
Supporting Security Requirements for Resource
Management in Cloud Computing

Ravi Jhawar, Vincenzo Piuri and Pierangela Samarati
Dipartimento di Informatica – Università degli Studi di Milano, 26013 Crema, Italy

Email: firstname.lastname@unimi.it

Abstract—We address the problem of guaranteeing security,
with additional consideration on reliability and availability issues,
in the management of resources in Cloud environments. We
investigate and formulate different requirements that users or
service providers may wish to specify. Our framework allows
providers to impose restrictions on the allocations to be made to
their hosts and users to express constraints on the placement of
their virtual machines (VMs). User’s placement constraints may
impose restrictions in performing allocation to specific locations,
within certain boundaries, or depending on some conditions (e.g.,
requiring a VM to be allocated to a different host wrt other
VMs). Our approach for VM allocation goes beyond the classical
(performance/cost-oriented) resource consumption to incorporate
the security requirements specified by users and providers.

Index Terms—Cloud security, Placement constraints, Reliabil-
ity and availability, Resource management, VM allocation

I. INTRODUCTION

Cloud computing provides an on-demand access to required
amounts of computing resources to its users in the form of
VM instances over the Internet. This computing paradigm is
gaining an increasing popularity among users particularly to
deploy applications that require different degrees of process-
ing, memory and storage resources (e.g., a cpu-intensive or a
memory-intensive VM instance).

When a user requests the service provider to allocate it
a set of computing resources, typically the VM provisioning
algorithm follows a heuristics-based approach to allocate VM
instances on physical hosts and delivers them to the user. At
present, most implementations either build their provisioning
algorithms by focusing mainly on realizing the service with
agility (hence not scaling well to the granularity of individual
resource types on physical hosts) or guide their provisioning
algorithms to meet the service provider’s business objectives
(e.g., utilize fewer number of physical hosts while allocating
VM instances to save energy consumption costs). In this paper
we identify that service providers may need to impose a set of
additional conditions on the allocation algorithms, particularly
in the way they access infrastructure resources, to maintain
the security and the performance of their system. Similarly,
users may need to impose a set of conditions on the placement
and the relative placement of their VM instances to correctly
satisfy the security, reliability and availability requirements of
their applications.

The contributions of this paper are two-fold. First, we
categorize and formalize several requirements that users and
service providers may want to specify with respect to security,

reliability and availability of the service. Second, we address
the satisfaction of such requirements in the overall problem of
resource allocation in infrastructure Clouds.

The paper is organized as follows. Section II provides the
system overview, and Section III formalizes the VM allocation
requirements in service provider’s and user’s perspectives. Sec-
tion IV discusses our approach to VM provisioning. Section V
summarizes the related work, and Section VI presents our
conclusions.

II. SYSTEM OVERVIEW

In Cloud computing, the service provider’s system can be
viewed as a large pool of interconnected physical hosts H
that is partitioned into a set C of clusters. A cluster C∈C
can be formed by grouping together all the hosts that have
identical resource characteristics or administrative parameters
(e.g., hosts that belong to the same network latency class or
geographical location). Figure 1a illustrates an example of a
Cloud infrastructure consisting of N clusters of interconnected
hosts, and each cluster is connected through a network that is
private to the service provider. We represent the resource char-
acteristics of each physical host h∈H using a n-dimensional
vector

−→
h=(h[d1], h[d2], . . . , h[dn]), where each dimension

di∈D represents the host’s capacity corresponding to a distinct
resource (e.g., CPU, memory, storage, network bandwidth).
For the sake of simplicity, we consider that service provider
denotes the resource capacity of hosts using normalized values
(e.g.,

−→
h=(cpu,mem)=(1, 1)), and realizes a delivery scheme

where computing resources are provisioned to the users in the
form of an on-demand service over the Internet using VMs.

A user typically implements her applications and de-
ploys them on the VM instances obtained from the ser-
vice provider. The resource characteristics of each VM in-
stance v∈V is also represented using a n-dimensional vec-
tor −→v =(v[d1], v[d2], . . . , v[dn]), where each dimension cor-
responds to user’s requirements for a specific computing re-
source. We assume that resource dimensions of VM instances
are the same as that of the physical hosts, and service provider
can translate user’s requirements to normalized values. For
example, a “small” instance in Amazon EC2 service may be
translated to −→v =(cpu,mem)=(0.4, 0.25) [1].

In the service provider’s perspective, the task of resource
provisioning involves allocation of VM instances of specified
dimensions on physical hosts, and their delivery to the user.
Resource provisioning can be characterized by a mapping

