
The VLDB Journal (2010) 19:477–501

DOI 10.1007/s00778-009-0176-8

REGULAR PAPER

Supporting ranking queries on uncertain and incomplete data

Mohamed A. Soliman · Ihab F. Ilyas ·

Shalev Ben-David

Received: 12 May 2009 / Revised: 28 November 2009 / Accepted: 12 December 2009 / Published online: 10 February 2010
© Springer-Verlag 2010

Abstract Large databases with uncertain information are

becoming more common in many applications including data

integration, location tracking, and Web search. In these appli-

cations, ranking records with uncertain attributes introduces

new problems that are fundamentally different from conven-

tional ranking. Specifically, uncertainty in records’ scores

induces a partial order over records, as opposed to the total

order that is assumed in the conventional ranking settings. In

this paper, we present a new probabilistic model, based on

partial orders, to encapsulate the space of possible rankings

originating from score uncertainty. Under this model, we for-

mulate several ranking query types with different semantics.

We describe and analyze a set of efficient query evaluation

algorithms. We show that our techniques can be used to solve

the problem of rank aggregation in partial orders under two

widely adopted distance metrics. In addition, we design sam-

pling techniques based on Markov chains to compute approx-

imate query answers. Our experimental evaluation uses both

real and synthetic data. The experimental study demonstrates

the efficiency and effectiveness of our techniques under var-

ious configurations.

Keywords Ranking · Top-k · Uncertain data · Probabilistic

data · Partial orders · Rank aggregation · Kendall tau

M. A. Soliman (B) · I. F. Ilyas · S. Ben-David
School of Computer Science, University of Waterloo,
Waterloo, Canada
e-mail: m2ali@cs.uwaterloo.ca

I. F. Ilyas
e-mail: ilyas@cs.uwaterloo.ca

S. Ben-David
e-mail: s4bendavid@uwaterloo.ca

1 Introduction

Uncertain data are becoming more common in many applica-

tions. Examples include managing sensor data, consolidating

information sources, and tracking moving objects. Uncer-

tainty impacts the quality of query answers in these environ-

ments. Dealing with data uncertainty by removing records

with uncertain information is not desirable in many settings.

For example, there could be too many uncertain values in

the database (e.g., readings of sensing devices that become

frequently unreliable under high temperature). Alternatively,

there could be only few uncertain values in the database but

they affect records that closely match query requirements.

Dropping such records leads to inaccurate or incomplete

query results. For these reasons, modeling and processing

uncertain data have been the focus of many recent studies

[1–3].

Top-k (ranking) queries report the k records with the high-

est scores in query output, based on a scoring function defined

on one or more scoring predicates (e.g., functions defined on

one or more database columns). A scoring function induces

a total order over records with different scores (ties are usu-

ally resolved using a deterministic tie-breaker, such as unique

record IDs [4]). A survey on the subject can be found in [5].

In this paper, we study ranking queries for records with

uncertain scores. In contrast to the conventional ranking

settings, score uncertainty induces a partial order over the

underlying records, where multiple rankings are valid. Study-

ing the formulation and processing of top-k queries in this

context is lacking in the current proposals.

1.1 Motivation and challenges

Consider Fig. 1 which shows a snapshot of actual search

results reported by apartments.com for a simple search

123

478 M. A. Soliman et al.

Fig. 1 Uncertain data in search
results

for available apartments to rent. The shown search results

include several uncertain pieces of information. For example,

some apartment listings do not explicitly specify the deposit

amount. Other listings mention apartment rent and area as

ranges rather than single values.

The obscure data in Fig. 1 may originate from different

sources including the following: (1) data entry errors, for

example, an apartment listing is missing the number of rooms

by mistake, (2) integrating heterogeneous data sources, for

example, listings are obtained from sources with different

schemas, (3) privacy concerns, for example, zip codes are

anonymized, (4) marketing policies, for example, areas of

small-size apartments are expressed as ranges rather than pre-

cise values, and (5) presentation style, for example, search

results are aggregated to group similar apartments.

In a sample of search results we scraped from apart-

ments.com and carpages.ca, the percentage of apartment

records with uncertain rent was 65%, and the percentage of

car records with uncertain price was 10%.

Uncertainty introduces new challenges regarding both the

semantics and processing of ranking queries. We illustrate

such challenges by giving the following simple example for

the apartment search scenario in Fig. 1.

Example 1 Assume an apartment database. Figure 2a gives a

snapshot of the results of some user query posed against such

database. Assume that the user would like to rank the results

using a function that scores apartments based on rent (the

cheaper the apartment, the higher the score). Since the rent

of apartment a2 is specified as a range, and the rent of apart-

ment a4 is unknown, the scoring function assigns a range of

possible scores to a2, while the full score range1 [0−10] is

assigned to a4.

1 Imputation methods [6,7] can give better guesses for missing values.
We study the effect of using these methods in Sect. 7.

4$1200a5

[0-10]negotiablea4

7$800a3

[5-8][$650-$1100]a2

9$600a1

a2

a4

a3

a1

l10

l9

l8

l7

l6

l5

l4

l3

l2

l1

a1,a4,a3,a2,a5

a1,a2,a3,a4,a5

a1,a2,a4,a3,a5

a1,a3,a2,a4,a5

a1,a3,a4,a2,a5

a4,a1,a2,a3,a5

a4,a1,a3,a2,a5

a1,a3,a2,a5,a4

a1,a2,a3,a5,a4

a1,a4,a2,a3,a5

(a)

(b)
(c)

Linear ExtensionsScoreRentAptID

a5

Fig. 2 Partial order for records with uncertain scores

Figure 2b depicts a diagram for the partial order induced

by apartment scores (we formally define partial orders in

Sect. 2.1). Disconnected nodes in the diagram indicate the

incomparability of their corresponding records. Due to the

intersection of score ranges, a4 is incomparable to all other

records, and a2 is incomparable to a3.

A simple approach to compute a ranking based on the

above partial order is to reduce it to a total order by replac-

ing score ranges with their expected values. The problem

with such approach, however, is that for score intervals with

large variance, arbitrary rankings that are independent from

how the ranges intersect may be produced. These rankings

can be unreliable in some cases. For example, assume 3

apartments, a1, a2, and a3 with score intervals [0, 100],
[40, 60], and [30, 70], respectively. Assume that score values

are distributed uniformly within each interval. The expected

score of each apartment is thus 50, and hence all apartment

permutations are equally likely rankings. However, based

on how the score intervals intersect, we show in Sect. 4

123

Supporting ranking queries on uncertain and incomplete data 479

that we can compute the probabilities of different rank-

ings of these apartments as follows: Pr(〈a1, a2, a3〉) =
0.25, Pr(〈a1, a3, a2〉) = 0.2, Pr(〈a2, a1, a3〉) = 0.05,

Pr(〈a2, a3, a1〉) = 0.2, Pr(〈a3, a1, a2〉) = 0.05, and

Pr(〈a3, a2, a1〉) = 0.25. That is, the rankings have a non-

uniform distribution even though the score intervals are uni-

form with equal expectations. Similar examples exist when

dealing with non-uniform/skewed data.

Another possible ranking query on partial orders is find-

ing the skyline (i.e., the non-dominated objects [8]). An

object is non-dominated if, in the partial order diagram, the

object’s node has no incoming edges. In Example 1, the sky-

line objects are {a1, a4}. The number of skyline objects can

vary from a small number (e.g., Example 1) to the size of

the whole database. Furthermore, skyline objects may not be

equally good and, similarly, dominated objects may not be

equally bad. A user may want to compare objects’ relative

orders in different data exploration scenarios. Current pro-

posals [9,10] have demonstrated that there is no unique way

to distinguish or rank the skyline objects.

A different approach to rank the objects involved in a par-

tial order is inspecting the space of possible rankings that

conform to the relative order of objects. These rankings (or

permutations) are called the linear extensions of the partial

order. Figure 2c shows all linear extensions of the partial

order in Fig. 2b. Inspecting the space of linear extensions

allows ranking the objects in a way consistent with the par-

tial order. For example, a1 may be preferred to a4 since a1

appears at rank 1 in 8 out of 10 linear extensions, even though

both a1 and a4 are skyline objects. A crucial challenge for

such approach is that the space of linear extensions grows

exponentially in the number of objects [11].

Furthermore, in many scenarios, uncertainty is quanti-

fied probabilistically. For example, a moving object’s loca-

tion can be described using a probability distribution defined

on some region based on location history [12]. Similarly,

a missing attribute can be filled in with a probability dis-

tribution of multiple imputations, using machine learning

methods [6,7]. Augmenting uncertain scores with such prob-

abilistic quantifications generates a (possibly non-uniform)

probability distribution of linear extensions that cannot be

captured using a standard partial order or dominance rela-

tionship.

In this paper, we address the challenges associated with

dealing with uncertain scores and incorporating probabilistic

score quantifications in both the semantics and processing of

ranking queries. We summarize such challenges as follows:

– Ranking model: the conventional total order model cannot

capture score uncertainty. While partial orders can rep-

resent incomparable objects, incorporating probabilistic

score information in such model requires new probabilis-

tic modeling of partial orders.

– Query semantics: conventional ranking semantics assume

that each record has a single score and a distinct rank (by

resolving ties using a deterministic tie breaker). Query

semantics allowing a score range, and hence different pos-

sible ranks per record need to be adopted.

– Query processing: adopting a probabilistic partial order

model yields a probability distribution over a huge space

of possible rankings that is exponential in the database

size. Hence, we need efficient algorithms to process such

space in order to compute query answers.

1.2 Contributions

We present an integrated solution to compute ranking que-

ries of different semantics under a general score uncertainty

model. We tackle the problem through the following key con-

tributions:

– We introduce a novel probabilistic ranking model based

on partial orders (Sect. 2.1).

– We formulate the problem of ranking under score uncer-

tainty by introducing new semantics of ranking queries

that can be adopted in different application scenarios

(Sect. 2.2).

– We introduce a space pruning algorithm to cut down the

answer space, allowing efficient query evaluation to be

conducted subsequently (Sect. 6.1).

– We introduce a set of query evaluation techniques:

1. We show that exact query evaluation is expensive for

some of our proposed queries (Sect. 6.3).

2. We give branch-and-bound search algorithms to com-

pute exact query answers based on A∗ search. The

search algorithms lazily explore the space of possible

answers, and early-prune partial answers that do not

lead to final query answers (Sect. 6.4.1).

3. We propose novel sampling techniques based on a

Markov Chain Monte-Carlo (MCMC) method to com-

pute approximate query answers (Sect. 6.4.2).

– We study the novel problem of optimal rank aggrega-

tion in partial orders induced by uncertain scores under

both Spearman footrule and Kendall tau distance metrics

(Sect. 6.5):

1. We give a polynomial time algorithm to solve the prob-

lem under Spearman footrule distance (Sect. 6.5.1).

2. We thoroughly study the problem of rank aggregation

in partial orders induced by uncertain scores under Ken-

dall tau distance. While the problem is NP-Hard in gen-

eral [13], we identify key properties that define different

classes of partial orders in which computing the optimal

rank aggregation has polynomial time cost. We give the

123

480 M. A. Soliman et al.

corresponding query processing algorithms, and pro-

vide a detailed complexity analysis (Sect. 6.5.2).

– We give new methods to construct probability density

functions of records’ scores based on uncertain and incom-

plete attribute values. Our methods leverage kernel density

estimation and attribute correlations discovery techniques

to compute and aggregate uncertain scores from multiple

scoring attributes (Sect. 7).

We also conduct an extensive experimental study using

real and synthetic data to examine the robustness and effi-

ciency of our techniques in various settings (Sect. 8).

2 Data model and problem definition

In this section, we describe the data model we adopt in

this paper (Sect. 2.1), followed by our problem definition

(Sect. 2.2). We define the notations we use throughout this

paper in Table 1.

2.1 Data model

We adopt a general representation of uncertain scores, where

the score of record ti is modeled as a probability density

function fi defined on a score interval [loi ,upi]. The density

function fi can be obtained directly from uncertain attributes

(e.g., a uniform distribution on possible apartment’s rent val-

ues as in Fig. 1). Alternatively, fi can be computed from the

predictions of missing/incomplete attribute values that affect

records’ scores [6], or constructed from histories and value

correlations as in sensor readings [14]. A deterministic (cer-

tain) score is modeled as an interval with equal bounds, and a

probability of 1. For two records ti and t j with deterministic

equal scores (i.e., loi = upi = loj = upj), we assume a

tie-breaker τ(ti , t j) that gives a deterministic records’ rela-

tive order. The tie-breaker τ is transitive over records with

Table 1 Frequently used notations

Symbol Description

D Database with uncertain scores

ti A record with uncertain score

[loi ,upi] Score interval of ti

fi Score density function of ti

D́ Database after pruning k-dominated records

PPO Probabilistic partial order

ω A linear extension of a PPO

vx A linear extension prefix of length x

sx A set of x records

λ(i, j)(t) Probability of t appearing at a rank in [i, j]

Table 2 Modeling score uncertainty

tID Score interval Score density

t1 [6,6] f 1 = 1

t2 [4,8] f 2 = 1/4

t3 [3,5] f 3 = 1/2

t4 [2,3.5] f 4 = 2/3

t5 [7,7] f 5 = 1

t6 [1,1] f 6 = 1

identical deterministic scores (i.e., [(ti > t j) ∧ (t j > tk)] ⇒
(ti > tk)).

We assume in the next discussion that the score inter-

vals and density functions are given. In Sect. 7, we give gen-

eral techniques to construct these components from uncertain

attributes, as well as missing and incomplete attributes.

Table 2 shows a set of records with uniform score densi-

ties, where fi = 1/(upi − loi) (e.g., f2 = 1/4). For records

with deterministic scores (e.g., t1), the density fi = 1.

Our interval-based score representation induces a partial

order over database records, which extends the following

definition of strict partial orders:

Definition 1 [Strict Partial Order] A strict partial order P

is a 2-tuple (R,O), where R is a finite set of elements, and

O ⊂ R×R is a binary relation with the following properties:

(1) Non-reflexivity: ∀i ∈ R : (i, i) /∈ O.

(2) Asymmetry: If (i, j) ∈ O, then (j, i) /∈ O.

