
 1

Supporting Runtime System Adaptation

through Product Line Engineering and Plug-in Techniques
1

Reinhard Wolfinger Stephan Reiter Deepak Dhungana Paul Grünbacher Herbert Prähofer

Christian Doppler Laboratory for Automated Software Engineering

Johannes Kepler University

A-4040 Linz / Austria

{wolfinger, reiter, dhungana, gruenbacher, praehofer}@ase.jku.at

Abstract

Product-line engineering and plug-in techniques

pursue different but complementary goals. Software

product line engineering strives for modeling the

variability of software systems on different levels of

abstraction, whereas plug-in systems support software

extensibility, customizability, and evolution. We

present an approach demonstrating the benefits of

integrating those two areas and discuss the integration

of a plug-in platform for enterprise software with an

existing product line engineering tool suite. The plug-

in platform provides extensibility as well as runtime

reconfiguration and adaptation mechanisms on the

.NET platform. Automatic runtime adaptations are

attained by using the knowledge documented in

variability models. We discuss several usage scenarios

developed in cooperation with our industry partner

confirming the need of our approach in the enterprise

software domain. Finally, the approach is illustrated

and validated by an ERP system family of our industry

partner.

1. Introduction

Runtime adaptation of software systems is an area of

research that has received considerable attention in

areas such as software architecture, product line

engineering, or self-adaptive systems. The need for

runtime adaptation of systems is obvious for new

development paradigms such as mobile and pervasive

computing or service-oriented systems that rely on such

techniques to deal with context changes. However,

even in more traditional environments practitioners are

demanding capabilities to adapt a system to changing

working conditions during system operation. For

instance, ERP (Enterprise Resource Planning) software

is inherently complex and feature-rich. Runtime

adaptation makes it easier to provide just the right set

of features required to support a particular business

process.

In the area of software product line engineering

numerous approaches exist to model the variability of

software systems on different levels of abstraction. For

instance, features models [11] and orthogonal

variability modeling approaches [1] are well

established approaches to deal with variability. More

recently, researchers have also started to adopt

variability models to support runtime adaptation of

systems [10]. A particular challenge lies in utilizing

variability models such that users can perform the

adaptations of an application in an intuitive and

controlled manner.

Another difficulty lies in actually performing the

desired changes using runtime adaptation techniques.

The plug-in approach [2] enables developers to build

applications that are inherently extensible and

customizable to the needs of individual users. A small

core application is extended with features implemented

as components that are plugged in and integrated

seamlessly with the core application at runtime. Plug-in

approaches became popular with Mozilla Firefox [18]

or the Eclipse Platform [7] but are flexible enough to

improve extensibility and customizability in other

domains.

In this paper we demonstrate the integration of

product line engineering and plug-in techniques.

Together with our industrial partner we have identified

several usage scenarios for runtime adaptation in the

ERP domain confirming the need of such an approach.

Our approach is based on extending an existing product

line tool suite with a plug-in system that is based on the

1 This work has been conducted in cooperation with BMD

Systemhaus GmbH, Austria, and has been supported by the

Christian Doppler Forschungsgesellschaft, Austria.

 2

.NET platform. In our integrated approach the user

adapts a system to his working situation guided by a

product line variability model. The plug-in platform

instantly re-configures the desired system at runtime.

The paper is organized as follows: Section 2

discusses the usage scenarios for runtime adaptation in

the ERP domain. Section 3 presents our approach and

key capabilities supporting the usage scenarios.

Section 4 illustrates the tools we have been developing

and their integration. Section 5 presents the case study.

Section 6 compares our work to related research. The

paper rounds out with a conclusion and outlook to

further work.

2. Runtime adaptation scenarios

BMD Systemhaus GmbH (www.bmd.at) is a

medium-sized company offering ERP software

products mainly to SMEs. The company has a

significant market share in Austria, Germany, and

Hungary. In cooperation with BMD we have developed

a set of usage scenarios demonstrating the need for an

integrated approach that uses feature configuration,

dynamic plug-in extensibility, and architecture

reconfiguration mechanisms. The scenarios are

motivated by the ERP domain and BMD’s market

environment and additional scenarios may emerge in

other domains. We outline the scenarios and discuss

the benefits of our envisaged runtime adaptation

approach.

Scenario 1: On-the-fly product customization for

sales process. Sales staff of our industrial partner offers

products based on pre-defined feature sets to

customers. Usually, this sales process leads to long

lasting discussions with customers about the value and

cost of features as customers cannot explore and

experience the system before it is purchased and

installed. Also, it is increasingly difficult for

salespersons to understand the complex dependencies

among features to offer technically feasible solutions.