Ruggero
Casella di testo
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

User

Internet

VM
Provisioning

Private Network

Cloud Infrastructure

Cluster 1

h1

h2 h3 h4 h5

h6
Intranet

Cluster N

hnhn−1hn−2hn−3

Intranet

cpu

m
em

h1

h2

h3

v1

v2

v3

v4

v5

v6

V Hp : V → H

(a) Architecture of a Cloud infrastructure (b) Mapping VMs on
physical hosts

Fig. 1. Overview of the Cloud infrastructure and VM provisioning environ-
ment

function p:V→H that takes the set V of VM instances as input
and maps each v∈V on the physical hosts h∈H as output.
Figure 1b illustrates an example of mapping generated by
p:{v1, . . . , v6}→{h1, h2, h3} where p(v1)=p(v4)=p(v6)=h1,
p(v5)=h2 and p(v2)=p(v3)=h3. The VMs and hosts are
represented using rectangles to denote two resource dimen-
sions (cpu and memory) by its sides. A physical host can
accommodate more than one VM instance, but an individual
VM can be allocated only on a single host. The mapping
function is typically guided by the service provider to meet
one (or both) of the following objectives:
• To reduce the energy consumption and operational

costs, VM instances are consolidated on physical hosts
to maximize the number of free hosts. For exam-
ple, the mapping function p:{v1, . . . , v6}→{h1, h2, h3}
is guided to achieve p(v1)=p(v4)=p(v6)=h1 and
p(v2)=p(v3)=p(v5)=h3 so that the host h2 remains
unused. This allows the service provider to conserve
the energy of running host h2, and increase its service-
response capability.

• To reduce the load variance of physical hosts across
all the clusters in the Cloud to improve the overall
performance and resilience of the system. For exam-
ple, if we assume that h1∈C1, h2∈C2 and h3∈C3,
the mapping function p:{v1, . . . , v6}→{h1, h2, h3} is
guided to achieve p(v1)=p(v4)=h1, p(v5)=p(v6)=h2

and p(v2)=p(v3)=h3 so that the VM instances (resource
usage) are uniformly distributed across the clusters.

In this paper, we define a mapping function that considers the
two objectives during resource provisioning and integrate it in
a framework that identifies and categorizes further security, re-
liability and availability requirements which service providers
and users may need to impose on the mapping function
(see Section III). We integrate all the additional requirements
within our resource provisioning algorithm and satisfy those
requirements during VM allocation (see Section IV).

III. MAPPING CONSTRAINTS

We model the service providers and users requirements in
the form of placement constraints and guide the mapping

function to satisfy all the constraints. We distinguish three
kinds of placement constraints:
• global constraint that applies to all the hosts and VM

instances in the system at any given instant of time;
• infrastructure-oriented constraints that are specified by

the service provider to maintain the security and quality
of its service;

• application-oriented constraints that are specified by the
users to increase the security of their applications.

For simplicity we consider constraints specified with respect
to specific VM or host identifier but note that they can be
specified with reference to their properties (e.g., all the hosts
that belong to a cluster or VM instances owned by a user).

A. Global Constraint

The classical resource capacity constraint states that the
amount of resources consumed by all the VM instances that are
mapped on a single host cannot exceed the total capacity of the
host in any dimension. Formally, for all the VM instances v∈V
and hosts h∈H in the system, the mapping function p:V→H
must satisfy

∀h ∈ H, d ∈ D,
∑

v∈V|p(v)=h

v[d] ≤ h[d] (1)

This placement requirement is typically supported by all the
solutions existing in the literature. However, several solutions
do not consider that the amount of resources consumed by
a VM when placed in isolation on a host and with other
co-hosted VMs may not be the same. When multiple VMs
are placed on a host, the hypervisor or host operating system
may consume additional resources (e.g., CPU cycles or I/O
bandwidth during resource scheduling), and VM instances
may interfere with each other and consume higher amounts of
shared resources (e.g., the L2 cache during context switching).
Formally, if vj , vk∈V|p(vj)=p(vk)=h, and utilize vj [di] and
vk[di] amount of resources in the ith-dimension when allo-
cated individually, then vj [di] and vk[di] together may utilize a
bit more than (vj [di]+vk[di]) resources from the host h (unless
vj and vk uses the same VM image). To avoid performance
degradation and inconsistent system state due to the above
factors, we allow service providers to define an upper bound
on the resource capacity of each host that can be used for
VM provisioning. The remaining capacity is then used by the
service provider for VM management. The resource capacity
constraint demands that VM instances not be allocated on a
host if its capacity in any dimension reaches the upper bound
or threshold value specified by the service provider, that is,

∀h ∈ H, d ∈ D,
∑

v∈V|p(v)=h

v[d] ≤ (h[d] ∗ threshold[d]) (2)

We note that the threshold[d] value can be specified in terms
of percentage or normalized value between (0, 1).

Example 1. Suppose that the service provider specifies the
upper bound on cpu and memory usage of host h1 as 80%
and 70% respectively for VM provisioning. Assuming that the

TABLE I
EXAMPLES OF THE CONSTRAINTS ON THE MAPPING FUNCTION

Perspective Applied by Constraints Description
Global Service Provider resource capacity Resources consumed by VM instances must be less

than the upper bound (threshold) of host’s capacity
Infrastructure oriented Service Provider forbid Forbid a set of VM instances from being allocated on

a specified host
count The number of VM instances deployed on a host must

be less than a given value
Application oriented User restrict Map a VM instance only on a specified set of physical

hosts
distribute Allocate a specified pair of VM instances on different

hosts
latency The network latency between the specified pair of VM

instances must be less than a given value

resource capacity of host h1 in each dimension is normalized
to 1, our resource capacity constraint specifies that the map-
ping function must satisfy (see Figure 1b):

v1[cpu]+v4[cpu]+v6[cpu]≤0.8 and
v1[mem]+v4[mem]+v6[mem]≤0.7

B. Infrastructure-oriented Constraints

A service provider may need to impose restrictions on the
mapping function, involving a set of physical hosts in its in-
frastructure, to improve the security, operational performance
and reliability of its service.

