

7 Supported Scenarios

The solution detailed in the previous sections provides a

kind of framework where various scenarios can be sup-

ported based on the scaling rules and monitoring exten-

sions. The following list gives some hints on a selection

of interesting scenarios which can be implemented in

the framework.

& Threshold based scaling.This scenario is very easy

to be implemented, since CPU / Memory/ Disk/

Network consumption of the containers and capac-

ity of the virtual machines are available based on the

current built-in Prometheus exporters. The decision

algorithm can be designed based on periodic

checking of the actual values or on specifying alerts

which fire when threshold is reached.

& Scaling driven by an external component. In case

the scaling decision is made by an external compo-

nent, the actual values can easily be propagated to

Policy Keeper through the Prometheus monitoring

system using proper exporter components. To avoid

writing of a new exporter for this purpose, the eas-

iest way is to store (and update) the scaling values in

a database and make it visible for the Policy Keeper

using for example an sql exporter attached to Pro-

metheus. The algorithm submitted can refer to these

values when deciding on scaling.

& Cloud-only (container-free) scaling. Policy Keep-

er is designed for scaling virtual machines and con-

tainers simultaneously. However, the architecture

has been designed in a way that the two scaling

level may operate independently. No operational

problem occurs in case the container scaling algo-

rithm is missing. To use Policy Keeper for a node-

only scaling scenario, container related settingsmust

be simply omitted.

& User driven manual-scaling. This scenario can be

useful when system admins want to decide on scal-

ing by themselves. The easiest way of implementing

this scenario in Policy Keeper is to store the decision

(of system admins) in a database similarly to the

‘Scaling driven by an external component’ scenario.

& Scaling based on internal metrics of the applica-

tion. There are several options to gather information

from the application internal state space. The key

factor is to export the application state variables in a

way that is compliant with Prometheus monitoring

system. There are several options. An exporter can

be written from scratch to provide the necessary

monitoring info. In case the application is a web-

service, its interface could provide exporter func-

tionality or if the application has a database compo-

nent, scaling related values can be stored and

exported from the database.

& Scheduled (time-based) scaling. When the appli-

cation requires up and downscaling at predefined

times the Policy Keeper algorithm can be written in

conform to that requirement. Handling the actual

time and date is possible within the scaling algo-

rithm of Policy Keeper.

& Deadline based scaling. In case the application

performs for example job execution where the job

is taken as an item from a queuing system scaling

algorithm can be designed based on three parame-

ters: deadline, average execution time and the actual

length of the queue. The length of the queue can be

continuously monitored, there are exporters for that

purpose (e.g. rabbitmq exporter [26]). Average exe-

cution time can also be either a dynamically moni-

tored parameter or a static input one. Finally, dead-

line must be provided by the user.

8 Use-Case Demonstration of Deadline-Based Policy

In order to demonstrate the flexibility of the Policy

Keeper, a deadline-based policy is presented in this

section. For the demonstration, a simple queuing tool

called CQueue [27] is used. This tool is a container

execution service consists of a master and any number

Queue

Frontend

Feeder

logDB

CQ

Worker

App

MiCADO

WORKER

Rabbitmq_exporter

CQueue master
MiCADO

SERVER

Prometheus

Policy

keeper

Fig. 4 Architecture for deadline-

based policy with CQueue in

MiCADO

Supporting Programmable Autoscaling Rules for Containers and Virtual Machines on Clouds 825

of worker components. Master implements a queue,

where each item (called task in CQueue) represents the

specification of a container execution (image, com-

mand, arguments, etc.). Each Worker component

fetches the tasks one after the other and executes the

container as specified by the task.

We have implemented a deadline based policy with

this lightweight container queueing system. Please, note

that any other container queuing tool would also fit in

this demonstration. In this example, the container to be

executed stores a popular molecular docking simulation

application called Autodock Vina [28]. One container

execution item (specified in the queue) represents one

job execution.

