
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1989

Supporting Shared Data Structures on Distributed Memory Supporting Shared Data Structures on Distributed Memory

Architectures Architectures

Chalres Koelbel

Piyush Mchrotra

Report Number:
89-915

Koelbel, Chalres and Mchrotra, Piyush, "Supporting Shared Data Structures on Distributed Memory
Architectures" (1989). Department of Computer Science Technical Reports. Paper 780.
https://docs.lib.purdue.edu/cstech/780

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SUPPORTING SHARED DATA S1RUCTURES
ON DISlRIBUTED MEMORY ARCHITECTIJRES

Charles Koelbel
Piyush Mchrob'a

CSD-lR 915
Ocr.ober 1989

Supporting Shared Data Structures on
Distributed Memory Architectures*

Charles Koelbel Piyush Mehrotrat

chk@cs.purdue.edu pm@icase.edu

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907.

Abstract

Programming nonshared memory systems is more difficult than program
ming shared memory systems, since there is no support for shared data struc
tures. Current programming languages for distributed memory architectures
force the user to decompose aU data structures into separate pieces, with each
piece "owned" by one of the processors in the machine, and with all com
munication explicitly specified by low-level message-passing primitives. This
paper presents a new programming environment for distributed memory archi
tectures, providing a global name space and allowing direct access to remote
parts of data values. In order to retain efficiency, we provide a system of anno
tations allowing the user to retain control over aspects of the program critical
to performance, such as data distributions and load balancing. This paper de
scribes the analysis and program transformations required to implement this
environment, and shows the efficiency of the resulting code with an example
program tested on an NCUBE hypercube.

1 Introduction

Distributed memory architectures promise to provide very high levels of performance
for scientific applications at modest costs. However1 they are extremely awkward to
program. The programming languages currently available for such machines directly

·This research was supported by the Office of Naval Research under contract ONR NOOOl4-88·M~

0108, and by the National Aeronautics and Space Administration under NASA contract NASI-18605
while the authors were in residence at ICASE, Mail Stop 132C, NASA Langley Research Center,
Hampton, VA 23665.

fOn leave at ICASE, NASA Langley Research Center, Hampton, Va 23665.

1

reflect the underlying hardware in the same sense that assembly languages reflect the
registers and instruction set of a microprocessor.

The basic issue is that programmers tend to think in terms of manipulating large
data structures, such as grids, matrices, etc. With the current message-passing lan
guages, each process can access only the local address space ofthe processor on which
it is executing. Thus the programmer must decompose each data structure into a col~

lection of pieces, each piece being "owned" by a single processor. All interactions
between different parts of the data structure must then be explicitly specified using
the low-level message-passing constructs supported by the language.

Decomposing all data structures in this way, and specifying communication ex
plicitly can be extraordinarily complicated and error prone. However, there is also
a more subtle problem here. Since the partitioning of the data structures across the
processors must be done at the highest level of the program, and each operation on
these distributed data structure turns into a sequence of "send" and "receive" op
erations intricately embedded in the code, programs become highly inflexible. This
makes the parallel program not only difficult to design and debug, but also "hard
wires" all algorithm choices, inhibiting exploration of alternatives.

In this paper we present a programming environment, called Kalil, which is de
signed to simplify the problem of programming distributed memory architectures.
Kali provides a software layer supporting a global name space on distributed mem
ory architectures. The computation is specified via a set of parallel loops using this
global name space exactly as one does on a shared memory architecture. The dan
ger here is that since true shared memory does not exist, one might easily sacrifice
performance. However, by requiring the user to explicitly control data distribution
and load balancing, we force awareness of those issues critical to performance on non
shared memory architectures. In effect, we acquire the ease of programmibility of the
shared memory model, while retaining the performance characteristics of nonshared
memory architectures.

In Kali, one specifies parallel algorithms in a high~level, distribution independent
manner. The compiler then analyzes this high-level specification and transforms it
into a system of interacting tasks, which communicate via message-passing. This
approach allows the programmer to focus on high-level algorithm design and perfor
mance issues, while relegating the minor but complex details of interprocessor com
munication to the compiler and run-time environment. Preliminary results suggest
that the performance of the resulting message-passing code is in many cases virtually
identical to that which would be achieved had the user programmed directly in a
message-passing language.