(3) Transitivity: If {(i, j), (j, k)} ⊂ O, then (j, k) ∈ O.

Strict partial orders allow the relative order of some ele-

ments to be left undefined. A widely used depiction of partial

orders is Hasse diagram (e.g., Fig. 2b), which is a directed

acyclic graph the nodes of which are the elements of R,

and edges are the binary relationships in O, except relation-

ships derived by transitivity. An edge (i, j) indicates that i

is ranked above j according to P. The linear extensions of a

partial order are all possible topological sorts of the partial

order graph (i.e., the relative order of any two elements in

any linear extension does not violate the set of binary rela-

tionships O).

Typically, a strict partial order P induces a uniform dis-

tribution over its linear extensions. For example, for P =
({a, b, c}, {(a, b)}), the 3 possible linear extensions 〈a, b, c〉,
〈a, c, b〉, and 〈c, a, b〉 are assumed to be equally likely.

We extend strict partial orders to encode score uncertainty

based on the following definitions.

Definition 2 [Score Dominance] A record ti dominates

another record t j iff loi ≥ up j .

The deterministic tie-breaker τ eliminates cycles when

applying Definition 2 to records with deterministic equal

123

Supporting ranking queries on uncertain and incomplete data 481

t1
t2

t3
t4

t6

t5

t5

t1

t2 t3

t t4

t4

t6

t3

t

t2

t4

t

t1

t3 t4

t4

t

t3

t6

t2

t1

t3 t4

t4

t

t3

t
0.418 0.02 0.063 0.24 0.01 0.24 0.01

1

2

3

4

5

6

1 2 3 4 5 6 7
25.0)Pr(

9583.0)Pr(

9375.0)Pr(

5.0)Pr(

52

43

32

21

tt

tt

tt

tt

P=

t2 t5

6 6 6 6 6

3

Fig. 3 Probabilistic partial order and linear extensions

scores. Based on Definition 2, Property 1 immediately fol-

lows:

Property 1 Score Dominance is a non-reflexive, asymmetric,

and transitive relation.

We assume the independence of score densities of indi-

vidual records. Hence, the probability that record ti is ranked

above record t j , denoted Pr(ti > t j), is given by the follow-

ing two-dimensional integral:

Pr(ti > t j) =
upi
∫

loi

x
∫

lo j

fi (x) · f j (y)dy dx (1)

When neither ti nor t j dominates the other record, [loi ,upi]
and [loj ,up j] are intersecting intervals, and so Pr(ti > t j)

belongs to the open interval (0, 1), and Pr(t j > ti) = 1 −
Pr(ti > t j). On the other hand, if ti dominates t j , then we

have Pr(ti > t j) = 1 and P(t j > ti) = 0.

We say that a record pair (ti , t j) belongs to a probabilistic

dominance relation iff Pr(ti > t j) ∈ (0, 1).

We next give the formal definition of our ranking model:

Definition 3 [Probabilistic Partial Order (PPO)] Let R =
{t1, . . . , tn} be a set of real intervals, where each interval

ti = [loi ,upi] is associated with a density function fi such

that
∫ upi

loi
fi (x)dx = 1. The set R induces a probabilistic

partial order PPO(R,O,P), where (R,O) is a strict partial

order with (ti , t j) ∈ O iff ti dominates t j , and P is the prob-

abilistic dominance relation of intervals in R.

Definition 3 states that if ti dominates t j , then (ti , t j) ∈ O.

That is, we can deterministically rank ti above t j . On the

other hand, if neither ti nor t j dominates the other record,

then (ti , t j) ∈ P . That is, the uncertainty in the relative order

of ti and t j is quantified by Pr(ti > t j).

Figure 3 shows the Hasse diagram and the probabilistic

dominance relation of the PPO of records in Table 2. We also

show the set of linear extensions of the PPO.

The linear extensions of PPO(R,O,P) can be viewed as

tree where each root-to-leaf path is one linear extension. The

root node is a dummy node since there can be multiple ele-

ments in R that may be ranked first. Each occurrence of an

element t ∈ R in the tree represents a possible ranking of t ,

and each level i in the tree contains all elements that occur at

rank i in any linear extension. We explain how to construct

the linear extensions tree in Sect. 5.

Due to probabilistic dominance, the space of possible lin-

ear extensions is viewed as a probability space generated by a

probabilistic process that draws, for each record ti , a random

score si ∈ [loi ,upi] based on the density fi . Ranking the

drawn scores gives a total order on the database records,

where the probability of such order is the joint probability

of the drawn scores. For example, we show in Fig. 3, the

probability value associated with each linear extension. We

show how to compute these probabilities in Sect. 4.

2.2 Problem definition

Based on the data model in Sect. 2.1, we consider three clas-

ses of ranking queries:

Record- Rank Queries. Queries that report records that

appear in a given range of ranks, defined as follows:

Definition 4 [Uncertain Top Rank (UTop-Rank)] A UTop-

Rank(i, j) query reports the most probable record to appear

at any rank i . . . j (i.e., from i to j inclusive) in possible

linear extensions. That is, for a linear extensions space Ω

of a PPO, the query UTop-Rank(i, j), for i ≤ j , reports

argmaxt (
∑

ω∈Ω(t,i, j)
Pr(ω)), where Ω(t,i, j) ⊆ Ω is the set

of linear extensions with the record t at any rank i, . . . , j .

For example, in Fig. 3, the query UTop-Rank(1, 2) reports

t5 with probability Pr(ω1) + · · · + Pr(ω7) = 1.0, since t5
appears at all linear extensions at either rank 1 or rank 2.

Top- k- Queries. Queries that report a group of top-

ranked records. We give two different semantics for Top-

k- Queries:

Definition 5 [Uncertain Top Prefix (UTop-Prefix)] A UTop-

Prefix(k) query reports the most probable linear exten-

sion prefix of k records. That is, for a linear extensions

space Ω of a PPO, the query UTop-Prefix(k) reports

argmax p(
∑

ω∈Ω(p,k)
Pr(ω)), where Ω(p,k) ⊆ Ω is the set

of linear extensions having p as the k-length prefix.

For example, in Fig. 3, the query UTop-Prefix(3) reports

〈t5, t1, t2〉 with probability Pr(ω1) + Pr(ω2) = 0.438.

Definition 6 [Uncertain Top Set (UTop-Set)] A UTop-Set(k)

query reports the most probable set of top-k records of linear

extensions. That is, for a linear extensions space Ω of a PPO,

the query UTop-Set(k) reports argmaxs(
∑

ω∈Ω(s,k)
Pr(ω)),

where Ω(s,k) ⊆ Ω is the set of linear extensions having s as

the set of top-k records.

123

482 M. A. Soliman et al.

For example, in Fig. 3, the query UTop-Set(3) reports the

set {t1, t2, t5} with probability Pr(ω1) + Pr(ω2) + Pr(ω4) +
Pr(ω5) + Pr(ω6) + Pr(ω7) = 0.937.

Note that {t1, t2, t5} appears as Prefix 〈t5, t1, t2〉 in ω1 and

ω2, appears as Prefix 〈t5, t2, t1〉 in ω4 and ω5, and appears as

Prefix 〈t2, t5, t1〉 in ω6 and ω7. However, unlike the UTop-

Prefix query, the UTop-Set query ignores the order of records

within the query answer. This allows finding query answers

with a relaxed within-answer ranking.

The above query definitions can be extended to rank dif-

ferent answers on probability. We define the answer of

l-UTop-Rank(i, j) query as the l most probable records to

appear at a rank i, . . . , j , the answer of l-UTop-Prefix(k)

query as the l most probable linear extension prefixes of

length k, and the answer of l-UTop-Set(k) query as the

l most probable top-k sets. We assume a tie-breaker that

deterministically orders answers with equal probabilities.

Rank- Aggregation- Queries. Queries that report a

ranking with the minimum average distance to all linear

extensions, formally defined as follows:

Definition 7 [Rank Aggregation Query (Rank-Agg)] For a

linear extensions space Ω , a Rank-Agg query reports a rank-

ing ω∗ that minimizes 1
|Ω|

∑

ω∈Ω d(ω∗, ω), where d(.) is a

measure of the distance between two rankings.

We show in Sect. 6.5 that this query can be mapped to

a UTop-Rank query under a specific definition of distance

measure. We also derive a correspondence between this query

definition and the ranking query that orders records on their

expected scores

The answer space of the above queries is a projection on

the linear extensions space. That is, the probability of an

answer is the summation of the probabilities of linear exten-

sions that contain that answer. These semantics are analogous

to possible worlds semantics in probabilistic databases [15,

3], where a database is viewed as a set of possible instances,

and the probability of a query answer is the summation of the

probabilities of database instances containing this answer.

UTop-Set and UTop-Prefix query answers are related. The

top-k set probability of a set s is the summation of the top-k

prefix probabilities of all prefixes p that consist of the same

records of s. Similarly, the UTop-Rank(1, k) probability of a

record t is the summation of the UTop-Rank(i, i) probabili-

ties of t for i = 1, . . . , k.

Similar query definitions are used in [16–18], under the

membership uncertainty model where records belong to data-

base with possibly less than absolute confidence, and scores

are single values. However, our score uncertainty model

(Sect. 2.1) is fundamentally different, which entails different

query processing techniques. Furthermore, to the best of our

knowledge, UTop-Set query as well as Rank-Agg query in

partial orders have not been proposed before.

2.2.1 Example applications

Our proposed query types can be adopted in the following

application examples:

– A UTop-Rank(i, j) query can be used to find the most

probable athlete to end up in a range of ranks in some

competition given a partial order of competitors.

– A UTop-Rank(1, k) query can be used to find the most-

likely location to be in the top-k hottest locations based

on uncertain sensor readings represented as intervals.

– A UTop-Prefix query can be used in market analysis to

find the most-likely product ranking based on fuzzy eval-

uations in users’ reviews. Similarly, a UTop-Set query

can be used to find a set of products that are most-likely

to be ranked above all other products.

– Rank aggregation query is widely adopted in many

applications related to combining votes from different

voters to rank a given set of candidates in a way that

minimizes the disagreements of voter’s opinions. A typ-

ical application of rank aggregation queries is building a

meta-search engine (a search engine that aggregates the

rankings of multiple other engines) as discussed in [13],

and described in more detail in Sect. 6.5. An example

application of a Rank-Agg query in our settings is find-

ing a consensus ranking for a set of candidates, where

each candidate receives a numeric score from each voter,

which can be compactly encoded as a PPO. We give more

details in Sect. 6.5.

Naïve computation of the above queries requires materi-

alizing and aggregating the space of linear extensions, which

is very expensive. We analyze the cost of such naïve aggre-

gation in Sect. 5. Our goal is to design efficient algorithms

that overcome such prohibitive computational barrier.

3 Background

In this section, we give necessary background material on

Monte-Carlo integration, which is used to construct our prob-

ability space, and Markov chains, which are used in our sam-

pling-based techniques.

3.1 Monte-Carlo integration

The method of Monte-Carlo integration [19] computes accu-

rate estimate of the integral
∫

Γ́
f (x)dx , where Γ́ is an arbi-

trary volume, by sampling from another volume Γ ⊇ Γ́ in

which uniform sampling and volume computation are easy.

The volume Γ́ is estimated as the proportion of samples from

Γ that are inside Γ́ multiplied by the volume of Γ . The aver-

age f (x) over such samples is used to compute the integral.

123

Supporting ranking queries on uncertain and incomplete data 483

Specifically, let v be the volume of Γ , s be the total number

of samples, and x1 . . . xm be the samples that are inside Γ́ .

Then,

∫

Γ́

f (x)dx ≈ m

s
· v · 1

m

m
∑

i=1

f (xi) (2)

The expected value of the above approximation is the true

integral value with an O
(

1√
s

)

approximation error.

3.2 Markov chains

We give a brief description for the theory of Markov chains.

We refer the reader to [20] for more detailed coverage of

the subject. Let X be a random variable, where X t denotes

the value of X at time t . Let S = {s1, . . . , sn} be the set

of possible X values, denoted the state space of X . We say

that X follows a Markov process if X moves from the cur-

rent state to a next state based only on its current state. That

is, Pr(X t+1 = si |X0 = sm, . . . , X t = s j) = Pr(X t+1 =
si |X t = s j). A Markov chain is a state sequence generated

by a Markov process. The transition probability between a

pair of states si and s j , denoted Pr(si → s j), is the prob-

ability that the process at state si moves to state s j in one

step.

A Markov chain may reach a stationary distribution π over

its state space, where the probability of being at a particular

state is independent from the initial state of the chain. The

conditions of reaching a stationary distribution are irreduc-

ibility (i.e., any state is reachable from any other state), and

aperiodicity (i.e., the chain does not cycle between states in

a deterministic number of steps). A unique stationary distri-

bution is reachable if the following balance equation holds

for every pair of states si and s j :

Pr(si → s j)π(si) = Pr(s j → si)π(s j) (3)

3.3 Markov chain Monte-Carlo (MCMC) method

The concepts of Monte-Carlo method and Markov chains are

combined in the MCMC method [20] to simulate a complex

distribution using a Markovian sampling process, where each

sample depends only on the previous sample.

A standard MCMC algorithm is the Metropolis–Hastings

(M–H) sampling algorithm [21]. Suppose that we are inter-

ested in drawing samples from a target distribution π(x). The

(M–H) algorithm generates a sequence of random draws of

samples that follow π(x) as follows:

1. Start from an initial sample x0.

2. Generate a candidate sample x1 from an arbitrary pro-

posal distribution q(x1|x0).

3. Accept the new sample x1 with probability

α = min
(

π(x1).q(x0|x1)
π(x0).q(x1|x0)

, 1
)

.

4. If x1 is accepted, then set x0 = x1.

5. Repeat from step (2).

The (M–H) algorithm draws samples biased by their prob-

abilities. At each step, a candidate sample x1 is generated

given the current sample x0. The ratio α compares π(x1) and

π(x0) to decide on accepting x1. The (M–H) algorithm sat-

isfies the balance condition (Eq. 3) with arbitrary proposal

distributions [21]. Hence, the algorithm converges to the tar-

get distribution π . The number of times a sample is visited

is proportional to its probability, and hence the relative fre-

quency of visiting a sample x is an estimate of π(x). The

(M–H) algorithm is typically used to compute distribution

summaries (e.g., average) or estimate a function of interest

on π .