The integrated product line engineering and plug-in

approach supports a more rapid and interactive sales

process: Salespersons explore valid feature

combinations together with customers guided by the

dependencies defined in the variability model. Rapid

reconfiguration of the system allows a live preview of

the system by the customer taking into account the

IKIWISI (“I know it when I see it”) phenomenon. The

salesperson can instantly demonstrate the software in

the desired configuration and explain the provided

functions. If desired by the software vendor the

customer is continuously informed about the price of

the current configuration.

Scenario 2: Guided system upgrades. It is very

common that customers upgrade their system with new

features after initial delivery. This is also an important

business case for our industrial partner as such

upgrades represent a significant share of their revenues.

Currently, a sales process is reinitiated with the

customer. The salesperson needs to understand the

current system configuration to suggest the most useful

new feature upgrades.

Backed with a product line variability model and a

configuration tool the salesperson is aware of the

already installed features and explores useful and valid

extensions to negotiate the upgrade. Furthermore,

customers can purchase new features themselves

guided by a feature exploration tool without the explicit

interaction of sales personnel.

Scenario 3: Renting features. It is an interesting

business case for customers to rent and use particular

product features for a limited period instead of

purchasing them permanently. The product line and

plug-in approach allows customers browsing the

available rentable features, immediately installing

features from a remote site, trying out features during

an evaluation period, and using the features for a

defined period. Customers can continuously keep track

of the accumulated rental fees.

Scenario 4: Instant help desk support. BMD is

currently handling up to 3000 help desk calls per day.

Each customer has a very specific and unique software

configuration the help desk staff needs to understand

before answering users’ questions. Traditional screen

sharing applications are of little use in this case as help

desk staff avoid working on real customer databases.

Our envisaged help desk support allows users to

automatically transmit their current system

configuration to the help desk staff. The system on the

help desk is reconfigured to exactly match the

configuration of the customer. It is important that this

reconfiguration happens without delays: Restarting the

system has to be avoided as rapid response is crucial

for achieving high customer satisfaction.

Scenario 5: Role-specific views. Enterprise software

is inherently complex and feature-rich as modern

enterprises need to support a high number of success-

critical business processes. Individual users often

participate only in a few of these processes. Hence, the

user interface of an enterprise application is often

cramped with features not needed for a particular task.

The plug-in approach enables customization of

systems and their user interfaces to individual tasks and

responsibilities on the fly. This helps improving focus

and reducing clutter. Users are involved in diverse

business processes and tasks during their working day.

 3

Dynamic reconfiguration relies on feature

configurations for the different roles and dynamic

switching of roles.

Scenario 6: Optimizing training. A major problem

in training is that new users are often overwhelmed by

the high number of features of the software application.

A trainer explaining a basic feature has to guide the

trainees through numerous menus and user dialogs to

activate a function needed for the next training unit.

Obviously, it is more promising to offer an

individually configured system to trainees in

accordance with the training schedule. This allows

starting with a small configuration showing only some

basic functions and adding new features for each new

training unit. Training can thus be organized in small

steps adding complexity incrementally and in

coordination with the training program.

3. Approach

Providing support for these scenarios requires an

approach for modeling and managing the variability of

the adaptable system together with capabilities

performing the actual adaptation of the system at

runtime.

Variability Modeling and

Management

Runtime System

Adaptation

Component

Repository

1
Variability

Modeling

2

Adaptable

SystemDiscovery

&

Composition
5

include include

exclude

3Scenario

Building

4Application

Configuration

Variability

Model

Product Line

Assets

Adaptation

Decisions

Product

Models
Scenario

Models

Fig. 1: Integrating variability management,
configuration, and adaptation techniques.

Fig. 1 gives an overview about our approach. It

relies on a software system that is organized as a set of

reusable components stored in a component repository

(#1) providing all features available. A system can be

adapted by simply including and excluding

components. The composition of components is done

automatically.

Variability modeling (#2) allows to precisely define

all possible ways in which the system can be adapted.

The basis of variability modeling are the product line

assets representing all available components. The

variability model captures all meaningful adaptation

decisions together with their technical implications,

i.e., the list of components that need to be

included/excluded based on user decisions. Adaptation

decisions are expressed at a high-level taking a user-

centered perspective. However, variability models also

capture the technical dependencies of the product line

assets.

