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Abstract

Background: Identifying relevant studies for inclusion in a systematic review (i.e. screening) is a complex, laborious
and expensive task. Recently, a number of studies has shown that the use of machine learning and text mining
methods to automatically identify relevant studies has the potential to drastically decrease the workload involved in
the screening phase. The vast majority of these machine learning methods exploit the same underlying principle, i.e. a
study is modelled as a bag-of-words (BOW).

Methods: We explore the use of topic modelling methods to derive a more informative representation of studies.
We apply Latent Dirichlet allocation (LDA), an unsupervised topic modelling approach, to automatically identify topics
in a collection of studies. We then represent each study as a distribution of LDA topics. Additionally, we enrich topics
derived using LDA with multi-word terms identified by using an automatic term recognition (ATR) tool. For evaluation
purposes, we carry out automatic identification of relevant studies using support vector machine (SVM)-based
classifiers that employ both our novel topic-based representation and the BOW representation.

Results: Our results show that the SVM classifier is able to identify a greater number of relevant studies when using
the LDA representation than the BOW representation. These observations hold for two systematic reviews of the
clinical domain and three reviews of the social science domain.

Conclusions: A topic-based feature representation of documents outperforms the BOW representation when
applied to the task of automatic citation screening. The proposed term-enriched topics are more informative and less
ambiguous to systematic reviewers.

Keywords: Topic model, Text mining, Machine learning, Systematic reviews

Background
The screening phase of systematic reviews aims to iden-
tify citations relevant to a research topic, according to a
certain pre-defined protocol [1–4] known as the Popula-
tion, the Intervention, the Comparator and the Outcome
(PICO) framework. This framework seeks to identify
the Population, the Intervention, the Comparator and
the Outcome. This process is usually performed man-
ually, which means that reviewers need to read thou-
sands of citations during the screening phase, due to the
rapid growth of the biomedical literature [5], making it
an expensive and time-consuming process. According to
Wallace et al. [6], an experienced reviewer is able to screen
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two abstracts per minute on average, with more com-
plex abstracts taking longer. Moreover, a reviewer needs
to identify all eligible studies (i.e. 95–100 % recall) [7, 8]
in order to minimise publication bias. The number of
relevant citations is usually significantly lower than the
number of the irrelevant, which means that reviewers
have to deal with an extremely imbalanced datasets. To
overcome these limitations, methods such as machine
learning, text mining [9, 10], text classification [11] and
active learning [6, 12] have been used to partially automate
this process, in order to reduce the workload, without
sacrificing the quality of the reviews. Many approaches
based on machine learning have shown to be helpful in
reducing the workload of the screening phase [10]. The
majority of reported methods exploit automatic or semi-
automatic text classification to assist in the screening
phase. Text classification is normally performed using the
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bag-of-words (BOW) model. The model assumes that the
words in the documents are used as features for the classi-
fication, but their order is ignored. One of the problems of
the BOW model is that the number of unique words that
appear in a complete corpus (a collection of documents)
can be extremely large; using such a large number of fea-
tures can be problematic for certain algorithms. Thus, a
more compact representation of documents is necessary
to allow machine learning algorithms to perform more
efficiently. In contrast to previous approaches that have
used only BOW features, in this study, we systematically
compare the two feature representations (Latent Dirichlet
allocation (LDA) features and BOW features). Addition-
ally, we investigate the effect of using different parameters
(kernel functions) on the underlying classifier (i.e. support
vector machine (SVM)).

Topic analysis
Topic analysis is currently gaining popularity in both
machine learning and text mining applications [13–16]. A
topic model is normally defined as an approach for dis-
covering the latent information in a corpus [17]. LDA [18]
is an example of a probabilistic topic modelling technique
[19], which assumes that a document covers a number
of topics and each word in a document is sampled from
the probability distributions with different parameters, so
each word would be generated with a latent variable to
indicate the distribution it comes from. By computing
the extent to which each topic is represented in a docu-
ment, the content of the document can be represented at a
higher level than possible using the BOW approach, i.e. as
a set of topics. The generative process of LDA follows the
below steps to generate a documentw in a corpusD, while
Table 1 gives a list of all involved notation:

• Choose K topics φ ∼ Dir(nβ)

• Choose topics proportions �θm ∼ Dir(�α)