The remainder of this paper is organized as follows. Section 2 describes Kali,
the language in which we have implemented our ideas. Section 3 presents the analy
sis needed to map a Kali program onto a nonshared memory architecture. If enough
information is available, the compiler can perform this analysis at compile-time. Oth-

1 Kali is the name of a Hindu goddess of creation and destruction who possesses multiple arms,
embodying the concept of parallel work.

2

processors Prees : array [l..P] with P in l..max-preesj

var A : array[l..N] of real dist by [block J on Preesj
B : array[l..N, l..M] of real dist by [cyclic, '"] on Prees;

forall i in l..N-Ion A[i].loc do
A[i] ,= A[i+l];

end;

Figure 1: Kali language primitives

erwise the compiler produces run-time code to generate the required information. We
close this section with an example illustrating the latter situation. Section 4 shows
the performance achieved by the sample program on an NCUBE/7. Finally, Section 5
compares our work with other groups, and Section 6 gives our conclusions.

2 Kali Language Primitives

The goal of our approach is to allow the progranuners to treat distributed data struc
tures as single objects. In our approach, the progranuner must specify three things:

a) The processor topology on which the program is to be executed

b) The distribution of the data structures across these processors

c) The parallel loops and where they are to be executed

The following subsections describe each of these specifications. Figure 1 gives an
example of these declarations in Kali, a language we created as a testbed for our
ideas [5, 7]. We point out that these primitives can be added to any sequential
language, such as FORTRAN [8].

2.1 Processor Arrays

The first thing that needs to be specified is a "processor array." This is an array
of physical processors across which the data structures will be distributed, and on
which the algorithm will execute. The processors line in Figure 1 declares this array.
This particular declaration allocates a one-dimensional array Procs of P processors,
where P is an integer constant between 1 and max-IJrocs dynamically chosen by
the run-time system. (Our current implementation chooses the largest feasible P;
future implementations might use fewer processors to improve granularity or for other
reasons.) Multi-dimensional processor arrays can be declared similarly,

This construct provides a "real estate agent," as suggested by C. Seitz. Allowing
the size of the processor array to be dynamically chosen is important here, since it

3

provides portability and avoids dead-lock in case fewer processors are available than
expected. The basic assumption is that the underlying architecture can support multi.
dimensional arrays of physical processors, an assumption natural for hypercubes and
mesh connected architectures.

2.2 Defining a Distribution Pattern

Given a processor array, the programmer must specify the distribution of data struc~

tures across the array. Currently the only distributed data type supported is dis
tributed arrays. Array distributions are specified by a distribution clause in their
declaration. This clause specifies a sequence of distribution patterns, one for each
dimension of the array. Scalar variables and arrays without a distribution clause are
simply replicated, with one copy assigned to each of the processors in the processor
array.

Mathematically, the distribution pattern of an array can be defined as a function
from processors to sets of array elements. If Proc is the set of processors and Arr
the set of array elements, then we define

local: Proc -+ 2Arr

as the function giving, for each processor p, the subset of Arr which p stores locally.
In this paper we will assume that the sets of local elements are disjoint; that is, if
p =f q then local(p) n local(q) = 4>. This reflects the practice of storing only one copy
of each array element. We also make the convention that collections of processors
and array elements are represented by their index sets, which we take to be vectors
of integers.

Kali provides notations for the most common distribution patterns. Once the
processor array Procs is declared, data arrays can be distributed across it using dist
clauses in the array declarations, also shown in Figure 1. Array A is distributed by
blocks, giving it a local function of

This assigns a contiguous block of array elements to each processor. Array B has its
rows cyclically distributed; its local is

locaIB(p) = {(i,j) Ii = p (mod P))

Here, if P were 10 processor 1 would store elements in rows 1, 11, 21, and so on,
while processor 10 would store rows which were multiples of 10. The number of
dimensions of an array that are distributed must match the number of dimensions
of the underlying processor array. Asterisks are used to indicate dimensions of data
arrays which are not distributed as in the case of B as shown in Figure 1.