The scenario design (#3) allows building subsets of

the variability model to support different adaptation

scenarios as described above. For instance, one sub-

model may exist for training scenarios while another

may define tasks, roles, and responsibilities. This

customization addresses coarse grain adaptations that

constrain the decision space for later end-user driven

adaptations.

Application configuration (#4) is based on the

scenario-specific variability models. It provides an

easy-to-use interface for end users to take the desired

decisions and thereby to initiate the necessary

adaptation. It presents decisions to users in a structured

manner taking into account the importance of

decisions. For instance, an end user might decide to

switch to a new working task thereby activating new

features. The user configuration offers the set of sub-

features which are meaningful in the new context.

Finally, our approach relies on a discovery and

composition mechanism for components (#5) that

allows building the system automatically based on

users’ adaptation requests. The variability model

thereby works as the knowledge source to determine

the effects of the adaptation, i.e., the necessary

technical updates in form of components to include or

exclude.

A typical scenario based on these capabilities looks

as follows:

1. The software architect of the company offering a

COTS software product reengineers the system into a

repository of reusable, dynamically composable

components.

2. The product line engineer defines the dependencies

of the components and the technically allowed runtime

variability of the system in a variability model.

3. The project manager analyses the required

adaptation scenarios and defines useful customer- and

scenario-specific variability models.

4. The end user uses a configuration tool to adapt the

system to a new application context. The configuration

tool uses a customer- and scenario-specific variability

model to present the possible adaptation decisions to

the user.

5. The discovery and composition tool determines the

technical impact of the desired change. The runtime

system performs the necessary change by including and

excluding the required components.

 4

4. Tool support

We have been realizing the approach outlined in

Section 3 by integrating our product line tool suite [6]

and plug-in platform [20], [21]. The DOPLER tool

suite offers capabilities for variability modeling and

high-level decision making. Our .NET-based plug-in

platform offers the required runtime system adaptation

capabilities by dynamic loading/unloading and

composition of components. Fig. 2 shows the

integrated approach as an instantiation of the approach

outlined in Section 3 (cf. Fig. 1). The product line

assets are provided as a repository of available plug-in

components (#1). The tool DecisionKing (#2) is

employed to set up the variability model. The tool

ProjectKing (#3) allows defining scenario-specific

configurations of the product line variability model. A

ConfigurationWizard (#4) tool processes the scenario-

specific variability model and presents decisions to the

user in a wizard-like interface. Finally, a special

discovery mechanism in the plug-in platform (#5)

supports loading/unloading the requested plug-in

components based on users’ decisions.

Fig. 2: Integration of PLE tools and plug-in
techniques to support runtime adaptation.

In the following, we present the product line tools in

Section 4.1 and the plug-in platform in Section 4.2. In

Section 4.3 we discuss the integration of the product

line tools and the plug-in platform.

4.1. DOPLER product line tools

Our DOPLER tool suite [6] comprises a set of

highly integrated product line engineering tools that

cover different capabilities needed in our approach:

DecisionKing (#2) [5] is a tool for variability

modeling and management that has been developed on

top of the Eclipse platform. The tool can be customized

through a domain meta-model defining concrete asset

types, their attributes, and relationships. For instance,

we have defined a meta-model containing the asset type

plug-in to support modeling the available plug-ins from

the plug-in repository (#1) as assets of the product line

variability model. The existing technical architecture of

the system is also captured in the variability model

which defines the dependencies between the core

assets. The model also defines decisions, i.e., variation

points that allow users to customize the system and

allow selecting useful and desirable combinations of

assets. Decisions can exist on different levels of

granularity, i.e., as high-level decisions related to

groups of features or low-level decisions on whether

particular assets should be included. Decisions and

assets are linked using inclusion conditions. This

means that for each answer of the user the model

specifies which assets will be included.

The variability model thus describes all assets and

their dependencies and all possible decisions to derive

a system from the product line. Even for a moderately-

sized system such a model would be unsuitable for end

users due to its size and complexity. We have thus

devised the tool ProjectKing (#3) [15] which takes

DecisionKing’s variability models as input. The tool

allows the definition of partly pre-configured

variability models to constrain the decision space.

Those are sub-models of the whole decision model

built to support particular application contexts still

leaving some space for special adaptations. In this way,

variability models can be adapted and pruned for

various usage scenarios. A sub-model is defined by

selecting relevant parts from the decision model, by

pre-answering decisions and locking them, and by

defining roles and permissions for answering the

remaining questions. For instance, a company might

use the tool to define users and their permissions to

adapt the system to their needs.

