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ABSTRACT 

In support of social interaction and information sharing, online 
communities commonly provide interfaces for users to form or 
interact with groups. For example, a user of the social music 
recommendation site last.fm might join the “First Wave Punk” 
group to discuss his or her favorite band (The Clash) and listen to 
playlists generated by fellow fans. Clustering techniques provide 
the potential to automatically discover groups of users who appear 
to share interests. We explore this idea by describing algorithms 
for clustering users of an online community and automatically 
describing the resulting user groups. We designed these 
techniques for use in an online recommendation system with no 
pre-existing group functionality, which led us to develop an 
“activity-balanced clustering” algorithm that considers both user 
activity and user interests in forming clusters. 

Categories and Subject Descriptors 

H.5.3 [Information Interfaces and Presentation]: Group and 

Organizational Interfaces – Web-based Interaction; I.5.3 [Pattern 

Recognition]: Clustering – Algorithms 

General Terms 

Algorithms, Design, Human Factors 

Keywords 

Activity-balanced clustering, user group summarization. 

1. INTRODUCTION 
Online communities offer new opportunities for social interaction 
and information sharing. Interfaces that support activities such as 
posting, tagging, and rating allow community members to share 
information as well as to create and sustain relationships. Online 
communities take many forms, from discussion forums to social 
bookmarking sites to recommender systems. 

Preece [8] advocates that community designers should think both 

in terms of interface usability and in terms of community 
sociability. Usable interfaces allow members to discover and use 
system features effectively, while sociable systems encourage user 
interactions and the formation of a community purpose. In this 
paper, we consider algorithms in support of essentially sociable 
features – user groups and social recommendations – and examine 
techniques for making these features more understandable for 
users. 

User group features are typically intended to facilitate information 
exchange and social interaction. For example, Flickr, an online 
photo sharing community, allows members to organize and join 
public and private groups in order to share and discuss photos 
among friends or others with shared interests. Large groups may 
form around common interests (e.g. the “Hardcore Street 
Photography” group has 12,000 members), and coexist with small 
groups that cater to more personal relationships (e.g. the “Friends 
of Hatfield Forest” group has 4 members). 

Group interfaces effectively support the notion of social 
recommendations, where members trade recommendations 
through social features rather than through an algorithmic process 
such as collaborative filtering. Last.fm, an online community 
about music, allows members to publish information about the 
songs they listen to; the group features allow members to find 
others with similar interests. Through browsing the 45 member 
“Yanni” group, one might find new friends or discover new artists 
to listen to by browsing other Yanni lovers' playlists. 
StumbleUpon, a social recommender for web pages, also supports 
groups for interest areas. Members might join the “Cooking 
Websites” group to find recommendations for great cooking 
resources from other Stumblers who like to cook. 

In this research, we explore a new paradigm of user group features 
by looking at algorithms for automatically forming and describing 
user groups. By automatically assigning users to a group, all users 
have access to group-based social recommendations from their 
first login, whether or not they know others in the system and 
irrespective of their commitment to the system. Also, automatic 
grouping has the capability of forming groups based on shared 
traits or preferences, which might improve the accuracy or 
believability of social recommendations. 

To be specific, we introduced “movie groups” into MovieLens 
(http://movielens.org), an online movie recommender system. 
MovieLens was originally built to allow members to rate movies 
and receive algorithmically generated movie recommendations 
[9]; it has over time evolved into an online community that 
supports discussion [4] and tagging [10]. In this paper, we 
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describe the methods of “activity-balanced clustering” and 
automatic “user group summarization” we developed to 
algorithmically form and describe the movie groups 

2. BACKGROUND 
Clustering algorithms partition sets of data into groups based on 
measurements of similarity between constituent elements [6]. In 
subsequent sections, we describe methods for clustering 
MovieLens users based on their movie rating profiles. To compute 
the similarity between two users, we calculate the adjusted cosine 
similarity between vectors of movie ratings; this is standard 
practice in recommender systems research [9]. 

Based on our design of the movie groups feature, we wish to 
generate a fixed number of clusters, with each cluster containing 
approximately the same number of users. Distributing data equally 
among clusters is known as “balanced clustering” [1]. Most 
“standard” clustering algorithms such as k-means may produce 
clusters of widely differing sizes. 