As typical needs, we include two representative
infrastructure-oriented constraints in our allocation framework
that can be adapted to satisfy such requirements: forbid and
count.

Forbid: To improve security, a service provider may need to
specify that a set of hosts in its infrastructure must execute
only system-level services (e.g., the access control engine or
reference monitor) and the mapping function must not allocate
VM instances requested by the users on those hosts. To
satisfy such requirements, we introduce the forbid constraint
that prevents a VM instance v from being allocated on a
physical host h. Formally, when a service provider defines
a set Forbid={(vi, hj)|vi∈V and hj∈H} specifying the VM
instances vi∈V that must be forbidden from being allocated on
hosts hj∈H, our resource provisioning algorithm guides the
mapping function p:V→H to satisfy the following condition:

∀v ∈ V, h ∈ H, (v, h) ∈ Forbid =⇒ p(v) 6= h (3)

Count: As the number of co-hosted VM instances on a phys-
ical host increases, its performance degrades. For example,
the performance of a storage disk decreases if the number
of I/O intensive applications in the VM instances increases;
similarly, the network traffic from a host, VM management
costs, and cpu utilization costs gradually increases. To avoid
such conditions, we introduce the count constraint that allows
a service provider to limit the number of VM instances
that can be allocated on a given host. Formally, when the
service provider defines counth, the maximum number of VM

h1

h5h2

h4h3

4

4 3

3

3

3

4

4

h10

h7

h6

h9h8

4

4

3

4
4

3
4

3

8

8

C1 C2

Fig. 2. An example of a Cloud infrastructure with network latency values
for each network connection and service provider’s constraints (the shaded
nodes forbid allocation of user’s VM instances)

instances allowed on a host h, the mapping function p:V→H
ensures that the following condition is satisfied:

∀v ∈ V, h ∈ H, |{v ∈ V|p(v) = h}| ≤ counth (4)

Example 2. Figure 2 illustrates an example of a Cloud
infrastructure that consists of two clusters C={C1,C2} and
each cluster contains five physical hosts C1={h1,. . . ,h5} and
C2={h6,. . . ,h10}. Assume that the service provider i) runs
security services on hosts {h3,h10}, ii) has taken host h8

under maintenance due to a failure, iii) requires all the hosts in
cluster C1 to allocate not more than 3 VM instances each and
utilize up to 80% of their aggregate cpu and 90% of memory
capacity, and iv) requires hosts in cluster C2 to accommodate
a maximum of 2 VM instances each. If we assume that the
service provider forbids all the VM instances from being
allocated on physical hosts that are either used to run security
services or that have undergone failures, the service provider
can specify its additional requirements using the following
constraints:

• counth1 ,. . . ,counth5≤ 3
• counth6 ,. . . ,counth10≤ 2
• thresholdh1

[cpu]=. . .=thresholdh5
[cpu]=0.8

• thresholdh1
[mem]=. . .=thresholdh5

[mem]=0.9
• ∀v ∈ V: Forbid={(v, h8), (v, h3), (v, h10)}

C. Application-oriented Constraints
A user may need to impose a set of restrictions on the

placement of her VM instances based on the security and
privacy policies and the reliability mechanisms. For example,
consider that a user employs a generic fault tolerance mecha-
nism such as a replication technique to increase the reliability
and availability of her application. The user may then need to
impose a set of additional conditions on the system parameters
and the relative placement of VM instances to successfully
implement the fault tolerance mechanism.

As typical needs, we include three representative
application-oriented constraints in our allocation framework
that can be used to realize such conditions: restrict, distribute
and latency.

Restrict: Based on the security and privacy policies [14], and
mandatory government enforced obligations (e.g., EU Data
Protection 95/46/EC Directive), a user may require that her
VM instances be always located within a given community
area (e.g., within EU countries). Similarly, to improve the
application’s performance, a user may require the mapping
function to place her VM instances on hosts whose geo-
graphical location is closest to her customers. To satisfy such
requirements, we introduce the restrict constraint that limits
a VM instance v∈V on being allocated only on a specified
group of physical hosts H⊂H. When a user defines a set
Restr={(vi, Hj)|vi∈V and Hj⊂H}, the mapping function
p:V→H ensures the following condition:

∀vi ∈ V, Hj ∈ 2Hj , (vi, Hj) ∈ Restr =⇒ p(vi) ∈ Hj (5)

Distribute: Any replication-based fault tolerance mechanism
inherently requires that each replica be placed on different
physical hosts to avoid single points of failure. For instance,
if a user replicates her application on two VM instances,
and if both the virtual machines are allocated on the same
host, then a failure in the host results in a complete outage
of the user’s application. To avoid reaching such a state, we
introduce the distribute constraint that allows a user to specify
that two VM instances vi and vj be never located on the
same host at the same time. When a user defines the set
Distr={(vi, vj)|vi, vj ∈ V} of pairs of VM instances that
cannot be deployed on the same host, the mapping function
p:V→H satisfies the following condition during resource
provisioning:

∀vi, vj ∈ V, h ∈ H, (vi, vj) ∈ Distr =⇒ p(vi) 6= p(vj)
(6)