4

2.3 Forall Loops

Operations on distributed data structures are specified by forall loops. The rorall
loop here is similar to that in BLAZE (6). The example in Figure 1 shows a loop
which performs N - 1 loop invocations, shifting the values in the array A one space
to the left. The semantics here are "copy-in copy-out," in the sense that the values
on the right hand side of the assignment are the old values in array A, before being
modified by the loop. Thus the array A is effectively "copied into'" each invocation
of the forall loop, and then the changes are "copied out."

In addition to the range specification in the header of the farall there is an
on clause. This clause specifies the processor on which each loop invocation is to
be executed. In the above program fragment, the on clause causes the ith loop
invocation to be executed on the processor owning the ith element of the array A.
Although this is the most common use of the on clause, it is also possible to name
the processor directly by indexing into the processor array.

2.4 Global Name Space

Given the processors, dist, and forall primitives, a programmer can specify a data
parallel algorithm at a high level, while still retaining control over those details critical
to performance. For example, the code fragment in Figure 4 in Section 3 shows a
typical numerical computation. It is important to note that there are no message
passing statements in either that program or Figure Ij instead, the programmer can
view the program as operating within a global name space. The compiler analyses
the program and produces the low level details of the message passing code required
to support the sharing of data on the distributed memory machines.

The support of a shared memory model provides a distinct advantage over message
passing languagesi in those languages, communications statements often substantially
increase the program size and complexity [3]. The global name space model used here
allows the bodies of the forallioops to be independent of the distribution of the data
and processor arrays used. Ifonly local name spaces were supported, this would not be
the case, since the communications necessary to implement two distribution patterns
would be quite different. With OUI primitives a variety of distribution patterns can
easily be tried by trivial modification of this program. Such a modification in a
message passing language would involve extensive rewriting of the communications
statements. Thus, Kali allows programming at a higher level of abstraction, since the
programmer can focus on the general algorithm rather than the machine-dependent
details of its implementation.

3 Analysis of the Program

Given a Kali program written using the distribution patterns and forall loops de
scribed above, the compiler must generate code that implements the message passing

5

forall i E Index ...et on AIf(i)].loc do
... R1 •••

... R, ...

... R,. ...
endj

Figure 2: Pseudocode loop for subscript analysis

necessary to run the program on a nonshared memory machine. This entails an anal·
ysis of the subscripts of array references to determine which ones may cause access to
nonlocal elements. We will describe such an analysis in this section and then discuss
how it can be efficiently accomplished.

3.1 General Outline of the Analysis

The type of loop we are considering has the form shown in Figure 2. Iteration i of
the loop is executed on the processor storing A[j(i)J. In many cases, f will be the
identity function, but we allow other functions for generality. Each R k represents an
array reference of the form

R, = A[g,(i)]

For simplicity, we will assume here that only one array A is referenced. The general
case of multiple arrays does not alter the goals of the analysis, although it may
complicate the analysis itself if the arrays have different distribution patterns. The
9k functions may depend on other program variables, so long as those variables are
invariant during the execution of the forall loop.

The set of iterations executed on processor p, denoted by exec(p) is determined
by the on clause associated with the forall loop. For example, in Figure 2 because
of the on clause, "A[j(i)].loc," this set is a subset of iterations i such that A[f(i)] is
be local to processor p. We define this set mathematically as

exec(p) = r'(local(p))

where local is the distribution function associated with array A. In general, proces
sor p will execute every iteration in exec(p) which is in the forall's range, that is,
the intersection of the range with exec(p). In the loop of Figure 2, for example, pro
cessor p will execute all iterations in Index....set n f-l(local(p)). This intersection is
often equal to exec(p)j the name exec(p) was chosen to reflect this close association.
In the following discussion, we will assume that p executes exactly the iterations in
exec(p), as is generally the case except for boundary conditions. In cases where this
is not true it is generally only necessary to intersect Index....set with exec(p) in the
following equations.