• For each word wn in document m:

1. Choose a topic zn,m ∼ Multinomial(�θm)

2. Choose a word wn,m from p(wn,m| �φzn,m , �θm), a
multinomial probability conditioned on the
topic zn.

Table 1 Notation in LDA

K Number of topics

�α Hyperparameter on document-topic distribution

�β Hyperparameter on topics-word distribution

�θm A set of parameter vectors for generating a specific topic z in

documentm

φ A set of parameter vectors for generating word w, according to z

wn,m nth word in documentm

zn,m Topic indicator for nth word in documentm

The hyperparameters �α and �β are the parameters of the
prior probability distributions which facilitate calculation.
The hyperparameters are initialized as constant values.
Theymay be considered as hidden variables which require
estimation. The joint probability, i.e. the complete-data
likelihood of a document, can be specified according to
Fig. 1. The joint probability is the basis of many other
derivations [20].

p
(
�wm, �zm, �θm,φ; �α, �β

)
=

one document︷ ︸︸ ︷
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p
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)
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)
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words in document

·p
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)
· p

(
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)
︸ ︷︷ ︸
topics

(1)

Besides LDA, there are many other approaches for
discovering abstract information from a corpus. Latent
semantic analysis [21] makes use of singular value decom-
position (SVD) to discover the semantic information in a
corpus; SVD is a factorization of matrix which has many
applications in statistics and signal processing. Unlike
other topic models producing results, an approach [22]
based on the anchor-word algorithm [23] provides an effi-
cient and visual way for topic discovery. This method
firstly reduces the dimensions of words co-occurrence
matrix into two or three, then identify the convex hull of
these words, which can be considered as a rubber band
holding these words. The words at anchor points are
considered as topics.

Related work
Automatic text classification for systematic reviews has
been investigated by Bekhuis et al. [24] who focussed
on using supervised machine learning to assist with the
screening phase. Octaviano et al. [25] combined two
different features, i.e. content and citation relationship
between the studies, to automate the selection phase as
much as possible. Their strategy reduced workload by
58.2 %. Cohen et al. [26] compared different feature repre-
sentations for supervised classifiers. They concluded that
the best feature set used a combination of n-grams and
Medical Subject Headings (MeSH) [27] features. Felizardo
et al. developed a visual text mining tool that integrated
many text mining functions for systemic reviews and
evaluated the tool with 15 graduate students [28]. The
results showed that the use of the tool is promising
in terms of screening burden reduction. Fiszman et al.
[29] combined symbolic semantic processing with statis-
tical methods for selecting both relevant and high-quality
citations. Frimza et al. [30] introduced a per-question
classification method that uses an ensemble of classi-
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Fig. 1 Latent Dirichlet allocation: a probability graphical model to
describe how to construct a corpus. The filled circle denotes an
observable variable

fiers that exploit the particular protocol used in creating
the systematic review. Jonnalagadda et al. [31] described
a semi-automatic system that requires human interven-
tion. They successfully reduced the number of articles
that needed to be reviewed by 6 to 30 % while main-
taining a recall performance of 95 %. Matwin et al. [32]
exploited a factorised complement naive Bayes classifier
for reducing the workload of experts reviewing journal
articles for building systematic reviews of drug class effi-
cacy. The minimum and maximum workload reductions
were 8.5 and 62.2 %, respectively, and the average over 15
topics was 33.5 %. Wallace et al. [12] showed that active
learning has the potential to reduce the workload of the
screening phase by 50 % on average. Cohen et al. [33] con-
structed a voting perceptron-based automated citation
classification system which is able to reduce the number
of articles that needs to be reviewed by more than 50 %.
Bekhuis et al. [34] investigated the performance of dif-
ferent classifiers and feature sets in terms of their ability
to reduce workload. The reduction was 46 % for SVMs
and 35 % for complement naive Bayes classifiers with
bag-of-words extracted from full citations. From a topic
modelling perspective, Miwa et al. [8] firstly used LDA
to reduce the burden of screening for systematic reviews
using an active learning strategy. The strategy utilised
the topics as another feature representation of documents
when no manually assigned information such as MeSH
terms is available. Moreover, the author used topic fea-
tures for training ensemble classifiers. Similarly, Bekhuis
et al. [35] investigated how the different feature selec-
tions, including topic features, affect the performance of
classification.

