
Thiago de Barros Lacerda

SUPPORTING REAL-TIME MOBILITY SERVICES WITH

SCALABLE FLOCK PATTERN MINING

M.Sc. Dissertation

Federal University of Pernambuco

posgraduacao@cin.ufpe.br

<www.cin.ufpe.br/~posgraduacao>

RECIFE

2016

www.cin.ufpe.br/~posgraduacao

Thiago de Barros Lacerda

SUPPORTING REAL-TIME MOBILITY SERVICES WITH

SCALABLE FLOCK PATTERN MINING

A M.Sc. Dissertation presented to the Informatics Center

of Federal University of Pernambuco in partial fulfillment

of the requirements for the degree of Master of Science in

Computer Science.

Advisor: Stênio Flávio de Lacerda Fernandes

RECIFE

2016

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

L131s Lacerda, Thiago de Barros

Supporting real-time mobility services with scalable flock pattern mining /
Thiago de Barros Lacerda. – 2016.

 67 f.: il., fig., tab.

 Orientador: Stênio Flávio de Lacerda Fernandes.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Ciência da Computação, Recife, 2016.
 Inclui referências.

 1. Mineração de dados. 2. Dados espaço-temporais. I. Fernandes, Stênio
Flávio de Lacerda (orientador). II. Título.

 006.312 CDD (23. ed.) UFPE- MEI 2016-116

Thiago de Barros Lacerda

SUPPORTING REAL-TIME MOBILITY SERVICES WITH

SCALABLE FLOCK PATTERN MINING

Dissertação de Mestrado apresentada ao programa de

Pós-Graduação em Ciência da Computação da Universidade

Federal de Pernambuco, como requisito parcial para

obtenção do título de Mestre em Ciência da Computação.

Aprovado em: 29/07/2016

BANCA EXAMINADORA

———————————————————————–

Prof. Rostand Edson Oliveira Costa

Laboratório de Aplicações de Vídeo Digital - LAVID/UFPB

———————————————————————–

Prof. Kiev Santos da Gama

Centro de Informática/UFPE

———————————————————————–

Prof. Stênio Flávio de Lacerda Fernandes

Centro de Informática/UFPE

RECIFE

2016

To my wife, my son and my parents!

Acknowledgements

To be honest, I thought that would not finish this. I was already seeing myself giving up

this masters due to a lot of things: new country, new city, new job, huge load of work in my new

job, baby coming... etc.. It was not easy to work on double journey for lots of months, sleeping

only 3 to 4 hours a day. But yes! It is over! Some people helped me to no give up and keep up

with that "stressful journey" and here they deserve my "Thank you!".

I would like to thank my advisor Stênio, by having me as his student, for the second time,

and lending me some time of his busy agenda, helping me out to finish this work.

Many thanks to my beloved wife Thaís, who was always supporting me during the years

of this masters, telling me to never give up and giving up time with me in favor of me working

on this dissertation. Also, thanks to my baby boy Daniel, who isn’t even born yet, but helped me

to finish this dissertation as fast as possible so I can enjoy some free time before I lose them all

after he is born :). Thanks to my mother Catari and my father Cândido for their support during

this time too.

Thanks to Andre, who was always telling me that we were going to end this and was

also always warning me about the important deadline dates of the University. I also would like

to thank my friends here in Seattle: PP and Fabio, for lending me some VMs on their Azure

accounts, so I could run my benchmarks; Fernando, for good academic advices and motivational

speechs :).

...there are two paths you can go by, but in the long run there’s still time to

change the road you’re on...

—LED ZEPPELIN, STAIRWAY TO HEAVEN

Resumo

Detecção de padrões em dados espaço-temporais tem se mostrado um tema de muita relevância

nos dias atuais, tanto na academia quanto na indústria, devido a sua vasta aplicabilidade em

auxiliar a solucionar problemas enfrentados na sociedade. Muitos desses problemas podem

ser classificados no conexto de Cidades Inteligentes (Smart Cities), como Gerenciamento de

Tráfego, Segurança e Planejamento de Cidades. Dentre os vários padrões espaço-temporais

que podem ser extraídos de uma base de dados, o padrão de flock é um que vem atraindo

muita atenção, devido a sua relação intrínseca com os problemas mencionados anteriormente.

Muitas pesquisas vêm sendo feitas na academia, visando desenvolver algoritmos capazes de

identificar esse padrão de movimentação. Porém, nenhum deles foi capaz de executar tal tarefa

eficientemente, nem conseguiu escalar de maneira aceitável quando uma base de dados de

grande tamanho foi analisada. Além disso, não foi encontrado nos trabalhos relacionados uma

arquitetura de software que conseguisse ser simples e modular o suficiente para ser usada no

problema de detecção de padrões de flock em dados espaço-temporais. Com isso em mente, essa

dissertação propõe uma arquitetura de software modular, direcionada para solucionar problemas

de detecção desse padrão e possivelmente ser utilizada para outros experimentos envolvendo

mineração de padrões em dados espaço-temporais. Tal arquitetura foi então usada como base na

implementação de um algoritmo de detecção de flock, focando em alcançar grandes ganhos em

tempo de processamento, sem comprometer a precisão, visando então cenários de aplicações de

tempo real em Cidades Inteligentes. No fim, nós propomos uma remodelagem no nosso algoritmo

para poder utilizar ao máximo o poder de processamento oferecido pelas arquiteturas multi-core

dos processadores modernos. Nossos resultados mostraram que nossa solução conseguiu superar

propostas do estado da arte, alcançando 99% de redução no tempo de processamento total. Além

disso, nossa remodelagem multi-thread conseguiu melhorar os resultados da nossa solução em

até 96% em alguns casos. A eficiência e performance da nossa proposta foi comprovada com

avaliações feitas com bases de dados geradas sinteticamente e coletadas em experimentos reais.

Palavras-chave: Cidades Inteligentes. Mineração de Padrões. Dados Espaço-temporais. Padrão

de Flock

Abstract

Pattern mining in spatio-temporal datasets is a really relevant subject in the academia and the

industry nowadays, due to its wide applicability in helping to solve real-world problems. Many

of them can be found in the context of Smart Cities, like Traffic Management, Surveillance

and Security and City Planning, to name a few. Among the various spatio-temporal patterns

that one can extract from a spatio-temporal dataset, the flock pattern is one that has gained a

lot of attention, because of its intrinsic relation with the aforementioned problems. A lot of

work has been done in the academia, in order to provide algorithms able to identify the flock

pattern. However, none of them could perform that task efficiently nor be able to scale well

when a large dataset was the analysis target. Additionally, we found that there was no system

architecture proposal that could be simple and modular enough to be used in that spatio-temporal

pattern detection problem. Given that context, this dissertation proposes a modular system

archicture designed to help solving flock pattern mining problems and possibly be reused to

other spatio-temporal mining experiments. We then use such architecture as the infrastructure

to implement an efficient flock detection algorithm, aiming at achieving considerable gains

in execution time without compromising accuracy, thus targeting real-time deployment and

on-line processing in Smart Cities. Last, but not least, we remodel our algorithm in order to take

advantage of multi-core architectures present in modern computers. Our results indicate that

our proposal outperforms the current state-of-the-art techniques, by achieving 99% CPU time

improvement. Moreover, with our multi-thread model, we were able to reduce the processing

time of our proposed algorithm by 96% in some cases. We prove the efficiency of our solution

by performing evaluation with both real and synthetic large datasets.

Keywords: Smart Cities. Pattern Mining. Spatio-temporal data. Flock Pattern

List of Figures

1.1 Orange, green and blue trajectories form a flock of size 3 with minimum length

of 3 time steps, with a disk enclosing all trajectories at each time step ti 15

2.1 A moving cluster composed by clusters S0, S1 and S2 and θ = 0.5 19

2.2 A Convoy pattern . 20

3.1 T1, T2 and T3 form a flock of size µ = 3 with minimum length of δ = 3 time

slots and with a disk diameter of size ε = d 28

3.2 Two disks with radius ε/2 that are found based on points p1 and p2. c1 and c2

stand for the disks centers and m represents the midpoint between p1 and p2. . 30

3.3 Cell grid for time slot ti. The dark grey is the cell that is currently being processed

and the light gray cells around are the grids that will be in the search space of

the dark cell. Each small circle inside the grid, represents a Global Positioning

System (GPS) point that was collected in time slot ti 31

4.1 Modular system architecture overview . 33

4.2 Percentage of time spent between disk and flock processing tasks against other

tasks in the algorithm . 35

4.3 Sequence of disks in 4 consecutive time slots and the points that were clustered

to them . 36

4.4 Interaction between GPS Stream Buffer (GSB) (red) and Flock Processor (FP)

(gray) in 5 consecutive time slots, showing how the presence bitmaps are

constructed. In the example we have µ = 3 and δ = 3 40

4.5 Modeling the FP in a Producer-Multiple Consumers architecture 43

5.1 System design implemented for the experiments 45

5.2 FlockProcessor class composition . 46

5.3 Results varying δ and ε for Trucks dataset . 47

5.4 Results varying µ and number of disks generated over time for Trucks dataset . 47

5.5 Results varying δ and ε for BerlinMOD dataset 48

5.6 Results varying µ and number of disks generated over time for BerlinMOD dataset 49

5.7 Results varying δ and ε for TDrive dataset . 49

5.8 Results varying µ and number of disks generated over time for TDrive dataset . 50

5.9 Results varying δ and ε for Brinkhoff dataset 51

5.10 Results varying µ and number of disks generated over time for Brinkhoff dataset 51

5.11 Execution time reduction by number of threads for the Trucks dataset 53

5.12 Results varying δ and ε for Trucks dataset . 54

5.13 Results having δ = 20, ε = 1.5 and µ varying for the Trucks dataset 54

5.14 Execution time reduction by number of threads for the BerlinMOD dataset . . . 55

5.15 Results varying δ and ε for BerlinMOD dataset 55

5.16 Results having δ = 8, ε = 100 and µ varying for the BerlinMOD dataset 56

5.17 Execution time reduction by number of threads for the TDrive dataset 56

5.18 Results varying δ and ε for TDrive dataset . 57

5.19 Results having δ = 8, ε = 100 and µ varying for the TDrive dataset 58

5.20 Execution time reduction by number of threads for the Brinkhof dataset 58

5.21 Sum of disks generated by the disk threads (red) and number of disks that were

inserted in the global disk set after subset/superset check (blue), by time slot . . 59

5.22 Results varying δ and ε for Brinkhoff dataset 60

5.23 Results having δ = 8, ε = 100 and µ varying for the Brinkhoff dataset 60

List of Tables

3.1 Conversion from World Geodetic System 1984 (WGS84) to R
2 25

3.2 Ideal dataset sample rate . 26

3.3 Real-world dataset sample rate . 26

3.4 Mapping points from Table 3.3 to its correspondent time slot, using σ = 3 . . . 26

4.1 Bitmaps in GSB after buffering four time slots 36

List of Acronyms

AO Analysis Outcome. .46

AWS Amazon Web Services . 32

BFE Basic Flock Evaluation . 16

BitDF Bitmaps for Disk Filtering . 36

CPU Central Processing Unit . 16

DC Dynamic Convoy . 20

DD Data Decoder . 32

DL Data Listener . 32

DP Data Processor . 32

DSC Data Source Connector . 32

EC Evolving Convoy. .20

EGC Extended Grid Cell . 41

FP Flock Processor . 36

GPS Global Positioning System . 20

GSB GPS Stream Buffer . 36

IBMC Influence-based Moving Cluster . 19

IoT Internet of Things . 16

LTS Long Term Support .46

MFP Maximal-duration Flock Pattern . 22

MO Moving Object . 17

MT Multi-thread . 17

PFP Parallel Flock Processor . 52

REMO RElative MOtion . 18

DBSCAN Density-based Spatial Clustering of Applications with Noise 19

WGS84 World Geodetic System 1984 . 11

WHOI Woods Hole Oceanographic Institution . 25

Contents

1 Introduction 14

2 Related Work 18

2.1 General trajectory data and pattern mining . 18

2.2 Flock pattern mining . 21

2.3 Academic Contribution . 23

3 Technical Background 25

3.1 Trajectory and data information . 25

3.2 Flock pattern . 27

3.2.1 Disk discovery . 28

4 Modular and Efficient Flock Pattern Identification 32

4.1 Modular System Architecture . 32

4.2 Aggregation and data processing efficiency 34

4.3 BitDF . 36

4.4 Taking Advantage of Multi-core Architectures 41

4.4.1 Multi-threaded Design . 42

5 Experimental Results 44

5.1 Trucks Dataset . 46

5.2 BerlinMOD Dataset . 48

5.3 TDrive Dataset . 48

5.4 Brinkhoff Dataset . 50

5.5 Multi-threaded evaluation . 52

6 Conclusion 61

6.1 Future Work . 62

6.1.1 Deployment Challenges in Real World Scenarios 63

References 64

141414

1

Introduction

The advances of positioning technologies are enabling lot of different objects present in

our daily usage (e.g. vehicles, smartphones and wearable devices) to be shipped with location

tracking systems. Those devices are able to collect and report mobility information of people,

animals and natural phenomena (e.g. hurricanes), to name a few. That technological advance is

enabling the generation of massive volumes of spatio-temporal data that can contain information

ranging from the daily routine of residents of a city (FARRAHI; GATICA-PEREZ, 2008) to the

behavior of wild animals in a specific region (LEE; HAN; WHANG, 2007; LI et al., 2010a). It is

notorious the interest of both industry and academia in such subject, specially with the rising of

Smart Cities, in which spatio-temporal datasets can provide important insights in the context of

problems like traffic management and urban planning (JENSEN; GUTIERREZ; PEDERSEN,

2015; DING et al., 2016). Those datasets can be used to help solving a variety of issues and

answer some questions, such as:

1. What are the busiest times and locations (such as traffic jams locations) in a

city? (WANG et al., 2013)

2. What are the movement patterns of the citizens of a city during work hours?

3. What is the migration pattern of inhabitants of a specific area?

4. What is the movement behavior of wild animals in their habitat? (LI et al., 2011)

5. Is there any suspicious movement of groups of objects during some specific time

window?