4 Probability space

In this section, we formulate and compute the probabilities

of the linear extensions of a PPO.

The probability of a linear extension is computed as a

nested integral over records’ score densities in the order

given by the linear extension. Let ω = 〈t1, t2, . . . , tn〉 be

a linear extension. Then, Pr(ω)= Pr((t1 > t2), (t2 >

t3), . . . , (tn−1 > tn)). The individual events (ti > t j) in the

previous formulation are not independent, since any two con-

secutive events share a record. Hence, For ω = 〈t1, t2, . . . tn〉,
Pr(ω) is given by the following n-dimensional integral with

dependent limits:

Pr(ω) =
up1
∫

lo1

x1
∫

lo2

, . . . ,

xn−1
∫

lon

f1(x1), . . . , fn(xn)dxn, . . . , dx1

(4)

Monte-Carlo integration (Sect. 3) can be used to compute

complex nested integrals, such as Eq. 4. For example, the

probabilities of linear extensions ω1, . . . , ω7 in Fig. 3 are

computed using Monte-Carlo integration.

In the next theorem, we prove that the space of linear

extensions of a PPO induces a probability distribution.

Theorem 1 Let Ω be the set of linear extensions of

PPO(R,O,P). Then, (1) Ω is equivalent to the set of all

possible rankings of R, and (2) Equation 4 defines a proba-

bility distribution on Ω .

Proof We prove (1) by contradiction. Assume that ω ∈ Ω

is an invalid ranking of R. That is, there exist at least two

records ti and t j the relative order of which in ω is ti > t j ,

while lo j ≥ upi . However, this contradicts the definition of

123

484 M. A. Soliman et al.

Algorithm 1 Build linear extension tree

Build_Tree (PPO(R, O, P) : P P O, n : T ree node)

1 for each source t ∈ R

2 do

3 child ← create a tree node for t

4 Add child to n’s children

5 ´PPO ← PPO(R, O, P) after removing t

6 Build_Tree(´PPO, child)

O in PPO(R,O,P). Similarly, we can prove that any valid

ranking of R corresponds to only one linear extension in Ω .

We prove (2) as follows. First, map each linear exten-

sion ω = 〈t1, . . . , tn〉 to its corresponding event e = ((t1 >

t2)∧· · ·∧ (tn−1 > tn)). Equation 4 computes Pr(e) or equiv-

alently Pr(ω). Second, let ω1 and ω2 be two linear extensions

in Ω the events of which are e1 and e2, respectively. By def-

inition, ω1 and ω2 must be different in the relative order of

at least one pair of records. It follows that Pr(e1 ∧ e2) = 0

(i.e., any two linear extensions map to mutually exclusive

events). Third, since Ω is equivalent to all possible rankings

of R (as proved in (1)), the events corresponding to elements

of Ω must completely cover a probability space of 1 (i.e.,

Pr(e1 ∨ e2 · · · ∨ em) = 1, where m = |Ω|). Since all ei ’s

are mutually exclusive, it follows that Pr(e1 ∨ e2 · · ·∨ em) =
Pr(e1)+ · · ·+ Pr(em) =

∑

ω∈Ω Pr(ω) = 1, and hence Eq. 4

defines a probability distribution on Ω . ⊓⊔

5 A baseline exact algorithm

We describe a baseline algorithm that computes the que-

ries in Sect. 2.2 by materializing the linear extensions space.

Algorithm 1 gives a simple recursive technique to build the

linear extensions tree (Sect. 2.1). The first call to Procedure

Build_Tree is passed the parameters PPO(R,O,P), and a

dummy root node. A record t ∈ R is a source if no other

record t́ ∈ R dominates t . The children of the tree root will

be the initial sources in R, so we can add a source t as a child

of the root, remove it from PPO(R,O,P), and then recurse

by finding new sources in PPO(R,O,P) after removing t .

The space of all linear extensions of PPO(R,O,P) grows

exponentially in |R|. As a simple example, suppose that R

contains m elements, none of which is dominated by any

other element. A counting argument shows that there are

Σm
i=1

m!
(m−i)! nodes in the linear extensions tree.

When we are interested only in records occupying the

top ranks, we can terminate the recursive construction algo-

rithm at level k, which means that our space is reduced from

complete linear extensions to linear extensions’ prefixes of

length k. Under our probability space, the probability of each

prefix is the summation of the probabilities of linear exten-

sions sharing that prefix. We can compute prefix probabilities

t5

t1 t2

t2 t3 t1

t2

t5

t1
0.438 0.063 0.25 0.25

Fig. 4 Prefixes of linear extensions at depth 3

more efficiently as follows. Let ω(k) = 〈t1, t2, . . . , tk〉 be a

linear extension prefix of length k. Let T (ω(k)) be the set

of records not included in ω(k). Let Pr(tk > T (ω(k))) be the

probability that tk is ranked above all records in T (ω(k)).

Let Fi (x) =
∫ x

loi
fi (y)dy be the cumulative density function

(CDF) of fi . Hence, Pr(ω(k)) = Pr((t1 > t2), . . . , (tk−1 >

tk), (tk > T (ω(k)))), where

Pr(tk > T (ω(k))) =
upk
∫

lok

fk(x) ·

⎛

⎝

∏

ti ∈T (ω(k))

Fi (x)

⎞

⎠dx (5)

Hence, we have

Pr(ω(k)) =
up1
∫

lo1

x1
∫

lo2

, . . . ,

xk−1
∫

lok

f1(x1), . . . , fk(xk)

·

⎛

⎝

∏

ti∈T (ω(k))

Fi (xk)

⎞

⎠ dxk . . . dx1 (6)

Figure 4 shows the prefixes of length 3 and their proba-

bilities for the linear extensions tree in Fig. 3. We annotate

the leaves with the linear extensions that share each prefix.

Unfortunately, prefix enumeration is still infeasible for all

but the smallest sets of elements, and, in addition, finding the

probabilities of nodes in the prefix tree requires computing

an l dimensional integral, where l is the node’s level.

5.1 Algorithm Baseline

The algorithm computes UTop-Prefix query by scanning the

nodes in the prefix tree in depth-first search order, computing

integrals only for the nodes at depth k (Eq. 6), and reporting

the prefixes with the highest probabilities. We can use these

probabilities to answer UTop-Rank query for ranks 1, . . . , k,

since the probability of a node t at level l < k can be found

by summing the probabilities of its children. Once the nodes

in the tree have been labeled with their probabilities, the

answer of UTop-Rank(i, j), ∀i, j ∈ [1, k] and i ≤ j , can

be constructed by summing up the probabilities of all occur-

rences of a record t at levels i . . . j . This is easily done in

time linear to the number of tree nodes using a breadth-first

traversal of the tree. Here, we compute m!
(m−k)! k-dimensional

123

Supporting ranking queries on uncertain and incomplete data 485

integrals to answer both queries. However, the algorithm still

grows exponentially in m. Answering UTop-Set query can be

done using the relationship among query answers discussed

in Sect. 2.2.

6 Query evaluation

The Baseline algorithm described in Sect. 5 exposes two

fundamental challenges for efficient query evaluation:

1. Database size: the naïve algorithm is exponential in data-

base size. How to make use of special indexes and other

data structures to access a small proportion of database

records while computing query answers?

2. Query evaluation cost: computing probabilities by naïve

simple aggregation is prohibitive. How to exploit query

semantics for faster computation?

In Sect. 6.1, we answer the first question by using indexes

to prune records that do not contribute to query answers,

while in Sects. 6.3 and 6.4, we answer the second question

by exploiting query semantics for faster computation.

6.1 k-Dominance: shrinking the database

Given a database D conforming to our score uncertainty

model, we call a record t ∈ D “k-dominated” if at least

k other records in D dominate t . For example in Fig. 3, the

records t4 and t6 are 3-dominated. Our main insight to shrink

the database D used in query evaluation is based on Lemma 1.

Lemma 1 Any k-dominated record in D can be ignored

while computing UTop-Rank(i, k) and Top- k queries.

Lemma 1 follows from the fact that k-dominated records

do not occupy ranks ≤ k in any linear extension, and so they

do not affect the probability of any k-length prefix. Hence,

k-dominated records can be safely pruned from D.

In the following, we describe a simple and efficient tech-

nique to shrink the database D by removing all k-dominated

records. Our technique assumes a list U ordering records

in D in descending score upper-bound (upi) order, and that

t(k), the record with the kth largest score lower-bound (loi), is

known (e.g., by using an index maintained over score lower-

bounds). Ties among records are resolved using our deter-

ministic tie-breaker τ (Sect. 2.1).

Algorithm 2 gives the details of our technique. The cen-

tral idea is to conduct a binary search on U to find the record

t∗, such that t∗ is dominated by t(k), and t∗ is located at the

highest possible position in U . Based on Lemma 1, t∗ is

k-dominated. Moreover, let pos∗ be the position of t∗ in U ,

Algorithm 2 Remove k-dominated records

Shrink_DB (D: database, k: dominance level, U : score upper-bound
list)

1 start ← 1; end ← |D|
2 pos∗ ← |D| + 1

3 t(k) ← the record with the kth largest loi

4 while (start ≤ end) {binary search}

5 do

6 mid ← start+end
2

7 ti ← record at position mid in U

8 if (t(k) dominates ti)
9 then

10 pos∗ ← mid

11 end ← mid − 1
12 else {t(k) does not dominate records above ti }

13 start ← mid + 1
14 return D\ {t : t is located at position ≥ pos∗ in U }

then all records located at positions ≥ pos∗ in U are also

k-dominated.

6.1.1 Complexity analysis

Since Algorithm 2 conducts a binary search on U , its worst

case complexity is in O(log(m)), where m = |D|. The list U

is constructed by sorting D on upi in O(m log(m)), while t(k)

is found in O(m log(k)) by scanning D while maintaining a

k-length priority queue for the top-k records with respect to

loi ’s. The overall complexity is thus O(m log(m)), which is

the same complexity of sorting D.

In the remainder of this paper, we use D́ to refer to the

database D after removing all k-dominated records.

6.2 Overview of query processing

There are two main factors impacting query evaluation cost:

the size of answer space, and the cost of answer computation.

The size of the answer space of Record- Rank Queries

is bounded by |D́| (the number of records in D́), while for

UTop-Set and UTop-Prefix queries, it is exponential in |D́|
(the number of record subsets of size k in D́). Hence, materi-

alizing the answer space for UTop-Rank queries is feasible,

while materializing the answer space of UTop-Set and UTop-

Prefix queries is very expensive (in general, it is intractable).

The computation cost of each answer can be heavily

reduced by replacing the naïve probability aggregation algo-

rithm (Sect. 5) with simpler Monte-Carlo integration exploit-

ing the query semantics to avoid enumerating the probability

space.

In the following, let D́ = {t1, t2, . . . , tn}, where n =
|D́|. Let Γ be the n-dimensional hypercube that consists

of all possible combinations of records’ scores. That is,

Γ = ([lo1,up1] × [lo2,up2] × · · · × [lon,upn]). A vector

γ = (x1, x2, · · · , xn) of n real values, where xi ∈ [loi ,upi],

123

486 M. A. Soliman et al.

represents one point in Γ . Let Π
D́
(γ) =

∏n
i=1 fi (xi), where

fi is the score density of record ti . Records with determinis-

tic (single-valued) scores are represented by the same score

value in all possible γ ’s. On the other hand, records with

uncertain scores can be represented by different score values

in different γ ’s according to the intervals that enclose their

possible scores.

In case of a continuous fi , the component xi is assumed to

be a tiny score interval in [loi ,upi], and fi (xi) is the result of

integrating fi over xi . We assume that the components xi ’s

of any possible vector γ = (x1, x2, . . . , xn) can always be

totally ordered based on their values.

6.3 Computing Record- Rank Queries

We start by defining records’ rank intervals.

Definition 8 [Rank Interval] The rank interval of a record

t ∈ D́ is the range of all possible ranks of t in the linear

extensions of the PPO induced by D́.

For a record t ∈ D́, let D́(t) ⊆ D́ and D́(t) ⊆ D́ be

the record subsets dominating t and dominated by t , respec-

tively. Then, based on the semantics of partial orders, the

rank interval of t is given by [|D́(t)| + 1, n − |D́(t)|].
For example, in Fig. 3, for D́ = {t1, t2, t3, t5}, we have

D́(t5) = φ, and D́(t5) = {t1, t3}, and thus the rank interval

of t5 is [1, 2].
The shrinking algorithm in Sect. 6.1 does not affect record

ranks smaller than k, since any k-dominated record appears

only at ranks > k.

Hence, given a range of ranks i, . . . , j , we know that a

record t has non-zero probability to be in the answer of UTop-

Rank(i, j) query only if its rank interval intersects [i, j].
We compute UTop-Rank(i, j) query using Monte-Carlo

integration. The main insight is transforming the complex

space of linear extensions, that have to be aggregated to com-

pute query answer, to the simpler space of all possible score

combinations Γ . Such space can be sampled uniformly and

independently to find the probability of query answer without

enumerating the linear extensions. The accuracy of the result

depends only on the number of drawn samples s (cf. Sect. 3).

We assume that the number of samples is chosen such that

the error (which is in O
(

1√
s

)

) is tolerated. We experimen-

tally verify in Sect. 8 that we obtain query answers with high

accuracy and a considerably small cost using such strategy.

For a record tk , we draw a sample γ ∈ Γ as follows:

1. Generate the value xk in γ

2. Generate n − 1 independent values for other components

in γ one by one.

3. If at any point there are j values in γ greater than xk ,

reject γ .

4. Eventually, if the rank of xk in γ is in i . . . j , accept γ .

Let λ(i, j)(tk) be the probability of tk to appear at rank

i, . . . , j . The above procedure is formalized by the follow-

ing integral:

λ(i, j)(tk) =
∫

Γ(i, j,tk)

Π
D́
(γ) dγ (7)

where Γ(i, j,tk) ⊆ Γ is the volume defined by the points γ =
(x1, . . . , xn), with xk’s rank is in i, . . . , j . The integral in

Eq. 7 is evaluated as discussed in Sect. 3.