Methods
Results obtained by Miwa et al. [8] showed that LDA
features can significantly reduce the workload involved in
the screening phase of a systematic review. Building on
previous approaches, we investigate how topic modelling
can assist systematic reviews. By using topics generated
by LDA as the input features for each document, we train

a classifier and compare it with a classifier trained on the
BOW representation. Technical terms extracted by the
TerMine term extraction web service [36] were located in
each document to allow them to be represented as a set of
words and terms which would make topics more readable
and eliminate ambiguity. The objectives of this paper are
the following:

• To investigate whether LDA can be successfully
applied to text classification in support of the
screening phase in systematic reviews.

• To compare the performance of two methods for text
classification: one based on LDA topics and the other
based on the BOWmodel.

• To evaluate the impact of using different numbers of
topics in topic-based classification.

Experimental design
In order to carry out a systematic comparison of the two
different approaches to text classification, our study is
divided into two parts. Firstly, we evaluate the baseline
approach, i.e. an SVM using BOW features. This SVM
classifier is created using LIBSVM [37]. The second part of
the experiment involves applying LDA for modelling topic
distribution in the datasets, followed by the training of an
SVM-based classifier using the topic distribution as fea-
tures. Documents in the dataset are randomly and evenly
spilt into training and test sets, keeping the ratio between
relevant and irrelevant documents in each set the same as
the ratio in the entire dataset. Henceforth, in this article,
the documents relevant to a topic (i.e. positively labelled
instances) are referred to as “relevant instances”. BOW
features are weighted by term frequency/inverse docu-
ment frequency (TF-IDF) as a baseline. The topic-based
approach applies LDA to produce a topic distribution for
each document.We used Gensim [38], an implementation
of LDA in Python, to predict the topic distribution for
each document. The topic distributions are utilised for
both training and testing the classifier and evaluating the
results. Other modelling strategies and classifiers (e.g. k-
nearest neighbours) were also explored. However, since
they failed to obtain robust results, we do not present
further details.
To evaluate the classifiers, the standard metrics of pre-

cision, recall, F-score, accuracy, area under the receiver
operating characteristic curve (ROC) and precision-recall
curve (PRC). However, in our case, accuracy was found
not to be a suitable indicator of an effective perfor-
mance, due to the significant imbalance between rele-
vant and irrelevant instances in the dataset; this ratio is
1:9 approximately for each corpus (Table 2) which will
be introduced later. Based upon this ratio, weights are
added to every training instance in order to reduce the
influence caused by imbalanced data [39]. In evaluating
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Table 2 Corpus information

Positive instances Total instances Ratio Feature used Type

Youth development 1440 14,538 0.099 Title + abstract Social science

Cigarette packaging 132 3156 0.041 Title + abstract Social science

COPD 196 1606 0.122 Title + abstract Clinical trial

Cooking skill 197 9439 0.021 Text Social science

Proton beam 243 4751 0.051 Title + abstract Clinical trials

classification performance, we place a particular emphasis
on recall since, as explained above, high recall is vital to
achieve inclusiveness, which is considered to be such an
important factor in the perceived validity of a systematic
review.
Since most of our corpora are domain-specific, non-

compositional multi-word terms may lose their original
meaning if we split such terms into constituent words
and ignore word order and grammatical relations. Thus,
multi-word terms are automatically extracted using Ter-
Mine, which is a tool designed to discover multi-word
terms by ranking candidate terms from a part-of-speech
(POS) tagged corpus according to C-value [36]. Can-
didate terms are identified and scored via POS filters
(e.g. adjective*noun+). A subset of these terms is extracted
by defining a threshold for the C-value. TerMine makes
use of both linguistic and statistical information in order
to identify technical terms in a given corpus with the max-
imum accuracy. There are some other topic models that
attempt to present multi-word expressions in topics. For
example, the LDA collocation model [40] introduced a

new latent variable to indicate if a word and its imme-
diate neighbour can constitute a collocation. Unlike the
methods mentioned, the advantage of TerMine is that it
is applied independently of the topic modelling process.
Thus, once it has been used to locate terms in a cor-
pus, different topic models can be applied, without having
to re-extract the terms each time the parameters of the
topic model are changed. It is also important to note that
long terms may have other shorter terms nested within
them. Such nested terms may also be identified by Ter-
Mine. For example, “logistic regression model” contains
the terms “logistic regression” and “regression model”.
However, there is no doubt that the original term “logistic
regression model” is more informative. Thus, our strat-
egy to locate the terms is that the longer terms are given
higher priority to be matched and our maximum length
for a term is four tokens.
As for parameter tuning, all the experiments have been

performed with default parameters for classifiers and
symmetry hyperparameters for LDA, which means that
every topic will be sampled with equal probability.