ConfigurationWizard (#4) [14] is an end user tool

that uses the scenario-specific variability model created

by ProjectKing and presents the possible adaptations to

end users in form of questions. The answers to those

questions then will result in inclusion/exclusion

decisions for assets as modeled in the variability

model.

4.2. .NET plug-in platform

The fundamental idea of a plug-in system is to

provide users with a small core application they can

easily extend with plug-ins to meet their requirements

in a specific working situation. In our .NET-based

plug-in platform [20],[21], a plug-in is a deployable

.NET assembly with explicit specifications of its slots

and extensions that supports customization of

applications through addition, removal, and

 5

replacement of components at runtime. A slot

specification represents the contract for extending a

plug-in (called slot host). Contributing plug-ins will

provide respective extensions which fill the slot (cf.

Fig. 3). In essence, slots declare the types of

information a host plug-in expects and the extensions

fill this information slots accordingly. In its simplest

form a slot specification is a structured list of

name/value-pairs where the slot specifies the required

names and value ranges and the extension specification

defines appropriate values for the extension at hand.

The slot host will rely on the information provided to

do the integration of the extension.

Fig. 3: Slot and extension in host and contributor

plug-in.

The specification of slots and extensions is based on

.NET custom attributes [13], i.e., meta-information that

can be attached to language constructs such as classes,

interfaces, methods, or fields in the source code of an

application. Slots are not limited to behavior

specification in the form of required and provided

method interfaces, but allow any type of information.

For example, slots will specify the set of interfaces to

be implemented by extensions but also information like

user interface properties, or properties configuring the

execution environment for plug-ins. For instance, our

runtime environment features security properties to

restrict a plug-in's code access security privileges.

Fig. 4: Plug-in runtime environment and

contributing plug-ins.

The runtime environment provides a very small

fixed core which defines just two slots, i.e., a slot for

replaceable discovery and a slot for startup extensions

(Fig. 4). A plug-in based application is composed by

initially activating a discovery plug-in, then discovery

looks for startup plug-ins which, when activated,

typically open further application specific slots where

plug-ins with further functionality can be attached.

In the remainder of this section we focus on three

features of our plug-in platform that are essential for

the integration of runtime adaptation and product-line

engineering: customizable discovery, dynamic loading

and activation, and dynamic unloading and deactivation

of plug-ins.

Customizable discovery

In a plug-in based system a discovery mechanism is

needed to find out which plug-ins are available and

should be loaded into the currently running application.

In our platform the discovery mechanism is also

realized as a plug-in which is plugged into the

discovery slot of the core runtime. This approach

improves both customizability and adaptability:

(i) Developers can either use a default discovery

implementation or they can implement individual

discovery schemes satisfying their special needs.

(ii) Applications can adapt to changing environments

more easily as the discovery plug-in can be replaced at

runtime and multiple simultaneous discovery plug-ins

are supported. For example, there could be one

discovery mechanism for the enterprise network and

another for mobile working environments. The first

could be used while being in office and substituted by

the second as soon as leaving house.

To bootstrap the process, the runtime environment

loads an initial discovery plug-in from a predefined

location. We currently use a discovery plug-in which

treats a specific folder in the file system as its plug-in

repository. At startup time this discovery plug-in

browses the folder to find available plug-ins to load.

During runtime it continuously monitors the repository

folder for modifications. Any time a plug-in assembly

file is added to, removed from, or exchanged in the

repository folder, it sends a respective notification to

the runtime system to load and activate, unload and

deactivate, or update the respective plug-in.

Plug-in discovery is now used to accomplish

runtime adaptation of the discovery mechanism itself.

As soon as a new discovery plug-in that implements an

extension for the discovery slot is discovered it is

loaded and plugged into the slot. There it either

substitutes the current one or, depending on the

strategy, is added as an additional discovery

mechanism.

Dynamic loading and activation

After a plug-in has been found by the discovery

mechanism the runtime takes actions to load and

activate it. Loading is based on .NET assembly loading

 6

provided by the .NET Common Language Runtime

(CLR) but augmented with additional functions as

follows:

(1) Lazy loading and static integration: By utilizing

.NET capabilities to read meta-information of

assemblies without loading the code, plug-in

integration starts by exploring the plug-in assembly for

extension specifications and their properties. Newly

discovered plug-ins initially are only attached to hosts,

i.e., a notification is sent to all plug-ins with matching

slots, thereby giving hosts a chance to perform static

integration based on declarative information. For

instance, a host could create user interface widgets such

as menu or toolbar items solely by exploiting meta-

information and defer the loading of the

implementation to the time when the user actually

clicks the widget.