6.3.1 Complexity analysis

Let s be the total number of samples drawn from Γ to eval-

uate Eq. 7. In order to compute the l most probable records

to appear at a rank in i . . . j , we need to apply Eq. 7 to each

record in D́ the rank interval of which intersects [i, j], and

use a heap of size l to maintain the l most probable records.

Hence, computing l-UTop-Rank(i, j) query has a complex-

ity of O(s · n(i, j) · log(l)), where n(i, j) is the number of

records in D́ the rank intervals of which intersect [i, j]. In

the worst case, n(i, j) = n.

6.4 Computing Top- k- Queries

Let v be a linear extension prefix of k records, and s be a set of

k records. We denote with Pr(v) the top-k prefix probability

of v and, similarly, we denote with Pr(s) the top-k set prob-

ability of s. Similar to our discussion of UTop-Rank queries

in Sect. 6.3, Pr(v) is computed using Monte-Carlo integra-

tion on the volume Γ(v) ⊆ Γ which consists of the points

γ = (x1, . . . , xn) such that the values in γ that correspond to

records in v have the same ranking as the ranking of records

in v, and any other value in γ is smaller than the value cor-

responding to the last record in v. On the other hand, Pr(s)

is computed by integrating on the volume Γ(u) ⊆ Γ which

consists of the points γ = (x1, . . . , xn) such that any value

in γ , that does not correspond to a record in s, is smaller than

the minimum value that corresponds to a record in s.

The cost of the previous Monte-Carlo integration pro-

cedure can be further improved using the CDF product of

remaining records in D́, as described in Eq. 6.

The cost of the above integrals is similar to the cost of the

integral in Eq. 7 (mainly proportional to the number of sam-

ples). However, the number of integrals we need to evaluate

here is exponential (one integral per each top-k prefix/set),

while it is linear for UTop-Rank queries (one integral per

each record).

In the following, we describe a branch-and-bound search

algorithm to compute exact query answers (Sect. 6.4.1).

We also describe sampling techniques, based on the (M–H)

123

Supporting ranking queries on uncertain and incomplete data 487

algorithm (cf. Sect. 3), to compute approximate query

answers at a lower computational cost (Sect. 6.4.2).

6.4.1 A branch-and-bound algorithm

Our branch-and-bound algorithm employs a systematic

method to enumerate all possible candidate solutions (i.e.,

possible top-k prefixes/sets), while discarding a large subset

of these solutions by upper-bounding the probability of unex-

plored candidates. We discuss our algorithm by describing

how candidates are generated, and how candidate pruning is

conducted. We conclude our discussion by giving the overall

branch-and-bound algorithm. For clarity of presentation, we

focus our discussion on the evaluation of UTop-Prefix que-

ries. We show how to extend the algorithm to evaluate UTop-

Set queries at the end of this section.

Candidate generation. Based on our discussion in Sect. 6.3,

the rank intervals of different records can be derived from

the score dominance relationships in the underlying PPO.

Using the rank intervals of different records, we can incre-

mentally generate candidate top-k prefixes by selecting a dis-

tinct record t(i) for each rank i = 1 . . . k such that the rank

interval of t(i) encloses i , and the selected records at different

ranks form together a valid top-k prefix (i.e., a prefix of at

least one linear extension of the underlying PPO). A top-k

prefix v is valid if for each record t(i) ∈ v, all records dom-

inating t(i) appear in v at ranks smaller than i . For example

in Fig. 3, the set of records that appear at ranks 1 and 2 are

{t5, t2} and {t1, t2, t5}, respectively. The top-2 prefix 〈t2, t1〉
is invalid since the record t5, that dominates t1, is not selected

at rank 1. On the other hand, the top-2 prefix 〈t5, t1〉 is valid

since t1 can be ranked after t5.

Candidate pruning. Pruning unexplored candidates is

mainly done based on the following property (Property 2).

We use subscripts to denote prefixes’ lengths (e.g., vx is a

top-x prefix).

Property 2 Let vx be a top-x prefix and vy be a top-y prefix,

where vx ⊆ vy . Then, Pr(vy) ≤ Pr(vx).

The correctness of Property 2 follows from an implica-

tion of the definition of our probability space: the set of lin-

ear extensions prefixed by vx includes all linear extensions

prefixed by vy . Since the probability of a prefix vl is the

summation of all linear extensions prefixed by vl , Property 2

follows.

Hence, given a top-k prefix vk , any top-x prefix vx with

x ≤ k and Pr(vx) < Pr(vk) can be safely pruned from the

candidates set since Pr(vx) upper-bounds the probability of

any top-k prefix v́k where vx ⊆ v́k .

Algorithm 3 Branch-and-bound UTop-Prefix query evaluation

BB- UTop- Prefix (D : database, k : answer si ze)

1 {Initialization Phase}

2 U ← score upper-bound list

3 D́ ← Shrink_DB(D, k, U) {cf. Sect. 6.1}

4 for i = 1 to k

5 do

6 Compute λ(i,i) based on D́ {cf. Sect. 6.3}

7 L i ← sort tuples in λ(i,i) in a descending prob. order
8 {Searching Phase}

9 Q ← a priority queue of prefixes ordered on probability
10 v0 ← an empty prefix with probability 1
11 v0 . ptr ← 0 {first position in L1}

12 Insert v0 into Q

13 while (Q is not empty)
14 do

15 v∗
x ← evict top prefix in Q

16 if (x = k)
17 then {reached query answer}

18 return v∗
x

19 t∗ ← first tuple in Lx+1 at position pos∗ ≥ v∗
x .ptr

s.t. 〈v∗
x , t∗〉 is a valid prefix

20 v∗
x .ptr ← pos∗ + 1

21 vx+1 ← 〈v∗
x , t∗〉

22 Compute Pr(vx+1)

23 if (x + 1 = k)
24 then

25 Prune all prefixes in Q with prob. < Pr(vx+1)

26 else

27 vx+1.ptr ← 0 {first position in Lx+2}

28 if (v∗
x .ptr < |Lx+1|)

29 then {v∗
x can be further extended}

30 Pr(v∗
x) ← Pr(v∗

x) − Pr(vx+1)

31 Insert v∗
x into Q

32 Insert vx+1 into Q

The overall search algorithm. The details of the branch-

and-bound search algorithm are given in Algorithm 3. The

algorithm works in the two following phases:

– An initialization phase that builds and populates the data

structures necessary for conducting the search.

– A searching phase that applies greedy search heuristics to

lazily explore the answer space and prune all candidates

that do not lead to query answers.

In the initialization phase, the algorithm reduces the size of

the input database, based on the parameter k, by invoking the

shrinking algorithm discussed in Sect. 6.1. The techniques

described in Sect. 6.3 are then used to compute the distri-

bution λ(i,i) for i = 1 . . . k. The algorithm maintains k lists

L1 . . . Lk such that list L i sorts tuples in λ(i,i) in a descending

probability order.

In the searching phase, the algorithm maintains a priority

queue Q that maintains generated candidates in descending

order of probability. The priority queue is initialized with an

empty prefix v0 of length 0 and probability 1. Each main-

tained candidate vx of length x < k keeps a pointer vx . ptr

123

488 M. A. Soliman et al.

*

.063

*

.25

*

.25

t5

.75

< t5 > .75 t1

< > .25 t2

vx

*

.25

t5

t1

.5

*

.25

*

.25

t5

t1

t2

.438

p vx.ptr

< t5, t1 > .5 t2

< t5 > .25 t2

< > .25 t2

vx p vx.ptr

< t5, t1 , t2 > .438 -

< t5 > .25 t2

< > .25 t2

< t5, t1 > .063 t3

vx p vx.ptr

*

.063

t5

1

{ t5 } 1 t1

sx

t5

t1

1

t5

t1

t2

.937

p sx.ptr

{ t5, t1 } 1 t2

sx p sx.ptr

{ t5, t1 , t2 } .937 -

{ t5, t1} .063 t3

sx p sx.ptr

(b)(a)

Fig. 5 Computing Top- k- Queries using branch-and-bound. a Evaluating UTop-Prefix(3) query; b evaluating UTop-Set(3) query

pointing at the position of the next tuple in the list Lx+1 to be

used in extending vx into a candidate of length x+1. Initially,

vx . ptr is set to the first position in Lx+1. The positions are

assumed to be 0-based. Hence, the value of vx . ptr ranges

between 0 and |Lx+1| − 1.

Extending candidates is done slowly (i.e., one candidate

is extended at a time). Following the greedy criteria of A∗

search, the algorithm selects the next candidate to extend as

follows. At each iteration, the algorithm evicts the candidate

v∗
x at the top of Q (i.e., Pr(v∗

x) is the highest probability in

Q). If x = k, the algorithm reports v∗
x as the query answer.

Otherwise, if x < k, the algorithm extends v∗
x into a new

candidate vx+1 by augmenting v∗
x with the tuple t∗ at the

first position ≥ v∗
x . ptr in Lx+1 such that vx+1 = 〈v∗

x , t∗〉 is

a valid prefix. The pointer v∗
x . ptr is set to the position right

after the position of t∗ in Lx+1, while the pointer vx+1 . ptr

is set to the first position in Lx+2 (only if x + 1 < k). The

probabilities of vx+1 and v∗
x are computed (Pr(v∗

x) is reduced

to Pr(v∗
x)−Pr(vx+1)) and the two candidates are reinserted in

Q. Furthermore, if x + 1 = k (line 23), the algorithm prunes

all candidates in Q the probabilities of which are less than

Pr(vx+1) according to Property 2. In addition, if v∗
x . ptr >

|Lx+1|, then v∗
x cannot be further extended into candidates

of larger length, and so v∗
x is removed from Q.

The correctness of Algorithm 3 follows from the correct-

ness of our systematic candidate generation method, and

the correctness of our probability upper bounding method

described in the beginning of this section.

Figure 5 gives an example illustrating how Algorithm 3

works. We use the PPO in Fig. 3 in this example, where the

ordered tuples list L1 = 〈t5, t2〉, L2 = 〈t1, t2, t5〉 , and L3 =
〈t1, t2, t3〉. Figure 5a shows how the branch-and-bound algo-

rithm computes for the answer of a UTop-Prefix(3) query.

The search starts with an empty prefix v0 with probability 1.

The prefix v0 is extended using t5 (the first tuple in L1). The

algorithm then computes Pr(〈t5〉) as 0.75 (the probability is

computed using Monte-Carlo integration as discussed in the

beginning of Sect. 6.4) , while Pr(v0) decreases by 0.75. Both

prefixes are inserted into Q after updating their ptr fields to

point to the next tuple that can be used to create valid pre-

fixes later. After three steps, the search terminates since the

top prefix in Q has length 3.

Computing UTop-Set queries by branch-and-bound. The

branch-and-bound prefix search algorithm can be easily

extended to compute UTop-Set queries. The reason is that

Property 2 also holds on sets. That is, let sx and sy be two

record sets with sizes x and y, respectively. Then, if sx ⊆ sy ,

we have Pr(sy) ≤ Pr(sx). Hence, Pr(sy) upper-bounds the

probability of any set that can be created by appending more

tuples to sy .

The main difference between prefix search and set search

is that multiple prefixes map to the same set. For example,

both prefixes 〈t2, t5〉 and 〈t5, t2〉 map to the set {t2, t5}. We

thus need to filter out prefixes that map to already instantiated

sets. This is done by maintaining an additional hash table of

instantiated sets. Each generated candidate is first looked up

in the hash table, and a new set is instantiated only if the hash

table does contain a corresponding set.

Figure 5b shows how the branch-and-bound algorithm

computes for the answer of a UTop-Set(3) query. The search

starts by instantiating an empty set s0 with probability 1. The

set s0 is extended using t5 (the first tuple in L1), which results

in having Pr({t5}) = 1 (i.e., t5 appears in all linear extensions

at ranks 1 , . . . , 3), and hence Pr(s0) is set to 0, and can thus

be removed from Q. After three steps, the search terminates

since the top set in Q has size 3.

6.4.2 A sampling-based algorithm

In this section we describe a sampling-based algorithm to

compute approximate answers of Top- k- Queries.

123

Supporting ranking queries on uncertain and incomplete data 489

Sampling space. A state in our space is a linear extension

ω of the PPO induced by D́. Let θ and Θ be the distributions

of the top-k prefix probabilities and top-k set probabilities,

respectively. Let π(ω) be the probability of the top-k prefix,

or the top-k set in ω, depending on whether we simulate θ or

Θ , respectively. The main intuition of our sample generator

is to propose states with high probabilities in a light-weight

fashion. This is done by shuffling the ranking of records in

ω biased by the weights of pairwise rankings (Eq. 1). This

approach guarantees sampling valid linear extensions since

ranks are shuffled only when records probabilistically dom-

inate each other.

Given a state ωi , a candidate state ωi+1 is generated as

follows:

1. Generate a random number z ∈ [1, k].
2. For j = 1, . . . , z do the following:

(a) Randomly pick a rank r j in ωi . Let t(r j) be the record

at rank r j in ωi .

(b) If r j ∈ [1, k], move t(r j) downward in ωi , otherwise

move t(r j) upward. This is done by swapping t(r j)

with lower records in ωi if r j ∈ [1, k], or with upper

records if r j /∈ [1, k]. Swaps are conducted one by

one, where swapping records t(r j) and t(m) is com-

mitted with probability P(r j ,m) = Pr(t(r j) > t(m)) if

r j > m, or with probability P(m,r j) = Pr(t(m) > t(r j))

otherwise. Record swapping stops at the first uncom-

mitted swap.

The (M–H) algorithm is proven to converge with arbi-

trary proposal distributions [21]. Our proposal distribu-

tion q(ωi+1|ωi) is defined as follows. In the above sample

generator, at each step j , assume that t(r j) has moved to

a rank r < r j . Let R(r j ,r) = {r j − 1, r j − 2, . . . , r}. Let

Pj =
∏

m∈R(r j ,r)
P(r j ,m). Similarly, Pj can be defined for

r > r j . Then, the proposal distribution q(ωi+1|ωi) =
∏z

j=1 Pj , due to independence of steps. Based on the

(M–H) algorithm, ωi+1 is accepted with probability α =
min

(

π(ωi+1).q(ωi |ωi+1)

π(ωi).q(ωi+1|ωi)
, 1

)

.