6

We first identify the forall iterations that can cause nonlocal array references.
There are two reasons for doing this: we can overlap communication with compu
tation in iterations that access only local array elements, and local accesses may
be more amenable to optimization than general accesses. For each processor p and
reference R = A[g(i)] we define the set

ref(p) = g-l(local(p))

This is the subset of the (unbounded) iteration space where R is always a local
reference. If exec(p) ~ ref(p) then the reference R can always be satisfied locally on
processor p. Otherwise, any element a such that a E exec(p) but a ¢ ref(p) represents
an iteration on p that may reference an array element not on Pi this element must be
communicated to p via messages. Thus, iterations in exec(p) n ref(p) are executed
on processor p and access only p's local memory. Iterations in exec(p) - ref(p) cause
Donlocal accesses on p. The first stage of analysis therefore finds ref(p) for each
reference R and processor p and determines how they intersect with the loop range
sets exec(p).

If exec(p) g ref(p) for some p, then more analysis must be done to generate the
messages received and sent by each processor. For each pair of processors p and q
we must compute the sets in(p, q), the set of elements received by p from q, and
out(p, q), the set of elements sent from p to q. This can be done in two ways. The
simpler way is to simply note that processor p can only access elements in g(exec(p)).
Since every element has a "home" processor, we can identify the sources of these
elements using the local functions. Every nonempty set g(exec(p)) n local(q) where
q =I p represents a set of elements which processor p must receive as messages from
processor q. Conversely, every nonempty set g(exec(q)) n local(p) represents a set of
elements that p must send to q. Thus, we can define

in(p, q)

out(p, q)
g(exec(p)) n local(q)
g(exec(q)) n local(p)

The same sets can be constructed using the ref(p) sets used above. Here, we note
that those sets cover the iteration space. Thus, exec(p) can be divided into parts by
its intersections exec(p) n ref(q). Any of these sets which is nonempty represents
a region of iteration space executed on processor p and accessing array elements on
processor q. The sets of elements to be received by pare g(exec(p) n ref(q)) for
all qi similarly, the sets of elements that p must send are g(exec(q) n ref(p)). The
communications sets can therefore also be defined as

in(p, q)

out(p, q)

g(exec(p) n ref(q))
- g(exec(q) n ref(p))

We can now describe the organization of the message passing code derived from
simple forall statements. Figure 3 shows this for the program fragment in Figure 2,

7

Code executed on processor p

- - Sets used in message pasing
exec(p) = f-l{local(p») n Index-set
ref(p) '" g-l(local(p))
in(p, q) =g(exec(p)) n ref(q) for each q E Proc - {p}
out(p,q) =g(exec(q))nref(p) for eachq E Proc- {p}

- - Send messages to other processors
for each q E Froc do

if out(p, q) '" q, then send(q, out(p, q)); end;
endj

- - Do local computations
for each i E exec(p) n ref(p) do

... A[g(i)] ...
endj

.. Receive messages from other processors
for each q E Froc do

if in(p, q) '" q, then tmp! in(p,q)] := recv(q); end;
endj

- - Do nonlocal computations
for each i E exec(p) - ref(p) do

... tmp[g(i)] ...
endj

Figure 3: Pseudocode message passing version of Figure 2

assuming only one reference Rk = A[g(i)]. Only high-level pseudocode for the com
putation on processor p is shown. Using the in and out sets, the processor sends
all its messagES, performs the iterations which do not require nonlocal data, receives
all its messages, and finally performs the iterations requiring nonlocal data. These
sets can be computed at either compile-time or run-time. In the next subsection,
we characterize these two situations and then provide a detailed example requiring
run-time analysis.

3.2 Run-time Versus Compile-time Analysis

The major issue in applying the above model is the analysis required to compute
exec(p), ref(p), and their derived sets. It is clear that a naive approach to computing

8

these sets at run-time will lead to unacceptable performance, in terms of both speed
and memory usage. This overhead can be reduced by either doing the analysis at
compile-time or by careful optimization of the run-time code.