(2) Dynamic activation: Dynamic activation means

creating instances of plug-in objects, to wire up host

and contributing plug-in, and to create a

communication path so that a host and an extension can

call each other.

(3) Plug-in isolation: The dynamic loading

mechanism automates loading of plug-ins into different

application domains or operating system processes and

set up respective isolation boundaries. Based on

isolation settings provided by the host, a plug-in will be

loaded into different application domains or processes

and appropriate communication paths will be

established. As outlined in [21] such mechanisms are

essential to allow unloading of plug-ins at runtime (see

also below), or to support fault tolerance in application

systems.

Dynamic unloading and deactivation

In order to keep a system slim and perfectly

conforming to the desired feature set in a current

working situation, not only the capability to add

features at runtime is required, but also to remove them

when they are no longer needed. Our runtime

environment supports deactivation of features with or

without unloading plug-in assemblies from main

memory. The reason for this distinction lies in the

CLR, which cannot unload individual assemblies [16].

To allow unloading of plug-in assemblies, our runtime

environment adds a declarative mechanism to load and

isolate plug-in assembly groups into separate .NET

application domains. All the assemblies in one

application domain can then be unloaded together by

the CLR. Unless separate application domains are used,

deactivation of plug-ins is limited to feature

deactivation with the assembly staying in memory.

Usually unloading takes place when the discovery

mechanism determines that the plug-in should be

detached. Thereupon, the discovery plug-in sends a

detachment notification to the runtime which will

remove corresponding extensions from slots and

release their object instances.

4.3. Integration

Integration of DOPLER PLE engineering tools and

the .NET plug-in platform is accomplished by two

mechanisms as shown in Fig. 5: (a) asset import and (b)

decision-based plug-in discovery and activation.

Asset import: The DecisionKing tool uses a

programming interface of the plug-in runtime to import

available plug-ins as assets from a repository. A

discovery plug-in which browses a repository folder is

used to get all the available plug-ins which are then

imported to a variability model in DecisionKing as

product line assets.

Fig. 5. Integration: (a) asset import, (b) decision-

based discovery and activation.

Decision-based plug-in discovery and activation:

Our integration approach connects the

ConfigurationWizard front-end, where the end user

initiates adaptations, with the discovery and

composition mechanism in the plug-in runtime

environment. Possible adaptations are presented to the

end user by the ConfigurationWizard tool in form of

questions. The necessary architectural adaptations are

determined based on the variability model and sent to

the plug-in runtime which initiates loading and

unloading of plug-ins.

Fig. 5 (b) illustrates the technical realization of the

integration. On the side of the PLE tool suite a Notifier

component reacts to user decisions by determining

changes in the required assets. Those changes are

signaled as notification events. Each notification event

includes data that reflects the changes in the assets

required. On the side of the plug-in platform a special

discovery plug-in listens to and evaluates notification

 7

events. It determines the plug-ins it has to load or

unload and initiates the loading and unloading

processes as described in Section 4.2. Berkeley sockets

are used to bridge the Java-based DecisionKing and

.NET-based plug-in technology.

5. Case study

To validate our approach we have been conducting

a case study in collaboration with our industrial partner

BMD. The object of our case study is the customer

relationship management product BMDCRM, which is

part of a larger suite of enterprise application systems.

BMDCRM is a monolithic Delphi 7 application

meaning that all customers get the same application

binary and individual license codes determine whether

particular features are active or not. Runtime system

adaptation on an architectural level presumes fine-

grained modularization where each feature is contained

in an individual component. In a first step the original

Delphi 7 application (unmanaged Win32) has been

ported to managed Delphi.NET and has been

decomposed into distinct components guided by

BMDCRM's feature model (see Fig. 6).

BMDCRM is a large application with hundreds of

features and 1.2 million lines of source code. Therefore

the reengineering effort has been organized in two

phases: In phase 1, which has already been completed,

the system has been decomposed into components

implementing the features up to level 3 in Fig. 6.

Phase 2 has started recently and will evolve the

decomposition to the finer grained level 4.

In a second step the components are reengineered

such that they can serve as plug-ins in our .NET plug-in

platform by adding slot and extension specifications.