Latency: The latency constraint enforces the mapping func-
tion to allocate two VM instances vi,vj∈V such that the net-
work latency between them is less than a specified value Tmax.
When a user defines a set MaxLatency={(vi, vj , Tmax|
vi,vj∈V)} that specifies the acceptable network latency Tmax
between two VM instances vi and vj , the mapping function
p:V → H ensures the following condition:

∀vi, vj ∈ V : (vi, vj , Tmax) ∈MaxLatency

=⇒ latency(p(vi), p(vj)) ≤ Tmax
(7)

(0.4, 0.4)
vp

(0.3, 0.6)

vb2

(0.6, 0.5)

vb1

5 4

Fig. 3. An example of a user’s request with resource requirements and
network latency constraints

assuming that the network latency between two virtual ma-
chines is equal to the network latency between the phys-
ical hosts on which they are deployed. For instance, in
a checkpoint-based reliability mechanism, the state of the
backup VM instance must be frequently updated with that
of the primary instance to maintain the system in a consistent
state. This task involves high amounts of message exchanges,
and hence an upper bound in the network delay is essential;
otherwise, the wait-time of the primary instance during which
the state transfer to the backup takes place may increase
significantly and the overall availability of the application may
be reduced.

Example 3. Figure 3 illustrates an example of a user’s require-
ments for VM instances and associated allocation constraints.
To increase the reliability and availability, consider that a user
replicates the primary VM instance vp of her application on
two backup hosts vb1, vb2. To improve the security and to
enforce government specified obligations the user may wish
to impose a restriction on allocating vp, vb1 and vb2 in cluster
C1, particularly vp on one of the hosts h2. . . h5. To balance the
application’s performance and reliability, the user may require
that the network latency limit Tmax between vp and vb1 is at
most 5ms and between vp and vb2 is at most 4ms. Furthermore,
to avoid a single point of failure, the user may wish to ensure
that vp, vb1 and vb2 be deployed on different physical hosts.
These requirements can be specified by the user as follows:
• Restr={(vp, {h2, . . . , h5}), (vb1, {h1, . . . , h5}),

(vb2, {h1, . . . , h5})}
• MaxLatency={(vp, vb1, 5), (vp, vb2, 4)}
• Distr={(vp, vb1), (vp, vb2), (vb1, vb2)}

Table I provides a summary of the constraints in all three
perspectives. To the best of our knowledge, none of the
existing solutions allow both service providers and users to
flexibly enforce their system’s operational and VM placement
requirements that support their security, reliability and avail-
ability goals during initial VM allocation.

IV. VM PROVISIONING APPROACH

We present an approach to VM provisioning in which each
mapping of the function p:V→H is regulated to satisfy the
security constraints specified by users and service providers,
and system’s objectives of reducing the load variance and
energy consumption costs in the Cloud infrastructure. Given

Fig. 4. An example of VM allocation on a host using vector dot-product
method. Each side of a rectangle represents a resource type (cpu and memory).
The VM instance v0 represented with slanted pattern is already allocated.
Allocation of v1 and v2 is represented with horizontal and vertical patterns

the NP-hardness of the VM provisioning problem, we propose
a greedy heuristics-based approximation algorithm for its
solution. At a high-level, for each user request, our algorithm
analyzes the network to identify the clusters and physical hosts
that can be used to perform VM provisioning, and for each
physical host, it identifies the set of VM instances that can be
allocated on that host.

To reduce the load variance between different clusters, our
algorithm tries to allocate VM instances in the cluster that has
highest amount of available resources. This heuristic is based
on the observation that the load variance between clusters can
be implicitly reduced by selecting the less-used cluster and
utilizing its resources (by allocating VM instances requested
by the user on its hosts). When selecting a cluster, resource
availability of a cluster corresponding to a resource type may
be greater than other clusters but smaller for other resource
types (e.g., cpu and memory availability of clusters C1, C2

may be (0.6, 0.7) and (0.4, 0.8) respectively). In such cases, we
determine the total amount of resources requested by the user
in each dimension, and select the cluster whose availability is
largest for the dimension that is most required by the user.

To reduce the energy consumption costs, our algorithm
performs VM allocation in a host-centric manner, that is,
once a cluster with maximum resource availability is selected,
each host within the cluster is analyzed (e.g., by following
identifier’s order) to allocate as many VM instances on that
host as possible. This heuristic allows our algorithm to im-
prove the resource capacity usage of individual hosts and map
all the VM instances on fewer number of physical hosts. In
particular, similar to [13], [16], our algorithm leverages the
vector dot-product method to analyze and map VM instances
on a given host. We represent the VM instances and physical
hosts as vectors (see Section II), and therefore, the vector dot-
product value measures how a VM instance imposes itself on
a given host based on the angle between optimum allocation
(i.e., reaching point (1, 1)), vector magnitude, and present
state of the host. Figure 4 illustrates an example of our
method for a given host h and VM instances v1 and v2 where
−→v1=(0.5, 0.3) and −→v2=(0.2, 0.4), their dot-product values are
0.166 and 0.129 respectively. By extracting the VM with larger
dot-product value (v1, which is cpu-intensive) the resource
utilization of the host complements the already containing
VMs (v0, which is memory-intensive).