Table 3 Friedman test for five datasets on different kernel functions and documents representation

Linear RBF POLY

BOW TPC TE BOW TPC TC BOW TPC TE

Precision

Mean rank 2.90 2.00 1.10 1.00 2.50 2.50 1.2 2.6 2.2

P = 0.0001 0.00196 0.001501

Recall

Mean rank 1.00 2.60 2.40 1.00 2.40 2.60 1.20 2.40 2.40

P = 0.00332 0.0256 0.008977

F-score

Mean rank 2.60 2.10 1.30 1.00 2.60 2.40 1.20 2.60 2.20

P = 0.08977 0.00332 0.01501

ROC

Mean rank 3.00 1.80 1.20 1.00 2.60 2.40 1.00 2.60 2.40

P = 0.00066 0.00332 0.00332

PRC

Mean rank 2.80 2.00 1.20 1.00 2.70 2.30 1.00 2.60 2.40

P = 0.0168 0.0008 0.84935
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Table 4 Evaluation on all corpora of SVM classifiers trained with TF-IDF features

Precision Recall F1-score Accuracy ROC PRC

Youth development

Linear 0.394799 0.686301 0.50125 0.8628422 0.891629 0.508361

RBF 0.0 0.0 0.0 0.89957353 0.13187 0.055498

POLY 0.0 0.0 0.0 0.8995735 0.15324 0.054825

Cigarette packaging

Linear 0.3679999 0.7076923 0.48421052 0.937896 0.939295 0.477252

RBF 0.0 0.0 0.0 0.9588086 0.06347 0.021359

POLY 0.0 0.0 0.0 0.9588086 0.082638 0.021496

Cooking skill

Linear 0.366666 0.482456 0.416666 0.967365 0.922862 0.328018

RBF 0.0 0.0 0.0 0.9758 0.07937 0.012568

POLY 0.0 0.0 0.0 0.97584233 0.51207 0.500

COPD

Linear 0.59523 0.773195 0.67264 0.909 0.927631 0.720464

RBF 0.0 0.0 0.0 0.8792 0.066893 0.064489

POLY 0.0 0.0 0.0 0.8792 0.1139 0.067315

Proton beam

Linear 0.0574 0.07874 0.0664451 0.881734 0.562028 0.063233

RBF 0.0 0.0 0.0 0.9465 0.442163 0.048747

POLY 0.0 0.0 0.0 0.9465 0.482718 0.05424

RBF radial basis function kernel, POLY polynomial kernel

Results and discussion
We performed our experiments using five datasets cor-
responding to completed reviews, in domains of social
science and clinical trials. These reviews constitute the
“gold standard” data, in that for each domain, they include
expert judgements about which documents are relevant or
irrelevant to the study in question. The datasets were used
as the basis for the intrinsic evaluation of the different text
classification methods. Our conclusions are supported by
the Friedman test (Table 3) which is a nonparametric test
that measure how different three or more matched or
paired groups are based on ranking. Given that the meth-
ods we applied produced roughly comparable patterns of
performance across each of the five different datasets, we
report here only on the results for one of the corpora.
However, the specific results achieved for the other cor-
pora are included as supplementary material (Additional
file 1).