The plug-in based application mirrors the feature

model as shown in Fig. 6 (see Fig. 7). A thin core

application comprises some core libraries and the plug-

in runtime. A main application window is plugged into

the Startup slot and the discovery plug-in into the

Discovery slot. The main window plug-in is a multiple

document container and is used to accept the plug-ins

realizing the main features. For example, the Office

Management feature is implemented by the Organizer

plug-in, where in turn additional plug-ins like Media

Manager, Phone Tools, Outlook-Sync, or Calendar can

get attached. Calendar provides basic time

management functionality and in turn will allow further

plug-ins for sub-features, such as Recurring events,

Event approval, or Event delegation to be added

(realization of those features in distinct plug-ins is

subject of phase 2).

The plug-ins have been imported in DecisionKing

as assets and possible dependencies between assets

have been defined. This asset base represented the

basis for building a high-level decision model which is

intended to model all possible adaptation decisions. At

the higher levels, decisions take the form of user-

centered questions like "Do you want to manage time?"

with "yes" and "no" as possible answers. When a user

takes such a decision the ConfigurationWizard tool

determines the assets to be included/excluded based on

the variability model. For example, when the user

answers "yes" to the above question, the corresponding

Calendar plug-in together with all the plug-ins

Calendar depends on, such as Organizer and Main

Window, will be included and immediately loaded into

the running application.

Beyond reengineering the monolithic application

into a set of plug-in components, we are aiming to

demonstrate new usage scenarios benefiting from

runtime system adaptation as outlined in Section 2. For

illustrative purpose we have built a decision model for

the role-specific views scenario. We have taken

fictitious user roles engineer, manager and assistant

from an engineering company. We have assigned each

role a different feature set according to their job

descriptions (see Fig. 8). The engineer only uses Time

management with simple Event and Recurring event

Fig. 6: Partial BMDCRM feature model.

 8

sub-features. A manager has to have the possibility to

approve and delegate events (sub-features Delegation

and Approval) and additionally synchronizes his

calendar with Microsoft Outlook (Outlook-Sync). The

assistant uses Invitation and Sharing sub-features and

additionally needs Phone and Media management to

book meeting rooms or media equipment.

SQL

Database

BMD Core Application

Database

Manager

.NET Plug-in Runtime

Docs
Standard

Letter

Label

Printing

Recurring event

Invitation

Approval

Event

Delegation

Sharing

Organizer

Main Application Window

One plug-in in phase 1,

further decomposed in phase 2.

Discovery for

Configuration

Wizard

ConfigurationWizard

User Configurator

Fig. 7: Plug-ins in the BDMCRM software system.

Role switching is modeled as one high-level

decision in DecisionKing, i.e., as a user question "What

is your role?" with possible answers “Engineer”,

“Assistant”, or “Manager” (multiple choices are

possible). When this higher-level role decision is taken,

several subordinate decisions are determined, e.g.,

when the answer is “Assistant”, decisions "Do you

manage time?" and "Do you manage media?" are set to

"yes" and the corresponding assets get included.

Fig. 8: Feature sets of different roles.

Change of roles can be done instantaneously. For

example, a manager might need to change to the

assistant role, as his assistant is off work. To change to

the assistant's role, the manager invokes the

ConfigurationWizard tool where he chooses

“Assistant” from the list of available roles. The

resulting change in assets is forwarded to the discovery

plug-in. Dispensed plug-ins are unloaded, added plug-

ins are loaded, the application adapts its feature set on-

the-fly, and the application system becomes customized

to the particular role as shown in Fig. 9. Because such

adaptations are conducted instantaneously at runtime, a

user can change roles back and forth without restarting

the application.

C
a
le
n
d
a
r

M
e
d
ia
 M

a
n
a
g
e
r

O
u
tl
o
o
k
 S
y
n
c

C
a
le
n
d
a
r

P
h
o
n
e
 T
o
o
ls

Fig. 9: Loaded plug-ins for the Assistant and

Manager roles.

6. Related work

Numerous researchers from different areas have

developed approaches and tools contributing to runtime

adaptation of systems (see [20] for a comparison of our

plug-in platform to other approaches). However, only a

few approaches exist which combine product line

engineering and runtime adaptation of systems. For

instance, [12] have proposed a feature-oriented

approach for dealing with runtime adaptation. Their

approach is based on identifying binding units in

feature models that serve as the basis for later

reconfiguration. The authors do however only provide

conceptual support for a reconfiguration tool with no

actual implementation. The work of [19] shows how

product line architectures can be used to support

feature adaptation in the area of Web system

personalization. Their approach is based on patterns

and rules to privacy. A prototype implementation is

discussed based on the ArchStudio PLA tool.

The MADAM approach presented in [10] is based

on variability modeling and component-based

architectures and shares some similarities with our

work. MADAM is also based on a platform for runtime

adaptation and extensions. The component and instance

management platform allows discovering components

at runtime to support adaptability and extensibility.