Our design is premised on the belief that movie groups are more 
interesting and useful if users can understand the characteristics 
that define and differentiate the groups. There are several 
approaches to the problem of describing clusters; most relevant to 
our research is the practice of choosing a cluster’s 
“representative” items. For example, researchers have summarized 
clusters of text documents by choosing representative words. 
Intuitive approaches for summarizing text may lead to choosing 
bland or obscure summary words [7], problems that we revisit in 
this paper in a new context. 

Both algorithms that we present in this research draw on prior 
work on stable matching algorithms. Stable matching is a process 
for matching elements of two sets such that there does not exist 
any pair of elements that would both prefer to be matched 
together over their current match. We use a variant of the Gale-
Shapley matching algorithm [3], which begins with each element 
defining a ranked list of preferences for elements in the other set, 
and continues with a series of iterations where elements from one 
set “propose” to elements in the other set. 

3. ACTIVITY-BALANCED CLUSTERING 
Our task is to create user groups; our approach is algorithmic 
clustering. Prerequisite to clustering is picking some dimension 
along which to define user similarity, data that might be found by 
looking at profile data (explicitly given) or usage log data 
(implicitly observed). In MovieLens, we have chosen to group 
users based on their movie rating profiles, since these data offer us 
the greatest depth and coverage of any data available. 

Recall that we are designing for sociability. In support of this 
goal, we wish to create groups where each group contains about 
the same number of active users, because groups without activity 
cannot interact and share social recommendations. We have 
chosen to define an “active user” as one who has logged in during 
each of the past three months. At the time of our study, there were 
1,394 such active users – 25% of the total number of users to visit 
MovieLens during those three months. These active users 
substantially affect visible contributions to MovieLens, 
accounting for 84% of forum posts during this time period. 
However, they only accounted for 22% of movie ratings. Thus, in 
order to balance the level of shared ratings information available 

for display, we added an additional requirement that all groups 
contain approximately the same total number of members. 

3.1 Clustering Procedure 
Given our requirement for cluster balance, we do not believe 
standard data clustering techniques are sufficient. Thus, we 
developed a new two stage approach to clustering users (see 
Algorithm 1). Stage 1 uses balanced agglomerative clustering to 
build high-quality balanced clusters of hundreds of active users 
while Stage 2 uses stable matching, a computationally efficient 
technique, for assigning thousands of less active users in a 
balanced fashion. This two stage approach is related to and 
inspired by prior work in balanced clustering algorithms [1]. Let 
U be the set of all users, A be the set of recently active users, and 
U-A be the set of all other users. We desire k clusters as output. 

Stage 1: A balanced agglomerative clustering algorithm 

1. Consider each user in A to be a cluster of 

size one.  These clusters are not "done". 

2. Until there are k "done" clusters: 

2.1. Merge the two most similar clusters 

that are not "done". Call this cluster c. 

2.2. If |c| >= |A|/k, remove the user in c 

least similar to c's centroid until |c| == 
k. Declare cluster c "done". 

Stage 2: A stable matching algorithm 

1. Consider each user in U-A to be 

"unmatched". 

2. For each cluster output by Stage 1, rank 

all users in U-A according to adjusted cosine 
similarity between the user and the cluster 
centroids 

3. While there exists an "unmatched" user, 

for each cluster c: 

3.1. Until cluster c finds a user to add, c 

proposes to the highest ranked user u that 
it has not yet proposed to. 

3.1.1. u accepts the proposal if it is 

"unmatched" or if it prefers c to the 
cluster it is currently matched with. 

3.1.2. If u accepts, consider u to be 

"matched", remove u from any previously 
matched clusters, and add u to c. 

Algorithm 1. Activity-Balanced Clustering 

3.2 Evaluation 
In this section, we provide a preliminary evaluation of the 
performance of activity-balanced clustering, using (1) standard 
clustering metrics, and (2) a comparison with standard k-means 
clustering on several key indicators. We collected data by running 
both the activity-balanced clustering procedure described above 
and standard k-means on the dataset of MovieLens users who had 
logged in during the past year (n=18,760). 

Two useful metrics for evaluating the output of a clustering 
algorithm are compactness and separation [5]. We strive for low 
compactness scores and high separation scores, since a smaller 
compactness value represents a cluster with less variance, and a 
higher separation value represents clusters that are more distinct. 
Table 1 shows the result of our analysis; activity-balanced 
clustering outperforms k-means for both metrics in this analysis. 
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Table 1. Cluster compactness and separation for activity-

balanced  and k-means clustering on MovieLens users. 