That list can grow indefinitely, as the scenarios and applications of spatio-temporal data

analyses are vast. Some of the questions listed above are in the context of Smart Cities, which can

take advantage of spatio-temporal data analysis as an aid to a broad set of applications, like urban

planning, public security, and public health and commerce (PAN et al., 2013). Additionally,

understanding the data in question and being able to take actions fast according to the conclusions

extracted from such data is crucial to create and evolve a Smart City. However, due to the huge

volume of data that is produced on a daily basis and the need analyze them to in order to help

15

those applications and answer those questions, the main problem is still the same: how to be able

to analyze massive data volumes fast and efficiently so we can empower decision takers to act

quickly?

In the aforementioned questions and applications, some of the queries are intrinsically

related to collaborative or group patterns, such as flock (GUDMUNDSSON; KREVELD;

SPECKMANN, 2004), convoy (JEUNG; SHEN; ZHOU, 2008), swarm (LI et al., 2010b),

and the like. Those patterns contain moving objects that have a strong relationship by being close

to each other, within a certain distance range and during some minimum time interval. Because

we extract information about groups of people interacting, instead of just dealing with tracking

of individuals alone, such patterns can be applied to a wide range of scenarios of Smart Cities

(e.g. city roads planning, intelligent transportation, public security, etc.), causing the mining of

those patterns to gain great importance within the research community. There are a number of

research challenges in this topic, specially regarding the development of accurate algorithms to

detect those patterns. In addition of being precise, it is of paramount importance to design fast

algorithms so that they can keep up with real-time data. Hence, reiterating what as mentioned in

the previous paragraph, efficiently extraction of data patterns empowering real-time analyses and

on the fly decision-making is still an open challenge.

Figure 1.1: Orange, green and blue trajectories form a flock of size 3 with minimum length of 3

time steps, with a disk enclosing all trajectories at each time step ti

Source: Made by the author.

Among those collaborative patterns, the flock pattern is one that has gained a lot of

attention in the research community, since it can address all the scenarios and questions that

were mentioned in this chapter and represents a very familiar behavior that is frequently seen in

16

our daily routines. A seminal formal definition of that pattern was proposed by Laube, Kreveld

and Imfeld (2005) and Gudmundsson, Kreveld and Speckmann (2004) and since then, a lot of

other studies has follow suit (we refer the reader to Chapter 2 for some of them), mainly due

to the interests in developing mechanisms to solve real-world problems in the scope of Internet

of Things (IoT) (TSAI et al., 2014) and Smart Cities (DJAHEL et al., 2015). According to

Gudmundsson, Kreveld and Speckmann (2004), a flock pattern consists of a minimum number of

entities that are within a disk of radius r at a given time. However, this definition only applies to

one single time step and does not help on extracting some useful collective behavior information.

Such initial definition was then extended by Benkert et al. (2008), introducing the minimum

time interval δ that the entities should stay together in order to characterize a flock pattern, as

depicted in Figure 1.1. That figure shows a flock pattern that lasts three time steps and is formed

by the orange, green and blue trajectories. It is worth mentioning that the remaining trajectories

(yellow and pink) are not part of a flock pattern because there are no disks enclosing them in all

three time steps.

When it comes to flock pattern detection efficiency and speed, one major problem on

doing that is to find the disks that enclose the trajectories in each time step. Since the disks

centers do not need to match any point in the dataset, there can be infinite possible disks. Vieira,

Bakalov and Tsotras (2009) proposed a way to limit the number of disks to generate and analyze,

so a finite number of disks are in place to cluster the trajectories into them. They also proposed

an algorithm to find the flock pattern, namely Basic Flock Evaluation (BFE). Even though BFE

can find flock patterns in spatio-temporal datasets, it does suffer from some severe performance

limitations, meaning that it is not able to scale properly when the dataset is really large. The

main reason that we identified that makes it perform so inefficiently is that BFE is not smart

enough to predict what portions of the data can really generate flock patterns, then it ends up

wasting Central Processing Unit (CPU) cycles by processing data that is not relevant.

Despite the considerable number of research studies regarding flock pattern detection,

there is still something that nobody ever got to it, based on the systematic literature revision

field that we did, but it would be of great value if defined and formalized: A framework/system

architecture that can be modular and simple, to serve as the building blocks for flock detection

algorithms. By creating such architecture, researchers can take advantage of that as a starting

point to develop their algorithms and can also have a common ground to compare and reuse

work of others.

In our related work research, we noticed that the state of the art algorithms for flock

pattern detection are not ready to aid the development and evolution of Smart Cities, since

they are not able to efficiently process the huge volumes of data that are generated by them.

With that in mind, this dissertation proposes an efficient flock detection algorithm aiming at

achieving considerable gains in execution time, without compromising accuracy, thus targeting

real-time deployment and on-line processing. With that algorithm, we could address Smart

Cities scenarios, where decisions need to be made on the fly and rapidly enough in order to

17

keep up with their development pace (PAN et al., 2013; BATTY et al., 2012). Such gains were

made possible by creating a filtering heuristic, based on bitmaps, in order to save processing

time. Our proposal focuses on identifying Moving Objects (MOs) that can actually form a flock,

resulting in a huge reduction in the number of disks generated and thus resulting in less data

to be processed. Our results indicate that our proposal outperforms the current state-of-the-art

techniques, by achieving 99% CPU time improvement and 96% disks generation reduction in

some relevant scenarios. Going even further, we also remodeled our proposed algorithm to take

advantage of multi-core architectures, having some components executing in parallel resulting

in impressive speed gains. With our Multi-thread (MT) model, we were able to reduce the

processing time of our proposed algorithm by 96% in some cases. It is worth mentioning that

the gains achieved with the MT model are over the gains that we had already obtained over the

state-of-the-art techniques.

Last, but not least, we also propose a modular system architecture, aiming at helping to

find flock patterns in spatio-temporal datasets. We validate our architecture by implementing our

algorithm and our MT model using it as the building blocks. To summarize, the contribution of

this dissertation is threefold:

1. An efficient flock pattern detection algorithm

2. A remodeled algorithm able to take advantage of multi-core architectures and

rapidly find flock patterns

3. A simple and modular system architecture to aid solving spatio-temporal flock

pattern detection problems

The remainder of this dissertation is organized as follows. Chapter 2 highlights the

related work in both flock detection and trajectory data mining and explain in more details the

academic contribution of our work. Chapter 3 presents the technical background necessary to

understand this dissertation, like the formal flock pattern definition and how an algorithm to find

a flock pattern works. Our contribution is detailed in Chapter 4, whereas in Chapter 5 we show

the results of our experimental evaluations, on the datasets that we picked, based on the chosen

metrics. Lastly, in Chapter 6 we draw some concluding remarks and provide directions for future

work.

181818

2

Related Work

This is a research field that has had a lot of attention in both academia and industry in

past and present years. Hence, the related work in this area and related fields is quite extensive

and broad. With that in mind, we will split this section in (1) General trajectory data and pattern

mining and (2) Flock pattern mining

It is worth noting that the only set of research studies that are pertinent to this work, are

those in Section 2.2. Hence, those will be the only research studies that we will point out some

flaws that are addressed by this dissertation.

2.1 General trajectory data and pattern mining

Here we present the broader scope of trajectory data and pattern mining that were useful

to gather some understanding in the field and insightful ideas for this dissertation.

Laube, Kreveld and Imfeld (2005) proposed the RElative MOtion (REMO) concept,

which analyzes motion attributes (speed, azimuth and location) of entities and relate to the

motion of other entities that are close to them. They also introduced some moving patterns, such

as flock, convergence, encounter, and leadership. In the end the authors went through some data

structures and algorithms that could be used in order to detect those patterns. However, only high

level abstract algorithms were presented, but neither concrete implementation nor evaluation

were shown.

An interesting approach for finding patterns that are frequently repeated by MOs was

presented by Cao, Mamoulis and Cheung (2005). The authors presented an algorithm that

focused on approximating the spatio-temporal series of a MO to a line, where the distance of

each trajectory point of that MO to the line would be no greater than a pre-defined threshold.

After that, bounding boxes were created based on those approximated lines and then lines that

belong to the same box were declared as similar sequential patterns.

Algorithms aiming at finding moving clusters, with MOs coming in and out of the cluster,

were presented by Kalnis, Mamoulis and Bakiras (2005). In that research paper, the authors

consider a moving cluster as a moving region despite the identity of the objects that are part of

it, but for each timestamp the intersection of points between subsequent clusters needs to be

2.1. GENERAL TRAJECTORY DATA AND PATTERN MINING 19

Figure 2.1: A moving cluster composed by clusters S0, S1 and S2 and θ = 0.5

Source: (KALNIS; MAMOULIS; BAKIRAS, 2005).

above a certain threshold θ . In Figure 2.1 one can see a moving cluster composed by clusters

S0, S1 and S2, having θ = 0.5, meaning that
|ci∩ ci+1|
|ci∪ ci+1|

≥ 0.5. They presented three different

approaches to find moving clusters (with one of them being an approximation method), being

supported by a density function. They claim that their proposal is applicable for large-temporal

datasets, but that large dataset that they analyzed had only 50K entries. Yet on clusters, Jensen,

Lin and Ooi (2007) added velocity as a parameter in order to help finding moving clusters (using

dissimilarity functions), achieving some improvements in processing time. An approach using

a trajectory similarity measure based on the Hausdorff distance was proposed by Atev, Miller

and Papanikolopoulos (2010), where the sequential order of trajectories was preserved over time.

The authors also presented a method aiming at clustering trajectories, taking advantage of some

spectral clustering methods. A more recent research by Patel (2015) proposed a novel type of

cluster classification: Influence-based Moving Cluster (IBMC). The author stated that an IBMC

consists in a set of moving clusters where each MO, in each cluster, influences at least another

MO in the next immediate cluster. It was shown that the space for discovering IBMC was very

extensive and an algorithm for finding the maximal answer was proposed.

Jeung et al. (2008), Jeung, Shen and Zhou (2008) proposed the convoy pattern. They

first pointed out the key difference between flock and convoy patterns: flock pattern relies on all

trajectories being present in a disk of pre-defined radius, while convoy does not rely on any kind

of shape to cluster its trajectories. That difference is depicted in Figure 2.2, where the second

disk is of different size of the other disks and not all trajectories are present in the consecutive

clusters (another difference from the flock pattern). The authors proposed three density based

algorithms to find convoy patterns using line simplification techniques. Their work was inspired

by the algorithms already proposed by Kalnis, Mamoulis and Bakiras (2005) and Density-based

Spatial Clustering of Applications with Noise (DBSCAN) (ESTER et al., 1996). More work on

2.1. GENERAL TRAJECTORY DATA AND PATTERN MINING 20

Figure 2.2: A Convoy pattern

Source: (JEUNG et al., 2008).

convoy patterns can be found with Aung and Tan (2010), where they divided convoy patterns in

two different groups, namely Dynamic Convoys (DCs) and Evolving Convoys (ECs). To this end,

they presented three algorithms to identify EC patterns.

Gathering is another moving pattern that was analyzed by the academia. Zheng et al.

(2013) stated that a gathering pattern consists in various grouped incidents such as celebrations,

parades, protests, traffic jams, etc. They first formalized and modeled the gathering pattern and

then proposed algorithms to find the such pattern. Effectiveness and efficiency evaluations were

presented, showing an overall good result, however only one dataset was analyzed. Instead of

looking for patterns that happen exactly at the same time (e.g. clusters and flocks), Li et al.

(2010b) proposed the swarm pattern. Such pattern tries to group MOs that may actually diverge

temporarily and congregate at certain timestamps, it is not required also that a trajectory stays all

the time with the same swarm cluster. The authors in that work formalized the swarm concept

and presented algorithms to find the pattern. The effectiveness of the algorithms was compared

against convoy pattern algorithms and it was shown that, for some datasets, the swarm pattern

was better suited.

An algorithm to find patterns in Origin-Destination databases, meaning that only the

origin and destination points of a trajectory are recorded in the analyzed dataset, was presented

by Guo et al. (2012). They proposed a way to model points of interest, since MOs going to

the same place (e.g. airport) will report different Global Positioning System (GPS) coordinates.

The proposed algorithm has a preprocessing phase that makes a Delaunay Triangulation of the

points and then clusters those points based on two parameters: (k) the number of points to build

a cluster and (θ) the minimum number of points (or weight) of a cluster. After building the

clusters, they derive some mobility measures, in order to extract spatial and temporal mobility

patterns, presenting an useful way of understanding traffic loads in a city.

Baratchi, Meratnia and Havinga (2013) proposed a way to find frequently visited paths

between two points of interests. The authors presented an algorithm that deals with trajectory

2.2. FLOCK PATTERN MINING 21

uncertainty and uses cluster based techniques to map uncertain trajectories to actual paths in

a map that were most likely to be followed by the MO. First they gathered points of interests

(those where the MO stayed for at least 30 minutes with its speed close to 0) and grouped

all subtrajectories that had the same start and end points of interest. They then applied their

algorithm, which consists in dividing the space in grids and assigning each point to a grid, and

partitioned those subtrajectories in even small subtrajectories based on breakpoints. After that

partition step they used a score mechanism to decide which set of subtrajctories are more likely

to be a frequent path. Their algorithm was mainly targeted to offline analyses and used a map

matching algorithm in order to match GPS points to actual map segments. They did not present

the dataset used for evaluation nor the numbers of such dataset. Their evaluation was somewhat

shallow and did not present any take away results.

A comprehensive state-of-the-art review in trajectory data mining was presented by

Zheng (2015). He covered relevant research topics, such as trajectory data preprocessing,

trajectory data management, uncertainty of trajectories, trajectory pattern mining, and trajectory

classification. He pointed out some public trajectory datasets that can be used to evaluate pattern

detection algorithms, like the dataset TDrive (ZHENG, 2011) used in this dissertation.