In some cases we can analyze the program at compile-time and precompute the
sets symbolically. Such an analysis requires the subscripts and data distribution
patterns to be of a form such that closed form expressions can be obtained for the
communications sets. If such an analysis is possible, no set computations need be
done at run-time. Instead, the expressions for the sets can be used directly. The
price paid for this improvement is lack of generality. Compile-time analysis is only
possible when the compiler has enough information about the distribution function,
local, and the subscripting functions f and gk to produce simple formulas for the sets.
In this paper we will not pursue this optimization; interested readers are referred to
[4], which gives some flavor of the analysis.

In many programs the exec(p) and ref(p) sets of a forall loop depend on the
run-time values of the variables involved. In such cases, the sets must be computed
at run-time. The cost of this computation can be lessened, however, by noting that
the variables controlling the communications sets often do not change their values
between executions of the foraliloop. Our run-time analysis takes advantage of this
by computing the exec(p) and ref(p) sets only the first time they are needed and
saving them for later loop executions. This amortizes the cost of the run-time analysis
over many repetitions of the forall, lowering the overall cost of the computation. This
method is generally applicable and, if the forall is executed frequently, acceptably
efficient. The next section shows how this method can be applied in a simple example.

3.3 Run-time Analysis

In this section we apply our analysis to the program in Figure 4. This models a simple
partial differential equation solver on a user-defined mesh. Arrays a and old-.a store
values at nodes in the mesh, while array adj holds the adjacency list for the mesh
and coef stores algorithm-specific coefficients. This arrangement allows the solution
of PDEs on irregular meshes, and is quite common in practice. We will only consider
the computational core of the program, the second forall statement.

The reference to old-.a[adj[i, jJ] in this program creates a communications pattern
dependent on data (adj[i,jD which cannot be fully analyzed by the compiler. Thus,
the ref(p) sets and the communications sets derived from them must be computed at
run-time. We do this by running a modified version of the forall called the inspector
before running the actual forall. The inspector only checks whether references to dis
tributed arrays are local. If a reference is local, nothing more is done. If the reference
is not local, a record of it and its "horne" processor is added to a list of elements to be
received. This approach generates the in(p, q) sets and, as a side effect, constructs the
sets of local iterations (exec(p) n ref(p)) and nonlocal iterations (exec(p) - ref(p)).
To construct the out(p, q) sets, we note that out(p, q) = in(q,p). Thus, we need only
route the sets to the correct processors. To avoid excessive communications overhead
we use Fox's Crystal router [3] which handles such communications without creating

9

processors Precs : array[l..P] with P in l..n;
var a, old_a: array[l..n] of real dist by [block J on Procs;

count: array[l..n] of integer dist by [block J on Precsj
adj : array[l..n, 1..4] of integer dist by [block, * J on Procsj
coef: array[Ln, 1..4] of real dist by [block, *] on Procs;

- - code to set up adjacency and coefficient arrays 'adj' and 'coe/' goes here

while (not converged) do

- - copy mesh values
forall i in l..n on old_a[i}.loc do

oldAi] := ali];
endj

- - perform relaxation (computational core)
forall i in 1..n on a[i].loc do

var x: real;
x:= 0.0;
for j in l..count[i] do

x := x + coetjiJ] • old_a! adj[iJ]];
end;
if (counl[!] > 0) then ali] := x; end;

end;

code to check convergence goes here

end;

Figure 4: Nearest-neighbor relaxation

10

record
frOffiJlroc: integer;
to"proc: integer;
low: integer;
high: integer;
buffer: ~reali

end;

- - processor sending the message
-- processor receiving the message
-- lower bound of array range
-- u.pper bou.nd of array range
-- pointer to memory containing message

Figure 5: Representation of in and out sets

bottlenecks. Once this is accomplished, we have all the sets needed to execute the
communications and computation of the original forall, which are performed by the
part of the program which we call the executor. The executor consists of the two for
loops shown in Figure 3 which perform the local and nonlocal computations.