Figure 5 illustrates the algorithm that is executed each time
a user requests the service provider to allocate her a set of

1: INPUT H, C, V , V , Restr, Forbid, Count, Distr, MaxLatency
2: OUTPUT p:V→H
3: MAIN
4: /*Initialize the priority queue CL based on resource availability in each cluster*/
5: CL:=Build Priority Queue(C) /*Analyze the clusters*/
6: while V 6=φ do /*There are still VMs to be allocated*/
7: /*Select the cluster C that has maximum resource availability*/
8: C:= Extract Max(CL)
9: /*Consider each host in cluster C that does not violate the count constraint*/
10: for each h∈C ∧ h′[d+1]<counth do /*h′[d+1] is the usage counter*/
11: V ′:=V /*Initialize the set V ′ of VMs which can be allocated on host h*/
12: /*Remove each VM that violates forbid/restrict constraints wrt host h*/
13: for each v∈V do
14: if
15: (v, h)∈Forbid ∨ /*If VM v is forbidden from host h or*/
16: {(v,H)∈Restr∧h6∈H} /*If h is not in the restricted set of hosts*/
17: then
18: V ′:=V ′\{v}
19: end for
20: /*Initialize the set VMreq of VMs v∈V ′ with their respective*/
21: /*dot-product values computed wrt host h*/
22: VMreq:=Build Priority Queue(h,V ′)
23: while VMreq6=φ do /*There are still VMs in VMreq*/
24: /*Select the VM with largest resource needs*/
25: v:=Extract Max(VMreq)
26: /*If the capacity and count constraints are satisfied, and*/
27: /*If not in conflict with distribute constraint*/
28: if
29:

−→v ≤
−→
h′ ∧ /*If VM v can be allocated in residual capacity of h and*/

30: @(v, vj)∈Distr|p(vj)=h /*If distribute constraint is satisfied*/
31: then
32: /*If v is not related to vj∈V by latency constraints*/
33: if @(v, vj , Tmax)∈MaxLatency then
34: /*Allocate v on h and update residual resource capacity value*/
35: p(v):=h

36:
−→
h′:=

−→
h′−−→v

37: V :=V \{v}
38: else
39: /*Initialize the set of VMs that must be allocated in the same all-*/
40: /*ocation cycle since they are linked by latency constraints to v*/
41: Reserve list:={(v, h)}
42: /*Find an allocation for ∀vj related to v by latency constraints*/
43: if Forward Allocate(v, h) then
44: /*There is an allocation ∀vj related to v by latency constraints*/
45: while Reserve list 6=φ do
46: /*Allocate vj on host hj*/
47: p(vj):=hj

48:
−→
h′
j :=
−→
h′
j−
−→vj

49: Reserve list:=Reserve list\{(vj , hj)}
50: V :=V \{vj}
51: end while
52: end while
53: end for
54: end while

Fig. 5. VM provisioning with Resource-capacity, Forbid, Restrict, Count,
Distribute and Latency constraints

VM instances V={v1, . . . , vn} where resource requirements
for each vi∈V are specified in d-dimensions, and their security
requirements are specified in the form of constraints (using
Restr, Distr and MaxLatency sets). The algorithm takes
the set V , set of all hosts h∈H, parameters that group physical
hosts into clusters C and snapshot of VM instances V already
allocated in the Cloud as input. It also takes the sets that
specify the security and performance requirements of users
and service providers for all VM instances (including V) and
hosts, and provisions the requested resources to the user, while
satisfying all the constraints, as output.

The notion of selecting the least-used cluster to allocate
vi∈V is realized by building the priority queue CL (line 5)
based on resource availability in each cluster and extracting the

1: FORWARD ALLOCATE(v, h)
2: /*Identify all vj directly/indirectly related to v by latency constraints*/
3: Vl:=Build Priority Queue(vj |(v, vj)∈MaxLatency∧vj 6∈Reserve list)
4: while Vl 6=φ do /*There are VMs to be allocated*/
5: /*Select the VM with the most stringent latency constraint*/
6: vl:= Extract Min(Vl)
7: /*Create the set K of hosts that qualify for vl wrt the latency value */
8: /*forbid and restrict constraints*/
9: K:=Build Priority Queue(
10: hi|latency(h, hi)≤Tmax(v, vl) ∧ /*Hosts that satisfy latency constraint*/
11: (v, hi) 6∈Forbid ∧ /*Hosts that do not violate forbid constraint*/
12: hi∈H|(v,H)∈Restr) /*Hosts that satisfy the restrict constraint*/
13: while K6=φ do /*There are hosts to be considered*/
14: /*Select a host k*/
15: k:= Extract(K)
16: /*Verify the capacity, count and distribute constraints*/
17: if
18:

−→v ≤
−→
k′ ∧ /*If the capacity and count constraints are satisfied and*/

19: @(v, vj)∈Distr|p(vj)=k /*If not in conflict with distribute constraint*/
20: then
21: /*Add (vl, k) to the set of VMs related by the latency constraint*/
22: /*to v which can be allocated*/
23: Reserve list:=Reserve list ∪{(vl, k)}
24: /*Look for an allocation for VMs related by latency constraint to vl*/
25: if Forward Allocate(vl, k) then
26: K:=φ /*Allocation found - no other hosts need to be considered*/
27: else
28: /*Allocation not found - discard the tentative allocation for vl*/
29: Reserve list:=Reserve list\{(vl, k)}
30: /*Else the host k does not satisfy the capacity, count and distribute*/
31: /*constraints and thus, another host in K should be considered for vl*/
32: /*Verify if an allocation has been found for vl*/
33: if @(vl, k)∈Reserve list then
34: /*No allocation found ∀vl directly/indirectly related to v by*/
35: /*latency constraints*/
36: return 0
37: end while
38: end while
39: /*All vi directly/indirectly related to v with latency constraints can be*/
40: /*allocated satisfying all constraints*/
41: return 1

Fig. 6. The Forward Allocate function of the VM provisioning algorithm

cluster C with maximum availability from CL (line 8). Simi-
larly, the vector dot-product value of each vi∈V is calculated
and stored in the VMreq priority queue (line 22). Entries from
VMreq are then extracted in the decreasing order of the dot-
product values (line 25) and analyzed for performing the final
allocation. Note that in the absence of security constraints, the
above two mechanisms: i) selecting the least-used cluster and
ii) allocating VM instances on its hosts using the dot-product
method is sufficient to perform VM provisioning and meeting
service provider’s objectives. We introduce various controls
in this provisioning mechanism to ensure that all additional
security and performance constraints specified by users and
service providers are satisfied.

Based on the observation that forbid and restrict constraints
define conditions on the association between VMs and physi-
cal hosts, we apply controls corresponding to these constraints
mainly while building the VMreq priority queue (i.e., when
analyzing the suitability of allocating vi∈V on host h). Note
that only the VM instances that are extracted from VMreq are
considered for allocation on any given host. Hence, we create
a temporary set V ′ that contains all the VMs that must be
allocated, discard all the VMs v from set V ′ (line 18):
• if an entry (v, h)∈Forbid exists (line 15), that is, discard

all v∈V ′ that are specified by the service provider in the

Forbid set for host h.
• if a set of hosts H is specified in the Restr set for a VM

v∈V but the present host h does not belong to the set H
(line 16), that is, discard v if ∃(v,H)∈Restr ∧ h6∈H .

and provide the set V ′ as input to build the priority queue
VMreq. This control allows our algorithm to enforce the
forbid and restrict constraints by ensuring that none of the
VM instances that are in conflict with these constraints are
allocated on host h.

The capacity and count constraints are confined to the
resource usage of individual physical hosts. To ensure these
constraints, we extend the d-dimensional vector representation
of hosts and VM instances. In particular, as a control to the
count constraint, we add dimension d+1 on each physical host
and initialize its value to the number of VM instances that can
be allocated on that host based on the value specified by the
service provider i.e., h[d+1]:=counth. Similarly, the [d+ 1]

th

dimension of each VM is initialized to 1, and before allocating
VM v∈V on host h, the count control is enforced along
with the capacity constraint (line 29, 36, 48). To enforce the
capacity constraint, we maintain the residual resource capacity
of each physical host

−→
h′ that is initialized using the threshold

values specified by the service provider. Before allocating a
VM instance v∈V on host h, the algorithm verifies if the
resource requirements of the VM instance −→v is less than the
residual capacity of that host

−→
h′ , that is, if −→v ≤

−→
h′ (covering all

d+1 dimensions). If VM v is allocated on host h, the residual
capacity of the host is updated as

−→
h′ :=
−→
h′−
−→
v′ (line 36, 48).

To enforce the distribute constraint, we introduce a simple
control that verifies if host h already contains a VM instance
vj for which the user has specified a condition (v, vj)∈Distr
before allocating a VM v on that host (line 30). If p(vj)=h
is found true, the algorithm skips that VM to the next host,
hence satisfying the distribute constraint.

Lastly, to enforce the latency constraints, we introduce the
notion of forward allocate and reserve list. When a VM v that
satisfies all other constraints with respect to a host h is found,
and if the VM v is related to other VMs vj by the latency
constraints, then v cannot be allocated until an allocation
for all vj is found. To this aim, our algorithm tentatively
allocates the VM by saving the pair (v, h) in the Reserve list
(line 41) and calls the function Forward Allocate to find an
allocation for other VMs (line 43). The Forward Allocate
function first determines the set of all VMs that are related
to v by the latency constraints and saves them in the priority
queue Vl (line 3 in Forward Allocate function). Each VM
vl∈Vl is then extracted in the increasing order of Tmax (line
6), and the set of hosts K that can be reached from h
within the specified network threshold time, not conflicting
the restrict and forbid constraints, is selected (lines 9-12).
Each host k∈K is considered and verified for capacity, count
and distribute constraints (using similar controls as described
above). When a host k is found for vl that satisfies all the
constraints and is not in turn associated with other VMs by
latency constraints, the pair (vl, k) is saved in the Reserve list

Fig. 7. Allocation of user requested VM instances on physical hosts based
on our provisioning algorithm. VM instance vp is allocated on host h5, vb1
on host h2 and vb2 on host h4

(line 23). The Forward Allocate function is recursively called
until an allocation for all VMs is determined (line 25). If an
allocation is not obtained, the entires from the Reserve list are
removed (line 29), and the function resumes from another host.
The Forward Allocate function returns 1 when an allocation
for all VMs is found (line 41), otherwise it returns 0 (line
33-36) to the main function.