Dataset
We applied the models to three datasets provided by the
Evidence Policy and Practice Information and Coordinat-
ing Center (EPPI-center) [41] and two datasets previously
presented in Wallace et al. [6]. These labelled corpora
include reviews ranging from clinical trials to reviews in
the domain of social science. The datasets correspond

specifically to cigarette packaging, youth development,
cooking skills, chronic obstructive pulmonary disease
(COPD), proton beam and hygiene behaviour. Each cor-
pus contains a large number of documents and, as men-
tioned above, there is an extremely low proportion of
relevant documents in each case. For example, the youth

Fig. 2 Linear kernel function. Comparison between the performance
of BOW-based, topic distribution-based and term-enriched topic
classifiers trained using a linear kernel function
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development corpus contains a total of 14,538 documents,
only 1440 of which are relevant to the study. Meanwhile,
the cigarette packaging subset contains 3156 documents
in total, with 132 having been marked as relevant. Docu-
ments in the datasets were firstly prepared for automatic
classification using a series of pre-processing steps con-
sisting of stop-word removal, conversion of words to

lower case and removal of punctuation, digits and the
words that appear only once. Finally, word counts were
computed and saved in a tab-delimited format (SVMlight
format), for subsequent utilisation by the SVM classifiers.
Meanwhile, TerMine was used to identify multi-word
terms in each document, as the basis for characterising
their content. Preliminary experiments indicated that only

Table 5 Evaluation on the youth development data set of SVM classifiers trained with topic features

Topic densitya Precision Recall F1-score Accuracy ROC PRC

Linear

2 0.15659 0.76767 0.28124 0.55268 0.685362 0.16959

5 0.16389 0.76986 0.28025 0.61253 0.7485 0.215196

10 0.21661 0.775616 0.334683 0.706321 0.782012 0.239912

20 0.22839 0.7767123 0.31605 0.66244 0.77806 0.276948

30 0.235857 0.772465 0.357992 0.732592 0.816773 0.288951

40 0.239157 0.7730136 0.36417129 0.73246 0.820795 0.320774

50 0.232558 0.7671232 0.35691523 0.72242 0.818062 0.371289

60 0.2494141 0.7771232 0.35320 0.717881 0.811705 0.338449

70 0.283706 0.7719178 0.407421 0.789108 0.841333 0.342748

80 0.27956 0.782191 0.3548788 0.782191 0.84254 0.359227

90 0.28068 0.77479 0.376366 0.748830 0.832757 0.345683

100 0.28137 0.786575 0.376121 0.751306 0.831486 0.358541

150 0.29082 0.79178 0.379514 0.740751 0.836747 0.367825

200 0.2949 0.79123 0.423232 0.77078 0.850254 0.40842

300 0.3224 0.72054 0.4558 0.9588086 0.847479 0.389575

500 0.3059 0.7082 0.4272 0.80935 0.844137 0.39549

RBF

2 0.151121 0.812328 0.2548345 0.5229 0.694288 0.168685

5 0.159186 0.826027 0.26693 0.54436 0.719956 0.194878

10 0.189766 0.802739 0.306966 0.635988 0.775362 0.201232

20 0.19948 0.7452 0.314723 0.674095 0.774715 0.253942

30 0.257261 0.679452 0.373213 0.77082 0.816608 0.312387

40 0.264912 0.6205 0.37131 0.78896 0.799286 0.301266

50 0.246453 0.641098 0.356534 0.767093 0.779354 0.250867

60 0.23598 0.57671 0.33492 0.76998 0.77882 0.250866

70 0.255531 0.49041 0.33532 0.80533 0.773743 0.237212

80 0.39523 0.39041 0.38255 0.873435 0.806185 0.318034

90 0.4092 0.219178 0.285459 0.889806 0.801959 0.312336

100 0.368421 0.019178 0.03645 0.898197 0.817434 0.319278

150 0 0 0 0.877579 0.812314 0.297883

POLY

2 0.153 0.82602 0.25818 0.5233 0.70262 0.170105

5 0.17164 0.14315 0.156498 0.843513 0.70445 0.166452

10 0 0 0 0.899574 0.285556 0.06007

Items in italics refer to the highest scores obtained in a column
aResults are reported according to different values of the topic density
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using multi-word terms to characterise documents may
not be sufficient since, in certain documents, the number
of such terms could be small or zero. Accordingly, words
and terms were retained as features for an independent
experiment.