Computing query answers. The (M–H) sampler simulates

the top-k prefixes/sets distribution using a Markov chain

(a random walk) that visits states biased by probability.

Gelman and Rubin [22] argued that it is not generally pos-

sible to use a single simulation to infer distribution charac-

teristics. The main problem is that the initial state may trap

the random walk for many iterations in some region in the

target distribution. The problem is solved by taking dispersed

starting states and running multiple iterative simulations that

independently explore the underlying distribution.

We thus run multiple independent Markov chains, where

each chain starts from an independently selected initial state,

and each chain simulates the space independently of all other

chains. The initial state of each chain is obtained by inde-

pendently selecting a random score value from each score

interval, and ranking the records based on the drawn scores,

resulting in a valid linear extension.

A crucial point is determining whether the chains have

mixed with the target distribution (i.e., whether the current

status of the simulation closely approximates the target distri-

bution). At mixing time, the Markov chains produce samples

that closely follow the target distribution and hence can be

used to infer distribution characteristics. In order to judge

chains mixing, we used the Gelman–Rubin diagnostic [22],

a widely used statistic in evaluating the convergence of mul-

tiple independent Markov chains [23]. The statistic is based

on the idea that if a model has converged, then the behavior

of all chains simulating the same distribution should be the

same. This is evaluated by comparing the within-chain distri-

bution variance to the across-chains variance. As the chains

mix with the target distribution, the value of the Gelman–

Rubin statistic approaches 1.0.

At mixing time, which is determined by the value of

convergence diagnostic, each chain approximates the dis-

tribution’s mode as the most probable visited state (sim-

ilar to simulated annealing). The l most probable visited

states across all chains approximate the l-UTop-Prefix (or

l-UTop-Set) query answers. Such approximation improves

as the simulation runs for longer times. The question is, at

any point during simulation, how far is the approximation

from the exact query answer?

We derive an upper-bound on the probability of any pos-

sible top-k prefix/set as follows. The top-k prefix proba-

bility of a prefix 〈t(1), . . . , t(k)〉 is equal to the probability

of the event e = ((t(1) ranked 1st) ∧ · · · ∧ (t(k) ranked

kth)). Let λi (t) be the probability of record t to be at rank

i . Based on the principles of probability theory, we have

Pr(e) ≤ mink
i=1 λi (t(i)). Hence, the top-k prefix probability

of any k-length prefix cannot exceed mink
i=1(maxn

j=1 λi (t j)).

Similarly, Let λ1,k(t) be the probability of record t to be at

rank 1 . . . k. It can be shown that the top-k set probability of

any k-length set cannot exceed the kth largest λ1,k(t) value.

The values of λi (t) and λ1,k(t) are computed as discussed

in Sect. 6.3. The approximation error is given by the differ-

ence between the top-k prefix/set probability upper-bound

and the probability of the most probable state visited during

simulation.

We note that the previous approximation error can over-

estimate the actual error, and that chains mixing time varies

based on the fluctuations in the target distribution. However,

we show in Sect. 8 that, in practice, using multiple chains can

closely approximate the true top-k states, and that the actual

approximation error diminishes by increasing the number of

chains. We also comment in Sect. 9 on the applicability of

our techniques to other error estimation methods.

123

490 M. A. Soliman et al.

Caching. Our sample generator mainly uses two-dimen-

sional integrals (Eq. 1) to bias generating a sample by its prob-

ability. Such two-dimensional integrals are shared among

many states. Similarly, since we use multiple chains to simu-

late the same distribution from different starting points, some

states can be repeatedly visited by different chains. Hence,

we cache the computed Pr(ti > t j) values and state proba-

bilities during simulation to be reused at a small cost.

6.5 Computing Rank- Aggregation- Queries

Rank aggregation is the problem of computing a consensus

ranking for a set of candidates C using input rankings of C

coming from different voters. The problem has immediate

applications in Web meta-search engines [13].

While our work is mainly concerned with ranking under

possible worlds semantics (Sect. 2.2), we note that a strong

resemblance exists between ranking in possible worlds and

the rank aggregation problem. To the best of our knowledge,

we give the first identified relation between the two problems.

Measuring the distance between two rankings of the set

of candidates C is central to rank aggregation. Given two

rankings ωi and ω j , let ωi (c) and ω j (c) be the positions of

a candidate c ∈ C in ωi and ω j , respectively. Two widely

used measures of the distance between two rankings are the

Spearman footrule distance and the Kendall tau distance.

The Spearman footrule distance is the summation, over

all candidates, of the distance between the positions of the

same candidate in the two lists, formally defined as follows:

F(ωi, ωj) =
∑

c∈C

|ωi(c) − ωj(c)| (8)

On the other hand, the Kendall tau distance is the number

of pairwise disagreements in the relative order of candidates

in the two lists, formally defined as follows:

K(ωi , ω j) =|{(ca, cb) : a < b, ωi (ca) < ωi (cb),

ω j (ca) > ω j (cb)}|
(9)

The optimal rank aggregation is the ranking with the min-

imum average distance to all input rankings. It is well-known

that optimal rank aggregation under Kendall tau distance

(also known as Kemeny-optimal aggregation) is the only

aggregation that satisfies the following intuitive properties

[13,24]:

– Neutrality: if two candidates switch their positions in all

input rankings, then their positions must be switched in

the aggregate ranking.

– Consistency: if the set of input rankings is split into two

sets A and B, such that the aggregate rankings of both A

and B prefer candidate c1 to candidate c2, then the overall

aggregate ranking must also prefer c1 to c2.

– Extended Condorcet criterion: for two candidate sets C1

and C2, if for every ci ∈ C1 and c j ∈ C2, the majority of

input rankings prefer ci to c j , then the aggregate ranking

must prefer C1 to C2.

Unfortunately, rank aggregation under Kendall tau dis-

tance is NP-Hard in general. The optimal aggregation under

Spearman footrule distance is a 2-approximation of the

Kendall tau aggregation [13,24].

In the following sections we discuss evaluating Rank-

Aggregation- Queries, based on our probabilistic partial

order model, under each of the Spearman footrule distance

(Sect. 6.5.1) and the Kendall tau distance (Sect. 6.5.2).

6.5.1 Rank- Aggregation- Queries with Spearman

footrule distance

Optimal rank aggregation under footrule distance can

be computed in polynomial time by the following algo-

rithm [13]. Given a set of rankings ω1, . . . , ωm , the

objective is to find the optimal ranking ω∗ that mini-

mizes 1
m

∑m
i=1 F(ω∗, ωi). The problem is modeled using

a weighted bipartite graph G with two sets of nodes. The

first set has a node for each candidate, while the second

set has a node for each rank. Each candidate c and rank r

are connected with an edge (c, r) the weight of which is

w(c, r) =
∑m

i=1 |ωi (c) − r |. Then, ω∗ (the optimal rank-

ing) is given by “the minimum cost perfect matching” of G,

where a perfect matching is a subset of graph edges such

that every node is connected to exactly one edge, while the

matching cost is the summation of the weights of its edges.

Finding such matching can be done in O(n2.5), where n is

the number of graph nodes [13].

In our settings, viewing each linear extension as a voter

gives us an instance of the rank aggregation problem on a

huge number of voters. The objective is to find the optimal

linear extension that has the minimum average distance to all

linear extensions. We show that we can solve this problem

in polynomial time, under footrule distance, given λi (t) (the

probability of record t to appear at each rank i , or, equiva-

lently, the summation of the probabilities of all linear exten-

sions having t at rank i).

Theorem 2 For a PPO(R,O,P) defined on n records, the

optimal rank aggregation of the linear extensions, under foot-

rule distance, can be solved in time polynomial in n using

the distributions λi (t) for i = 1, . . . , n.

Proof For each linear extension ωi of PPO, assume that

we duplicate ωi a number of times proportional to Pr(ωi).

Let Ώ = {ώ1, . . . , ώm} be the set of all linear exten-

sions’ duplicates created in this way. Then, in the bipartite

graph model, the edge connecting record t and rank r has

a weight w(t, r) =
∑|Ώ|

i=1 |ώi (t) − r |, which is the same

123

Supporting ranking queries on uncertain and incomplete data 491

t1

t3 t2

t3

t2

t1

t3

0.5 0.2

t2

0.3

t3

t2

t1 t1

t2

t3

1

2

3

0.2

0.8
1.8

1.7
0.7

0.3

0.5

1.1

0.9

Min-cost Perfect Matching= {(t1,1), (t2,2), (t3,3)}

1= {t1:0.8, t2:0.2}

2= {t1:0.2, t2:0.5,t3:0.3}

3= {t2:0.3,t3:0.7}

Fig. 6 Bipartite graph matching

as
∑n

j=1(n j × | j − r |), where n j is the number of linear

extensions in Ώ having t at rank j . Dividing by |Ώ|, we get
w(t,r)

|Ώ| =
∑n

j=1

(

n j

|Ώ| × | j − r |
)

=
∑n

j=1(λ j (t) × | j − r |).
Hence, using λi (t)’s, we can compute w(t, r) for every edge

(t, r) divided by a fixed constant |Ώ|, and thus the polyno-

mial matching algorithm applies. ⊓⊔

The intuition of Theorem 2 is that λi ’s provide compact

summaries of voter’s opinions, which allows us to efficiently

compute the weights of graph edge without expanding the

space of linear extensions. The distributions λi ’s are obtained

by applying Eq. 7 at each rank i separately, yielding a qua-

dratic cost in the number of records n.

Figure 6 shows an example illustrating our technique. The

probabilities of the depicted linear extensions are summa-

rized as λi ’s without expanding the space (Sect. 6.3). The

λi ’s are used to compute the weights in the bipartite graph

yielding 〈t1, t2, t3〉 as the optimal linear extension.

6.5.2 Rank- Aggregation- Queries with Kendall tau

distance

Optimal rank aggregation under Kendall tau distance is

known to be NP-Hard in general by reduction to the prob-

lem of minimum feedback arc set [24]: construct a com-

plete weighted directed graph the nodes of which are the

candidates, such that an edge connecting nodes ci and c j is

weighted by the proportion of voters who rank ci before c j .

The problem is to find the set of edges with the minimum

weight summation the removal of which converts the input

graph to a DAG. Since the input graph is complete, the result-

ing DAG defines a total order on the set of candidates, which

is the optimal rank aggregation.

The hardness of the rank aggregation problem gives rise to

approximation methods similar to the Markov chains-based

methods in [13] to find the optimal rank aggregation. Spear-

man footrule aggregation is also known to be a 2-approxi-

mation of Kendall tau aggregation [24].

However, under our settings, we identify key properties

that influence the hardness of computing optimal Kendall

tau rank aggregation. We show that optimal rank aggrega-

tion can be computed in polynomial time depending on the

properties of the underlying PPO, summarized as follows:

1. If the PPO is induced by records with non-uniform score

densities, and the PPO is weak stochastic transitive (see

Definition 9 below), then query computation cost is poly-

nomial in n (the database size).

2. If the PPO is induced by records with uniform score den-

sities, then the PPO is guaranteed to be weak stochastic

transitive, and a polynomial time algorithm to compute

Kendall tau aggregation exists. Moreover, by exploiting

score uniformity, the complexity can be further reduced

to O(nlog(n)).

We start our discussion by defining the property of weak

stochastic transitivity in the context of probabilistic partial

orders.

Definition 9 [Weak Stochastic Transitivity] A PPO induced

by a database D is weak stochastic transitive iff ∀ records

x, y, z ∈ D : [Pr(x > y) ≥ 0.5 and Pr(y > z) ≥ 0.5] ⇒
Pr(x > z) ≥ 0.5.

The property of weak stochastic transitivity is formulated

and used in many probabilistic preference models. We refer

the reader to [25] for a detailed discussion. We briefly contrast

our interpretation of probabilistic preference against current

interpretations in the following.

In many probabilistic preference models [25–27], for a

pair of alternatives x and y, Pr(x > y) is interpreted as the

probability that x is chosen over y. The origin of such prob-

abilistic preferences can be related to changes in the internal

state of the selecting agent (e.g., as a result of learning), to

noise in the preferences obtained from users, or to the process

of condensing users’ votes into pairwise comparisons among

candidates. In our settings, however, the origin of probabi-

listic preferences is the uncertainty in attribute values in the

database, which in turn induces uncertainty in records’ scores

that we use for comparison and ranking. Our underlying prob-

ability space gives a concrete interpretation of Pr(x > y) as

the summation of the probabilities of linear extensions (pos-

sible ranked instances of the database), where x is ranked

above y.

Given an input PPO, the property of weak stochastic tran-

sitivity can be decided in O(n3), where n is the database size,

since the property needs to be checked on record triples.

Rank- Aggregation- Queries on a PPO with non-uniform

score densities. Let Ω = {ω1, . . . , ωm} be the set of linear

extensions of a PPO. The members of Ω represent voters

associated with probabilistic weights. Hence, our objective

is to find the optimal rank aggregation ω∗ that minimizes
1
m

∑m
i=1 Pr(ωi) · K(ω∗, ωi).

Let Ω(ti >t j) ⊆ Ω be the set of linear extensions, where ti
is ranked above t j . Then, Pr(ti > t j) =

∑

ω∈Ω(ti >t j)
Pr(ω).

Hence, ω∗ is the ranking that minimizes the probability sum-

mation of pairwise preferences violating the order given by

123

492 M. A. Soliman et al.

ω∗. That is, ω∗ is the ranking that minimizes the following

penalty function:

pen(ω) =
∑

ti ,t j ∈D:i< j,ω(t j)<ω(ti)

Pr(ti > t j) (10)

If the property of weak stochastic transitivity holds on the

underlying PPO, then ω∗ can be efficiently computed based

on Theorem 3:

Theorem 3 Given a weak stochastic transitive PPO induced

by a database D, the optimal rank aggregation ω∗ under

Kendall tau distance is defined as: ∀ records x, y ∈ D :
[ω∗(x) < ω∗(y)] ⇔ [Pr(x > y) ≥ 0.5] while breaking

probability ties deterministically.