At present, our algorithm performs VM provisioning only
if all the constraints are satisfied and allocation determined
(line 43-50); no allocation is performed even if a single
condition cannot be satisfied. However, we believe that our
algorithm can be extended to perform partial allocations in
a straightforward manner. Furthermore, based on the chosen
heuristics, our algorithm is likely to find a solution with
acceptable performance guarantees and ensure a solution if
one exists. In the worst case, it analyzes all the hosts in the
system to determine whether a solution exists or not.

Example 4. Consider the Cloud infrastructure and service
provider’s constraints described in Example 2, and user’s
request for VM instances with placement constraints described
in Example 3. As an example, assume that VM instances
are already allocated on the hosts in cluster C1 and occupy
resources as represented in Figure 7.

Table II illustrates the working of our VM provisioning
algorithm. On receiving the user’s request, a priority queue
CL is first created by analyzing the resource availability in
each cluster based on the assumed state of the infrastructure
(see Figure 7), cluster C:=C1 is extracted, and host h1 is
selected. The residual resource capacity in terms of cpu,
memory and counth1

for host h1 is
−→
h′1=(0.3, 0.4, 2). The

algorithm removes VM instances that are in conflict with
h1 based on restrict and forbid constraints, and therefore,
VM vp is not included in the VMreq priority queue. VMs
vb1, vb2 are considered one after another but since they do
not satisfy the capacity constraint, the algorithm moves to
the next host h2. Residual resource capacity of host h2 is
determined and each VM v∈V is analyzed based on the
restrict and forbid constraints. Since none of the VM instances
are in conflict with either constraints, they are included in

the priority queue VMreq and vector dot-product values are
calculated. VM vb1 is selected to be allocated on host h2 and
the capacity and distribute constraints are verified. Both the
constraints are satisfied, but since vb1 is related to vp by latency
constraint, the pair (vb1, h2) is added to the Reserve list and
Forward Allocate function is called. The Forward Allocate
function recognizes vp to be the VM instance for which
an allocation must be found, and generates the set of hosts
K=(h2, h3, h4) that can be reached from h2 in less than 5
latency units. Note that h1 is not included due to the restrict
constraint. Each host in K is analyzed to allocate vp – host
h2 is in conflict with the distribute constraint since (vb1, h2)
exists in the Reserve list (i.e., tentatively allocated), and host
h3 forbids all the VMs to be allocated on it. Host h5 satisfies
the capacity and distribute constraints but VM vp is related
to latency constraint with vb2 (vb1 is not considered since it
already exists in the Reserve list). Similarly, (vp, h5) is added
to the Reserve list and Forward Allocate identifies (vb2, h4)
to be suitable for allocation. Since all the VMs are now
tentatively allocated, satisfying all the constraints (including
latency), VM instances are finally allocated.

V. RELATED WORK

The problem of efficient resource management in Cloud
computing has become a critical issue and is receiving an
increasing attention. Existing solutions address resource man-
agement issues using two distinct processes: initial VM place-
ment and run-time consolidation. In the first step, a process
allocates VM instances on physical hosts and delivers them
to the user. In the second step, another process continuously
monitors the system and moves the VM instances to meet
service provider’s business goals. Several existing implemen-
tations such as the Eucalyptus Cloud manager [2] model the
initial VM placement problem as a variant of the classical
bin-packing problem and use simple heuristics to provision
VM instances [15]. These solutions have limitations since bin-
packing allows VMs to be placed besides or on top of each
other on physical hosts (hence bin-packing based approaches
implicitly violate our assumptions on resource usage model).
As an alternative, the proposals introduced in [12], [13], [19]
apply vector-packing model and leverage heuristics based on
volume, norm-based greedy and dot-product mainly to perform
run-time consolidation. In contrast to existing solutions, we
merge the initial VM allocation and run-time consolidation
processes into a single unified process and achieve a trade-off
between initial placement and service provider’s objectives.

An interesting line of research consists in developing re-
source management schemes that maximize service provider’s
profits (e.g., [4], [6]–[8], [10], [18], [20]). In particular, the
solutions proposed in [4], [20] reduce the energy consump-
tion costs of data centers by consolidating VM instances on
minimum number of physical hosts. Similarly, the proposals in
[10], [18] improve the performance and scalability of the sys-
tem using efficient VM allocation and migration techniques,
and the replica placement strategies in [6]–[8] allow delivery
of fault tolerance as a service to user’s applications. However,

TABLE II
AN EXAMPLE ILLUSTRATING THE WORKING OF THE VM PROVISIONING ALGORITHM

h
−→
h′ Restrict Forbid Algorithm execution Reserve list Allocation

1 (0.3, 0.4, 2) vp – VMreq=(vb1, 0.22)(vb2, 0.18)
vb1: no capacity (line 29)
vb2: no capacity (line 29)

