
Supporting Social Recommendations with

Activity-Balanced Clustering

F. Maxwell Harper, Shilad Sen, Dan Frankowski
GroupLens Research

University of Minnesota
Minneapolis, MN 55455, USA

{harper, ssen, dfrankow}@cs.umn.edu

ABSTRACT

In support of social interaction and information sharing, online
communities commonly provide interfaces for users to form or
interact with groups. For example, a user of the social music
recommendation site last.fm might join the “First Wave Punk”
group to discuss his or her favorite band (The Clash) and listen to
playlists generated by fellow fans. Clustering techniques provide
the potential to automatically discover groups of users who appear
to share interests. We explore this idea by describing algorithms
for clustering users of an online community and automatically
describing the resulting user groups. We designed these
techniques for use in an online recommendation system with no
pre-existing group functionality, which led us to develop an
“activity-balanced clustering” algorithm that considers both user
activity and user interests in forming clusters.

Categories and Subject Descriptors

H.5.3 [Information Interfaces and Presentation]: Group and

Organizational Interfaces – Web-based Interaction; I.5.3 [Pattern

Recognition]: Clustering – Algorithms

General Terms

Algorithms, Design, Human Factors

Keywords

Activity-balanced clustering, user group summarization.

1. INTRODUCTION
Online communities offer new opportunities for social interaction
and information sharing. Interfaces that support activities such as
posting, tagging, and rating allow community members to share
information as well as to create and sustain relationships. Online
communities take many forms, from discussion forums to social
bookmarking sites to recommender systems.

Preece [8] advocates that community designers should think both

in terms of interface usability and in terms of community
sociability. Usable interfaces allow members to discover and use
system features effectively, while sociable systems encourage user
interactions and the formation of a community purpose. In this
paper, we consider algorithms in support of essentially sociable
features – user groups and social recommendations – and examine
techniques for making these features more understandable for
users.

User group features are typically intended to facilitate information
exchange and social interaction. For example, Flickr, an online
photo sharing community, allows members to organize and join
public and private groups in order to share and discuss photos
among friends or others with shared interests. Large groups may
form around common interests (e.g. the “Hardcore Street
Photography” group has 12,000 members), and coexist with small
groups that cater to more personal relationships (e.g. the “Friends
of Hatfield Forest” group has 4 members).

Group interfaces effectively support the notion of social
recommendations, where members trade recommendations
through social features rather than through an algorithmic process
such as collaborative filtering. Last.fm, an online community
about music, allows members to publish information about the
songs they listen to; the group features allow members to find
others with similar interests. Through browsing the 45 member
“Yanni” group, one might find new friends or discover new artists
to listen to by browsing other Yanni lovers' playlists.
StumbleUpon, a social recommender for web pages, also supports
groups for interest areas. Members might join the “Cooking
Websites” group to find recommendations for great cooking
resources from other Stumblers who like to cook.

In this research, we explore a new paradigm of user group features
by looking at algorithms for automatically forming and describing
user groups. By automatically assigning users to a group, all users
have access to group-based social recommendations from their
first login, whether or not they know others in the system and
irrespective of their commitment to the system. Also, automatic
grouping has the capability of forming groups based on shared
traits or preferences, which might improve the accuracy or
believability of social recommendations.

To be specific, we introduced “movie groups” into MovieLens
(http://movielens.org), an online movie recommender system.
MovieLens was originally built to allow members to rate movies
and receive algorithmically generated movie recommendations
[9]; it has over time evolved into an online community that
supports discussion [4] and tagging [10]. In this paper, we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
RecSys’07, October 19–20, 2007, Minneapolis, Minnesota, USA.
Copyright 2007 ACM 978-1-59593-730-8/07/0010...$5.00.

165

describe the methods of “activity-balanced clustering” and
automatic “user group summarization” we developed to
algorithmically form and describe the movie groups

2. BACKGROUND
Clustering algorithms partition sets of data into groups based on
measurements of similarity between constituent elements [6]. In
subsequent sections, we describe methods for clustering
MovieLens users based on their movie rating profiles. To compute
the similarity between two users, we calculate the adjusted cosine
similarity between vectors of movie ratings; this is standard
practice in recommender systems research [9].

Based on our design of the movie groups feature, we wish to
generate a fixed number of clusters, with each cluster containing
approximately the same number of users. Distributing data equally
among clusters is known as “balanced clustering” [1]. Most
“standard” clustering algorithms such as k-means may produce
clusters of widely differing sizes.

Our design is premised on the belief that movie groups are more
interesting and useful if users can understand the characteristics
that define and differentiate the groups. There are several
approaches to the problem of describing clusters; most relevant to
our research is the practice of choosing a cluster’s
“representative” items. For example, researchers have summarized
clusters of text documents by choosing representative words.
Intuitive approaches for summarizing text may lead to choosing
bland or obscure summary words [7], problems that we revisit in
this paper in a new context.