2.2 Flock pattern mining

Gudmundsson, Kreveld and Speckmann (2004), Gudmundsson and Kreveld (2006)

extended and formalized the flock concept proposed by the REMO Framework (LAUBE;

KREVELD; IMFELD, 2005). They also introduced the concept that the flock pattern must

contain a disk of radius R, enclosing all trajectories, in each time step. They proposed

approximation and exact algorithms for flock pattern detection, but no performance evaluations

were made and only theoretical analyses were presented, which does not show if the algorithms

are efficient or not. Later on, the same authors (GUDMUNDSSON; KREVELD, 2006) extended

the flock pattern definition by adding the temporal length variable: the entities must stay

together during some time interval δ to be claimed as a flock. To this end, they presented some

approximation algorithms that work on approximating the radius R of the disk used to cluster

the flock, based on a defined ε . The evaluations performed (GUDMUNDSSON; KREVELD,

2006) varied only the δ parameter leaving all other parameters variation out of the experiments.

Additionally, the performance results were not good, having scenarios where the algorithms took

more than 1500 seconds to analyze a dataset containing 1 million of entries. It is important to

say that all algorithms did waste time by analyzing disks that would not form a flock pattern,

thus having a degradation in performance.

Vieira, Bakalov and Tsotras (2009) proposed a polynomial algorithm to find flock patterns

of fixed duration, based in three parameters: minimum number of trajectories µ , the disk radius

ε and a minimum time length δ . In order to discover the centers of the cluster disks for each

time step, they paired the points that had distance less or equal to 2∗ ε , created two disks based

2.2. FLOCK PATTERN MINING 22

on that pair and tried to cluster other points into those disks. Their algorithm assumed that each

point is sampled in a fixed time interval, assumption that does not reflect real-world datasets.

Additionally, their algorithm suffered from wasting CPU cycles by processing disk candidates

that were not real potential flock candidates. The authors also proposed some filtering heuristics

to optimize the processing time, but the optimizations did not present good results, and our local

tests showed that the optimizations affected the final number of flocks found by the algorithm.

An algorithm that mixed together BFE (VIEIRA; BAKALOV; TSOTRAS, 2009) with a

"Frequent Pattern Mining" heuristic was proposed by Turdukulov et al. (2014). They made some

performance comparison against BFE and were able to show some improvement in the processing

time when varying the radius R of the disk. However, despite the improvements, their results

did not propose a fair comparison: (1) BFE is an on-line algorithm and their implementation

imposed an offline implementation; (2) they filtered out some trajectories based on random

assumptions, e.g. trajectories with less than 10 minutes or 20 minutes, which might benefit their

algorithm and cut out possible flocks of that length; (3) they only showed results varying the

disk radius and not the other parameters used by BFE.

The problem of Maximal-duration Flock Pattern (MFP) was addressed by the work of

Geng et al. (2014), which proposed algorithms to enumerate all MFP in a trajectory dataset.

MFP, in other words, means that the flock cannot be extended without increasing the disk

radius R. They proposed a set of algorithms for finding MFP and proved that they could indeed

enumerate all MFP from a trajectory dataset. They also compared their algorithms with BFE

from Vieira, Bakalov and Tsotras (2009) and showed that their implementations outperformed

the later in some scenarios. However, they still wasted CPU cycles by analyzing disks that would

be discarded later, by not being potential flock candidates.

Wachowicz et al. (2011) and Wirz et al. (2011) presented algorithms for finding flocks

using pedestrian spatio-temporal data. The former performed a lot pre- and post-processing in

the dataset (which makes not possible to be used in real-time analysis) and neither performance

nor accuracy evaluations were presented. The latter, did not provide any performance evaluation

either, only showing accuracy experiments with a tiny dataset of only 13 entities in a time span

of 32 minutes.

Wang et al. (2013) proposed a framework for detecting traffic jams in trajectory data,

which can be considered as a flock pattern, since MOs stay together in a road during an interval

of time. They listed the requirements for both a data model and a visual interface for their

system, in order to be able to expose useful information for users and extract conclusions from

the analysis. Their algorithm was bound to a map network, which means that one part of data

preprocessing would be to map the data points to the respective roads in a map. They claimed to

be able to detect traffic jams with high accuracy, however they did not have any ground truth data

to validate the assumptions. It is also worth noting that only one dataset was used to evaluate the

proposed system, which did not show that the solution was ready for varied data scenarios.

There were also some studies focusing on indoor flock detection using mobile phone

2.3. ACADEMIC CONTRIBUTION 23

sensors, in which Wi-Fi signal strengths were mapped into coordinates (KJÆRGAARD et al.,

2012b), or a variety of mobile phone sensors (e.g. accelerometer, magnetometer and Wi-Fi)

were used to detect flock patterns (KJÆRGAARD et al., 2012a). However, those studies only

addressed flock detection in indoor environments, not using GPS coordinates, which are not in

the scope of the problem addressed by this dissertation.

2.3 Academic Contribution

It is notorious, from the related work presented in Section 2.1 and Section 2.2, that there

is a lot to cover in order to provide efficient flock pattern detection as well as a lack of elegant

and modular system architecture to address the flock pattern detection problem (which was not

seen in any of the presented works). All of that is a subject to care about due to the extensive

number of scenarios that data pattern mining, as well as flock patterns, can help and be applied to.

We can have flock pattern detection helping the following, to name a few (GUDMUNDSSON;

LAUBE; WOLLE, 2008):

1. Traffic Management: Unusual grouping of vehicles, or abnormal traffic volume in

certain regions can be detected with the help of flock pattern detection algorithms.

That information can help the accountable entities to better plan cities or traffic

spaces.

2. Surveillance and Security: Suspicious movements of groups of people or vehicles

can indicate a security threat and automatic pattern detection systems can aid the

detection of abnormal behavior in a group of MOs.

3. Human Movement: Governmental organizations can study how people are moving

from one part of the city/country/state to another with the help of flock pattern

detection. They can also acquire information about the habits of the population and

provide resources to enhance life quality of those involved.

In Section 4.1 we will propose an elegant, modular and simple system architecture that

will be able to address flock pattern detection problems. Such architecture will be divided in

logic modules and components, each one with a very specific and self-contained goal, making

then reusable and good candidates to address other data analysis problems. We will also show

that by modifying a single component in that architecture will enable the usage of a different

software paradigm, thus proving its modularity, extensibility and ease of use.

We could notice that the presented algorithms suffer from CPU cycles waste by processing

data that will not generate any pattern, like the flock disks that contain points that are not present

in subsequent time steps. Avoiding such unnecessary processing can boost the running time of a

flock pattern detection algorithm and then provide information in a real-time fashion for decision

takers. With that in mind, we will present an efficient algorithm, based on bitmaps, that will only

2.3. ACADEMIC CONTRIBUTION 24

be concerned with data that can really generate flock patterns, saving a considerable amount

of time in processing. Moreover, our algorithm will be able to provide information, about the

datasets being analyzed, way faster than other algorithms. We will prove such efficiency by

showing benchmarks comparing the running time of our solution against the state-of-the-art

algorithm and also show how that our implementation generates way less unimportant data than

the compared target algorithm, which dramatically affects the running time of the latter. Last, but

not least, we will provide a multi-core aware implementation of our algorithm, taking advantage

of the proposed system architecture mentioned in the previous paragraph, which will achieve

even more savings in running time, without affecting the number of flocks that are found. Aiming

at showing that our solution is ready for multiple types of data, we will perform experiments

with 4 different datasets, being them real and synthetic generated and with a large amount of

data entries, with some of them having more than 50 million records.

252525

3

Technical Background

We now present some technical background that will be required to understand the

remaining of this dissertation.

3.1 Trajectory and data information

Spatio-temporal datasets usually come in the form of a set of tuples {Oid,φ ,λ , t}. Where:

Oid uniquely identifies a MO; t corresponds to the timestamp that the GPS position was extracted;

φ and λ correspond to the latitude and longitude of the MO respectively, at the given timestamp t.

Each MO represented by an Oid has a trajectory Tid associated with it, being a trajectory defined

as follows.

Definition 3.1. Given an Oid , a trajectory Tid consists of a sequence of 3-D points, belonging to

Oid in the form of < (φ0,λ0, t0),(φ1,λ1, t1), ...,(φn,λn, tn)>, with n ∈ N and t0 < t1 < ... < tn.

Table 3.1: Conversion from WGS84 to R
2

WGS84 R
2

φ λ x y

0◦ 0◦ 0 0

38.018470◦ 23.845089◦ 2654452.0 4203597.2

39.9048◦ 116.368◦ 12954167.2 4412163.5

40.0623◦ 116.582◦ 12977989.8 4429577.9

40.0114◦ 116.551◦ 12974538.9 4423950.0

52.5863◦ 13.2363◦ 1473474.2 5814321.9

GPS coordinates are often represented using the WGS84 (NIMA, 1997), which can

make some mathematical operations needed by the algorithm proposed in this dissertation (e.g.

vectorial operations) harder to be performed. Given that limitation, once the coordinates are

read from a dataset, transformations from WGS84 to the R
2 system are made. We use 0◦ as

both latitude and longitude coordinates for our equivalent origin point in the R
2 system and

execute the algorithm used by the Woods Hole Oceanographic Institution (WHOI) to perform

3.1. TRAJECTORY AND DATA INFORMATION 26

the conversion from WGS84 to R
2 on the fly (WHOI, 2015). Please refer to Table 3.1 for some

examples of WGS84 coordinates being translated to R
2, using the algorithm provided by WHOI.

Table 3.2: Ideal dataset sample rate

Oid φ λ t

0 38.018470 23.845089 0

1 38.018069 23.845179 0

2 38.018241 23.845530 0

3 38.017440 23.845499 0

4 38.015609 23.844780 0

0 38.015609 23.844780 1

1 38.014018 23.844780 1

2 38.012569 23.844869 1

3 38.011600 23.845360 1

4 38.010650 23.845550 1

0 38.010478 23.845100 2

1 38.010478 23.845100 2

2 38.010508 23.844640 2

3 38.010520 23.844530 2

4 38.010520 23.844530 2

Table 3.3: Real-world dataset sample rate

Oid φ λ t

0 38.018470 23.845089 4

1 38.018069 23.845179 0

2 38.018241 23.845530 1

3 38.017440 23.845499 10

4 38.015609 23.844780 8

0 38.015609 23.844780 6

1 38.014018 23.844780 5

2 38.012569 23.844869 2

3 38.011600 23.845360 16

4 38.010650 23.845550 12

0 38.010478 23.845100 14

1 38.010478 23.845100 6

2 38.010508 23.844640 3

3 38.010520 23.844530 25

4 38.010520 23.844530 30

Table 3.4: Mapping points from Table 3.3 to its correspondent time slot, using σ = 3

Oid φ λ t Time slot

0 38.018470 23.845089 4 1

1 38.018069 23.845179 0 0

2 38.018241 23.845530 1 0

3 38.017440 23.845499 10 3

4 38.015609 23.844780 8 2

0 38.015609 23.844780 6 2

1 38.014018 23.844780 5 1

2 38.012569 23.844869 2 0

3 38.011600 23.845360 16 5

4 38.010650 23.845550 12 4

0 38.010478 23.845100 14 4

1 38.010478 23.845100 6 2

2 38.010508 23.844640 3 1

3 38.010520 23.844530 25 8

4 38.010520 23.844530 30 10

It is worth noting that real-world datasets do not guarantee that all points of all trajectories

are sampled at the same rate. In a ideal world, a perfect spatio-temporal dataset would have

its entries as described in Table 3.2, where one can see that each Oid has its position sampled

in intervals of a consistent t unit (1 in that example). However, Table 3.3 presents how MOs

3.2. FLOCK PATTERN 27

in real-world datasets have their position sampled over time: no fixed rate interval due to

transmission noises, precision issues and other problems that can make the sample rate varying a

lot from one Oid to another. Therefore, we need to have a way to be able to compare and group

points belonging to the same logical time interval. With that in mind, we divided the time extent

in buckets of size σ , where σ should be chosen accordingly to the dataset being analyzed, based

on the sampling rate of points. Hence, from this point forward, every time when we refer to any

timestamp ti we are actually talking about the ith time bucket (or time slot) of size σ .

After dividing the time extent of the dataset presented by Table 3.3 using σ = 3, Table 3.4

shows in which time slot each Oid entry will end up at. The assignment of the time slot is made

by dividing the timestamp value by the bucket size σ and then performing a floor operation, as

shown in equation
☛
✡

✟
✠3.1 .

s =
⌊ t

σ

⌋ ☛
✡

✟
✠3.1

3.2 Flock pattern

We use the same definition of flock from Vieira, Bakalov and Tsotras (2009):

Definition 3.2. Given a set of trajectories T , a minimum number of trajectories µ > 1 (µ ∈N), a

maximum distance ε > 0 defined over the distance function d, and a minimum time duration δ > 1

(δ ∈ N). A flock pattern Flock(µ,ε,δ) reports all maximal size collections F of trajectories

where: for each fk in F , the number of trajectories in fk is greater or equal than µ (| fk| ≥ µ)

and there exist δ consecutive timestamps such that for every ti ∈ [f t1
k ... f t1+δ

k], there is a disk with

center c
ti
k and radius ε/2 covering all points in f

ti
k . That is: ∀ fk ∈F ,∀ti ∈ [f t1

k ... f t1+δ
k],∀Tj ∈ fk :

| fk| ≥ µ,d(p
ti
j ,c

ti
k)≤ ε/2.

In other words, what Definition 3.2 states is that a flock pattern basically consists in a set

of at least µ trajectories (where each trajectory Tid belongs to the MO represented by Oid) that

stay together for a minimum time extent δ . Additionally, in order to be considered a flock, there

must exist a disk, with radius ε/2, that encloses all points of all trajectories for each time slot.

Hence, we have a flock pattern relying on three key parameters:

1. µ: the minimum number of trajectories, in order to be considered a flock

2. ε: diameter of the disk that needs to enclose the trajectories for each time slot

3. δ : the minimum number of time slot units that the trajectories need to stay together

That definition is well depicted in Figure 3.1, where you can see that for each time slot ti

there is a disk of diameter ε = d enclosing the points of trajectories T1, T2 and T3. Thus, if we

have set our flock parameters to µ = 3, ε = d and δ = 3, we would have found the flock pattern

f = {T1,T2,T3} shown in Figure 3.1. It is worth noting that trajectory T4 could not be part of the

3.2. FLOCK PATTERN 28

Figure 3.1: T1, T2 and T3 form a flock of size µ = 3 with minimum length of δ = 3 time slots

and with a disk diameter of size ε = d

Source: Made by the author.

flock pattern because it was not possible to find a disk of diameter d that would enclose 2 more

trajectories along with T4 in each time slot ti.