Figure 4 shows the high-level architecture of the

demonstrated scenario. On the left hand side, a sep-

arate VM executes the Master component of CQueue,

while the Worker component of CQueue (realized in

a container) represents the Docker service to be exe-

cuted and scaled up/down by Policy Keeper in order

to reach a predefined deadline. Scaling up and down

the CQueue worker component increases/decreases

the processing speed of tasks.

The processing speed to be set through scaling of

CQueue workers relies on three main parameters: dead-

line (DL), actual number of items (ITEMS), and average

execution time (AET) of the jobs running in the con-

tainers. The number of replicas to be executed can easily

be calculated by the following expression:

Average execution time and deadline parameters are

considered fixed in this demonstration. However, the

number of items in the queue and the actual time are

continuously monitored.

In order to monitor the number of items in the queue,

a RabbitMQ exporter [26] has been deployed near to the

Queue component of CQueue master. This exporter has

the task of querying the number of remaining tasks in a

queue. This exporter is part of the Prometheus exporter

repository [17]. This repository contains many exporters

covering thousands of monitorable parameters for many

areas. In case when none of these exporters cover the

parameter we need, it is possible to write our own

exporter. Supporting dynamically attachable Prome-

theus exporters is an important feature of Policy Keeper

utilized in this use case.

Fig. 6 CPU usage for each node

during the experiment

Fig. 5 Number of jobs, nodes

and containers in time during

deadline-based execution

J. Kovács826

The demonstration is executed as follows: 200 mol-

ecule docking simulation jobs have been submitted,

with an average of 25 s execution time and with a

20 min (1200 s) maximum execution time for all the

jobs from the time of submission. The policy has been

implemented in a way that each node executes maxi-

mum two simulations (containers) in parallel.

During the experiment, following the initial cal-

culation, MiCADO started to scale the worker nodes

up to three. After approximately half a minute, the

first VM appears and the job execution starts in two

containers (see Fig. 5). The calculation predicted

that six containers (running on three VMs) were

necessary to meet the deadline so after about four

minutes all the nodes and containers were exploited.

The number of nodes and containers started to scale

down after about 18 min, and after 20 min all

simulation jobs have been finished.

For inspecting the resource usage Grafana (part of

MiCADO Dashboard) was used. Grafana under

MiCADO was configured to show the CPU, memory

and network usage both for the virtual machines (left

side) and for the containers (right side). Figure 6 shows

the CPU load for the three nodes during the experiment,

while Fig. 7 shows the same for the containers. In Figs. 8

and 9 we can inspect the memory usage for the virtual

machines and for the containers in the same timeframe.

During the experiment, the MiCADO worker nodes

were launched on the SZTAKI Opennebula cloud. The

CQueue worker container was defined under the

cqueue_worker section with all the environment variables

necessary for CQueueworker to build up connection to the

CQueue master.

The scaling policy (see Code 1) shows the main

sections (sources, constants, queries) for both nodes

and containers. Under sources, the RabbitMQ exporter

location is defined. The constants section contains aver-

age execution time (AET) and deadline (DEADLINE)

as most important parameters. Deadline is a unix

timestamp in this example. The queries section specifies

the time remaining (REMAININGTIME) and number

of simulation job remaining (ITEMS) to be monitored.

Finally, the scaling rules for nodes and containers spec-

ify how many instances need to be launched based on

Fig. 8 Memory usage for each

node during the experiment

Fig. 7 CPU usage for each

container during the experiment

Supporting Programmable Autoscaling Rules for Containers and Virtual Machines on Clouds 827

the values of parameters specified under the constant

and queries sections.

In this particular scaling policy, the main goal was to

demonstrate that scaling logic can be defined as an

incoming code snippet with the combination of moni-

toring a parameter that is stored in an external parameter

outside of the scaling infrastructure.

9 Conclusion and Future Work

Thework discussed in this paper and realized by the Policy

Keeper component supports the definition of scaling rules

by using program code to reach full flexibility. Beyond the

programmable scaling rules, the dynamic attachment of

monitoring sources (i.e. Prometheus exporters) are also

Code 1 Scaling policy for processing items from an external queue

Fig. 9 Memory usage for each

container during the experiment

J. Kovács828

supported in order to provide flexibility on accessing and

utilizing monitoring metrics in the scaling rules as well.