 Compactness Separation 

Activity-balanced 0.93 0.75 

k-means 0.99 0.41 

Cluster quality is not the whole story. We are also interested in the 
balancing performance of activity-balanced clustering as 
compared with an unbalanced technique such as k-means. Table 2 
compares the activity-balanced clustering algorithm with k-means 
in terms of the standard deviation of the number of users per 
cluster and the number of active users per cluster. Activity-
balanced clustering produces far more uniform clusters than k-
means, both in terms of the total number of users per cluster, and 
in terms of the number of active users. K-means resulted with one 
very large cluster (with 74% of all the users, and 84% of the 
active users) and nine very small clusters, reflected in the larger 
standard deviation. Clearly, k-means would not be appropriate 
given our requirements – contrary to our goal of sociability, k-
means might lead to one very successful group, and nine very 
quiet groups. In comparison, the clusters generated by activity-
balanced clustering ranged between 9-11% of users each, and 
between 6-13% of active users each. 

Table 2. Standard deviation of the number of users or active 

users per cluster across three clustering runs. 

  Std Dev # Users Std Dev # Active Users 

Activity-balanced 2.87 22.00 

k-means 4243.01 334.19 

4. USER GROUP SUMMARIZATION 
As a result of running activity-balanced clustering, we had ten 
“movie groups” each consisting of thousands of users. When 
users log in and discover their new group, they are bound to ask 
why they were assigned to one group and not another. Preece's 
call for considering usability tells us that we should present the 
groups so that members can determine why they have been 
grouped, and what other users in their group might be like. We 
also wish for our groups to appear to be distinct from one another 
– having ten similar-looking groups might be confusing to users. 

Previous work has described clusters by picking “representative” 
entities for display (e.g., [7]). Were we to take this approach in 
MovieLens, we might pick a few users to display, or we might 
construct “meta-users” that represent cluster centroids. Since all 
users express themselves through rating movies, we summarize 
clusters by displaying their representative movies. 

However, picking representative movies presents several 
interesting challenges related to what has been called the “banana 
problem” [2]. Because bananas are such a commonly purchased 
item in (United States) grocery stores, a recommendation system 
that doesn't know any better might always recommend bananas, 
irrespective of context or state. The authors of this paper might 
also label this the “Shawshank Redemption problem”, where all 
clusters of users show a strong (average) preference for a 1994 
movie called The Shawshank Redemption. Of the ten movie 
groups currently live in MovieLens, eight have The Shawshank 

Redemption as one of their two highest rated movies. Because we 
wish for our users to be able to distinguish between clusters, we 
should not describe a cluster by simply listing its highest rated 
movies. 

Another approach for choosing representative movies for a cluster 
is to pick movies that a cluster likes more than other clusters. 
However, this approach also does not lead to unique lists of 
representative movies for each cluster, and tends to pick 
“average” movies as representative, which does not have face-
validity to users. For example, many users will vocally complain 
if they are placed in a group that is represented by the movie The 

Return of the Texas Chainsaw Massacre. For good reason. 

4.1 Summarization Procedure 
Our cluster summarization algorithm, based on stable matching, is 
capable of picking well-liked, distinct movies for each cluster. Let 
C be the set of k clusters, and M be the set of j movies. 

1. Consider each movie in M to be "unmatched". 

2. For each cluster in C, rank all movies in M 

according to the cluster's average rating for 
each movie.  Linearly devalue average movie 
ratings with fewer than 50 votes. 

3. While there exists an "unmatched" movie, for 

each cluster c in C: 

3.1. Until cluster c finds a movie to add, c 

proposes to the highest ranked movie m that 
it has not yet proposed to. 

3.1.1. m accepts the proposal if it is 

"unmatched" or if it prefers c to the 
cluster it is currently matched with. 

3.1.2. If m accepts, consider m to be 

"matched", remove it from any previously 
matched clusters, and add to c. 

3.2. Remember the order in which movies are 

picked.  The nth movie picked is the nth most 
representative movie for c. 