BOW-based classification
Table 4 shows the performance of the SVM classifiers
trained with TF-IDF features when applied to all cor-
pora. Due to the imbalance between relevant and irrele-
vant instances in the dataset, each positive instance was
assigned a weight, as mentioned above. Default values for
SVM training parameters were used (i.e. no parameter
tuning was carried out), although three different types of
kernel functions were investigated, i.e. linear, radial basis
function (RBF) and polynomial (POLY). Unlike the lin-
ear kernel that aims to find a unique hyperplane between
positive and negative instances, RBF and POLY can cap-
ture more complex distinctions between classes than the
linear kernel. As illustrated in Fig. 2, the BOW-based
classification achieves the best performance when the lin-
ear kernel function is used. However, it is necessary to
recall that the ratio of positively (i.e. relevant) to nega-
tively (i.e. irrelevant) labelled instances is approximately
1:9 in our corpora. Hence, even if a classifier labels all
test samples as irrelevant instances, a very-high accuracy
will still be obtained. However, for systematic reviews, it
is most important to retrieve the highest possible number
of relevant documents; recall is a much better indica-
tor of performance than accuracy. Secondly, both the

RBF and polynomial kernel functions obtained zero for
precision, recall and F1-score. This can be attributed to
the imbalanced nature of the corpora [42]. Addition-
ally, the BOW representation produces a high dimen-
sional space (given the large number of unique words
in the corpora). In this high dimensional space, the two
non-linear kernels (RFB and POLY) yield a very low
performance.

Topic-based classification
Topic-based classification was undertaken by firstly
analysing and predicting the topic distribution for each
document and then classifying the documents using top-
ics as features. During the phase of training the model, the
topic assigned to each word in a document can be con-
sidered as a hidden variable, this problem can be solved
by using approximation methods such as Monte Carlo
Markov chain (MCMC) or variational inference. However,
these methods are sensitive to initial parameter settings
which are usually set randomly before the first iteration.
Consequently, the results could fluctuate within a certain
range. The results produced by topic-based classification
are all average results. However, our results show that
topic distribution is an ideal replacement for the tradi-
tional BOW features. Besides other advantages, the most
obvious advantage of which is to reduce the dimensions of
features for representing a document. Experimental set-
tings were identical in the evaluation of the two sets of
classifiers, except for the features being topic distribu-
tions in one case and BOW in the other. The optimal

Table 6 Term-enriched topics

Topic 1 Topic 2 Topic 3

School Teen birth rates Program activity
Plains School Murders
Murders Weakly Educare
Cultural tradition Corresponds Projected
Gangmembership Ngos Multidimensional index
Juvenile delinquency prevention program Chile Program activity
Immigration Latino culture Fast track
Educare Wore Socio-economic circumstance
Recollections Nonneglected children Nonneglected children
Program activity Skillful Hopkins

Topic 4 Topic 5 Topic 6

Medical students Mental health worker Shrinking
Program evaluators Skilful Murders
Nepal Cortical Social disorganization
Coverform Trauma Gangmembership
Selfconfidence Papel Herd
Suicidality Longitudinal designs Medical student
Risk protective Commentators Kofi
Reasoned Jugend Ordered
Discontinue Original abstractamendedcd coden chdeaw Outdoor adventure program
Breed Cultural system Projected

Items in italics refer to multi-word terms
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Table 7 Ordinary topics

Topic 1 Topic 2 Topic 3

Forged Bosnian Horizons
School Acculturationrelated Pascd
Educare Revitalization Steps
Nonconcordant Chipce Healthier
Nonfarmers Api Wore
Eightythree Unavailability Fibrosis
Mdma Paradigmatic Eurocentric
Privatized Individualist Justified
Chile Phonics Noncollege
Discontinue Fulfils Correspond

Topic 4 Topic 5 Topic 6

Cindy Abortions Infectious
Completions Mediocre Adequate
Phonics Estimates Memethods
Psychotic Daysweek Phonics
Mdma Cubic Personalized
Healthier Midwestern Thyroxine
Otherfoucsed Preceded Apparent
Fibrosis Interventional Twentieth
Suzanne Selfsilencing Outdoor
School Evenings Verbally

LDA model was derived through experimentation with
differing numbers of topics (which can also be referred to
as “topic density”). In the experiments performed, several
values for this parameter were explored.
Table 5 shows the results of the evaluation of SVMmod-

els trained with topic distribution features using linear,
RBF and POLY kernel functions, respectively. We show
how the performance varies according to different topic
density values for the LDA model. These values were var-
ied from 2 to 100 (inclusive), in increments of 10, and