The representation of the in(p, q) and out(p, q) sets deserves mention, since this
representation has a large effect on the efficiency of the overall program. We repre
sent these sets as dynamically-allocated arrays of the record shown in Figure 5. Each
record contains the information needed to access one contiguous block of an array
stored on one processor. The first two fields identify the sending and receiving pro
cessors. On processor p, the field from.:proc will always be p in the out set and the
field to..:proc will be p in the in set. The low and high fields give the lower and upper
bounds of the block of the array to be communicated. In the case of multi-dimensional
arrays, these fields are actually the offsets from the base of the array on the home
processor. To fill these fields, we assume that the home processors and element offsets
can be calculated by any processorj this assumption is justified for static distributions
such as we use. The final buffer field is a pointer to the communications buffer where
the range will be stored. This field is only used for the in set when a communicated
element is accessed. When the in set is constructed, it is sorted on the from_proc
field, with the low field serving as a secondary key. Adjacent ranges are combined
where possible to minimize the number of records needed. The global concatenation
process which creates the out sets sorts them on the to_proc field, again using low
as the secondary key. If there are several arrays to be communicated, we can add a
symbol field identifying the array; this field then becomes the secondary sorting key,
and low becomes the tertiary key.

Our use of dynamically-allocated arrays was motivated by the desire to keep the
implementation simple while providing quick access to communicated array elements.
An individual element can be accessed by binary search in O(logr) time (where r is
the number of ranges), which is optimal in the general case here. Sorting by processor
id also allowed us to combine messages between the same two processors, thus saving
on the number of messages. Finally, the arrays allowed a simple implementation of
the concatenation process. The disadvantage of sorted arrays is the insertion time of
O(r) when the sets are built. In future implementations, we may replace the arrays
by binary trees or other data structure allowing faster insertion while keeping the

11

same access time.
The above approach is clearly a brute-force solution to the problem, and it is not

clear that the overhead of this computation will be low enough to justify its use.
As explained above, we can alleviate some of this overhead by observing that the
communications patterns in this forall will be executed repeatedly. The adj array
is not changed in the while loop, and thus the communications dependent on that
array do not change. This implies that we can save the in(p, q) and out(p, q) sets
between executions of the forall to reduce the run-time overhead.

Figure 6 shows a high-level description of the code generated by this run-time
analysis for the relaxation forall. Again, the figure gives pseudocode for processor p
only. In this case the communications sets must be calculated (once) at run-time.
The sets are stored as lists, implemented as explained above. Here, loea/Jist stores
exec(p) n ref(p); nonlocalJist stores exec(p) - ref(p)j and recvJist and sendJist
store the in(p, q) and out(p, q) sets, respectively. The statements in the first if state
ment compute these sets by examining every reference made by the forall on proces
sor p. As discussed above, this conditional is only executed once and the results saved
for future executions of the forall. The other statements are direct implementations
of the code in Figure 3, specialized to this example. The locality test in the nonlocal
computations loop is necessary because even within the same iteration of the forall,
the reference old..a[adj[i,j]] may be sometimes local and sometimes nonlocal. We
discuss the performance of this program in the next section.

4 Performance

To test the efficacy of the analysis in Section 3, we hand-translated the relaxation
program shown in Figure 6 into C for execution on the NCUBE/7 in our department.
We ran the resulting programs for several sizes of the hypercube, measuring the
times for various sections of the codes. The results of those tests are given in the
subsections below. We are currently debugging a compiler which can perform these
transformations automatically, and will present the performance data from programs
compiled with this system in future reports. However, since the code generated by
the compiler is virtually identical to that produced by hand, we expect no surprises.