3.2.1 Disk discovery

One of the most important part, that enables the flock pattern identification, is how to

efficiently discover the disks that can enclose potential flock patterns. Since the disk does not

need to have its center matching any of the points in the dataset, there can be infinite places to

look for them in the dataset space. Vieira, Bakalov and Tsotras (2009) proposed a way to reduce

that search space to a finite number of locations, which we will explain in the remaining of this

section and will be used in the algorithm proposed by this dissertation.

Algorithm 1 shows how we can find two circles that intersect two points, using some

vectorial operations. Given two GPS points p1 and p2, we get the values of x1 and y1, which will

correspond to the longitude and latitude in meters (such conversion is mentioned in Section 3.1)

of p1, and x2 and y2 being the equivalent of p2 (lines 1 to 4). We know that the centers of the

two disks c1 and c2 (that can be generated by those two points), lie in the line that is orthogonal

to points p1 and p2 and passes through the midpoint pm of those same points. After calculating

pm (lines 6 and 7) we convert those same points into a vector v (lines 9 and 10) and calculate its

length (line 12), which will be used later to normalize v. Line 13 calculates the distance cd from

the centers tom pm whereas lines 15 and 16 calculate the orthogonal vector o of v, which will

guide the direction for the disks centers. The algorithm ends by finding the center c1 by adding

pm to the product of o and cd , and c2 by subtracting pm from the product of o and cd . The disks

that we could find are depicted in Figure 3.2.

3.2. FLOCK PATTERN 29

Algorithm 1 Disks Discovery

1: x1← p1.longitudeMeters

2: y1← p1.latitudeMeters

3: x2← p2.longitudeMeters

4: y2← p2.latitudeMeters

5:

6: midX ← x1+x2
2

7: midY ← y1+y2
2

8:

9: vectorX ← x2− x1

10: vectorY ← y2− y1

11:

12: pointsDistance←
√

vectorX2 + vectorY 2

13: centerDistFromMidPoint←
√

(ε
2
)2− (pointsDistance

2
)2

14:

15: orthogonalVectorX ← vectorY

16: orthogonalVectorY ←−vectorX

17:

18: normalizedOrtVectorX ← orthogonalVectorX
pointsDistance

19: normalizedOrtVectorY ← orthogonalVectorY
pointsDistance

20:

21: c1X ← midX +(centerDistFromMidPoint ∗normalizedOrtVectorX)
22: c1Y ← midY +(centerDistFromMidPoint ∗normalizedOrtVectorY)
23:

24: c2X ← midX− (centerDistFromMidPoint ∗normalizedOrtVectorX)
25: c2Y ← midY − (centerDistFromMidPoint ∗normalizedOrtVectorY)

In order to avoid running Algorithm 1 through all the points found in a time slot ti, Vieira,

Bakalov and Tsotras (2009) proposed a grid structure to reduce the search space for the set of

points. In that approach, all points that belong to time slot ti will be arranged into a grid with

cells of size ε . After that, we will go through each cell ci, j in the grid and perform a search

for points that are at most ε distant from each other. That search can be restricted to the cells

ci−1, j−1...ci+1, j+1, as depicted in Figure 3.3, because all cells have ε as their sizes. It is important

to note that the size of ε directly impacts in the number of cells and the number of points in each

cell. For example, for a very small ε more cells will be created and less points will be present in

each cell. On the other hand, large ε will create less but more populated cells.

Algorithm 2 shows how we will construct the grid structure for a set of points from

a specific time slot ti. In order to represent a grid structure, we will use a map of indexes to

a list of points, which will then be populated as follows. For each point p in the point set,

we will bucketize the longitude and the latitude of the point (both converted to meters, using

equation
☛
✡

✟
✠3.1) by dividing them by the cell size ε (lines 5 and 6). Once we have the division

results, we will convert them to string and concatenate them, forming a cell index (line 8). With

the cell index in hand, we only need to add the point to the corresponding cell (line 9). It is worth

3.2. FLOCK PATTERN 30

noting that this proposed approach will not create empty cells, saving memory and unnecessary

cell traversing time.

Figure 3.2: Two disks with radius ε/2 that are found based on points p1 and p2. c1 and c2 stand

for the disks centers and m represents the midpoint between p1 and p2.

Source: Made by the author.

Algorithm 2 Construct Grid

1: grid← map{index, [...]} ⊲ map of cell index to list of points that belong to that cell

2: points← GETPOINTSOFTIMESLOT(ti)
3:

4: for each point p in points do

5: xIndex←
⌊

p.longitudeMeters
ε

⌋

6: yIndex←
⌊

p.latitudeMeters
ε

⌋

7:

8: index← TOSTRING(xIndex)+ ”_”+TOSTRING(yIndex)
9: grid[index].add(p)

10: end for

Another important concept to keep in mind is that we are only interested in the maximum

disks. Once we have found the disks with the points that belong to them, we will check if any

disk di is a subset of another disk d j. By saying that di is a subset of d j we mean that d j has all

the points that di has. This was identified as being a tremendous processing bottleneck for an

algorithm that aims at finding flock patterns.

Figure 3.3: Cell grid for time slot ti. The dark grey is the cell that is currently being processed

and the light gray cells around are the grids that will be in the search space of the dark cell. Each

small circle inside the grid, represents a GPS point that was collected in time slot ti

Source: Made by the author.

323232

4

Modular and Efficient Flock Pattern Identification

4.1 Modular System Architecture

After the related work research that was performed, we noticed a lack of system

architecture in order to solve the flock pattern detection problem in spatio-temporal datasets. So

far, no previous work has provided such system architecture that could be modular and simple in

order to help address the issues related to flock pattern detection.

We first tried to approach this problem in a more generic fashion, since the flock pattern

mining (and also a lot of other moving pattern mining problems) has the same workflow:

1. Connect to a spatio-temporal data source

2. Retrieve and aggregate spatio-temporal data

3. Process and mine that data in order to find the desired pattern (flock, in this case)

With that in mind, we designed a modular and simple system architecture that was

built towards the flock pattern detection problem in spatio-temporal datasets, which is depicted

by Figure 4.1. One can notice that we focus on 4 key building blocks, that can be easily

registered/unregistered according to the targeting problem: (1) Data Source Connectors (DSCs);

(2) Data Decoders (DDs); (3) Data Listeners (DLs) (Data aggregators); (4) Data Processors

(DPs).

In layer (1) we are concerned on how to retrieve the data, meaning how to communicate

properly to the data source in order to be able to extract each spatio-temporal record from it.

Thus, each DSC depicted in the Data Connectors’ Module in Figure 4.1 represents a logical

piece that knows how to connect to and extract data from a specific data source. We can have

a DSC that knows how to connect to a MySQL database, or another one that can connect to a

cloud based storage system like Amazon Web Services (AWS) DynamoDB, or even a DSC that

simply connects to an online data stream and listen for incoming data.

After connecting and retrieving data from a data source, we need to clean, decode and

translate the incoming raw data to a format that is simple and understandable to our system.

Aiming at achieving that, we will have a DD component, which knows how to interpret the

4.1. MODULAR SYSTEM ARCHITECTURE 33

Figure 4.1: Modular system architecture overview

Source: Made by the author.

raw data format that comes from a DSC and translate it to a format that layer (3) onwards can

understand. We can see in Figure 4.1 that a DD can register itself to a DSC in order to receive

4.2. AGGREGATION AND DATA PROCESSING EFFICIENCY 34

each data record that such DSC gathers from a data source. It is important to note that a DD can

register to only one DSC, but a DSC can have multiple DDs registered to it.

In any problem of data mining, aggregation is one of the most important phases, since

it is there that the data gathering happens and necessary arrangements are made in order to get

the data ready for processing. In our system, that phase happens in layer (4), which we call

the Data Listeners’ Module. We can have multiple types of DLs in that module, and each of

them can perform different types of aggregation and pre-processing depending on the final goal.

For example, we could have an aggregator (or listener) that bucketize the GPS points by their

timestamp and filter out outliers, before sending to processing, or another one that performs

point interpolation in order to reduce trajectory uncertainty. Similarly to the DD module, a DL

can only register itself to one DD, but a DD can have multiple DLs registered to it. Later on we

will see a DL implementation as one of the contributions of this dissertation, which will perform

a bufferized aggregation of points.

The last, but not least, remaining piece is the Data Processors’ Module, in layer (5).

It is there that we will have the intelligence to perform a data mining task that will generate

insights for decision making, detect moving patterns and the forth. We can have a DP that

detects flock patterns, another one that detects convergence patterns and even another DP that

provides traffic information in real-time, to name a few. Also, following the pattern of the

aforementioned modules, each DP can only register itself to a single DL, but a DL can have

multiple DPs registered to it. Fitting in the scope of this dissertation, we will implement and

show a novel DP that can detect flock patterns, based on the BFE algorithm proposed by Vieira,

Bakalov and Tsotras (2009).

Researchers and data analysts, working with flock pattern detection, can leverage from

the proposed architecture in order to have some infrastructure to help on their spartio-temporal

problems.

4.2 Aggregation and data processing efficiency

By analyzing some of the algorithms proposed in Section 2.2 and their respective running

times, we noticed that most of the CPU cycles were spent in analyzing disks that will not generate

flock patterns, due to the points not being present in δ consecutive time slots. In all algorithms,

disks generated in time slot ti+1 are compared with the potential flocks found in ti in order to

check if an extension to a potential flock pattern is found. This operation has O(nm) complexity,

with n being the number of disks and m the number of potential flocks from previous time slots.

Additionally, for each comparison between a disk and a potential flock, an intersection operation

between them needs to be made.

Things get even worse in algorithms like BFE, where a new created disk d j is checked if it

is either subset or a duplicate of a previously found disk di (as already mentioned in Section 3.2.1).

The running time of this step can result in a O(n2) time complexity in the worst case (with

4.2. AGGREGATION AND DATA PROCESSING EFFICIENCY 35

n being the number of disks generated by that time slot) requiring an intersection operation

between each pair of disks that are being compared. We can reduce significantly that number of

disks by only creating disks with points that can potentially form a flock pattern, i.e. with points

that appears in the dataset for δ consecutive time slots. In order to show how expensive those

disk operations can be, we measured the time spent in such operations using the datasets that we

will use in our experiments and present the results in Figure 4.2. The analysis shows that the

disk and flock related operations can reach 99% of the overall processing time of the algorithm.

Figure 4.2: Percentage of time spent between disk and flock processing tasks against other tasks

in the algorithm

Trucks BerlinMOD TDrive Brinkhoff

Non disk related processing

Disk processing

Dataset

%
 o

f
ti
m

e

0
2
0

4
0

6
0

8
0

1
0
0

Source: Made by the author.

Consider the BFE algorithm running example depicted in Figure 4.3, where we are

looking for flock patterns having µ = 4 and δ = 4 as its parameter values. As we can see, in

time slot t0 our dataset reported points p1, p2, p3 and p4 and, due to the proximity between them,

disk d0 was created enclosing all four points. In the subsequent time slot t1 the same points were

reported and again the BFE algorithm was able to create another disk d1. However, in time slot t2,

p3 was not present and the disk d2 only contained three points, which is not enough to represent a

flock pattern because of the number of trajectories being less than µ = 4. With the disk d2 being

invalid in t2, we will need to discard disks d0 and d1 created in the previous time slots, since they

cannot generate a flock pattern starting from t0. Hence, we could avoid the creation of disks

d0 and d1 if we would know in advance that p3 was missing in t2, saving CPU cycles of disk

4.3. BITDF 36

comparisons in t0 and t1. We argue that when scaled to a dataset with millions of records, doing

real-time analyses, such processing for checking disks subsets and flock extension, performed

by regular algorithms (like BFE), will lead to a severe degradation in performance. With that

in mind, we can say with high confidence that reducing the volume of data that is processed by

those flock and disk comparison tasks (by filtering out disks that will not generate flock patterns),

can dramatically reduce the overall processing time of a flock detection algorithm.

Figure 4.3: Sequence of disks in 4 consecutive time slots and the points that were clustered to

them

Source: Made by the author.

4.3 BitDF

Our solution consists on using Bitmaps for Disk Filtering (BitDF), based on the BFE

algorithm. BitDF is basically a DL and a DP components, as those in the architecture presented

in Section 4.1. We call them GPS Stream Buffer (GSB) and Flock Processor (FP) the DL and

DP respectively, and will have each of them keeping track of the history of every Oid in time.

Table 4.1: Bitmaps in GSB after buffering four time slots

Oid Bitmap

1 1111

2 0111

3 1011

4 1111

Algorithm 3 shows a big picture of how GSB will work once it receives spatio-temporal

data records from a DD. It will listen to the incoming GPS point stream in the procedure

RECEIVEPOINTS, add each point to the pointBuffer structure (which is a hash map of points

by time slot) and record the presence in time of that Oid in its bitmap structure (presence

map) by calling ADDPOINTPRESENCE. When GSB has buffered δ time slots (line 23) it will

4.3. BITDF 37

then send the points of timeSlot − δ , along with the bitmaps, to FP. After FP is done with

processing the points, GSB will discard the first bit of the bitmaps (which corresponds to the

points of timeSlot−δ sent to FP), by calling SHIFTPRESENCEMAPS, and also discard the points

collected in timeSlot−δ , which were already processed by FP. The flow continues indefinitely

by buffering the points from the next time slot ti and send the points from ti−δ and the bitmaps to

FP for processing. It is worth noting that timeSlotSize, referred in line 21, represents the time

slot σ introduced in Section 3.1.