Both algorithms that we present in this research draw on prior
work on stable matching algorithms. Stable matching is a process
for matching elements of two sets such that there does not exist
any pair of elements that would both prefer to be matched
together over their current match. We use a variant of the Gale-
Shapley matching algorithm [3], which begins with each element
defining a ranked list of preferences for elements in the other set,
and continues with a series of iterations where elements from one
set “propose” to elements in the other set.

3. ACTIVITY-BALANCED CLUSTERING
Our task is to create user groups; our approach is algorithmic
clustering. Prerequisite to clustering is picking some dimension
along which to define user similarity, data that might be found by
looking at profile data (explicitly given) or usage log data
(implicitly observed). In MovieLens, we have chosen to group
users based on their movie rating profiles, since these data offer us
the greatest depth and coverage of any data available.

Recall that we are designing for sociability. In support of this
goal, we wish to create groups where each group contains about
the same number of active users, because groups without activity
cannot interact and share social recommendations. We have
chosen to define an “active user” as one who has logged in during
each of the past three months. At the time of our study, there were
1,394 such active users – 25% of the total number of users to visit
MovieLens during those three months. These active users
substantially affect visible contributions to MovieLens,
accounting for 84% of forum posts during this time period.
However, they only accounted for 22% of movie ratings. Thus, in
order to balance the level of shared ratings information available

for display, we added an additional requirement that all groups
contain approximately the same total number of members.

3.1 Clustering Procedure
Given our requirement for cluster balance, we do not believe
standard data clustering techniques are sufficient. Thus, we
developed a new two stage approach to clustering users (see
Algorithm 1). Stage 1 uses balanced agglomerative clustering to
build high-quality balanced clusters of hundreds of active users
while Stage 2 uses stable matching, a computationally efficient
technique, for assigning thousands of less active users in a
balanced fashion. This two stage approach is related to and
inspired by prior work in balanced clustering algorithms [1]. Let
U be the set of all users, A be the set of recently active users, and
U-A be the set of all other users. We desire k clusters as output.

Stage 1: A balanced agglomerative clustering algorithm

1. Consider each user in A to be a cluster of

size one. These clusters are not "done".

2. Until there are k "done" clusters:

2.1. Merge the two most similar clusters

that are not "done". Call this cluster c.

2.2. If |c| >= |A|/k, remove the user in c

least similar to c's centroid until |c| ==
k. Declare cluster c "done".

Stage 2: A stable matching algorithm

1. Consider each user in U-A to be

"unmatched".

2. For each cluster output by Stage 1, rank

all users in U-A according to adjusted cosine
similarity between the user and the cluster
centroids

3. While there exists an "unmatched" user,

for each cluster c:

3.1. Until cluster c finds a user to add, c

proposes to the highest ranked user u that
it has not yet proposed to.

3.1.1. u accepts the proposal if it is

"unmatched" or if it prefers c to the
cluster it is currently matched with.

3.1.2. If u accepts, consider u to be

"matched", remove u from any previously
matched clusters, and add u to c.

Algorithm 1. Activity-Balanced Clustering

3.2 Evaluation
In this section, we provide a preliminary evaluation of the
performance of activity-balanced clustering, using (1) standard
clustering metrics, and (2) a comparison with standard k-means
clustering on several key indicators. We collected data by running
both the activity-balanced clustering procedure described above
and standard k-means on the dataset of MovieLens users who had
logged in during the past year (n=18,760).

Two useful metrics for evaluating the output of a clustering
algorithm are compactness and separation [5]. We strive for low
compactness scores and high separation scores, since a smaller
compactness value represents a cluster with less variance, and a
higher separation value represents clusters that are more distinct.
Table 1 shows the result of our analysis; activity-balanced
clustering outperforms k-means for both metrics in this analysis.

166

Table 1. Cluster compactness and separation for activity-

balanced and k-means clustering on MovieLens users.

 Compactness Separation

Activity-balanced 0.93 0.75

k-means 0.99 0.41

Cluster quality is not the whole story. We are also interested in the
balancing performance of activity-balanced clustering as
compared with an unbalanced technique such as k-means. Table 2
compares the activity-balanced clustering algorithm with k-means
in terms of the standard deviation of the number of users per
cluster and the number of active users per cluster. Activity-
balanced clustering produces far more uniform clusters than k-
means, both in terms of the total number of users per cluster, and
in terms of the number of active users. K-means resulted with one
very large cluster (with 74% of all the users, and 84% of the
active users) and nine very small clusters, reflected in the larger
standard deviation. Clearly, k-means would not be appropriate
given our requirements – contrary to our goal of sociability, k-
means might lead to one very successful group, and nine very
quiet groups. In comparison, the clusters generated by activity-
balanced clustering ranged between 9-11% of users each, and
between 6-13% of active users each.