2 (0.6, 0.6, 2) – – VMreq=(vp, 0.13)(vb1, 0.18)(vb2, 0.16)
vb1: capacity ok (line 29)

distribute ok (line 30)
(vp, vb1, 5)∈MaxLatency found (line 33) (vb1, h2)
Forward Allocate(vb1, h2)
vl=vp
K=h2, h3, h5

h2: distribute constraint in conflict (line 19)
h3: forbid constraint in conflict (line 11)
h5: capacity ok (line 18)

distribute ok (line 19)
(vp, vb2, 4)∈MaxLatency (line 25, 3) (vb1, h2), (vp, h5)
Forward Allocate(vp, h5)

vl=vb2
K=h1, h2, h4

h1: no capacity (line 18)
h2: no capacity (line 18)

distribute constraint in conflict (line 19)
h4: capacity ok (line 18)

distribute ok (line 19)
latency ok (line 25) (vb1, h2), (vp, h5), (vb2, h4) p(vb1):=h2

p(vp):=h5

p(vb2):=h4

as discussed in this paper, no solution categorizes and formal-
izes the security, reliability and performance requirements of
both users and service providers, and provide an integrated
and modular solution for VM allocation.

VI. CONCLUSIONS

We presented an approach to incorporate security constraints
from users as well as service providers in managing resources
in Cloud environments. We identified different kinds of re-
quirements and presented a heuristics-based approach which
takes them into account for allocating virtual machines to
external hosts. Our work represents the first step towards a
comprehensive inclusion of security requirements in the Cloud
computing scenario and leaves space for immense future work,
including consideration of a richer set of constraints and design
of optimal algorithms for resource allocation.

ACKNOWLEDGMENTS

This work was supported by the Italian Ministry of Research
within the PRIN 2008 project “PEPPER” (2008SY2PH4).

REFERENCES

[1] Amazon elastic compute cloud. http://aws.amazon.com/ec2/.
[2] Eucalyptus cloud manager. http://www.eucalyptus.com/.
[3] F. Hermenier, S. Demassey, and X. Lorca, “Bin repacking scheduling in

virtualized datacenters,” in Proc of CP’11, Perugia, Italy, Sep 2011.
[4] F. Hermenier, J. Lawall, J.-M. Menaud, and G. Muller, “Dynamic

Consolidation of Highly Available Web Applications,” INRIA, Tech.
Rep. RR-7545, Feb 2011.

[5] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall,
“Entropy: a consolidation manager for clusters,” in Proc. of VEE’09,
Washington, DC, USA, Mar 2009, pp. 41–50.

[6] R. Jhawar and V. Piuri, “Fault Tolerance Management in IaaS Clouds,”
in Proc. of ESTEL’12, Rome, Italy, Oct 2012.

[7] R. Jhawar, V. Piuri, and M. Santambrogio, “A Comprehensive Concep-
tual System-Level Approach to Fault Tolerance in Cloud Computing,”
in Proc. of IEEE SysCon’12, Vancouver, Canada, Mar 2012, pp. 1–5.

[8] R. Jhawar, V. Piuri, and M. Santambrogio, “Fault tolerance management
in cloud computing: A system-level perspective,” IEEE Systems Journal,
2012 (to appear).

[9] F. Machida, M. Kawato, and Y. Maeno, “Redundant virtual machine
placement for fault-tolerant consolidated server clusters,” in Proc. of
NOMS’10, Osaka, Japan, Apr 2010, pp. 32–39.

[10] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in Proc.
of INFOCOM’10, San Diego, California, USA, Mar 2010, pp. 1–9.

[11] K. Mills, J. Filliben, and C. Dabrowski, “Comparing VM-Placement Al-
gorithms for On-Demand Clouds,” in Proc of CLOUD’11, Washington,
DC, USA, Jul 2011, pp. 91–98.

[12] M. Mishra and A. Sahoo, “On theory of vm placement: Anomalies in
existing methodologies and their mitigation using a novel vector based
approach,” in Proc. of CLOUD’11, Washington, DC, USA, Jul 2011.

[13] L. U. Rina Panigrahy, Kunal Talwar and U. Wieder, “Heuristics for
vector bin packing,” 2011, Microsoft Research, (unpublished).

[14] P. Samarati and S. De Capitani di Vimercati, “Data protection in
outsourcing scenarios: Issues and directions,” in Proc. of ASIACCS’10,
Beijing, China, Apr 2010.

[15] S. S. Seiden, “On the online bin packing problem,” ACM Journal,
vol. 49, no. 5, Sep 2002.

[16] A. Singh, M. Korupolu, and D. Mohapatra, “Server-storage virtualiza-
tion: Integration and load balancing in data centers,” in Proc. of SC’08,
Austin, TX, USA, Nov 2008, pp. 53:1–53:12.

[17] M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova, “Resource
allocation algorithms for virtualized service hosting platforms,” Journal
of Parallel and Distributed Computing, vol. 70, no. 9, Sep 2010.

[18] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A scalable ap-
plication placement controller for enterprise data centers,” in Proc. of
WWW’07, Alberta, Canada, May 2007, pp. 331–340.

[19] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Sandpiper:
Black-box and gray-box resource management for virtual machines,”
Computer Networks, vol. 53, no. 17, Dec 2009.

[20] J. Xu and J. A. B. Fortes, “Multi-objective virtual machine placement
in virtualized data center environments,” in Proc. of GREENCOM-
CPSCOM’10, Hangzhou, China, Dec 2010, pp. 179–188.