Algorithm 3 GPS Stream Buffer

1: pointBu f f er← map{index,{id, point[...]}}
2: presenceMap← map{id,bitmap}
3: lastTimeslot←−1

4:

5: procedure ADDPOINTPRESENCE(id)

6: mask← SHIFTLEFT(1, pointBu f f er.size−1)
7: presence← BITOR(presenceMap[id],mask)
8: presenceMap[id]← presence

9: end procedure

10:

11: procedure SHIFTPRESENCEMAPS

12: for all id ∈ KEYS(presenceMap) do

13: shi f ted← SHIFTRIGHT(presenceMap[id],1)
14: presenceMap[id]← shi f ted

15: end for

16: end procedure

17:

18: procedure RECEIVEPOINTS

19: loop

20: point← gpsPointStream.dequeue

21: timeSlot← point.timestamp/timeSlotSize

22: if timeSlot > lastTimeslot then

23: if pointBu f f er.size≥ δ then

24: FP.PROCESS(pointBuffer.first)

25: delete pointBu f f er. f irst

26: SHIFTPRESENCEMAPS

27: end if

28: lastTimeslot← timeSlot

29: end if

30: pointBu f f er[timeSlot][point.id].append(point)
31: ADDPOINTPRESENCE(point.id)

32: end loop

33: end procedure

Using Figure 4.3 as an example, we can see in Table 4.1 the state of the GSB bitmaps for

each Oid after receiving the points in t3. With those bitmaps, we can easily look up for a specific

point occurrence in time and check whether that point in that specific time slot can potentially

4.3. BITDF 38

form a flock pattern or not. We do that by checking if that Oid appears for δ consecutive time

slots in the dataset, i.e. it has δ consecutive bits set to 1. The bitmaps in GSB will always refer

to the future of a specific Oid .

Algorithm 4 Flock Processor Helper Procedures

1: bu f f ered← 0 ⊲ max time span of the current flocks, max value is δ

2: f lockMap← map{id,bitmap}
3:

4: procedure ISPOINTELIGIBLE(id)

5: presence← CONCAT(presenceMap[id], f lockMap[id])
6: eligibleMask← SHIFTLEFT(1,δ)−1

7: range← pointBu f f er.size+bu f f ered

8: checks←MAX(1,range−δ +1)
9: while checks > 0 do

10: tmp← BITAND(presence,eligibleMask)
11: if BITXOR(tmp,eligibleMask) then

12: return true

13: end if

14: checks← checks−1

15: eligibleMask← SHIFTLEFT(eligibleMask,1)
16: end while

17: return false

18: end procedure

19:

20: procedure MAPPOINTFLOCK(id)

21: mask← SHIFTLEFT(1,bu f f ered)
22: f lockMap[id]← BITOR(f lockMap[id,mask)
23: end procedure

24:

25: procedure SHIFTFLOCKMAPS

26: for all id ∈ KEYS(f lockMap) do

27: f lockMap[id]← SHIFTRIGHT(f lockMap[id],1)
28: end for

29: end procedure

30:

31: procedure STOREDISKIFELIGIBLE(diskSet,d)

32: if COUNT(d)≥ µ and not SUBSET(d) then

33: ADDDISK(diskSet,d)

34: else

35: delete d

36: end if

37: end procedure

Our DP is explained in more detail by Algorithm 4 and Algorithm 5 as follows. In

Algorithm 4 we start by first listing the procedures that will help the core procedure of FP (the

PROCESS procedure, in Algorithm 5). It is also in Algorithm 4 that we list the most important

piece of this DP that allows us to achieve such good optimizations, in both CPU cycles and

4.3. BITDF 39

Algorithm 5 Flock Processor Process Procedure

1: procedure PROCESS(pointMap{id, point[...]}, timeslot)

2: D← /0

3: cells← BUILDGRID(pointMap)
4: if bu f f ered ≥ δ then

5: SHIFTFLOCKMAPS

6: bu f f ered← bu f f ered−1

7: end if

8: for all cx,y ∈ cells do

9: cellRange← [cx−1,y−1...cx+1,y+1]
10: for all p1 ∈ cx,y do

11: for all p2 ∈ cellRange do

12: if d(p1, p2)≤ ε then

13: d1,d2← CREATEDISKS(p1, p2)
14: for all p ∈ cellRange do

15: added← false

16: if INDISK(d1, p) and ISPOINTELIGIBLE(p) then

17: ADD(D1, P)()
18: added← true

19: end if

20: if INDISK(d2, p) and ISPOINTELIGIBLE(p) then

21: ADD(D2, P)()
22: added← true

23: end if

24: if added = true then

25: MAPPOINTFLOCK(p.id)
26: end if

27: end for

28: STOREDISKIFELIGIBLE(D,d1)

29: STOREDISKIFELIGIBLE(D,d2)

30: end if

31: end for

32: end for

33: end for

34: bu f f ered← bu f f ered +1

35: end procedure

number of disks generated, which is the ISPOINTELIGIBLE procedure. Such procedure is

responsible to put together what happened in the past and what is going to happen in the future

for a given point p, in order to decide whether p can be part of a potential flock pattern or not. It

does that by concatenating, for a given Oid , the bitmap from FP with the bitmap from GSB (line

5 of Algorithm 4) and searching for a sequence of δ bits set to 1 (lines 6 to 15 of Algorithm 4).

That search is performed by combining AND and XOR bitwise operations against the presence

bitmap assembled in line 5 of Algorithm 4. If a sequence of δ bits set to 1 is found, we can

state with confidence that such point p can potentially be part of a flock pattern. Later on, if a

4.3. BITDF 40

potential flock is found in a time slot ti and p is part of it, we need to update the FP’s bitmap of

that point so when we process points of time slot ti+1 we have the correct bitmap representation

of p and that is where MAPPOINTFLOCK (line 20) comes to play. MAPPOINTFLOCK does that

by prepending 1 to p’s bitmap in FP module by performing an OR bitwise operation.

Figure 4.4 shows how GSB (red) and FP (gray) will interact in a scenario where µ = 3

and δ = 3. In the first column we can see GSB receiving points p1, p2, p3, p4 and p5 at time

slot t0 and then updating the bitmap for each of the points (red grid). Later on, at time slot t1,

GSB receives points p2, p3, p4, p5 and p6 and again updates the presence bitmaps for each

point. After the bitmap updates, one can notice that now p1 has 01 as its presence bitmap value,

meaning that p1 was present at time slot t0 but not at t1, and GSB now has a buffer of points for

time slot t0 (red dashed box). When the points from time slot t2 are received, and the presence

bitmaps are updated, GSB sends the points buffered from time slot t0 to FP for processing. At

this time, FP has not received any set of points for processing, so its bitmaps are clean (rightmost

gray grid) and the concatenation of the bitmaps from GSB and FP will end up being the same

value as in GSB. After processing the buffered points from time slot t0, FP will generate a disk

d1 with points p2, p4 and p5, leaving p1 and p6 out because their bitmaps say that they will not

appear in the next 2 consecutive time slots.

Figure 4.4: Interaction between GSB (red) and FP (gray) in 5 consecutive time slots, showing

how the presence bitmaps are constructed. In the example we have µ = 3 and δ = 3

Source: Made by the author.

4.4. TAKING ADVANTAGE OF MULTI-CORE ARCHITECTURES 41

The same flow continues for time slot t3, with GSB sending the buffered points from

time slot t1 to FP for processing. We can now notice that the points that formed disk d1 in the

time slot t0 now have a bit set to 1 in their presence bitmaps in FP. Moreover, it is worth noting

how we perform the bitmap concatenation in FP (when it receives points from t1), in which the

past time (FP bitmaps) goes at the right and the future (GSB bitmaps) goes at the left side of

the concatenated bitmap. We then perform a search for µ = 3 bits set to 1 in that concatenated

bitmaps to figure out which points can potentially form a flock pattern and can be placed in a

disk. Late in time slot t4, when FP receives the points from time slot t2, a flock pattern will be

found, since we could find 3 consecutive disks containing at least µ = 3 unique Oid .

4.4 Taking Advantage of Multi-core Architectures

It’s well known that multi-core architectures are the current trend in technology. There is

a myriad of multi-core processors in the market and many chipset companies taking advantages

of those processor architectures too (even small devices, like smartphones, are being shipped

with multi-core processors). Given that current scenario, there is no sense in not taking advantage

of those multi-core processors and still executing our solution in a serial fashion. Thus, we

will remodel our proposed architecture in a multi-threaded structure and parallelize some of the

expensive tasks that our algorithm is doing, in order to make it more responsive and fast so it can

empower decision makers to act in real-time.

One can see that the FP component, that we described in the previous section, is doing a

lot of work in order to discover the flock patterns. Whenever the FP receives the set of points

from GSB it performs the following actions:

1. Build the whole point grid

2. For each grid cell:

(a) Get the Extended Grid Cell (EGC) (e.g. for cell cx,y it will get cells

cx−1,y−1...cx+1,y+1)

(b) Process the EGC, trying to cluster the points into disks

3. Get the resulting disks and assure that there are neither duplicates nor subsets of other

disks

4. Try to merge the disks with potential flocks from previous time slots

5. Report new found flocks

It can be easily perceived that the EGC processing (steps (a) and (b)) can be done

in parallel for the multiple cells that will be processed, since there is no dependency and

no concurrent writing operations between cells. Another step that is very CPU heavy is the

4.4. TAKING ADVANTAGE OF MULTI-CORE ARCHITECTURES 42

disk check described in step 3, but that step is very difficult to parallelize, as we could see

in Algorithm 5. In that algorithm we showed that we start with an empty set of disks in the

beginning of the PROCESS procedure and add disks to that set as we go finding them. However,

before adding a disk d to the set, we check amongst the other disks that were previously there if

d is neither a subset nor a superset of an existing disk. If d is a subset, then it is not added to the

set, but if d is a superset of an existing disk d2, that disk d2 is then removed from the set and d is

added instead (the superset check is done inside the procedure ADDDISK). Thus, if we try to

parallelize that disk check procedure we would need to have synchronizing primitives to protect

the concurrent writing operations to the shared disk set, which could end up being performance

bottleneck in the system. Even without being able to fully parallelize the disk check steps, we

can still take advantage of other techniques to gain some speed in processing, like using the

divide and conquer approach. The idea would be to have multiple disk sets (one per independent

worker thread processing EGCs) and have each independent thread add disks (and thus check

for subsets/supersets) to its own set. When each worker thread has finished its processing we

would have each thread’s set being merged with the global disk set in FP, leaving less checks to

be performed by the global disk set.

4.4.1 Multi-threaded Design

The multi-threaded idea described in Section 4.4 can be modeled as a Producer-Multiple

Consumers problem, where we would have a single producer assembling the EGCs and multiple

consumers taking a EGC from a shared queue and clustering the points in the disks that it might

find for that specific EGC. On a step further, each consumer thread tc will also spawn another

thread td that will process disks that tc has found and will check for subsets and supersets in its

own private disk set.

Figure 4.5 illustrates how the FP will be rearchitected in order to take advantage of

parallel execution. We can see that the main thread will collect the EGCs for each cell grid and

enqueue them in a shared queue that will be accessed by N consumers. Whenever a consumer

(tc thread) dequeues an EGC, it will then try to find a pair of disks for each pair of points in the

EGC, cluster the remaining points in those disks and then enqueue those disks in another shared

queue. Such shared queue will only be shared with the disk thread td belonging to the tc thread

that created it. Then, each td will be responsible to check for subsets and supersets in its own

set of disks, saving a lot of processing time when those disks are merged (and also checked for

subsets and supersets) with the global disk set in the PROCESS procedure.

Figure 4.5: Modeling the FP in a Producer-Multiple Consumers architecture

Source: Made by the author.

444444

5

Experimental Results

As explained in Chapter 3, the flock pattern detection relies mainly in 3 parameters,

namely number of trajectories (µ), flock extension (or length) (δ) and disk radius (ε/2). Those

parameters impact significantly in the number of patterns found as well as the time taken to find

those patterns, depending on the dataset being analyzed. To validate the efficiency of BitDF, we

chose 4 datasets referred by Zheng (2015), that are being widely used in trajectory data mining

researches in the academia. Of those 4 datasets, 2 were collected from real-world experiments

and 2 were synthetic generated.

Before evaluating the performance of BitDF using those datasets, we first gathered some

metadata information about them, in order to choose wisely the value for the aforementioned

parameters, so we could indeed find a good number of flocks patterns. Such metadata were

collected by running BitDF multiple times with various values for those parameters. Thus,

based on the dataset description, we picked some starting values for them and then increased or

decreased the values according to the number of flock patterns that we were able to find. After

finding at least 100 flock patterns, we then settled on a range of values for those parameters and

used them to evaluate each dataset.

Figure 5.1 shows the components (using the architecture proposed in Section 4.1) that

will be part of our experiments and how our experiments are going to be performed. For each

dataset (which will be presented individually in the subsections to come) that we used, we

simulated an online stream of GPS data arriving at the ONLINECONNECTOR DSC in our system.

Then, that incoming GPS data would be forwarded to a DD that knows how to translate each

entry in that specific dataset to a structure that can be understood by the GSB DL. When the

GSB DL gets the data, the Algorithm 3 will take care of it, buffering it and building the necessary

presence bitmap for that Oid . After we have buffered δ time slots of points in GSB, the next

destination of the GPS data is the FP DP, which is composed by three different components, as

depicted in Figure 5.2:

1. Grid Manager: Will get the GPS data and build the grid depicted in Figure 3.3 and

provide the EGC for each grid cell.

2. Disk Manager: Gets each disk generated by FP and will check for duplicates/superset

45

disks and add it to the global disk set, if that disk is unique.

3. Flock Manager: Stores the potential flock patterns from previous time slots and

merges the disks generated by the current time slot in order to find new flock patterns.

Figure 5.1: System design implemented for the experiments

Source: Made by the author.

The metrics that we chose to measure the efficiency of BitDF were (1) Running Time and

(2) Number of Disks Generated. For (1) we went through each individual parameter (µ , δ and ε),

fixed it in a specific value and varied the remaining others based on the range that we settled from

our metadata gathering. We picked (2) as an evaluation metric because it will show with numbers

the reason why BitDF can run way faster than the comparison baseline algorihtm. Finally, in

order to have a baseline to compare against BitDF, we implemented the BFE algorihtm proposed

by Vieira, Bakalov and Tsotras (2009) and ran our benchmarks with it as well.

We implemented the system architecture proposed in Figure 5.1 in C++, using g++ 4.8.4

and the C++11 (ISO, 2012) features. Our test machine used to run our performance experiments

5.1. TRUCKS DATASET 46

Figure 5.2: FlockProcessor class composition

Source: Made by the author.

was a Linux box with Intel Xeon Quad processor and 14GB of main memory running Ubuntu

Server 14.04 Long Term Support (LTS). As already mentioned, we used four datasets (real and

synthetic) in our experiments, with some of them having more than 50M entries and 2K unique

Oid .