Algorithm 2. User Group Summarization 

Intuitively, we might trust 100 ratings with an average of 4.5 stars 
more than a single 5 star rating. To model this, we linearly 
devalue similarity scores for movies that fewer than 50 co-ratings 
(see Algorithm 2, line 2). Other systems might choose different 
smoothing techniques for devaluing items with little data. 

4.2 Evaluation 
To evaluate the types of movies our algorithm returns, we 
compare it against several other plausible algorithms: 

• POP - (“popularly rated”) Each cluster is summarized by the 
movies its users have rated most often 

• HR20 - (“high ratings 20”) Each cluster is summarized by the 
movies its users have given the highest average rating. Only 
consider movies that have been rated by 20 or more of the 
cluster's users. 

• DM20 - (“differing means 20”) Each cluster is summarized by 
the movies its users have rated the highest compared with users 
in other clusters. Only consider movies that have been rated by 
20 or more of the cluster's users. 

In Table 3 we compare these three algorithms with our own 
algorithm (MATCH) on a number of dimensions. First, we 
consider “popRank” (popularity rank), a proxy for how commonly 
recognizable a movie is. The most often rated movie in 
MovieLens, Pulp Fiction, has popRank=1 out of the 9,500 movies 
in the database. Second, we consider “avgRating” (average 
rating), which can range between 0.5 stars and 5 stars. Finally, we 
consider “uniqueness”, which we define to be the number of 
unique movies that are shown in the ten clusters as the “five most 
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representative movies”. The highest possible uniqueness score is 
50 (no clusters have overlap), and the lowest possible score is 5 
(all clusters are summarized by the same 5 movies). In Table 4 we 
show the top two representative movies from one user group (for 
illustrative purposes only). MATCH returns movies with fewer 
ratings and a lower average rating than the other algorithms, but 
does the best job of providing unique descriptions for each 
cluster. 

Table 3. A comparison of our user group summarization 

technique (MATCH) vs. other techniques in the chosen 

movies’ avg. popularity, avg. user rating, and uniqueness. 

 MATCH POP HR20 DM20 

popRank 1754.0 53.5 801.6 3821.1 

avgRating 3.9 4.1 4.2 3.2 

uniqueness 50 11 34 48 
 

Table 4. Top-two representative movies for one movie group. 

MATCH Das Boot (1981), Blade Runner (1982) 

POP Pulp Fiction (1994), The Matrix (1999) 

HR20 
The Godfather (1972), The Shawshank 
Redemption (1994) 

DM20 
Return of the Texas Chainsaw Massacre (1994), 
Cursed (2005) 

5. DISCUSSION 
In this paper, we have examined the problems of automatically 
grouping users and describing the resulting groups. Two methods 
result, one for activity-balanced clustering, and the other for user 
group summarization by way of choosing representative movies.  

Using these groupings, we have modified MovieLens to give each 
movie group a home page, where information about activity, 
recent ratings, recent posts, etc. is shown. Members may browse 
these pages to explore the MovieLens zeitgeist. This research is 
part of a larger study where we are examining different forms of 
attachment in online communities. We save deep analysis of user 
behavior for future work. Based on user reactions posted in the 
discussion forums (we have received over 90 forum posts about 
the groups), there are several lessons to be learned: 

• Some users were astounded by how well they were grouped, 
others by how badly – they appear to base their judgment 
largely on how well they like the five representative movies we 
show on the group home page. 

• Users wish to know how they were assigned to their group. 
Although we told users that they were grouped according to 
movie preferences, many wished for more detail. 

• Many users agree that they should not be grouped until they 
have reached a certain level of contribution (say, 100 movie 
ratings). Before then, users might be placed in a newbie-only 
group. This would encourage more accurate grouping, which 
users appear to value. 

• Users were curious to learn about others in their group, and 
wished that we had built even more support for social 
recommendations than we did. 

Most importantly to nurturing the sociability of MovieLens, all 
groups have remained active since the launch of the groups (the 
standard deviation of the number of 3-month and 1-year active 
members across clusters is currently 25.6 and 76.6, respectively). 
Activity-balanced clustering has thus-far led to a sustainable set of 
user groups. 

Time will tell if automatic user grouping is a useful feature in 
encouraging sociability in an online community. In future work, 
we will examine this question deeply, and evaluate this work from 
the perspective of a community designer. We also hope to follow 
this work with a more rigorous investigation of the principles of 
clustering and describing users in online communities. 
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