Proof Since the underlying PPO is weak stochastic transi-

tive, then ω∗ is a valid ranking of D, since the definition of

ω∗ does not introduce cycles in the relative order of records

in D.

Assume a rank aggregation ώ that is identical to ω∗ except

for the relative order of two records x and y. We consider the

following three possible cases:

1. [Pr(x > y) = p > 0.5] In this case we have ω∗(x) <

ω∗(y) while ώ(x) > ώ(y). Hence, pen(ω∗) = pen(ώ) −
(2p − 1).

2. [Pr(x > y) = p < 0.5] In this case we have ω∗(y) <

ω∗(x) while ώ(y) > ώ(x). Hence, pen(ω∗) = pen(ώ) −
(1 − 2p).

3. [Pr(x > y) = p = 0.5] In this case assume that the

deterministic tie-breaker τ(x, y) states that (x > y). Then,

ω∗(x) < ω∗(y) while ώ(x) > ώ(y). Hence, pen(ω∗) =
pen(ώ). The same result also holds if τ(x, y) states that

(y > x).

Moreover, for any other rank aggregation ´́ω that is differ-

ent from ω∗ in the relative order of more than two records,

we have pen(´́ω) ≥ pen(ώ) ≥ pen(ω∗). It follows that ω∗ is

the optimal rank aggregation. ⊓⊔

Query evaluation and complexity analysis. The result given

by Theorem 3 allows for an efficient evaluation procedure to

find the optimal rank aggregation in a weak stochastic tran-

sitive PPO. The procedure computes Pr(x > y) for each pair

of records (x, y), and uses the computed probabilities to sort

the database. That is, starting from an arbitrary ranking of

records of D, the positions of any two records x and y need

to be swapped iff Pr(x > y) ≥ 0.5 and x is ranked below

y. Based on the weak stochastic transitivity of the PPO, this

procedure yields a valid ranking of D since transitivity does

not introduce cycles in the relative order of records. Hence,

the overall complexity of the query evaluation procedure is

O(n2), where n = |D|, which is the complexity of com-

puting Pr(x > y) on each pair of records (x, y). If it is not

a priori known if the property of weak stochastic transitiv-

ity holds on the PPO, then the overall complexity becomes

O(n3) since the PPO needs to be checked for being weak

stochastic transitive first.

Rank- Aggregation- Queries on a PPO with uniform

score densities. If the records in the database that induces

the PPO have uniform score densities, the cost of comput-

ing Rank- Aggregation- Queries drops considerably. We

first prove in Theorem 4 below an important property that

holds on the PPO induced by uniform score densities. In the

following, we denote with E[fi] the expected value of the

score density fi .

Theorem 4 Given a PPO induced by records with uniform

score densities in a database D, then ∀ records ti , t j ∈ D :
(E[fi] ≥ E[f j]) ⇔ (Pr(ti > t j) ≥ 0.5).

Proof First, we prove that (E[fi] ≥ E[f j]) ⇒ (Pr(ti >

t j) ≥ 0.5). We first compute the integral that defines

Pr(ti > t j) as follows. Pr(ti > t j) = 1
(upi −loi)×(up j −lo j)

×
∫ upi

loi

∫ x

lo j
dydx . By solving the integral we get Pr(ti > t j) =

1
up j −lo j

×
(

upi +loi

2 − lo j

)

= 1
up j −lo j

× (E(fi) − lo j). We

rewrite the given (E[fi] ≥ E[f j]) as E[fi] = E[f j] + ǫ,

where ǫ ≥ 0. Then, Pr(ti > t j) = 1
up j −lo j

×((E(f j)−lo j)+
ǫ) = 1

2 + ǫ
up j −lo j

, which means that Pr(ti > t j) ≥ 0.5.

Second, we prove that (Pr(ti > t j) ≥ 0.5) ⇒ (E[fi] ≥
E[f j]). Assume that E[fi] − E[f j] = ǫ, where ǫ is an arbi-

trary (positive/negative) real number. Since we have Pr(ti >

t j) = 1
2 + ǫ

up j −lo j
, and based on the given (Pr(ti > t j) ≥

0.5), we get 1
2 + ǫ

up j −lo j
≥ 1

2 , which means that ǫ ≥ 0. It

follows that E[fi] ≥ E[f j], which concludes the proof. ⊓⊔

Based on Theorem 4, for records ti , t j , tk ∈ D, if Pr(ti >

t j) ≥ 0.5 and Pr(t j > tk) ≥ 0.5, then we have E[fi] ≥ E[f j]
and E[f j] ≥ E[fk]. It follows that E[fi] ≥ E[fk], which also

means that Pr(ti > tk) ≥ 0.5. Hence, a PPO that is induced

by uniform score densities is weak stochastic transitive.

Query evaluation and complexity analysis. Since the PPO

is weak stochastic transitive, we do not need to conduct

the transitivity checking step. We can compute Rank-

Aggregation- Queries using the polynomial algorithm we

described previously for weak stochastic transitive PPO’s.

However, based on Theorem 4, we can further optimize the

computation cost. Specifically, for any two records ti and t j ,

we have (E[fi] ≥ E[f j]) ⇔ (Pr(ti > t j) ≥ 0.5). Hence, we

can avoid computing Pr(ti > t j) for all record pairs (ti , t j),

and sort the database based on the expected records’ scores,

which results in the same sorting based on Pr(ti > t j) val-

ues. Computing E[fi] for every record ti requires a linear

scan over D, which has a complexity of O(n), while the

123

Supporting ranking queries on uncertain and incomplete data 493

subsequent sorting step has a complexity of O(nlog(n)). It

follows that the query evaluation procedure has an overall

complexity of O(nlog(n)).

7 Uncertain scores construction

In this section, we give a method to construct uncertain scores

from probabilistic scoring attributes, i.e., attributes defined

as random variables with associated probability distributions.

We start by describing how to model attributes with missing

values as probabilistic attributes (Sect. 7.1), which widens

the scope of our methods to databases with incomplete data.

We then show how, given a scoring function defined on one

or more probabilistic attributes, we compute a score interval

and a score density for each record (Sect. 7.2).

7.1 Estimating missing values

We describe a simple technique to construct a probability dis-

tribution for the estimates of missing attribute values (e.g.,

the rent of apartment a4 in Fig. 2a), based on attribute cor-

relations. We emphasize, however, that other methods, e.g.,

machine learning methods [6,7], can also fit our purposes.

We contrast our method against other techniques in Sect. 9.

The strength of the correlation between two attributes ai

and a j , denoted c(ai , a j) is expressed as
|a j |

|a j ,ai | , where |.|
refers to the number of distinct values (which can be obtained

from system catalog). Similar definition is used in [28] to

quantify the dependence among attributes in attribute pairs.

The value c(ai , a j) expresses the confidence that every dis-

tinct value in a j is associated with a unique value in ai . Our

strategy is to predict missing attribute values, in an off-line

stage, by identifying a set S of strong attribute correlations

that are used, under independence assumption, to impute

missing attribute values.

Some strong correlations may not be useful predictors.

Specifically, if |a j | is close to the cardinality of the whole

relation, then a j is (approximate) key. In such case, a j is triv-

ially correlated with every other attribute [6,28]. An approx-

imate key a j has, with a high probability, a distinct value in

each record. Hence, for a record t with missing ai value and

non-missing a j value, the value of t.a j is most likely differ-

ent from all other records. Therefore, the set of records the

a j value of which is the same as t.a j is most likely empty,

and thus (ai , a j) is not a useful predictor for the missing t.ai

value.

Similar to [28], for a relation R, we include in the set

of attribute correlations S each correlation (ai , a j), with

c(ai , a j) > ǫ1 and (ǫ2 < |a j |/|R| < ǫ3), where ǫ1, ǫ2, and

ǫ3 are input parameters in [0,1]. If there are already known

correlations (functional dependencies), they can be directly

added to S (e.g., a Car table usually involves the correla-

tion (make, model)). Moreover, by evaluating dependencies

among value distributions in attribute pairs (e.g., using the

chi-square test of independence in [28]), correlations in S can

be merged together capturing their dependence. For exam-

ple, if attributes a j and ak are dependent, we can replace the

correlations (ai , a j) and (ai , ak) in S with one correlation

(ai , {a j , ak}) that captures the joint distribution of {a j , ak}.
For clarity of discussion, we focus on correlations of the form

(ai , a j) in the following discussion.

Let ai be an attribute of interest containing missing val-

ues. We use the correlation (ai , a j) to construct a two-dimen-

sional histogram materializing the relative frequencies of all

value combinations of ai and a j based on known (non-miss-

ing) values in both attributes. For a record t , with missing

ai value, and non-missing a j value, we estimate t.ai using

the values in the histogram bin associated with t.a j . We thus

obtain a number of t.ai estimates along with their relative fre-

quencies. For every other correlation (ai , ak), we obtain sim-

ilar estimates for t.ai . We derive overall estimates of t.ai by

averaging the frequencies of identical values obtained from

individual histograms, weighted by the strength of the cor-

responding correlations.

We illustrate our technique using the following example.

Assume an apartment record t = (rooms = 2, area =
1000, zip = 94123, rent =?). Assume the correla-

tions (rent, area) and (rent, zip) have strengthes of 0.9

and 0.8, respectively. Assume the bin of the histogram

(rent, area) at area = 1, 000 has the following (value, fre-

quency) pairs: {(700, 0.5), (800, 0.25), (850, 0.25)}. Simi-

larly, assume the bin of the histogram (rent, zip) at zip =
94123 has the following pairs {(700, 0.5), (800, 0.5)}. We

combine both histogram bins into an overall t.rent histo-

gram {(700, 0.85), (800, 0.625), (850, 0.225)}, where, for

example, the overall weight of the pair (800, 0.625) is a

weighted average of the frequencies of the pairs (800, 0.25)

and (800, 0.5), with weights 0.9 and 0.8, respectively. Hence,

we boost the weight of an estimate if multiple correlations

agree on such estimate. We demonstrate, in Sect. 8, the effec-

tiveness of such prediction method using real-world data.

The final step is normalizing the resulting histogram to

generate a corresponding probability distribution on the pos-

sible fillers of the missing attribute value. We fit a probability

distribution on the histogram {(x1, y1), . . . , (xm, ym)} using

kernel density estimation method, a widely used non-para-

metric regression technique to compute a density function

from observations, defined as follows:

p(x) = 1

h.
∑m

i=1 yi

m
∑

i=1

yi .κ

(

xi − x

h

)

(11)

where κ(.) is a standard Gaussian kernel with mean 0 and

standard deviation 1. The intuition of Eq. 11 is to average the

123

494 M. A. Soliman et al.

observations close to x weighted by their distances from x .

The normalization constant
∑m

i=1 yi guarantees valid com-

puted probabilities (i.e., the area under p(.) curve is 1). In

our experiments, we set the bandwidth parameter h, which

determines the span of the kernel, to 1% of the histogram’s

span.

7.2 Aggregating uncertain scores

Given a query-specified scoring function F , we show how to

construct for each record ti a score interval vi = [loi ,upi]
enclosing ti ’s possible scores, and a probability density func-

tion fi defined on vi .

7.2.1 Computing score intervals

Let F be a query-specified scoring function of the attri-

butes p1, . . . , pn . In many practical use cases, users adopt

simple ranking functions reflecting their preferences. Mono-

tone and bounded scoring functions are assumed in many

recent top-k query processing proposals [4,29,30]. We call

F(p1, . . . , pn) a monotone function if F(x1, . . . , xn) ≤
F(x́1, . . . , x́n) whenever xi ≤ x́i for every i , while we

call F(p1, . . . , pn) a bounded function if the range of F

is bounded using the boundary values of pi ’s.

Given a monotone or bounded scoring function, we derive

vi based on the boundary values of pi ’s. If F(p1, . . . , pn)

is monotone, then vi = [F(p1, . . . , pn),F(p1, . . . , pn)],
where pi and pi are the minimum and maximum values in

pi ’s probability distribution (if pi is a deterministic attri-

bute, we use its value for both bounds). For example, assume

a monotone function F1(t) = t . p1 + t . p2. For record ti ,

assume ti . p1 and ti . p2 are defined as probability distribu-

tions over the intervals [8, 10] and [2, 5], respectively. Then,

vi = [10, 15]. Similarly, if F(p1, . . . , pn) is bounded, then

vi is computed based on the boundary values of pi ’s. For

example, for a bounded function F2(t) = (t . p1 − t . p2)
2

(note that F2 is non-monotone), the score interval vi =
[9, 64].

Relaxing our assumptions, regarding the class of scoring

functions we support, requires employing multi-dimensional

optimization techniques, e.g., gradient methods, to search for

global minima and maxima of a multi-dimensional function

in order to derive vi ’s. We do not address such generalization

in this paper.

7.2.2 Computing score densities

For a simple scoring function defined on a single scoring attri-

bute p j , the score density function fi is the same as ti . p j ’s

probability distribution. If ti . p j is a deterministic value, then

fi is equal to such value with probability 1.

For a multi-attribute scoring function F(p1, . . . , pn), we

need to combine the densities of different attributes to com-

pute the overall score density fi . For each record t , we use

the probability distributions of t . p1, . . . , t . pn to sample m

points x i
1, . . . , x i

m from the distribution of each attribute t . pi .

The score density of record t is computed as a joint den-

sity over the densities of individual attributes using a multi-

dimensional kernel density estimator, defined as follows:

f (x1, . . . , xn) = 1

m

m
∑

i=1

n
∏

j=1

1

h j

κ

(

x
j
i − x j

h j

)

(12)

Equation 12 assumes the independence of scoring attri-

butes (through multiplying the individual kernel estimators).

Similar to Eq. 11, we set each bandwidth parameter h j to 1%

of the width of its corresponding attribute interval.

8 Experiments

All experiments are conducted on a SunFire X4100 server

with two Dual Core 2.2 GHz processors, and 2 GB of RAM.

We used both real and synthetic data to evaluate our meth-

ods under different configurations. We experiment with two

real datasets: (1) Apts: 33,000 apartment listings obtained

by scraping the search results of apartments.com, and (2)

Cars: 10,000 car ads scraped from carpages.ca. The rent

attribute in Apts is used as the scoring function (65% of

scraped apartment listings have uncertain rent values), and

similarly, the price attribute in Cars is used as the scoring

function (10% of scraped car ads have uncertain price).