This approach has been implemented in a standalone com-

ponent called Policy Keeper. In the framework of the

COLA EU project Policy Keeper component has been

integrated into the MiCADO orchestration framework,

where provision of cloud and container resources are done

by Occopus and Docker Swarm, while monitoring is per-

formed by the Prometheus monitoring system. The modu-

larity of MiCADO is demonstrated by a new implementa-

tion [23] where Kubernetes replaces Docker Swarm. In the

background Terraform is also integrated into MiCADO as

an alternative for Occopus. Due to the flexibility of pro-

grammable scaling rules, there are a wide variety of scaling

scenarios which are supported. In the COLA EU project,

the goal is to support more than 20 applications with

different technologies, requirements and rules.

To improve the support for the development of scaling

policies, the next step aims the provision of an environ-

ment where the scaling policy can be tested against

different circumstances. The testing environment should

support the analysis of the scaling policy before moving it

in production. Further plans are targeting the support for

machine learning algorithms where reinforcement learn-

ing algorithms could be a good candidate to support the

Policy Keeper component.

Acknowledgements This work was funded by the European

COLA - Cloud Orchestration at the Level of Application project

under grant No. 731574 (H2020-ICT-2016-1). We thank for the

usage of MTA Cloud (https://cloud.mta.hu/) that significantly

helped us achieving the results published in this paper.

Funding Information Open access funding provided by MTA

Institute for Computer Science and Control (MTA SZTAKI).

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestrict-

ed use, distribution, and reproduction in any medium, provided

you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate if

changes were made.

References

1. Buyya R, Broberg J, Goscinski AM. Cloud Computing:

Principles and Paradigms.Wiley: Hoboken, New Jersey, 2011

2. Mell P, Grance T. The NIST definition of Cloud computing.

NIST special publication 800-145 (final). Technical Report,

2011, http://csrc.nist.gov/publications/nistpubs/800-145

/SP800-145.pdf

3. Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.:

Elasticity in Cloud Computing: state of the art and research

challenges. IEEE Transactions on Services Computing

(TSC). 11(2), 430–447 (2018)

4. The MTA Cloud infrastructure, https://cloud.mta.hu

[March 05, 2019]

5. Research projects supported by MTA Cloud, https://cloud.

mta.hu/en/projektek [March 05, 2019]

6. COLA: Cloud Orchestration at the Level of Application,

http://www.project-cola.eu [March 05, 2019]

7. AWS Auto Scaling, https://aws.amazon.com/autoscaling/

[March 05, 2019]

8. Rightscale, website http://www.rightscale.com [March 05,

2019]

9. Galante, G., Bona, L.C.E.D.: A programming-level ap-

proach for elasticizing parallel scientific applications. J.

Syst. Softw. 110, 239–252 (2015)

10. Brendan Burns, Brian Grant, David Oppenheimer, Eric

Brewer, and John Wilkes. 2016. Borg, Omega, and

Kubernetes. Queue 14, 1, Pages 10 (2016), DOI:

https://doi.org/10.1145/2898442.2898444

11. Cloud Native Computing Foundation, https://www.cncf.io

[March 05, 2019]

12. Cloudify, http://getcloudify.org/ [March 05, 2019]

13. Topology and Orchestration Specification for Cloud

Appl ica t ions , TOSCA, ht tp : / /docs .oas is -open .

org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-

Simple-Profile-YAML-v1.1.html [March 05, 2019]

14. Docker, http://www.docker.com [March 05, 2019]

15. Prometheus monitoring system, https://prometheus.io

[March 05, 2019]

16. Kovacs J., Kacsuk P., Occopus: a multi-Cloud orchestrator

to deploy and manage complex scientific infrastructures.