Fig. 3 RBF kernel function. Comparison between the performance of
BOW-based, topic distribution-based and term-enriched topic
classifiers trained using an RBF kernel function

Fig. 4 POLY kernel function. Comparison between the performance
of BOW-based, topic distribution-based and term-enriched topic
classifiers trained using a POLY kernel function

from 100 to 500 in increments of 100 approximately. Gen-
erally, each topic density would correspond to a certain
size of corpus and vocabulary. Empirically, the larger the
size of the corpora and vocabulary, the greater the num-
ber of topics that is needed to accurately represent their
contents, and vice versa. Tables 6 and 7 show two sam-
ples of sets of words and/or terms that are representative
of a topic in the same corpus (youth development). Term-
enriched (TE) topics include multi-word terms identified
by TerMine as well as single words, whilst ordinary top-
ics consist only of single words. From the tables, it can be
clearly seen that term-enriched topics aremore distinctive
and readable than single-word topics. As the classification
performance was similar to the single-word topic-based

Fig. 5 Different kernel functions. Comparison between the
performance of linear, RBF and POLY kernel functions using topic
feature
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Table 8 The performance of all corpus with different feature selection and kernel functions

BOW TPC TE

P R F A ROC PRC P R F A ROC PRC P R F A ROC PRC

Linear

Youth development 0.394 0.686 0.501 0.862 0.891 0.508 0.249 0.791 0.379 0.740 0.836 0.367 0.151 0.808 0.255 0.525 0.688 0.154

Cigarette packaging 0.367 0.707 0.484 0.937 0.939 0.477 0.062 0.969 0.011 0.397 0.750 0.070 0.062 0.953 0.011 0.411 0.662 0.066

Cooking skill 0.366 0.482 0.416 0.967 0.922 0.328 0.038 0.947 0.073 0.422 0.701 0.038 0.032 0.921 0.061 0.326 0.717 0.051

COPD 0.595 0.773 0.672 0.909 0.927 0.720 0.418 0.876 0.566 0.838 0.893 0.557 0.184 0.907 0.306 0.504 0.714 0.202

Proton beam 0.057 0.078 0.066 0.881 0.562 0.063 0.057 0.606 0.105 0.452 0.547 0.068 0.054 0.551 0.098 0.460 0.479 0.051

RBF

Youth development 0.0 0.0 0.0 0.899 0.131 0.055 0.159 0.826 0.266 0.544 0.719 0.194 0.145 0.809 0.246 0.501 0.679 0.156

Cigarette packaging 0.0 0.0 0.0 0.958 0.063 0.021 0.0550 0.986 0.104 0.293 0.729 0.094 0.063 0.923 0.118 0.435 0.693 0.082

Cooking skill 0.0 0.0 0.0 0.9758 0.079 0.012 0.032 0.894 0.063 0.363 0.651 0.033 0.032 0.938 0.061 0.313 0.660 0.033

COPD 0.0 0.0 0.0 0.879 0.066 0.064 0.3577 0.804 0.495 0.801 0.882 0.506 0.169 0.958 0.287 0.427 0.702 0.189

Proton beam 0.0 0.0 0.0 0.9465 0.442 0.048 0.053 0.716 0.099 0.305 0.474 0.049 0.055 0.724 0.103 0.330 0.511 0.053

POLY

Youth development 0.0 0.0 0.0 0.899 0.153 0.054 0.153 0.826 0.258 0.523 0.702 0.170 0.151 0.791 0.253 0.532 0.683 0.153

Cigarette packaging 0.0 0.0 0.0 0.958 0.082 0.021 0.059 0.986 0.112 0.349 0.660 0.070 0.061 1.000 0.115 0.366 0.664 0.067

Cooking skill 0.0 0.0 0.0 0.975 0.512 0.500 0.037 0.938 0.072 0.418 0.703 0.039 0.031 0.903 0.061 0.332 0.655 0.043

COPD 0.0 0.0 0.0 0.8792 0.113 0.067 0.262 0.824 0.398 0.698 0.799 0.278 0.195 0.896 0.320 0.540 0.715 0.196

Proton beam 0.0 0.0 0.0 0.9465 0.482 0.054 0.0 0.0 0.0 0.946 0.483 0.050 0.0 0.0 0.0 0.946 0.489 0.052

BOW bag-of-word feature, TPC topic feature, TE term-enriched topic feature
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Fig. 6 Receiver operation curve: each figure was produced using a kernel function. Left: linear kernel function.Middle: RBF kernel function. Right:
POLY kernel function

classification, a table like Table 5 will not be presented
here. However, a comparison of the classification perfor-
mance for the three approaches, i.e. BOW-based, topic-
based and TE-topic-based will be presented in the next
section.