The synthetic datasets have different distributions of score

intervals’ bounds: (1) Syn-u-p: bounds are uniformly distrib-

uted, (2) Syn-g-p: bounds are drawn from Gaussian distri-

bution, and (3) Syn-e-p: bounds are drawn from exponential

distribution. The parameter p represents the proportion of

records with uncertain scores in each dataset is (default is

0.5). The size of each dataset is 100,000 records. In all experi-

ments, unless otherwise is specified, the score densities (fi ’s)

are taken as uniform.

For synthetic data, the bounds of the score interval of

each record ti is generated by drawing a random interval

starting point loi from the dataset corresponding distribu-

tion (uniform, Gaussian (µ = 0.5, σ = 0.05), or exponen-

tial(µ = 0.1)) defined on the score range [0,1]. The width

of the interval is uniform in [0,1]. The main intuition is to

create different patterns of filling the score range with uncer-

tain scores of different records. For example, while uniform

distribution distributes the uncertain scores uniformly over

the score range, exponential distribution creates a skewed

pattern in which a few records have high scores, while the

majority of records have low scores.

123

Supporting ranking queries on uncertain and incomplete data 495

0%

20%

40%

60%

80%

100%

10 100 500 1000

K

S
h

ri
n

k
a

g
e

 P
e

rc
e

n
ta

g
e

Apts Cars Syn-u-0.5 Syn-g-0.5 Syn-e-0.5

Fig. 7 Reduction in data size

8.1 Shrinking database by k-dominance

We evaluate the performance of the database shrinking algo-

rithm (Algorithm 2). Figure 7 shows the database size reduc-

tion due to k-dominance (Lemma 1) with different k values.

The maximum reduction, around 98%, is obtained with the

Syn-e-0.5 dataset. The reason is that the skewed distribu-

tion of score bounds results in a few records dominating the

majority of other database records.

We also evaluate the number of record accesses used to

find the pruning position pos∗ in the list U (Sect. 6.1). The

logarithmic complexity of the algorithm guarantees a small

number of record accesses of under 20 accesses in all data-

sets. The time consumed to construct the list U is under 1 s,

while the time consumed by Algorithm 2 is under 0.2 s, in all

datasets.

8.2 Accuracy and efficiency of Monte-Carlo integration

We evaluate the accuracy and efficiency of Monte-Carlo inte-

gration in computing UTop-Rankqueries. The probabilities

computed by the Baseline algorithm are taken as the ground

truth in accuracy evaluation. For each rank i = 1, . . . , 10,

we compute the relative difference between the probability

of record t to be at rank i , computed as in Sect. 6.3, and the

same probability as computed by the Baseline algorithm.

We average this relative error across all records, and then

across all ranks to get the total average error. Figure 8 shows

the relative error with different space sizes (different num-

ber of linear extensions’ prefixes processed by Baseline).

The different space sizes are obtained by experimenting with

different subsets from the Apts dataset. The relative error is

more sensitive to the number of samples than to the space

size. For example, increasing the number of samples from

2,000 to 30,000 diminishes the relative error by almost half,

0

4

8

12

16

20

1.
0E

+0
4

2.
0E

+0
4

3.
0E

+0
4

5.
0E

+0
4

1.
5E

+0
5

2.
5E

+0
5

7.
5E

+0
5

1.
0E

+0
6

1.
5E

+0
6

2.
5E

+0
6

Space Size (No. of Prefixes)

A
v

g
 R

e
la

ti
v

e
 E

rr
o

r
(%

)

2000 samples 10000 samples 16000 samples
20000 samples 22000 samples 30000 samples

Fig. 8 Accuracy of Monte-Carlo integration

0.1

1

10

100

1000

10000

1.
0E

+0
4

2.
0E

+0
4

3.
0E

+0
4

5.
0E

+0
4

1.
5E

+0
5

2.
5E

+0
5

7.
5E

+0
5

1.
0E

+0
6

1.
5E

+0
6

2.
5E

+0
6

Space size (No. of Prefixes)

T
im

e
 (

s
e

c
)

2000 samples 10000 samples 16000 samples
20000 samples 22000 samples 30000 samples
BaseLine

Fig. 9 Comparison with Baseline

while for the same sample size, the relative error only dou-

bled when the space size increased by 100 times.

Figure 9 compares (in log-scale) the efficiency of Monte-

Carlo integration against the Baseline algorithm. While the

time consumed by Monte-Carlo integration is fixed with the

same number of samples regardless the space size, the time

consumed by the Baseline algorithm increases exponen-

tially when increasing the space size. For example, for a space

of 2.5 million prefixes, Monte-Carlo integration consumes

only 0.025% of the time consumed by the Baseline algo-

rithm.

8.3 Scalability with respect to k

We evaluate the efficiency of our query evaluation for UTop-

Rank(1, k) queries with different k values. Figure 10 shows

the query evaluation time, based on 10,000 samples. On the

average, query evaluation time doubled when k increased by

123

496 M. A. Soliman et al.

0

5

10

15

20

5 10 20 50 100

K

Q
u

e
ry

 E
v
a
lu

a
ti

o
n

 T
im

e
 (

s
e
c
)

Apts Cars Syn-u-0.5 Syn-g-0.5 Syn-e-0.5

Fig. 10 UTop-Rank query evaluation time

0

20

40

60

80

5 10 20 50 100

K

S
a
m

p
li

n
g

 T
im

e
 (

S
e
c
)

Apts Cars Syn-u-0.5 Syn-g-0.5 Syn-e-0.5

Fig. 11 UTop-Rank sampling time (10,000 samples)

20 times. Figure 11 shows the time consumed in drawing the

samples.

The difference in sampling and ranking times for different

datasets is attributed to two main factors:

– The variance in the reduced sizes of the datasets based

on the k-dominance criterion. For example, the majority

of records in Syn-e-0.5 dataset are pruned using k-domi-

nance, while a much smaller number of records are pruned

in Syn-u-0.5 dataset. This happens due to the different dis-

tributions of the bounds of score intervals. In general, the

dataset size is inversely proportional to processing time.

– The percentage of records with uncertain scores. For

example, the percentage of records with uncertain scores

in Apts is 65%, while it is only 10% in Cars. Records with

uncertain score results in longer processing times since

space size (number of possible rankings) increases with

score uncertainty.

0.1

10

1000

0.
75

0.
83

0.
88

0.
91

0.
92

0.
93

0.
94

0.
95

Convergence Statistic

T
im

e
 (

s
e
c
)

Apts Cars Syn-u-0.5
Syn-g-0.5 Syn-e-0.5

Fig. 12 Chains convergence

8.4 Markov chains convergence

We evaluate the Markov chains mixing time (Sect. 6.4). For

10 chains and k = 10, Fig. 12 illustrates the Markov chains

convergence based on the value of Gelman–Rubin statistic as

time increases. While convergence consumes less than one

minute in all real datasets, and most of the synthetic datasets,

the convergence is notably slower for the Syn-u-0.5 data-

set. The interpretation is that the uniform distribution of the

score intervals in Syn-u-0.5 increases the size of the prefixes

space, and hence the Markov chains consume more time to

cover the space and mix with the target distribution. In real

datasets, however, we note that the score intervals are mostly

clustered, since many records have similar or the same attri-

bute values. Hence, such delay in covering the space does

not occur.

8.5 Markov chains accuracy

We evaluate the ability of Markov chains to discover states

the probabilities of which are close to the most probable

states. We compare the most probable states discovered by

the Markov chains to the true envelop of the target distribu-

tion (taken as the 30 most probable states). After mixing, the

chains produce representative samples from the space, and

hence states with high probabilities are frequently reached.

This behavior is illustrated by Fig. 13 for UTop-Prefix(5)

query on a space of 2.5 million prefixes drawn from the Apts

dataset. We compare the probabilities of the actual 30 most

probable states and the 30 most probable states discovered

by a number of independent chains after convergence, where

the number of chains range from 20 to 80 chains.

The relative difference between the actual distribution

envelop and the envelop induced by the chains decreases

as the number of chains increase. The relative difference

goes from 39% with 20 chains to 7% with 80 chains. The

123

Supporting ranking queries on uncertain and incomplete data 497

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

1 4 7 10 13 16 19 22 25 28

State Rank

S
ta

te
 P

ro
b

a
b

il
it

y
Actual 20 Chains
40 Chains 60 Chains
80 Chains

Fig. 13 Space coverage

0.1

1

10

100

T
im

e
 (

s
e

c
)

K

Branch-and-Bound

MCMC

Fig. 14 Evaluation time (Syn-u-0.5, UTop-Prefix)

largest number of drawn samples is 70,000 (around 3% of

the space size), and is produced using 80 chains. The con-

vergence time increased from 10 s to 400 s when the number

of chains increased from 20 to 80.

8.6 Branch-and-bound search

In this experiment, we evaluate the branch-and-bound tech-

niques we propose in Sect. 6.4.1 to evaluate UTop-Prefixand

UTop-Setqueries. Figures 14 and 15 compare the process-

ing time of branch-and-bound prefix search (Algorithm 3)

and the MCMC sampling method (using 5 chains) for the

datasets Syn-u-0.5 and Syn-g-0.5, respectively. The branch-

and-bound search shows smaller running times with small k

values, as it does not have the overhead of proposing states

as in the MCMC method. As the value of k increases, the

number of materialized candidates by the branch-and-bound

search increases, which negatively impacts the running times.

The MCMC method is, on the average, one order of mag-

nitude faster than the branch-and-bound search. The savings

in processing time in MCMC method comes with the price of

giving approximate answers. The average absolute error in

the probability of the answer reported by the MCMC method,

with respect to the branch-and-bound exact search, is 0.0012

and 0.0007 for Syn-u-0.5 and Syn-g-0.5, respectively. The

0.1

1

10

100

T
im

e
 (

s
e

c
)

K

Branch-and-Bound

MCMC

Fig. 15 Evaluation time (Syn-g-0.5, UTop-Prefix)

0.1

1

10

100

1000

T
im

e
 (

s
e

c
)

K

Branch-and-Bound

MCMC

Fig. 16 Evaluation time (Apts, UTop-Prefix)

0.1

1

10

100

1000

T
im

e
 (

s
e

c
)

K

Branch-and-Bound

MCMC

Fig. 17 Evaluation time (Apts, UTop-Set)

error decreases as the number of MCMC chains increases as

we show in Sect. 8.5. Figures 16 and 17 show similar result

for Apts dataset.

Next we evaluate the effectiveness of the greedy crite-

ria adopted by branch-and-bound search. Figures 18 and 19

compare the processing times of branch-and-bound search

against the Baseline algorithm using Apts dataset for

UTop-Prefixand UTop-Setqueries, respectively. The Base-

line algorithm shows an exponential increase in running

time as space size (number of prefixes) increases (we omit

running times that are significantly large). On the other

hand, branch-and-bound search locates query answer in

times below 30 s for both query types. Figure 20 com-

pares the memory requirements (computed as the number

of materialized candidates) of branch-and-bound and Base-

line algorithms. The Baseline algorithm has, on the aver-

age, 3 orders of magnitude larger number of materialized

123

498 M. A. Soliman et al.

0

200

400

600

800

1000

T
im

e
 (

s
e

c
)

Space Size

Branch-and-Bound

Baseline

Fig. 18 Evaluation time (Apts, UTop-Prefix)

0

200

400

600

800

1000

T
im

e
 (

s
e

c
)

Space Size

Branch-and-Bound

Baseline

Fig. 19 Evaluation time (Apts, UTop-Set)

1

10

100

1000

10000

100000

1000000

10000000

#
M

a
te

ri
a
li
z
e
d

C
a
n

d
id

a
te

s

Space Size

Branch-and-Bound

Baseline

Fig. 20 Consumed memory (Apts, UTop-Prefix)

candidates, which illustrates the effectiveness of the pruning

techniques adopted by branch-and-bound search.

8.7 Score uncertainty

In this experiment, we evaluate the effect of score uncer-

tainty on algorithms performance. Figures 21 and 22 show

the effect of the parameter p (the proportion of records with

uncertain scores) on the running times of MCMC and branch-

and-bound search in different datasets. Increasing p results

in linear increase in the running times of both algorithms.

On the average, as p doubled by 3.5 times, the running time

of the MCMC method doubled by 5 times, while the running

time of the branch-and-bound search doubled by 2.5 times.

We next evaluate the effect of the width of score interval

on algorithms performance. We create synthetic data with

different score interval width, where the interval width is

represented as a percentage of the whole score range. As the

score interval width increases, the number of records with

incomparable scores increases. This results in limiting the

1

10

100

T
im

e
 (

S
e
c
)

p

Syn-u-p

Syn-g-p

Syn-e-p

Syn-u-p

Syn-g-p

Syn-e-p

Fig. 21 Effect of records with uncertain scores (MCMC,UTop-
Prefix(5))

1

10

100

1000

T
im

e
 (

S
e

c
)

p

Syn-u-p

Syn-g-p

Syn-e-p

Fig. 22 Effect of records with uncertain scores (branch-and-
bound,UTop-Prefix(5))

0

50

100

150

200

T
im

e
 (

S
e
c
)

Score Interval Width

MCMC

Branch-and-Bound

Fig. 23 Effect of score interval width (UTop-Prefix(5))

effect of pruning by score dominance, and hence increasing

the overall running times. Figure 23 shows linear increase in

the running times of MCMC and branch-and-bound search

as the score interval width increases.

8.8 Score imputation

In this experiment, we evaluate the techniques proposed in

Sect. 7 to impute score intervals, and score densities based

on attribute correlations. In order to evaluate the accuracy

of imputed scores, we select a subset of records with single-

valued (deterministic) scores, and hide these scores before

applying our score imputation method. We thus introduce

missing data for which we have the ground truth. We then

compute an uncertain score (i.e., a score interval and a score

density) for each record with a hidden score. Finally, we

123

Supporting ranking queries on uncertain and incomplete data 499

0

0.2

0.4

0.6

0.8

1
N

o
rm

a
li

z
e
d

 K
e
n

d
a
ll

ta

u
 D

is
ta

n
c
e

K

Correlations-based Imputation kNN Imputation

Fig. 24 Accuracy of score imputation (Apts)

0

0.2

0.4

0.6

0.8

1

N
o

rm
a
li
z
e
d

 K
e
n

d
a
ll

ta
u

 D
is

ta
n

c
e

K

Correlations-based Imputation kNN Imputation

Fig. 25 Accuracy of score imputation (Cars)

evaluate the ranking generated by the MCMC method against

the true ranking (given by the true values of the hidden

scores). Ranking accuracy is measured using the normalized

Kendall tau distance (cf. Sect. 6.5), which is a measure in

[0,1] of disagreements between two rankings.