Moreover, as in our approach a runtime representation

of the architecture variability model is used to guide

system adaptation and reconfiguration. However, our

approach also differs from MADAM in several

respects, which we see grounded mainly in the different

goals pursued. The goal of MADAM is to support

system adaptation of mobile devices to changing

environmental conditions such as available bandwidth

or network connectivity. Their variability model

defines architecture decisions based on sensed context

information. The decisions are local to particular

components and a heuristic search is applied for

finding an optimum system configuration in a set of

 9

local decisions for a current context. The authors argue

that a complete decision model which represents all the

possible decisions is very complex and difficult to

evolve. Although this is certainly true in their domain,

we, however, strive for such a complete decision model

in our approach. Actually, in our approach we try to

aggregate a set of small, local decisions to several high-

level decisions which are meaningful for the user. So,

while the decisions of MADAM are context-centered,

our variability decision model is user-centered.

Moreover, the approaches differ in their architecture

style pursued. In MADAM, a classical object-oriented

approach is pursued where component variability is

realized by polymorphic components. Our approach,

however, adopts a plug-in approach which provides a

higher degree of flexibility as shown in Section 4.2.

In the area of requirements engineering researchers

have explored runtime deviations of systems from

original requirements. In [8] an approach based on goal

models specified in the formal language KAOS is

presented. The approach adopts a set of agents to

monitor runtime behavior of systems and to suggest

either automated or runtime adaptation of the systems.

Variability is expressed via alternative refinements in

goal models. The approach has been illustrated in

several domains [9].

In [3] different levels of requirements engineering

for dynamic adaptive systems have been explored.

There aim is to provide a general framework bridging

human-centered requirements and machine-centered

adaptation mechanisms. A similar framework has been

proposed by [4] in the area of multi-stakeholder

distributed systems, illustrated with examples from the

area of service-oriented systems. The authors

emphasize the need for integrating different modeling

techniques (negotiation models, goal-models,

variability models) needed to inform dynamic

adaptation of systems. In [22] an approach based on

Petri nets to formally specify the behavioral changes of

adaptive programs has been suggested.

7. Conclusion and further work

In this paper we have presented the integration of a

product line tool suite and a plug-in platform for

supporting runtime adaptation of systems. The plug-in

platform facilitates runtime adaptation and composition

of systems by loading and unloading of plug-ins. The

product line tools are used for modeling high-level

adaptation decisions together with their technical

implications and to present them to users in easy-to-use

wizard-like dialogs. Together with our industrial

partner we have developed advanced usage scenarios

and have shown the feasibility and usefulness of the

approach in a case study. Our integrated approach

allows precisely modeling high-level adaptation

decisions together with their technical implications.

Furthermore we can create multiple decision models

Fig. 10: Screenshot showing ConfigurationWizard dialog (front window) and adapted CRM system (back

window). The ConfigurationWizard presents possible adaptations to end users in form of questions.
Taking a decision immediately reconfigures the CRM system. The right pane shows a list of currently

loaded plug-ins which is displayed for illustration purposes only.

 10

for distinct adaptation scenarios and support the user

with different, scenario-dependent adaptation dialogs

which are automatically generated from the decision

models. According to our industrial partner, the

combination of allowing highly customized working

environments and supporting different adaptation

scenarios has great potential to achieve both, higher

user satisfaction and improved in-house productivity, in

particular in sales processes, help desk support, and

training.

In future work we will develop variability models

for further scenarios. We will also conduct studies

together with our industry partner to validate the

effectiveness and efficiency of our approach in

different scenarios. We also aim to improve the

integration of the ConfigurationWizard and the end

user application.

8. References

[1] Bachmann, F., M. Goedicke, J. Leite, R. Nord, K. Pohl,

B. Ramesh, and A. Vilbig, “A Meta-model for

Representing Variability in Product Family

Development Software Product-Family Engineering”,

5th International Workshop PFE 2003, Siena, Italy,

Nov. 4-6, 2003.

[2] Beck, K., and E. Gamma, Contributing to Eclipse,

Addison-Wesley, 2003.

[3] Berry, D., B. Cheng, and J. Zhang, “The Four Levels of

Requirements Engineering for and in Dynamic

Adaptive Systems”, 11th International Workshop on

Requirements Engineering: Foundation for Software

Quality (REFSQ'05), Porto, Portugal, June 2005.

[4] Clotet, R., X. Franch, P. Grünbacher, L. López, J.