Figure 7 tabulates the execution times for the program of Figure 6; Figure 8 graphs
this data and data from a variation of the program. The adj and coef matrices used
describe the ordinary five-point Jacobi iterations on a regular 64x 64 grid repeated 100
times. Nearly linear speedups can be seen in both the table and the graph, despite the
overhead of run-time analysis. The graph plots the total execution times from Figure 7
as a dotted line. The times for computation only and message passing only (which
does not include the time for the inspector loop) are plotted as dashed lines; the total
time for the program closely follows the computation line. To show the advantage
of not recomputing the communications sets, we modified the program to execute
the inspector loop on every forall iteration. These times are shown as the solid line.
Note the separation of this line from the "Saved Analysis" and "Computation Only"

12

Code executed on processor p

if (first-time) then -- Compute sets for later use
localJist := nonlocaUist := sendJist := recvJist := NILj
for each i E local.(p) do

flag := truej
for each j E {I, 2, ... , count[iJ} do

if (adj[i,j] 'l-Iocalold~(p)) then
Add old..a[adj(i,j)] to recvJist
:flag := falsej

endj
end;
if (flag) then Add i to localJist

else Add i to nonlocaUist
end;

end;
Globally combine recvJist from all processors into sendJist

end;
for each msg E sendJist do . ~ Send messages to other processors

send(msg);
endj
for each i E 10ealJist do - - Do local computations

Onginalloop body
end;
for each msg E recvJist do . - Receive messages from other processors

reeve msg) and add contents to msgJist
end;
for each i E nonlocalJist do - - Do nonlocal computations

x:= O.Oj
foreachj E {1,2, ... ,count[iJ} do

if (adj[i,j] E local.ld~(p)) then
tmp := old..a[adj[iJ]];

else
tmp := Search msgJist for old..a[adj[i,j]]

endj
x := x + coef[ij] * tmpj

end;
if (count!i] > 0) then ali] := X; end;

end;

Figure 6: Pseudocode message passing version of Figure 4

13

linesj this indicates the large overhead of the repeated analysis.
The overhead due to the run-time analysis depends strongly on the number of

processors and whether its results can be reused. If the run-time analysis is per
formed only once, its overhead varies from 10% for one processor down to 2% for 128
processors. This is equivalent to 80% of one extra iteration in the single-processor
case and 10 extra iterations in the 128-processor casej we consider this to be an ac·
ceptable overhead. The repeated analysis situation, however, has an 80% overhead
for one processor and a 1000% overhead for 128 processors. Such "efficiencyn would
certainly be unacceptable.

5 Related Work

There are many other projects concerned with compiling programs for nonshared
memory parallel machines. Three in particular break away from the message passing
paradigm and are thus closely related to our work.

Kennedy and his coworkers [1] compile programs for distributed memory by first
creating a version which computes its communications at run-time. They then use
standard compiler transformations such as constant propagation and loop distribution
to optimize this version into a form much like ours. Their optimizations appear to fail
in our run-time analysis cases. If significant compile-time optimizations are possible,
their results appear to be similar to our compile-time analysis in [4]. We extend their
work in our run-time analysis by saving information on repeated communications
patterns. It is not obvious how such information saving could be incorporated into
their method without devising new compiler transformations. We also provide a more
top·down approach to analyzing the communications, while their optimizations can
be characterized as bottom-up.

Rogers and Pingali [9] suggest run-time resolution of communications for the func
tionallanguage Id Nouveau. They do not attempt to save information between execu
tions of their parallel constructs, however. Because the information is not saved, they
label run-time resolution as "fairly inefficient" and concentrate on optimizing special
cases. These cases appear to correspond roughly to our compile-time analysis. We ex
tend their work by saving the communications information between forall executions
and by providing a common framework for run-time and compile-time resolution.

Crowley et al [2] compute data-dependent communications patterns in a prepro
cessor, producing schedules for each processor to execute later. This preprocessing
is done off-line, although they are currently integrating this with the actual compu
tation as is done with our system. Their execution schedules also take into account
inter-iteration dependencies, something not necessary in our system since we currently
start with completely parallel loops. They do not give any performance figures for
their preprocessor, although they do note that given its l.lrelatively high" complexity,
parallelization will be required in any practical system. Saving the information about
forall communications between executions is very similar between our two works. A
major difference from our work is that they explicitly enumerate all array references (