Before showing the results, there are some Analysis Outcome (AO) that will hold for

any dataset being analyzed here:

1. δ variation: The longer the flock patterns we try to find (long δ), the more disks

will stay cached being analyzed and trying to be merged with new disks from time

slots to come. This can have a big impact in running time.

2. ε variation: As the disk radius (ε/2) gets bigger, more points will be clustered inside

a disk and thus more intersections and duplicates of those disks as more likely to

be found. This will impact the time spent in analyzing disks from one time slot to

another.

3. µ variation: By increasing µ , it gets more and more difficult to find disks that are

flock candidates (|d| ≥ µ), so less disks are generated. This scenario is where BitDF

will achieve less improvements.

5.1 Trucks Dataset

This was one of the datasets that Vieira, Bakalov and Tsotras (2009) used in the

experiments of BFE, but the authors modified such dataset (CHOROCHRONOS, 2012), resulting

in a dataset which is way far from those found in real-world analyses. In their modification, every

time interval is of one second, the GPS coordinates were mapped to a R
2 coordinate system

(ranging from 0 to 1000) and most of the points are present in each time interval. The modified

dataset resulted in 112,203 entries and 276 unique Oid (instead of 50 in the original dataset).

By looking at Figure 5.3 and Figure 5.4, we can see that BitDF had some gains in

execution time. However, they were not too significant due to the fact that the number of

5.1. TRUCKS DATASET 47

Figure 5.3: Results varying δ and ε for Trucks dataset

(a) µ = 4, ε = 1.5 and δ varying
1
5
0

2
0
0

2
5
0

T
im

e
 (

s
e
c
s
)

4 6 8 10 12 14 16 18 20

BFE

BitDF

(b) µ = 4, δ = 20 and ε varying

5
0

1
0
0

1
5
0

2
0
0

2
5
0

T
im

e
 (

s
e
c
s
)

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

BFE

BitDF

Source: Made by the author.

Figure 5.4: Results varying µ and number of disks generated over time for Trucks dataset

(a) δ = 20, ε = 1.5 and µ varying

5
0

1
0
0

1
5
0

2
0
0

2
5
0

T
im

e
 (

s
e
c
s
)

4 6 8 10 12 14 16 18 20

BFE

BitDF

(b) Cumulative disks by time

0 200 400 600 800

0
1
0

2
0

3
0

4
0

Time slot

D
is

k
s
 g

e
n
e
ra

te
d
 x

 1
0

3

BFE

BitDF

Source: Made by the author.

disks generated by each time slot does not differ too much between BFE and BitDF, as we can

see in Figure 5.4b. This happens because almost all points appear in every single time slot,

then buffering and mapping the Oid presence in time does not make a big impact, since we

will not be able to filter out disks created with points not being present in δ consecutive time

slots. Figure 5.3a and Figure 5.3b show some running time improvements against BFE, which

5.2. BERLINMOD DATASET 48

are backed up by the explanations given at AO 1 and AO 2. A different behavior is observed

in Figure 5.4a, in which BitDF starts better but ends up almost tied with BFE, which can be

explained by AO 3, but is also very influenced by the dataset modifications.

5.2 BerlinMOD Dataset

BerlinMOD consists in a traffic generation model (DüNTGEN; BEHR; GüTING, 2009b)

used to create sythentic datasets of MOs. This particular dataset that we are analysing was the

biggest one that we could find in the set of synthetic datasets that are available in their website

(DüNTGEN; BEHR; GüTING, 2009a) and consists of 56,127,943 entries and 2,000 unique Oid .

Figure 5.5: Results varying δ and ε for BerlinMOD dataset

(a) µ = 4, ε = 100 and δ varying

4
0
0

5
0
0

6
0
0

7
0
0

T
im

e
 (

s
e
c
s
)

4 8 20 30

BFE

BitDF

(b) µ = 4, δ = 8 and ε varying

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

T
im

e
 (

s
e
c
s
)

80 100 120 140 200

BFE

BitDF

Source: Made by the author.

As we can see by the results presented in Figure 5.5 and Figure 5.6, BitDF was able to

achieve great performance gains over BFE, in some cases being 57% faster (Figure 5.5a). In

Figure 5.6b it is shown that BitDF reduces the cumulative number of disks created over time

in 94%, by only creating disks that can indeed form flock patterns, which justifies the great

improvements that BitDF was able to get in this dataset. Differently from the results presented

in Section 5.1, BitDF was able to get great improvements over BFE, ranging from 20% to 48%,

even when increasing the value of µ as depicted in Figure 5.6a. Lastly, as depicted in Figure 5.5b,

BitDF was able to outperform BFE in almost 50% when varying the parameter ε .

5.3 TDrive Dataset

This is a real dataset, having spatio-temporal data describing one week of trajectories

of taxis in Beijing, China, available in (ZHENG, 2011). It has 17,762,489 entries with 10,336

5.3. TDRIVE DATASET 49

Figure 5.6: Results varying µ and number of disks generated over time for BerlinMOD dataset

(a) δ = 8, ε = 100 and µ varying
4
0
0

5
0
0

6
0
0

7
0
0

T
im

e
 (

s
e
c
s
)

4 6 8 10 20

BFE

BitDF

(b) Cumulative disks by time

0 2000 6000 10000
0

2
0

4
0

6
0

8
0

Time slot

D
is

k
s
 g

e
n
e
ra

te
d
 x

 1
0

3

BFE

BitDF

Source: Made by the author.

unique Oid .

Figure 5.7: Results varying δ and ε for TDrive dataset

(a) µ = 4, ε = 100 and δ varying

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

T
im

e
 (

s
e
c
s
)

4 8 20 30

BFE

BitDF

(b) µ = 4, δ = 8 and ε varying

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

T
im

e
 (

s
e
c
s
)

10 30 50 80 100

BFE

BitDF

Source: Made by the author.

One can see by the results presented in Figure 5.7 and Figure 5.8, that BitDF was

able to dramatically reduce the execution time, when compared to BFE. When varying the δ

parameter, the running time improvement was of almost 90%, droping from 1,265 seconds to

only 125 seconds of processing time, as shown in Figure 5.7a. Continuing the improvements,

5.4. BRINKHOFF DATASET 50

in Figure 5.7b we can see that BitDF reduced the execution time up to 74% when varying

ε . Additionally, despite seeing some similar behavior with the other analyzed datasets (like

presented in Section 5.1) when varying µ , Figure 5.8a shows that BitDF was able to improve the

execution time by 74% in some cases. It is also worth noting that the results achieved are a reflex

of the huge decrease of disks that were generated by time, as depicted in Figure 5.8b, reaching

almost 96% of reduction.

Figure 5.8: Results varying µ and number of disks generated over time for TDrive dataset

(a) δ = 8, ε = 100 and µ varying

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

T
im

e
 (

s
e
c
s
)

4 6 8 10 20

BFE

BitDF

(b) Cumulative disks by time

0 500 1000 1500

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Time slot

D
is

k
s
 g

e
n
e
ra

te
d
 x

 1
0

3

BFE

BitDF

Source: Made by the author.

5.4 Brinkhoff Dataset

Likewise BerlinMOD, Brinkhoff is also a city traffic generation model (BRINKHOFF,

2002). We generated a synthetic dataset using the Minnesota Web-based Traffic Generator

(MINNESOTA, 2013), having 2,000 as the "Starting Vehicles" and 100 as the "Simulation Time"

parameters, which are the largest allowed numbers by the generator. The result dataset has

314,523 entries and 7,000 unique Oid .

The results achieved with this dataset were the best that BitDF was able to get amongst

the other datasets analyzed in this dissertation, as one can notice by looking to Figure 5.9 and

Figure 5.10. There were huge drops in execution time, as depicted in Figure 5.9a, where BitDF

analyzed the whole dataset in only 69 seconds, while BFE took 12,732 seconds, representing

an improvement of 99.5%. Another great running time improvement of 99% can be seen when

we varied the ε parameter, as shown in Figure 5.9b, droping from 13,141 seconds to only 125

seconds. We can see in Figure 5.10a that even with the variation of µ , BitDF was able to show

huge improvement, with results ranging from 98% to 99% of CPU time reduction. Additionally,

5.4. BRINKHOFF DATASET 51

Figure 5.9: Results varying δ and ε for Brinkhoff dataset

(a) µ = 4, ε = 200 and δ varying
0

2
0
0
0

6
0
0
0

1
0
0
0
0

T
im

e
 (

s
e
c
s
)

4 8 20 30

BFE

BitDF

(b) µ = 4, δ = 8 and ε varying

0
2
0
0
0

6
0
0
0

1
0
0
0
0

T
im

e
 (

s
e
c
s
)

80 100 120 140 200

BFE

BitDF

Source: Made by the author.

Figure 5.10: Results varying µ and number of disks generated over time for Brinkhoff dataset

(a) δ = 8, ε = 200 and µ varying

0
2
0
0
0

6
0
0
0

1
0
0
0
0

T
im

e
 (

s
e
c
s
)

4 6 8 10 20

BFE

BitDF

(b) Cumulative disks by time

0 20 40 60 80 100

0
5

1
0

1
5

Time slot

D
is

k
s
 g

e
n
e
ra

te
d
 x

 1
0

3

BFE

BitDF

Source: Made by the author.

we can see in Figure 5.10b that we were able to reduce the number of disks by 95%, which is a

dramatic improvement and is reflecting directly in the running time improvements that we could

see with this dataset.

5.5. MULTI-THREADED EVALUATION 52

5.5 Multi-threaded evaluation

After implementing the architecture proposed in Section 4.1, evaluating it in Chapter 5

and seeing great improvements in the running time when compared with other algorithms, we

decided to test how our system would perform by taking advantage of the multi-core paradigm

that is been widely used nowadays. We then took a step further and implement a new DP, that

we called Parallel Flock Processor (PFP). PFP was implemented having in mind the MT model

described in Section 4.4.1, which we call BitDF MT.

In order to see how BitDF MT would perform, we took from Chapter 5 the worst

performances of BitDF for each dataset and compared such performance against BitDF MT

running with a varied number of worker threads executing in parallel.

Our benchmarks were executed in a different machine from that one mentioned in the

beginning of Chapter 5, in a way that we opted to get a better multi-core processor setup. Hence,

we ran our experiments in a Linux box, running Ubuntu 16.04 LTS, having an Intel Xeon CPU,

with 2.3 GHz and 4 physical cores, using Intel Hyper-Threading technology (MARR et al., 2012)

meaning that we would theoretically have 8 different processing units.

Below we will present the benchmarks that were executed for each dataset already seen

in Chapter 5, namely Trucks, TDrive, BerlinMOD and Brinkhoff. For each of the aforementioned

datasets, we ran BitDF MT with the same parameters as the longest BitDF execution presented

in Chapter 5, varying the worker threads from 1 (pure BitDF) to 30. With variations of 1 worker

thread from 1 to 10, 2 worker threads from 10 to 20 and 5 worker threads from 20 to 30. It

is important to notice that when we say that we are running with x worker threads, we are

actually running with 2∗x threads: having x tc threads processing different EGCs plus 1 td thread

(attached to its tc thread) processing the disks generated by its parent tc. We set the result of

pure BitDF as being 100% of the total execution time and highlighted it with red color and all

BitDF MT runs are in blue, always being a percentage of the red highlighted result. It is worth

mentioning here that the only metric that we are evaluating in these experiments is the running

time of BitDF MT, because the number of generated disks will be the same that we have seen

in the previous results shown for BitDF in Chapter 5, since we are still using the same bitmap

filtering heuristic proposed by BitDF. Moreover, in order to have a better idea on how BitDF MT

outperforms BitDF and BFE, we show some graphs depicting the running time of them together,

for each dataset. For such comparion, we picked 5 and 7 as the number of worker threads for

BitDF MT, since those are the values that show the best peformance overall.

First we present the results for the Trucks dataset, which we ran with the following

parameters (based on previous results from Section 5.1): µ = 4, δ = 20 and ε = 1.5. That

dataset would be the most difficult one to show running time improvements due to its small

size and running times being already fast (with the longest one being around 200 seconds for

BitDF). Despite that, we can see in Figure 5.11 that we were able to reduce as much as 51%

when running with 5 tc threads, which totalizes 10 threads. After that we can see that we could

5.5. MULTI-THREADED EVALUATION 53

stay almost stable, not gaining any performance but also not deteriorating it too much. Such

performance stabilization is an expected result, as the processor would start to schedule and pause

the execution of threads, because of having all its resources busy, as the number of executing

threads exceeds too much the number of available processing units.

Figure 5.11: Execution time reduction by number of threads for the Trucks dataset

Trucks dataset

Threads

%
 o

f
to

ta
l
ti
m

e

0
2

0
4

0
6

0
8

0
1

0
0

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 25 30

Source: Made by the author.

Figure 5.12 and Figure 5.13 show that we were able to achieve more meaningful results

with BitDF MT, than those presented in Section 5.1 and that the improvements obtained with

BitDF MT runing with both 5 and 7 worker threads were almost the same. We could reduce the

running time of BitDF by 18% when varying µ (Figure 5.13) and ε (Figure 5.12b) and by 30%

when varying δ (Figure 5.12a).

In Figure 5.14, we show the graph with the results for the BerlinMOD dataset. Due to

its large size and somewhat long execution times (as previously presented in Section 5.2) we

expected to obtain good results in running BitDF with independent worker threads. We have set

our parameters to have the following values: µ = 4, δ = 8 and ε = 200, as we had those resulting

in the longest running time (around 1,000 seconds) in our first experiments with this dataset. It is

noticed by Figure 5.14 that the results also tend to stabilize when we reach 5 worker threads (10

in total), but we reach our best running time with 8 worker threads, with an improvement of 62%.

It is also seen that the running time starts to get worse as we exceed the number of processing

units available (shown when BitDF MT is executing with 30 worker threads, being 60 in total).