Comparison of approaches
A comparison of the performance of the BOW-based
model (BOW in legend) against the performance of
models trained with topic-based model (TPC) and term
enriched-topic model (TE) is presented in this section.
According to the results of using a linear function for
model training (Fig. 2), models based on topic and TE-
topic distribution features yield lower precision, F-score,
ROC and PRC but obtain higher recall. For this compar-
ison, the best performing topic-based model (with topic
density set to 150 for youth development corpus) was
used. It can be observed from Fig. 2 that the BOW-
based model outperforms the topic- and TE-topic based
one in terms of all metrics except for recall. Figures 3
and 4 illustrate the results of using RBF and POLY ker-
nel functions, respectively, in training BOW, topic-based
models and TE-topic-based model on the youth devel-
opment corpus. It can be observed that employing these

kernels, the SVM models trained with topic and TE-
topic distributions outperform those trained with BOW
features by a large margin. Another observation is that
training using RBF and POLY kernel functions signifi-
cantly degraded the performance of BOW-based models.
Using RBF and POLY kernel functions, the BOW-based
classifiers perform poorly, with zero in precision, recall
and F-score. As noted earlier, high accuracy is not a
good basis for judging performance due to the imbal-
ance between positive and negative instances, i.e. even
if a classifier labels every document as a negative sam-
ple, accuracy will still be around 90 %. Figure 5 gives the
comparison of different kernel functions using topic fea-
tures on the youth development corpus, indicating that
taking all measures into account, a linear kernel function
gave the best overall performance, achieving the highest
score in everymetric other than recall. However, both RBF
and POLY kernel functions outperformed linear, albeit by
only 4 %, on the recall measure, which we have identi-
fied as highly pertinent to the systematic review use-case.
We used a generic list of kernel functions ranked from
high to low in terms of recall for topic-based and TE-
topic-based feature in Table 8: POLY> RBF >LINEAR.
For a ranked list of feature types in terms of recall,

Fig. 7 Precision-recall curve: each figure was produced using a kernel function. Left: linear kernel function.Middle: RBF kernel function. Right: POLY
kernel function
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it is: TPC> TE >BOW. Additionally, Figs. 6 and 7
show precision-recall and ROC curves achieved by the
models.

Conclusions
Our experiments demonstrated that the performance of
BOW SVM with linear kernel function has produced
the most robust results achieving the highest values in
almost every metric, except for recall. But on any system-
atic reviews classification task, poor performance in recall
needs to be addressed. The BOW model yielded a poor
performance with RBF and POLY kernel functions due to
the data imbalance and dimensionality issue. Topic-based
classification significantly addresses this problem by
dramatically reducing the dimensionality of the represen-
tation of a document (topic feature). The topic-based clas-
sifier yielded a higher recall, which means more relevant
documents will be identified. Moreover, the topic features
enable the classifier to work with RBF and POLY kernels
and produce better recall comparing with a linear kernel.
The same patterns were observed in all corpora, although
there is only one example presented in this article.
As future work, we will further investigate the general-

isability of the model to diverse domains. Moreover, we
plan to explore different machine learning and text min-
ing techniques that can be used to support systematic
reviews such as paragraph vectors and active learning.
Also, further experiments will be performed in a more
realistic situation. For example, whether topics could help
reviewers’ decision in “live” systematic review would be
an interesting research area in the future. An intuitive
image of TE topics has been made in this article. For pub-
lic health reviews where topics are multidimensional, the
presence of diverse multi-word terms in a dataset can be
an important element that affects the performance of clas-
sifiers. But TE topics have the potential to deal with these
difficulties. Further investigation on TE topics will be per-
formed, which would benefit reviewers and help them
to understand topics more easily compared to ordinary
topics.

Additional file

Additional file 1: Supplementary figures. Specific results achieved for
the other corpora. (DOCX 368 kb)
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