14

Nearest-neighbor relaxation 64 X 64 mesh 100 iterations• •
setup communications computation

processors total time time time time
1 107614 844 3 106600
2 54819 625 169 53951
4 29281 423 291 28531
8 15629 311 392 14902

16 8853 258 467 8087
32 5519 237 527 4681
64 3257 230 565 2333

Figure 7: Performance of run-time analysis

200000

20000

Time (msl

2000

Repeated Analysis

Saved Analysis

Communication Only ""'---0+<

200

20

-+- - - -*" - --*-- ... --.. -..,,,,,,
1 2 4 8 16 32 64

Computation Only *---x

Number of Processors

Figure 8: Performance graph of run-time analysis

15

local and nonlocal) in a "list". This eliminates the overhead of checking and searching
for nonlocal references during the loop execution but requires more storage than our
implementation. We also differ in that we consider compile-time optimizations, which
they do not attempt.

6 Conclusions

Current programming environments for distributed memory architectures do not pro
vide any support for mapping an application onto the machine. In particular, the lack
of a global name space implies that the algorithms have to be specified at a relatively
low level. This not only increases the complexity of the program but also hard wires
the choices inhibiting experimentation.

In this paper, we have described an environment which allows the user to specify
algorithms at a fairly high-level using a global name space. The user has to make
minimal additions to a sequential version of the algorithm; the low level details of
local array indexing, message passing, etc. are left to the compiler.

We describe a system by which this transformation can be done automatically,
and show that it can be implemented with acceptable efficiency. Our system allows
the messages to be generated either at compile-time or at run-time. The compile-time
analysis results in faster programs, but is only possible if the compiler has sufficient
information about the program. We expect the performance of codes produced by
compile-time analysis to be similar to that of hand-coded versions of the algorithm.
Run-time analysis, while slower, is more general. Under certain circumstances even
the run-time analysis can be executed efficiently by saving information. Our experi
ence suggest that this is a viable approach for many classes of parallel programs.

The environment and language constructs described here are the first steps to
wards easing the task of programming nonshared memory machines. Further expe
rience is needed with more complex and real applications to determine the usability,
generality and efficacy of such an approach.

References

[I} D. Callahan and K. Kennedy. Compiling programs for distributed-memory mul
tiprocessors. Journal of Supercomputing, 2:151-169, 1988.

[2] K. Crowley, J. Saltz, R. Mirchandaney, and H. Berryman. Run-time scheduling
and execution of loops on message passing machines. lCASE Report 89-7, Institute
for Computer Applications in Science and Engineering, Hampton, VA, January
1989.

[3] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving
Problems on Concurrent Processors, Volume 1. Prentice-Hall, Englewood Cliffs,
NJ,1986.

16

[4J C. Koelbel and P. Mehrotra. Compiler transformations for non-shared memory
machines. In Proceedings of the 4th International Conference on Supercomputing,
volume 1, pages 390-397, May 1989.

[5] P. Mehrotra. Progranuning parallel architectures: The BLAZE family of lan~

guages. In Proceedings of the Third SIAM Conference on Parallel Processing for
Scientific Computing, pages 289-299, December 1988.

[6] P. Mehrotra and J. V. Rosendale. The BLAZE language: A parallel language for
scientific programming. Parallel Computing, 5:339-361, 1987.

[7J P. Mehrotra and J. Van Rosendale. Compiling high level constructs to distributed
memory architectures. In Proceedings of the Fourth Conference on Hypercube
Concurrent Computers and Applications, March 1989.

[8] P. Mehrotra and J. Van Rosendale. Parallellanguage constructs for tensor product
computations on loosely coupled architectures. Technical Report 89-41, lCASE,
September 1989. (To appear in Supercomputing '89).

[9] A. Rogers and K. Pingali. Process decomposition through locality of reference. In
Conference on Programming Language Design and Implementation, pages 1-999.
ACM SIGPLAN, June 1989.

17

	Supporting Shared Data Structures on Distributed Memory Architectures
	Report Number:
	

	tmp.1477339628.pdf.eqBbW