Marco, M. Quintus, and N. Seyff, “Requirements

Modeling for Multi-Stakeholder Distributed Systems:

Challenges and Techniques”, 1st IEEE Int. Conf. on

Research Challenges in Information Science,

Quarzazate, Apr. 23-26, 2007.

[5] Dhungana, D., P. Grünbacher, and R. Rabiser,

“Domain-specific Adaptations of Product Line

Variability Modeling”, IFIP WG 8.1 Working

Conference on Situational Method Engineering:

Fundamentals and Experiences, Geneva, Switzerland,

Sep. 12-14, 2007.

[6] Dhungana, D., R. Rabiser, P. Grünbacher, K. Lehner,

and C. Federspiel, “DOPLER: An Adaptable Tool

Suite for Product Line Engineering”, 11th

International Software Product Line Conference

(SPLC 2007), Kyoto, Japan, Sep. 10-14, 2007.

[7] Eclipse Platform Technical Overview, Object

Technology International, Inc., www.eclipse.org, 2003.

[8] Feather, M. S., S. Fickas, A. Van Lamsweerde, and C.

Ponsard, “Reconciling System Requirements and

Runtime Behavior”, Proceedings of the 9th

international Workshop on Software Specification and

Design, Washington, DC, April 1998.

[9] Fickas, S., M.S. Feather, “Requirements monitoring in

dynamic environments”, Second IEEE International

Symposium on Requirements Eng., 1995, p. 140.

[10] Hallsteinsen, S., E. Stav, A. Solberg, and J. Floch,

“Using Product Line Techniques to Build Adaptive

Systems”, Proceedings of the 10th international on

Software Product Line Conference, Washington, DC,

Aug. 21-24, 2006, pp. 141-150.

[11] Kang, K., S. Cohen, J. Hess, W. Novak, and S.

Peteson, “Feature-Oriented Domain Analysis (FODA)

Feasibility Study”. Technical Report CMU/SEI-90-TR-

21, Software Engineering Institute, Carnegie Mellon

University, 1990.

[12] Lee, J., and K.C. Kang, “A Feature-Oriented Approach

to Developing Dynamically Reconfigurable Products in

Product Line Engineering”, Proceedings of the 10th

international on Software Product Line Conference,

Washington, DC, Aug. 21 - 24, 2006, pp. 131-140.

[13] Microsoft, Microsoft C# Language Specifications,

Microsoft Press, Redmond, 2001.

[14] Rabiser, R., D. Dhungana, P. Grünbacher, K. Lehner,

and C. Federspiel, “Involving Non-Technicians in

Product Derivation and Requirements Engineering: A

Tool Suite for Product Line Engineering”, 15th IEEE

International Requirements Engineering Conference

(RE'07), New Delhi, India, Oct. 15-19, 2007.

[15] Rabiser, R., P. Grünbacher, and D. Dhungana,

“Supporting Product Derivation by Adapting and

Augmenting Variability Models”, 11th International

Software Product Line Conference (SPLC 2007),

Kyoto, Japan, Sep. 10-14, 2007.

[16] Richter, J., Applied Microsoft .NET Framework

Programming, Microsoft Press, Redmond, 2002.

[17] Schmidt, H. W. et al., “Predictable Component

Architectures Using Dependent Finite State Machines”,

9th International Workshop RISSF 2002, Springer-

Verlag, 2004.

[18] Shaver, M., and M. Ang, “Inside the Lizard: A Look at

the Mozilla Technology and Architecture”,

www.mozilla.org, 2000.

[19] Wang, Y., A. Kobsa, A. van der Hoek, and J. White,

“PLA-based Runtime Dynamism in Support of

Privacy-Enhanced Web Personalization”, Proceedings

of the 10th international on Software Product Line

Conference, Washington, DC, Aug. 21-24, 2006, pp.

151-162.

[20] Wolfinger, R., D. Dhungana, H. Prähofer, and H.

Mössenböck, “A Component Plug-in Architecture for

the .NET Platform”, Proceedings of 7th Joint Modular

Languages Conference, JMLC 2006, Oxford, UK,

September 13-15, 2006.

[21] Wolfinger, R., and H. Prähofer, “Integration Models in

a .NET Plug-in Framework”, SE 2007 Conference on

Software Engineering, Hamburg, Germany, March,

2007.

[22] Zhang, J., and B.H. Cheng, “Model-based development

of dynamically adaptive software”, 28th International

Conference on Software Engineering. Shanghai, China,

May 20-28, 2006, pp. 371-380.