Journal of Grid Computing, vol 16, issue1, pp 19–37, 2018

17 . P r ome t h e u s e xpo r t e r s , h t t p s : / / p r ome t h e u s .

io/docs/instrumenting/exporters/ [March 05, 2019]

18. Official YAMLWeb Site, http://yaml.org [March 05, 2019]

19. Terraform, https://www.terraform.io [March 05, 2019]

20. Jinja2, http://jinja.pocoo.org/docs/2.10 [March 05, 2019]

21. Flask, http://flask.pocoo.org/ [March 05, 2019]

22. Kiss, T., Kacsuk, P.: Jozsef Kovacs et all: MiCADO—

microservice-based Cloud application-level dynamic or-

chestrator. Future Generation Computer Systems, Volume.

94, 937–946, ISSN 0167-739X (2019). https://doi.

org/10.1016/j.future.2017.09.050

23. Official documentation site of MiCADO, https://micado-

scale.readthedocs.io/en/0.6.1 [March 05, 2019]

24. Prometheus Node Exporter, https://prometheus.

io/docs/guides/node-exporter/ [March 05, 2019]

25 . P r ome t h e u s CAdv i s o r , h t t p s : / / p r ome t h e u s .

io/docs/guides/cadvisor/ [March 05, 2019]

26. RabbitMQ exporter for Prometheus, https://github.

com/kbudde/rabbitmq_exporter [March 05, 2019]

27. CQueue simple container queueing system, http://www.lpds.

sztaki.hu/occo/user/html/tutorial-building-clusters.

html#cqueue-cluster [March 05, 2019]

28. Chen, H.Y., Hsiung, M., Lee, H.C., Yen, E., Lin, S.C., Wu,

Y.T.: GVSS: A High Throughput Drug Discovery Service of

Avian Flu and Dengue Fever for EGEE and EUAsiaGrid. J

Grid Computing. 8, 529–541 (2010). https://doi.org/10.1007

/s10723-010-9159-7

Supporting Programmable Autoscaling Rules for Containers and Virtual Machines on Clouds 829

https://cloud.mta.hu/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
https://cloud.mta.hu
https://cloud.mta.hu/en/projektek
https://cloud.mta.hu/en/projektek
http://www.project-cola.eu
https://aws.amazon.com/autoscaling/
http://www.rightscale.com
https://doi.org/10.1145/2898442.2898444
https://www.cncf.io
http://getcloudify.org/
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html
http://www.docker.com
https://prometheus.io
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/exporters/
http://yaml.org
https://www.terraform.io
http://jinja.pocoo.org/docs/2.10
http://flask.pocoo.org/
https://doi.org/10.1016/j.future.2017.09.050
https://doi.org/10.1016/j.future.2017.09.050
https://micado-scale.readthedocs.io/en/0.6.1
https://micado-scale.readthedocs.io/en/0.6.1
https://prometheus.io/docs/guides/node-exporter/
https://prometheus.io/docs/guides/node-exporter/
https://prometheus.io/docs/guides/cadvisor/
https://prometheus.io/docs/guides/cadvisor/
https://github.com/kbudde/rabbitmq_exporter
https://github.com/kbudde/rabbitmq_exporter
http://www.lpds.sztaki.hu/occo/user/html/tutorial-building-clusters.html#cqueue-cluster
http://www.lpds.sztaki.hu/occo/user/html/tutorial-building-clusters.html#cqueue-cluster
http://www.lpds.sztaki.hu/occo/user/html/tutorial-building-clusters.html#cqueue-cluster
https://doi.org/10.1007/s10723-010-9159-7
https://doi.org/10.1007/s10723-010-9159-7

	Supporting Programmable Autoscaling Rules for Containers and Virtual Machines on Clouds
	Abstract
	Introduction
	Related Work
	Concept and Design Principles
	Major Design Principles
	Monitoring Parameters
	Scaling Rules
	Modularity of the Environment

	Policy Definition
	Data Sources
	Metrics
	Constants
	Alerts
	Scaling Rules

	Internal Operation
	Integration with MiCADO
	Supported Scenarios
	Use-Case Demonstration of Deadline-Based Policy
	Conclusion and Future Work
	References