5.5. MULTI-THREADED EVALUATION 54

Figure 5.12: Results varying δ and ε for Trucks dataset

(a) µ = 4, ε = 1.5 and δ varying
1

0
0

1
5

0
2

0
0

2
5

0

T
im

e
 (

s
e

c
s
)

4 6 8 10 12 14 16 18 20

BFE

BitDF

BitDF 5 Threads

BitDF 7 Threads

(b) µ = 4, δ = 20 and ε varying

5
0

1
0

0
1

5
0

2
0

0
2

5
0

T
im

e
 (

s
e

c
s
)

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

BFE

BitDF

BitDF 5 Threads

BitDF 7 Threads

Source: Made by the author.

Figure 5.13: Results having δ = 20, ε = 1.5 and µ varying for the Trucks dataset

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

T
im

e
 (

s
e

c
s
)

4 6 8 10 12 14 16 18 20

BFE

BitDF

BitDF 5 Threads

BitDF 7 Threads

Source: Made by the author.

By looking at Figure 5.15 and Figure 5.16, one can see that even where BitDF had the

worst results, BitDF MT was able to achieve important reductions in running time, showing

how a good multi-threaded remodeling is important in order to get the most out of a multi-core

architecture. BitDF MT improved the running time of BitDF by 50% when running with both 5

and 7 worker threads, as shown in Figure 5.15a. BitDF MT also achieved good results when we

varied the µ parameter, having 45% of running time decrease as it is depicted in Figure 5.16.

5.5. MULTI-THREADED EVALUATION 55

Figure 5.14: Execution time reduction by number of threads for the BerlinMOD dataset

BerlinMOD dataset

Threads

%
 o

f
to

ta
l
ti
m

e

0
2

0
4

0
6

0
8

0
1

0
0

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 25 30

Source: Made by the author.

Figure 5.15: Results varying δ and ε for BerlinMOD dataset

(a) µ = 4, ε = 100 and δ varying

4
0

0
5

0
0

6
0

0
7

0
0

8
0

0
9

0
0

T
im

e
 (

s
e

c
s
)

4 8 20 30

BFE

BitDF

BitDF 5 Threads

BitDF 7 Threads

(b) µ = 4, δ = 8 and ε varying

5
0

0
1

0
0

0
1

5
0

0
2

0
0

0
2

5
0

0

T
im

e
 (

s
e

c
s
)

80 100 120 140 200

BFE

BitDF

BitDF 5 Threads

BitDF 7 Threads

Source: Made by the author.

5.5. MULTI-THREADED EVALUATION 56

Figure 5.16: Results having δ = 8, ε = 100 and µ varying for the BerlinMOD dataset

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0
8

0
0

T
im

e
 (

s
e

c
s
)

4 6 8 10 20

BFE

BitDF

BitDF 5 Threads

BitDF 7 Threads

Source: Made by the author.

Last, but definitely not least, we can se in Figure 5.15b that BitDF MT improved the running

time of BitDF by 70%, with both 5 and 7 worker threads.

Figure 5.17: Execution time reduction by number of threads for the TDrive dataset

TDrive dataset

Threads

%
 o

f
to

ta
l
ti
m

e

0
2

0
4

0
6

0
8

0
1

0
0

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 25 30

Source: Made by the author.

5.5. MULTI-THREADED EVALUATION 57

Another large dataset that we evaluate was the TDrive dataset, in which BitDF showed

great results when analzing it. Based on the results presented in Section 5.3, we chose the

parameter values that led to the longest execution time (around 600 seconds): µ = 4, δ = 4 and

ε = 100. Figure 5.17 shows that the results follow the same pattern that we have been seeing in

the previous analyses: great improvements in the beginning, but stabilizing as we exceed the

number of processing units in the machine. We can also see some slight improvements even

when we evaluate with more than 5 worker threads. It is also depicted in Figure 5.17 that we

were able to reduce the running time as much as 70%, when compared to the single threaded

model, which is a huge improvement added to those already achieved in Section 5.3

Figure 5.18: Results varying δ and ε for TDrive dataset

(a) µ = 4, ε = 100 and δ varying

5
0

0
1

0
0

0
1

5
0

0

T
im

e
 (

s
e

c
s
)

4 8 20 30

(b) µ = 4, δ = 8 and ε varying

5
0

0
1

0
0

0
1

5
0

0

T
im

e
 (

s
e

c
s
)

10 30 50 80 100

BFE

BitDF

BitDF 5 Threads

BitDF 7 Threads

Source: Made by the author.

When it comes to comparing the running time of BitDF MT against BitDF and BFE, we

can see that BitDF MT was able to improve the running time even more than we have seen in

Section 5.3. When varying the parameter µ we could reduce the execution time by 60%, as one

can see in Figure 5.19. Figure 5.18b also shows improvements of 60%, when compared against

BitDF, when varying the parameter ε . The best result though is when we varied the parameter

δ , in which we could improve the BitDF running time by 70% when executing BitDF MT with

both 5 and 7 worker threads, as depicted in Figure 5.18a.

Our last dataset to evaluate is the Brinkhoff synthetic dataset. We were already able to

achieve huge running time improvements with BitDF, but we could achieve even more with

BitDF MT. Based on the dataset results (Section 5.4), we chose the running parameters as

follows: µ = 4, δ = 4 and ε = 1200. Figure 5.20 shows that we were always able to reduce the

BitDF running time even with the number of worker threads being way higher than the number

of available processing units in the machine. That is a result that is completely different from

5.5. MULTI-THREADED EVALUATION 58

Figure 5.19: Results having δ = 8, ε = 100 and µ varying for the TDrive dataset

5
0

0
1

0
0

0
1

5
0

0

T
im

e
 (

s
e

c
s
)

4 6 8 10 20

BFE

BitDF

BitDF 5 Threads

BitDF 7 Threads

Source: Made by the author.

Figure 5.20: Execution time reduction by number of threads for the Brinkhof dataset

Brinkhoff dataset

Threads

%
 o

f
to

ta
l
ti
m

e

0
2

0
4

0
6

0
8

0
1

0
0

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 25 30

Source: Made by the author.

those that we saw with the previous datasets. Compared with the BitDF run, we could reduce the

running time by 96%, being that highest cutback achieved with 30 worker threads (60 in total).

Given that different behavior from the other datasets, we took a closer look on it when running

5.5. MULTI-THREADED EVALUATION 59

with a high number of threads, in order to try to find out the reason that BitDF MT runs better

as the number of worker threads grow. As one can see in Figure 5.21, the number of disks that

are being generated by the disk threads (td) are very close to the final number of disks that are

being inserted in the global disk set. That means that the each disk thread is able to eliminate a

lot of repeated and superset disks before returning them to be merged in the global set. Another

thing that is important to note is that the number of disks being generated is really small as time

advances, meaning that the points are more scattered over time, causing less disks to be generated

and then less synchronization between shared queues for each executing thread. Because of that,

threads could spend less time blocked waiting for shared data to become available.

Figure 5.21: Sum of disks generated by the disk threads (red) and number of disks that were

inserted in the global disk set after subset/superset check (blue), by time slot

0 20 40 60 80 100

0
1
0
0

2
0
0

3
0
0

4
0
0

Time slot

N
u
m

b
e
r

o
f
D

is
k
s

Disks from Threads

Disks after Merge

Source: Made by the author.

Despite the reduction in running time of more than 90% that BitDF was able to achieve,

as seen in Section 5.4, we could reduce that number even more with BitDF MT. It is difficult to

see the actual difference between the running time of BitDF and BitDF MT, due to the slowness

of BFE in that dataset, which is causing the y axis range to be very wide. However, BitDF

MT with 5 and 7 worker threads could reduce the time of BitDF by 82% when varying the µ

parameters, as shown in Figure 5.23. When varying the ε parameter, BitDF MT with 5 and 7

worker threads could also decrease the BitDF running time by 82% (Figure 5.22b). Finally, by

varying the δ parameter and running with 5 worker threads, BitDF MT could outperform BitDF

5.5. MULTI-THREADED EVALUATION 60

by 76%, whereas by running with 7 worker threads, BitDF MT could be better by 85%, as we

can see in Figure 5.22a.

Figure 5.22: Results varying δ and ε for Brinkhoff dataset

(a) µ = 4, ε = 100 and δ varying

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

T
im

e
 (

s
e

c
s
)

4 8 20 30

BFE

BitDF

BitDF 5 Threads

BitDF 7 Threads

(b) µ = 4, δ = 8 and ε varying

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

T
im

e
 (

s
e

c
s
)

80 100 120 140 200

BFE

BitDF

BitDF 5 Threads

BitDF 7 Threads

Source: Made by the author.

Figure 5.23: Results having δ = 8, ε = 100 and µ varying for the Brinkhoff dataset

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

T
im

e
 (

s
e

c
s
)

4 6 8 10 20

BFE

BitDF

BitDF 5 Threads

BitDF 7 Threads

Source: Made by the author.

In this section we could show that a simple remodeling in a system’s architecture could

lead to tremendous running time improvements, by taking advantage of the multi-core paradigm.

Our results show that we could reduce the running time by as much as 96%, when choosing the

correct number of worker threads and the correct separation of work that can be parallelized.

616161

6

Conclusion

Pattern mining in spatio-temporal datasets is a really relevant subject in the academia

and the industry nowadays, due to its wide applicability in helping to solve real-world problems.

Many of them can be found in the context of Smart Cities, like Traffic Management, Surveillance

and Security and City Planning, to name a few. Among the various spatio-temporal patterns

that one can extract from a spatio-temporal dataset, the flock pattern is one that has gained a

lot of attention. The reason for such attention it is because of its collective behavior properties,

which are very applicable and are intrinsically related to the type of problems that we have just

mentioned.

Throughout this dissertation, we could show that a lot of work has been done in the

academia, in order to provide algorithms able to identify the flock pattern. However, none of

them could perform that task efficiently nor be able to scale well when a large dataset was

the analysis target. Additionally, we found that there was no system architecture proposal

that could be simple and modular in order to address the problem of flock pattern detection in

spatio-temporal datasets. Hence, since we are witnessing the rising of Smart Cities, helping to

solve those aforementioned issues would be of tremendous importance and the flock pattern can

be a valueable ally on that matter.

Given the importance of efficiently discovering flock patterns, in order to enable decision

makers to act fast, we proposed a simple, and modular system architecture that can fit in the flock

pattern detection problem and possibly be used in other pattern mining scenarios as well. We

then used that architecture to implement a novel flock pattern detection algorithm that was able to

outperform the state-of-the-art solutions in more than 99%, with absolutely no impact in accuracy.

Such impressive results were possible due to the filtering heuristic based on bitmaps that we

proposed, which was able to reduce the generation of cluster disks in more than 96%, directly

reducing the amount of data that needed to be processed by the algorithm. Despite the great

results achieved with our solution, we realized that there was still more room for improvements,

given the large availability of multi-core processors in today’s computers. With that in mind, we

remodeled our proposed solution to perform some critical and time consuming tasks in parallel,

taking full advantage of the multi-core paradigm. Our performance benchmarks showed that we

could outperform our own single threaded solution by 96% in some cases. Moreover, if we were

6.1. FUTURE WORK 62

to show our performance gains in numbers of seconds spent to analyze a large dataset, we were

able to reduce a running time of 15,000 seconds (state-of-the-art techniques) to only 13 seconds

(BitDF MT). It is also important to mention that our experiments were performed using various

datasets, both synthetic generated and collected from real-world experiments and all of them

having a considerable number of entries.

6.1 Future Work

Even though we were able to present great contributions in this field, there are still some

gaps that can be filled and points that need more work and can lead to important results as well.

Here is a list with some of them:

1. The disk superset and duplicate check is very expensive and would need further

investigation in order to make our proposed architecture even more efficient. Additionally,

because it modifies the same disk set, it is really hard to parallelize it without causing

performance degradation.

2. When investigating a grid cell, its extended grid might have cells that were previously

processed by other extended grids. Thus, we could avoid paring the same points and

generating the same disks again if we could keep some sort of disk cache and reuse

those disks.

3. There is no study to see how different flocks relate to each other, like some MO that

starts in one flock and later moves to a different one.

4. Make each module of the proposed architecture run in its own thread/process and

then make them independent of the time spent in other modules.

In this dissertation we showed how BitDF and BitDF MT behaves when applied to

datasets collected from vehicle mobility in road networks, or datasets that simulate that same

scenario. There are still other mobility scenarios that can also take advantage of flock pattern

detection:

1. See how BitDF performs in indoor flock detection.

2. Use BitDF in pedestrian mobility datasets.

3. Evaluate BitDF in animal mobility datasets, such as those from Movebank Database

(MOVEBANK, 2015).

Finally, some other data handling techniques can be used to help in the clustering process

of points, such as Voronoi Diagrams used in conjuntion with Delaunay Triangulation and data

structures like K-D-Tress.

6.1. FUTURE WORK 63

6.1.1 Deployment Challenges in Real World Scenarios

In order to be ready to be deployed and used as a data mining solution, some work is still

needed. In our experiments, we noticed that, due to the nature of real-world datasets, one big

challenge is still the time synchronization of the data stream, i.e. the discovery of the correct time

slot size. As we said in Chapter 3, we cannot assume that the data entries in a spatio-temporal

dataset are sampled in a fixed time rate, so there is still an effort needed in order to synchronize

and group the entries in buckets of a pre-defined size, as we did with our σ parameter. Therefore,

for online analysis, there is a need for an automatic process to detect the best value of that σ

parameter according to the dataset being analyzed and also being able recalibrate it if the data

behavior changes. Additionally, such automatic process should be smart enough to deal with

abnormalities, such as outliers.

Another scenario that needs to be evaluated is when we have a high speed online stream of

data. With high speed incoming data, we can face some data drop, because of a DSC component

being busy processing the data or forwarding the data to other components and that taking too

long. Some evaluation would need to be done in that scenario and mitigation solutions would

need to be proposed. Some possible solutions to avoid data drop could be: implement some

buffering mechanism of incoming data, data sampling, data hashing, etc.

GPS data is known to be very noisy and thus generate a lot of outliers. That said, it is

very important to know how to deal with such problematic data without excluding good data

entries. More importantly, when filtering bad data entries, such pre-processing should be done in

a way that does not compromise the accuracy nor the efficiency of the solution proposed in this

dissertation.