To assess the effectiveness of our imputation techniques

with respect to simple imputation methods, we repeat the

above procedure using the following k-NN missing value

estimation technique, implemented in the R system [31]: for

each record with a missing score, we find the k nearest neigh-

bor records based on Euclidean distance metric. We impute

the missing scores by averaging the non-missing scores of

the neighbors. If the scores of all neighbors are missing, we

use the overall score mean as an estimator. Figures 24 and 25

show the accuracy comparison of our correlation-based score

imputation method and the k-NN imputation method for Apts

and Cars datasets, respectively. Our score imputation method

shows high ranking accuracy with a normalized Kendall tau

distance below 0.1 in both datasets, which illustrates the value

of exploiting uncertain scores to a compute a reliable ranking.

9 Related work

The techniques we propose in this paper are mainly related to

two large research areas: probabilistic ranking, and handling

incomplete data. We summarize some of the recent propos-

als in both areas, and highlight the major differences between

these proposals and our proposal.

Probabilistic ranking. Several recent works have addressed

query processing in probabilistic databases. The TRIO pro-

ject [1,2] introduced different models to capture data uncer-

tainty on different levels focusing on relating uncertainty

with lineage. The ORION project [12], handles constantly

evolving data using efficient query processing and indexing

techniques designed to manage uncertain data in the form of

continuous intervals. The problems of score-based ranking

and top-k processing have not been addressed in these works.

Probabilistic top-k queries have been first proposed in

[16], while [17,18] proposed other query semantics and effi-

cient processing algorithms. The uncertainty model in all

of these works assume that records have deterministic sin-

gle-valued scores, and they are associated with membership

probabilities. The proposed techniques assume that uncer-

tainty in ranking stems only from the existence/non-existence

of records in possible worlds. Hence, these methods cannot

be used when scores are in the form of ranges that induce a

partial order on database records.

To the best of our knowledge, defining a probability space

on the set of linear extensions of a partial order to quantify

the likelihood of possible rankings has not been addressed

before. Dealing with the linear extensions of a partial order

has been addressed in other contexts (e.g., [11,32]). These

techniques mainly focus on the theoretical aspects of uniform

sampling from the space of linear extensions for purposes like

estimating the count of possible linear extensions. Using lin-

ear extensions to model uncertainty in score-based ranking

is not addressed in these works.

Monte-Carlo methods are used in [33] to compute top-k

queries, where the objective is to find the top-k probable

records in the answer of conjunctive queries that do not

have the score-based ranking aspect discussed in this paper.

Hence, the data model, problem definition, and processing

techniques are quite different in both papers. For example,

the proposed Monte-Carlo multi-simulation method in [33]

is mainly used to estimate the satisfiability ratios of DNF

formulae corresponding to the membership probabilities of

individual records, while our focus is estimating and aggre-

gating the probabilities of individual rankings of multiple

records.

The techniques in [34] draw i.i.d. samples from the under-

lying distribution to compute statistical bounds on how far is

the sample-based top-k estimate from the true top-k values in

the distribution. This is done by fitting a gamma distribution

encoding the relationship between the distribution tail (where

the true top-k values are located), and its bulk (where sam-

ples are frequently drawn). The gamma distribution gives

the probability that a value that is better than the sample-

based top-k values exists in the underlying distribution. In

our Top- k- Queries, it is not straightforward to draw i.i.d.

samples from the top-k prefix/set distribution. Our MCMC

method produces such samples using independent Markov

123

500 M. A. Soliman et al.

chains after mixing time. This allows using methods similar

to [34] to estimate the approximation error.

The method proposed in [35] use the notion of gener-

ating functions to construct a unified ranking function that

can be instantiated to multiple ranking functions proposed

in the current literature. The given algorithms use an and–or

tree model in which leaf nodes are tuple instances that can

be possibly exclusive. The model in [35] is based on tuple-

level uncertainty, where each tuple belongs to the database

with some confidence. Hence, tuples may exist/not exist in a

given possible world of the database. The model we assume

in this paper captures uncertainty in tuple scores in the form

of score ranges; a representation that is adopted by multiple

real data sources particularly on the Web (cf. Sect. 1). Hence,

in contrast to [35], our model enforces all tuples to belong to

any possible world (linear extension). Moreover, since [35]

assumes a fixed score per tuple, the relative order of tuples is

fixed over all possible worlds. On the other hand, our model

encodes different relative orders of tuples with intersecting

score intervals.

The problem of computing consensus answers in probabi-

listic databases has been recently addressed in [36] through

adopting the and–or tree model in [35]. And–or trees cannot

be used to encode tuples with uncertain scores in the form

of score ranges without losing information. The reason is

that each tuple in this case has effectively an infinite number

of instances. The algorithms given in [36] for computing a

consensus ranking return a consensus top-k answer, while

the methods we propose in Sect. 6.5 return a consensus full

ranking. In addition, while [36] gives an approximate algo-

rithm for rank aggregation under Kendall tau distance, we

identify different classes of PPO’s in which an exact polyno-

mial time algorithm for rank aggregation under Kendall tau

distance exists.

9.1 Handing incomplete data

We categorize missing value estimation techniques into three

main groups:

– Statistical techniques: these techniques adopt statistical

approaches to estimate missing values. Examples include

estimation using mean values, regression methods, expec-

tation maximization, and multiple imputation [37,38].

The goal of these methods is usually preserving the over-

all data distribution (e.g., avoiding bias in the distribution

mean as a result of missing values estimation). The com-

puted estimates are thus not primarily meant to give accu-

rate predictions for the missing values individually, and

hence they may be unsuitable when computing a ranking

based on the estimated values of missing scores.

– Machine learning techniques: methods in this group learn

prediction models trained with complete data instances,

and use these models to derive probabilistic estimates

for missing values. One example is [6] where naïve Ba-

yes classifiers, trained with functional dependencies, are

used to derive probabilistic predictions of missing values.

Another example is [7], where missing values are learned

from summary information derived from the raw data.

The correlations-based estimation method we describe in

Sect. 7.1 falls in this category.

– Database-oriented techniques: database proposals deal-

ing with missing values focused mainly on modeling

alternatives and their effect on query processing, rather

than the physical learning and estimation aspects. One

example is [39], where missing values are represented

using intervals derived from attribute domain. Each

incomplete tuple is represented as a set of different

instances (duplicates), where each instance corresponds

to one possible value in the interval. Applying this method

when predictions are in the from of continuous intervals

requires discretizing the intervals, which can have neg-

ative impact on storage cost and accuracy of reported

results.

10 Conclusion

In this paper, we introduced a novel probabilistic model

that extends partial orders to represent the uncertainty in

the scores of database records. The model encapsulates a

probability distribution on all possible rankings of database

records. We formulated several types of ranking queries on

such model. We designed novel query processing techniques

including sampling methods based on Markov chains to com-

pute approximate query answers. We also gave polynomial

time algorithms to solve the rank aggregation problem in

probabilistic partial orders. Our experimental study on both

real and synthetic datasets demonstrates the scalability and

accuracy of our techniques.

References

1. Sarma, A.D., Benjelloun, O., Halevy, A., Widom, J.: Working mod-
els for uncertain data. In: ICDE (2006)

2. Benjelloun, O., Sarma, A.D., Halevy, A., Widom, J.: Uldbs: dat-
abases with uncertainty and lineage. In: VLDB (2006)

3. Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic
databases. In: VLDB (2004)

4. Chang, K.C.-C., Hwang, S.: Minimal probing: supporting expen-
sive predicates for top-k queries. In: SIGMOD (2002)

5. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query
processing techniques in relational database systems. ACM Com-
put. Surv. 40(4) (2008)

6. Wolf, G., Khatri, H., Chokshi, B., Fan, J., Chen, Y., Kambhampati,
S.: Query processing over incomplete autonomous databases. In:
VLDB (2007)

123

Supporting ranking queries on uncertain and incomplete data 501

7. Wu, X., Barbará, D.: Learning missing values from summary con-
straints. SIGKDD Explor. 4(1) (2002)

8. Chomicki, J.: Preference formulas in relational queries. ACM
Trans. Database Syst. 28(4) (2003)

9. Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.:
Finding k-dominant skylines in high dimensional space. In: SIG-
MOD (2006)

10. Tao, Y., Xiao, X., Pei, J.: Efficient skyline and top-k retrieval in
subspaces. TKDE 19(8) (2007)

11. Brightwell, G., Winkler, P.: Counting linear extensions is #p-com-
plete. In: STOC (1991)

12. Cheng, R., Prabhakar, S., Kalashnikov, D.V.: Querying imprecise
data in moving object environments. In: ICDE (2003)

13. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation
methods for the web. In: WWW (2001)

14. Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J.M., Hong,
W.: Model-based approximate querying in sensor networks. VLDB
J. 14(4) (2005)

15. Abiteboul, S., Kanellakis, P., Grahne, G.: On the representation and
querying of sets of possible worlds. In: SIGMOD (1987)

16. Soliman, M.A., Ilyas, I.F., Chang, K.C.-C.: Top-k query processing
in uncertain databases. In: ICDE (2007)

17. Zhang, X., Chomicki, J.: On the semantics and evaluation of top-k
queries in probabilistic databases. In: ICDE Workshops (2008)

18. Hua, M., Pei, J., Zhang, W., Lin, X.: Ranking queries on uncertain
data: a probabilistic threshold approach. In: SIGMOD (2008)

19. O’Leary, D.P.: Multidimensional integration: partition and con-
quer. Comput. Sci. Eng. 6(6) (2004)

20. Jerrum, M., Sinclair, A.: The markov chain monte carlo method: an
approach to approximate counting and integration. Approximation
algorithms for NP-hard problems (1997)

21. Hastings, W.K.: Monte carlo sampling methods using markov
chains and their applications. Biometrika 57(1) (1970)

22. Gelman, A., Rubin, D.B.: Inference from iterative simulation using
multiple sequences. Stat. Sci. 7(4) (1992)

23. Cowles, M.K., Carlin, B.P.: Markov chain Monte Carlo conver-
gence diagnostics: a comparative review. J. Am. Stat. Assoc.
91(434) (1996)

24. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In:
STOC (2007)

25. van Acker, P.: Transitivity revisited. Ann. Oper. Res. 23(1–4)
(1990)

26. Intriligator, M.D.: A probabilistic model of social choice. Rev.
Econ. Stud. 40(4) (1973)

27. Fishburn, P.C.: Probabilistic social choice based on simple voting
comparisons. Rev. Econ. Stud. 51(4) (1984)

28. Ilyas, I.F., Markl, V., Haas, P.J., Brown, P., Aboulnaga, A.: Cords:
automatic discovery of correlations and soft functional dependen-
cies. In: SIGMOD (2004)

29. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms
for middleware. J. Comput. Syst. Sci. 1(1) (2001)

30. Xin, D., Han, J., Chang, K.C.-C.: Progressive and selective merge:
computing top-k with ad-hoc ranking functions. In: SIGMOD
(2007)

31. The R project for statistical computing: http://www.r-project.org
32. Bubley, R., Dyer, M.: Faster random generation of linear exten-

sions. In: SODA (1998)
33. Re, C., Dalvi, N., Suciu, D.: Efficient top-k query evaluation on

probabilistic data. In: ICDE (2007)
34. Wu, M., Jermaine, C.: A Bayesian method for guessing the extreme

values in a data set. In: VLDB (2007)
35. Li, J., Saha, B., Deshpande, A.: A unified approach to ranking in

probabilistic databases. PVLDB 2(1) (2009)
36. Li, J., Deshpande, A.: Consensus answers for queries over proba-

bilistic databases. In: PODS (2009)
37. Little, R., Rubin, D.B.: Statistical Analysis with Missing

Data. Wiley & Sons, New York (1987)
38. Rubin, D.B.: Multiple Imputation for Nonresponse in Sur-

veys. Wiley & Sons, New York (1987)
39. Ola, A., Ozsoyoglu, G.: Incomplete relational database models

based on intervals. IEEE TKDE 05(2) (1993)

123

http://www.r-project.org

	Supporting ranking queries on uncertain and incomplete data
	Abstract
	1 Introduction
	1.1 Motivation and challenges
	1.2 Contributions

	2 Data model and problem definition
	2.1 Data model
	2.2 Problem definition
	2.2.1 Example applications

	3 Background
	3.1 Monte-Carlo integration
	3.2 Markov chains
	3.3 Markov chain Monte-Carlo (MCMC) method

	4 Probability space
	5 A baseline exact algorithm
	5.1 Algorithm Baseline

	6 Query evaluation
	6.1 k-Dominance: shrinking the database
	6.1.1 Complexity analysis

	6.2 Overview of query processing
	6.3 Computing Record-Rank Queries
	6.3.1 Complexity analysis

	6.4 Computing Top-k-Queries
	6.4.1 A branch-and-bound algorithm
	6.4.2 A sampling-based algorithm

	6.5 Computing Rank-Aggregation-Queries
	6.5.1 Rank-Aggregation-Queries with Spearman footrule distance
	6.5.2 Rank-Aggregation-Queries with Kendall tau distance

	7 Uncertain scores construction
	7.1 Estimating missing values
	7.2 Aggregating uncertain scores
	7.2.1 Computing score intervals
	7.2.2 Computing score densities

	8 Experiments
	8.1 Shrinking database by k-dominance
	8.2 Accuracy and efficiency of Monte-Carlo integration
	8.3 Scalability with respect to k
	8.4 Markov chains convergence
	8.5 Markov chains accuracy
	8.6 Branch-and-bound search
	8.7 Score uncertainty
	8.8 Score imputation

	9 Related work
	9.1 Handing incomplete data

	10 Conclusion
	References