Table 2. Standard deviation of the number of users or active

users per cluster across three clustering runs.

 Std Dev # Users Std Dev # Active Users

Activity-balanced 2.87 22.00

k-means 4243.01 334.19

4. USER GROUP SUMMARIZATION
As a result of running activity-balanced clustering, we had ten
“movie groups” each consisting of thousands of users. When
users log in and discover their new group, they are bound to ask
why they were assigned to one group and not another. Preece's
call for considering usability tells us that we should present the
groups so that members can determine why they have been
grouped, and what other users in their group might be like. We
also wish for our groups to appear to be distinct from one another
– having ten similar-looking groups might be confusing to users.

Previous work has described clusters by picking “representative”
entities for display (e.g., [7]). Were we to take this approach in
MovieLens, we might pick a few users to display, or we might
construct “meta-users” that represent cluster centroids. Since all
users express themselves through rating movies, we summarize
clusters by displaying their representative movies.

However, picking representative movies presents several
interesting challenges related to what has been called the “banana
problem” [2]. Because bananas are such a commonly purchased
item in (United States) grocery stores, a recommendation system
that doesn't know any better might always recommend bananas,
irrespective of context or state. The authors of this paper might
also label this the “Shawshank Redemption problem”, where all
clusters of users show a strong (average) preference for a 1994
movie called The Shawshank Redemption. Of the ten movie
groups currently live in MovieLens, eight have The Shawshank

Redemption as one of their two highest rated movies. Because we
wish for our users to be able to distinguish between clusters, we
should not describe a cluster by simply listing its highest rated
movies.

Another approach for choosing representative movies for a cluster
is to pick movies that a cluster likes more than other clusters.
However, this approach also does not lead to unique lists of
representative movies for each cluster, and tends to pick
“average” movies as representative, which does not have face-
validity to users. For example, many users will vocally complain
if they are placed in a group that is represented by the movie The

Return of the Texas Chainsaw Massacre. For good reason.

4.1 Summarization Procedure
Our cluster summarization algorithm, based on stable matching, is
capable of picking well-liked, distinct movies for each cluster. Let
C be the set of k clusters, and M be the set of j movies.

1. Consider each movie in M to be "unmatched".

2. For each cluster in C, rank all movies in M

according to the cluster's average rating for
each movie. Linearly devalue average movie
ratings with fewer than 50 votes.

3. While there exists an "unmatched" movie, for

each cluster c in C:

3.1. Until cluster c finds a movie to add, c

proposes to the highest ranked movie m that
it has not yet proposed to.

3.1.1. m accepts the proposal if it is

"unmatched" or if it prefers c to the
cluster it is currently matched with.

3.1.2. If m accepts, consider m to be

"matched", remove it from any previously
matched clusters, and add to c.

3.2. Remember the order in which movies are

picked. The nth movie picked is the nth most
representative movie for c.

Algorithm 2. User Group Summarization

Intuitively, we might trust 100 ratings with an average of 4.5 stars
more than a single 5 star rating. To model this, we linearly
devalue similarity scores for movies that fewer than 50 co-ratings
(see Algorithm 2, line 2). Other systems might choose different
smoothing techniques for devaluing items with little data.

4.2 Evaluation
To evaluate the types of movies our algorithm returns, we
compare it against several other plausible algorithms:

• POP - (“popularly rated”) Each cluster is summarized by the
movies its users have rated most often

• HR20 - (“high ratings 20”) Each cluster is summarized by the
movies its users have given the highest average rating. Only
consider movies that have been rated by 20 or more of the
cluster's users.

• DM20 - (“differing means 20”) Each cluster is summarized by
the movies its users have rated the highest compared with users
in other clusters. Only consider movies that have been rated by
20 or more of the cluster's users.

In Table 3 we compare these three algorithms with our own
algorithm (MATCH) on a number of dimensions. First, we
consider “popRank” (popularity rank), a proxy for how commonly
recognizable a movie is. The most often rated movie in
MovieLens, Pulp Fiction, has popRank=1 out of the 9,500 movies
in the database. Second, we consider “avgRating” (average
rating), which can range between 0.5 stars and 5 stars. Finally, we
consider “uniqueness”, which we define to be the number of
unique movies that are shown in the ten clusters as the “five most

167

representative movies”. The highest possible uniqueness score is
50 (no clusters have overlap), and the lowest possible score is 5
(all clusters are summarized by the same 5 movies). In Table 4 we
show the top two representative movies from one user group (for
illustrative purposes only). MATCH returns movies with fewer
ratings and a lower average rating than the other algorithms, but
does the best job of providing unique descriptions for each
cluster.