646464

References

ATEV, S.; MILLER, G.; PAPANIKOLOPOULOS, N. P. Clustering of vehicle trajectories. IEEE

Transactions on Intelligent Transportation Systems, v. 11, n. 3, p. 647–657, sep 2010. ISSN

1524-9050.

AUNG, H. H.; TAN, K.-L. Discovery of evolving convoys. In: . Scientific and Statistical

Database Management: 22nd international conference, ssdbm 2010, heidelberg, germany, june

30–july 2, 2010. proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. p. 196–213.

ISBN 978-3-642-13818-8.

BARATCHI, M.; MERATNIA, N.; HAVINGA, P. J. M. Finding frequently visited paths:

Dealing with the uncertainty of spatio-temporal mobility data. In: IEEE INTERNATIONAL

CONFERENCE ON INTELLIGENT SENSORS, SENSOR NETWORKS AND

INFORMATION PROCESSING, Melbourne, Australia. Proceedings... [S.l.], 2013. p. 479–484.

BATTY, M. et al. Smart cities of the future. The European Physical Journal Special Topics,

v. 214, n. 1, p. 481–518, 2012. ISSN 1951-6355.

BENKERT, M. et al. Reporting flock patterns. Comput. Geom. Theory Appl., Elsevier Science

Publishers B. V., Amsterdam, The Netherlands, The Netherlands, v. 41, n. 3, p. 111–125, nov

2008. ISSN 0925-7721.

BRINKHOFF, T. A framework for generating network-based moving objects. Geoinformatica,

Kluwer Academic Publishers, Hingham, MA, USA, v. 6, n. 2, p. 153–180, jun 2002. ISSN

1384-6175.

CAO, H.; MAMOULIS, N.; CHEUNG, D. W. Mining frequent spatio-temporal sequential

patterns. In: IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM ’05),

Houston, TX, USA. Proceedings... Washington, DC, USA: IEEE Computer Society, 2005. p.

82–89. ISBN 0-7695-2278-5.

CHOROCHRONOS. Trucks dataset. 2012. Available In: <http://chorochronos.datastories.org>.

Accessed on: 8 may 2016.

DING, Z. et al. Enabling smart transportation systems: A parallel spatio-temporal database

approach. IEEE Transactions on Computers, v. 65, n. 5, p. 1377–1391, may 2016. ISSN

0018-9340.

DJAHEL, S. et al. A communications-oriented perspective on traffic management systems

for smart cities: Challenges and innovative approaches. IEEE Communications Surveys

Tutorials, v. 17, n. 1, p. 125–151, first quarter 2015. ISSN 1553-877X.

DüNTGEN, C.; BEHR, T.; GüTING, R. H. BerlinMOD. 2009. Available In: <http:

//dna.fernuni-hagen.de/secondo/BerlinMOD/BerlinMOD.html>. Accessed on: 6 may 2016.

DüNTGEN, C.; BEHR, T.; GüTING, R. H. Berlinmod: A benchmark for moving object

databases. The VLDB Journal, Springer-Verlag New York, Inc., Secaucus, NJ, USA, v. 18,

n. 6, p. 1335–1368, dec 2009. ISSN 1066-8888.

ESTER, M. et al. A density-based algorithm for discovering clusters in large spatial databases

with noise. In: INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND

DATA MINING, Portland, OR, USA. Proceedings... [S.l.], 1996. p. 226–231.

http://chorochronos.datastories.org
http://dna.fernuni-hagen.de/secondo/BerlinMOD/BerlinMOD.html
http://dna.fernuni-hagen.de/secondo/BerlinMOD/BerlinMOD.html

REFERENCES 65

FARRAHI, K.; GATICA-PEREZ, D. What did you do today?: Discovering daily routines from

large-scale mobile data. In: ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA

(MM ’08), Vancouver, BC, Canada. Proceedings... New York, NY, USA: ACM, 2008. p.

849–852. ISBN 978-1-60558-303-7.

GENG, X. et al. Enumeration of complete set of flock patterns in trajectories. In: ACM

SIGSPATIAL INTERNATIONAL WORKSHOP ON GEOSTREAMING (IWGS ’14),

Dallas, TX, USA. Proceedings... New York, NY, USA: ACM, 2014. p. 53–61. ISBN

978-1-4503-3139-5.

GUDMUNDSSON, J.; KREVELD, M. van. Computing longest duration flocks in trajectory

data. In: ACM INTERNATIONAL SYMPOSIUM ON ADVANCES IN GEOGRAPHIC

INFORMATION SYSTEMS (GIS ’06), Arlington, VA, USA. Proceedings... New York, NY,

USA: ACM, 2006. p. 35–42. ISBN 1-59593-529-0.

GUDMUNDSSON, J.; KREVELD, M. van; SPECKMANN, B. Efficient detection of motion

patterns in spatio-temporal data sets. In: ACM INTERNATIONAL WORKSHOP ON

GEOGRAPHIC INFORMATION SYSTEMS (GIS ’04), Washington, DC, USA. Proceedings...

New York, NY, USA: ACM, 2004. p. 250–257. ISBN 1-58113-979-9.

GUDMUNDSSON, J.; LAUBE, P.; WOLLE, T. Movement patterns in spatio-temporal

data. In: . Encyclopedia of GIS. Boston, MA: Springer US, 2008. p. 726–732. ISBN

978-0-387-35973-1.

GUO, D. et al. Discovering spatial patterns in origin-destination mobility data. Transactions in

GIS, Blackwell Publishing Ltd, v. 16, n. 3, p. 411–429, 2012. ISSN 1467-9671.

ISO. INCITS/ISO/IEC 14882-2012: Information technology - programming languages - c++.

[S.l.], 2012.

JENSEN, C. S.; LIN, D.; OOI, B. C. Continuous clustering of moving objects. IEEE

Transactions on Knowledge and Data Engineering, v. 19, n. 9, p. 1161–1174, sep 2007.

ISSN 1041-4347.

JENSEN, M.; GUTIERREZ, J. M.; PEDERSEN, J. M. Vehicle data activity quantification using

spatio-temporal gis on modelling smart cities. In: INTERNATIONAL CONFERENCE ON

COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), Anaheim, CA, USA.

Proceedings... [S.l.], 2015. p. 303–307.

JEUNG, H.; SHEN, H. T.; ZHOU, X. Convoy queries in spatio-temporal databases. In: IEEE

INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE ’08), Cancun, Mexico.

Proceedings... Washington, DC, USA: IEEE Computer Society, 2008. p. 1457–1459. ISBN

978-1-4244-1836-7.

JEUNG, H. et al. Discovery of convoys in trajectory databases. Proc. VLDB Endow., VLDB

Endowment, v. 1, n. 1, p. 1068–1080, aug 2008. ISSN 2150-8097.

KALNIS, P.; MAMOULIS, N.; BAKIRAS, S. On discovering moving clusters in spatio-temporal

data. In: INTERNATIONAL CONFERENCE ON ADVANCES IN SPATIAL AND TEMPORAL

DATABASES (SSTD ’05), Angra dos Reis, Brazil. Proceedings... Berlin, Heidelberg:

Springer-Verlag, 2005. p. 364–381. ISBN 3-540-28127-4, 978-3-540-28127-6.

REFERENCES 66

KJÆRGAARD, M. B. et al. Detecting pedestrian flocks by fusion of multi-modal sensors in

mobile phones. In: ACM CONFERENCE ON UBIQUITOUS COMPUTING (UBICOMP ’12),

Pittsburgh, PA, USA. Proceedings... New York, NY, USA: ACM, 2012. p. 240–249. ISBN

978-1-4503-1224-0.

KJÆRGAARD, M. B. et al. Mobile sensing of pedestrian flocks in indoor environments using

wifi signals. In: IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING

AND COMMUNICATIONS (PERCOM), Lugano, Switzerland. Proceedings... [S.l.], 2012. p.

95–102.

LAUBE, P.; KREVELD, M.; IMFELD, S. Finding remo — detecting relative motion patterns

in geospatial lifelines. In: . Developments in Spatial Data Handling: 11th international

symposium on spatial data handling. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. p.

201–215. ISBN 978-3-540-26772-0.

LEE, J.-G.; HAN, J.; WHANG, K.-Y. Trajectory clustering: A partition-and-group framework.

In: ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA

(SIGMOD ’07), Beijing, China. Proceedings... New York, NY, USA: ACM, 2007. p. 593–604.

ISBN 978-1-59593-686-8.

LI, Z. et al. Mining periodic behaviors for moving objects. In: ACM SIGKDD

INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING

(KDD ’10), Washington, DC, USA. Proceedings... New York, NY, USA: ACM, 2010. p.

1099–1108. ISBN 978-1-4503-0055-1.

LI, Z. et al. Swarm: Mining relaxed temporal moving object clusters. Proc. VLDB Endow.,

VLDB Endowment, v. 3, n. 1-2, p. 723–734, sep 2010. ISSN 2150-8097.

LI, Z. et al. Movemine: Mining moving object data for discovery of animal movement patterns.

ACM Trans. Intell. Syst. Technol., ACM, New York, NY, USA, v. 2, n. 4, p. 37:1–37:32, jul

2011. ISSN 2157-6904.

MARR, D. et al. Hyper-threading technology microarchitecture and architecture. Intel

Technology Journal, v. 6, 2012.

MINNESOTA, U. of. MNTG Traffic Generator. 2013. Available In: <http://mntg.cs.umn.edu/tg/

index.php>. Accessed on: 6 may 2016.

MOVEBANK. Movebank data. 2015. Available In: <hhttps://www.movebank.org:

//www.movebank.org>. Accessed on: 15 may 2016.

NIMA. Department of Defense World Geodetic System 1984: Its definition and relationships

with local geodetic systems. [S.l.], 1997. Available In: <http://earth-info.nga.mil/GandG/

publications/tr8350.2/wgs84fin.pdf>. Accessed on: 30 apr. 2016.

PAN, G. et al. Trace analysis and mining for smart cities: issues, methods, and applications.

IEEE Communications Magazine, v. 51, n. 6, p. 120–126, jun 2013. ISSN 0163-6804.

PATEL, D. On discovery of spatiotemporal influence-based moving clusters. ACM Trans.

Intell. Syst. Technol., ACM, New York, NY, USA, v. 6, n. 1, p. 4:1–4:23, mar 2015. ISSN

2157-6904.

http://mntg.cs.umn.edu/tg/index.php
http://mntg.cs.umn.edu/tg/index.php
hhttps://www.movebank.org://www.movebank.org
hhttps://www.movebank.org://www.movebank.org
http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf
http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf

REFERENCES 67

TSAI, C.-W. et al. Data mining for internet of things: A survey. IEEE Communications

Surveys Tutorials, v. 16, n. 1, p. 77–97, first quarter 2014. ISSN 1553-877X.

TURDUKULOV, U. et al. Visual mining of moving flock patterns in large spatio-temporal data

sets using a frequent pattern approach. Int. J. Geogr. Inf. Sci., Taylor & Francis, Inc., Bristol,

PA, USA, v. 28, n. 10, p. 2013–2029, oct 2014. ISSN 1365-8816.

VIEIRA, M. R.; BAKALOV, P.; TSOTRAS, V. J. On-line discovery of flock patterns in

spatio-temporal data. In: ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON

ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (GIS ’09), Seattle, WA, USA.

Proceedings... New York, NY, USA: ACM, 2009. p. 286–295. ISBN 978-1-60558-649-6.

WACHOWICZ, M. et al. Finding moving flock patterns among pedestrians through collective

coherence. International Journal of Geographical Information Science, v. 25, n. 11, p.

1849–1864, 2011.

WANG, Z. et al. Visual traffic jam analysis based on trajectory data. IEEE Transactions

on Visualization and Computer Graphics, v. 19, n. 12, p. 2159–2168, dec 2013. ISSN

1077-2626.

WIRZ, M. et al. Towards an online detection of pedestrian flocks in urban canyons by smoothed

spatio-temporal clustering of gps trajectories. In: ACM SIGSPATIAL INTERNATIONAL

WORKSHOP ON LOCATION-BASED SOCIAL NETWORKS (LSBN ’11), Chicago, IL, USA.

Proceedings... New York, NY, USA: ACM, 2011. p. 17–24. ISBN 978-1-4503-1033-8.

WOODS HOLE OCEANOGRAPHIC INSTITUTE. NDSF Utility: LatLong to XY. 2015.

Available In: <http://www.whoi.edu/marine/ndsf/cgi-bin/NDSFutility.cgi?form=0&from=

LatLon&to=XY>. Accessed on: 30 apr. 2016.

ZHENG, Y. T-Drive dataset. 2011. Available In: <http://research.microsoft.com/apps/pubs/?id=

152883>. Accessed on: 6 may 2016.

ZHENG, Y. Trajectory data mining: An overview. ACM Trans. Intell. Syst. Technol., ACM,

New York, NY, USA, v. 6, n. 3, p. 29:1–29:41, may 2015. ISSN 2157-6904.

ZHENG, Y. et al. On discovery of gathering patterns from trajectories. In: IEEE

INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE ’13), Brisbane,

Australia. Proceedings... Washington, DC, USA: IEEE Computer Society, 2013. p. 242–253.

ISBN 978-1-4673-4909-3.

http://www.whoi.edu/marine/ndsf/cgi-bin/NDSFutility.cgi?form=0&from=LatLon&to=XY
http://www.whoi.edu/marine/ndsf/cgi-bin/NDSFutility.cgi?form=0&from=LatLon&to=XY
http://research.microsoft.com/apps/pubs/?id=152883
http://research.microsoft.com/apps/pubs/?id=152883

	Introduction
	Related Work
	General trajectory data and pattern mining
	Flock pattern mining
	Academic Contribution

	Technical Background
	Trajectory and data information
	Flock pattern
	Disk discovery

	Modular and Efficient Flock Pattern Identification
	Modular System Architecture
	Aggregation and data processing efficiency
	BitDF
	Taking Advantage of Multi-core Architectures
	Multi-threaded Design

	Experimental Results
	Trucks Dataset
	BerlinMOD Dataset
	TDrive Dataset
	Brinkhoff Dataset
	Multi-threaded evaluation

	Conclusion
	Future Work
	Deployment Challenges in Real World Scenarios

	References