Table 3. A comparison of our user group summarization

technique (MATCH) vs. other techniques in the chosen

movies’ avg. popularity, avg. user rating, and uniqueness.

 MATCH POP HR20 DM20

popRank 1754.0 53.5 801.6 3821.1

avgRating 3.9 4.1 4.2 3.2

uniqueness 50 11 34 48

Table 4. Top-two representative movies for one movie group.

MATCH Das Boot (1981), Blade Runner (1982)

POP Pulp Fiction (1994), The Matrix (1999)

HR20
The Godfather (1972), The Shawshank
Redemption (1994)

DM20
Return of the Texas Chainsaw Massacre (1994),
Cursed (2005)

5. DISCUSSION
In this paper, we have examined the problems of automatically
grouping users and describing the resulting groups. Two methods
result, one for activity-balanced clustering, and the other for user
group summarization by way of choosing representative movies.

Using these groupings, we have modified MovieLens to give each
movie group a home page, where information about activity,
recent ratings, recent posts, etc. is shown. Members may browse
these pages to explore the MovieLens zeitgeist. This research is
part of a larger study where we are examining different forms of
attachment in online communities. We save deep analysis of user
behavior for future work. Based on user reactions posted in the
discussion forums (we have received over 90 forum posts about
the groups), there are several lessons to be learned:

• Some users were astounded by how well they were grouped,
others by how badly – they appear to base their judgment
largely on how well they like the five representative movies we
show on the group home page.

• Users wish to know how they were assigned to their group.
Although we told users that they were grouped according to
movie preferences, many wished for more detail.

• Many users agree that they should not be grouped until they
have reached a certain level of contribution (say, 100 movie
ratings). Before then, users might be placed in a newbie-only
group. This would encourage more accurate grouping, which
users appear to value.

• Users were curious to learn about others in their group, and
wished that we had built even more support for social
recommendations than we did.

Most importantly to nurturing the sociability of MovieLens, all
groups have remained active since the launch of the groups (the
standard deviation of the number of 3-month and 1-year active
members across clusters is currently 25.6 and 76.6, respectively).
Activity-balanced clustering has thus-far led to a sustainable set of
user groups.

Time will tell if automatic user grouping is a useful feature in
encouraging sociability in an online community. In future work,
we will examine this question deeply, and evaluate this work from
the perspective of a community designer. We also hope to follow
this work with a more rigorous investigation of the principles of
clustering and describing users in online communities.

6. ACKNOWLEDGMENTS
Our thanks to Sara Drenner for her work implementing the social
recommendations software in MovieLens, to Loren Terveen and
John Riedl for early discussions about clustering, and to Yuqing
Ren, Robert Kraut, Sara Kiesler, and Joe Konstan for their
contributions to the broader scope of this research. This work is
funded by the National Science Foundation, grant IIS 03-24851.

7. REFERENCES
[1] Banerjee, A., Ghosh, J. Scalable Clustering with Balancing

Constraints. Data Mining and Knowledge Discovery, 13(3),
2006.

[2] Burke, R. Integrating Knowledge-Based and Collaborative
Filtering Recommender Systems. Workshop on Artificial

Intelligence for Electronic Commerce, 1999.

[3] Gale, D., Shapley, L. College Admissions and the Stability of
Marriage. American Mathematical Monthly, 69(1), 1962.

[4] Harper, F., Frankowski, D., Drenner, S., Ren, Y., Kiesler, S.,
Terveen, L., Kraut, R., Riedl, J. Talk Amongst Yourselves:
Inviting Users To Participate In Online Conversations. IUI,
2007.

[5] He, J., Tan, A., Tan, C., Sung, S. On Quantitative Evaluation
of Clustering Systems. In Information Retrieval and

Clustering, Kluwer Academic Publishers, 2002.

[6] Jain, A., Murty, M., Flynn, P. Data Clustering: A Review.
ACM Computing Surveys, 31(3), 1999.

[7] Popescul, A., Ungar, L. Automatic Labeling of Document
Clusters, Unpublished Manuscript, Available at
http://citeseer.nj.nec.com/popescul00automatic.html, 2000.

[8] Preece, J. Online Communities: Designing Usability,

Supporting Sociability. John Wiley & Sons, 2000.

[9] Sarwar, B., Karypis, G., Konstan, J., Riedl, J. Item-Based
Collaborative Filtering Recommendation Algorithms. WWW,
2001.

[10] Sen, S., Lam, S., Cosley, D., Rashid, A., Frankowski, D.,
Osterhouse, J., Harper, F., Riedl, J. tagging, community,
vocabulary, evolution. CSCW, 2006.

168

