
Supporting the Evolution of Model-driven Service-oriented Systems:

A Case Study on QoS-aware Process-driven SOAs

Ernst Oberortner, Uwe Zdun, Schahram Dustdar

Distributed Systems Group, Information Systems Institute

Vienna University of Technology

Vienna Austria

{e.oberortner,zdun,dustdar}@infosys.tuwien.ac.at

Agnieszka Betkowska Cavalcante, Marek Tluczek

Telcordia Poland Sp. z o.o.

Poznan, Poland

{abetkows,mtluczek}@telcordia.com

Abstract—Process-driven service-oriented architectures
(SOA) need to cope with constant changing requirements
of various compliance requirements, such as quality of service
(QoS) constraints within service level agreements (SLA). To
the best of our knowledge, only little evidence is available if
and in how far process-driven SOAs deal with the evolution
of the requirements. In this work, we evaluate an incremental
and model-driven development approach on the evolution of
the requirements and the domain model in the context of
an industrial case study. The case study focuses on advanced
telecom services that need to be compliant to QoS constraints.
This paper answers questions about the applicability of the
incremental development approach, the impact of requirement
changes, possible drawbacks of using a non-incremental
development approach, and general recommendations based
on the findings. Our results provide guidelines for dealing with
the evolution of model-driven service-oriented systems.

Keywords-service-oriented architecture; case study; domain-
specific language; model-driven development; model evolution;

I. INTRODUCTION

Process-driven service-oriented architectures (SOA) are

often facilitated to automate and enhance the core func-

tionality of an enterprise’s business processes. Developing

and maintaining process-driven SOAs is done by differently

skilled stakeholders, such as technical or non-technical ex-

perts. Furthermore, enterprise-wide requirements must be

supported, such as compliance governance, internal policies,

and risk management. Mostly, the compliance requirements

are fuzzy and incomplete at an early development stage.

Reasons can be the different domain interpretations by

the stakeholders or the evolving business and technologi-

cal requirements. Permanent communications between the

stakeholders and the developers result in changing require-

ments. To avoid complex and time-consuming updates, an

incremental development approach is desired to keep the

changes small and lightweight in later development stages.

In this paper we focus on an incremental model-driven

development approach within an industrial case study. The

case study focuses on advanced telecom services that have

to comply to quality of service (QoS) constraints within

service level agreements (SLA). We use the model-driven

development (MDD) paradigm [8] for capturing the various

SOA requirements. To support the different stakeholders

in specifying the QoS compliance concerns, we utilize a

domain-specific language (DSL). The development of a

model-driven DSL – from now on called just DSL – starts in

our approach with the definition of its language model, that

is the domain model [3]. During the case study’s implemen-

tation, the requirements evolved and the knowledge about

the QoS domain matured, leading to unavoidable changes

of the domain model and the DSL.

We state questions about (1) the applicability of an incre-

mental approach, (2) the impact of changing requirement

in later development stages, (3) the handicaps of using

an non-incremental development approach, and (4) gen-

eral recommendations in the area of model-driven service-

oriented systems. We try to answer these questions based

on the findings during the evolution of our case study’s

implementation. The paper should be treated as a guideline

for developers of similar projects.

II. AN INCREMENTAL DEVELOPMENT APPROACH FOR

MODEL-DRIVEN DSLS

Our incremental development approach is based on exist-

ing approaches, such as described in [9]. The approach is

divided into two sub-processes. First, we start the modeling

and the design of the domain model [8]. Second, we design

and implement an the external DSL [3] based on the domain

model. Each sub-process is further divided into the following

four phases:

• In the Collaboration phase, the stakeholders have to

collaborate with each other. During this activity, the

domain concepts and the requirements are defined.

• In the Design phase, the developers design the domain

model based on the requirements and the gathered

understandings about the domain.

• In the Development phase, the language developers can

develop the domain model and its dependent compo-

nents using their favourite modeling tool or language

workbench.

Develop

Domain Model
agreed?

yes

no

Design

Domain Model

Design

External Syntax

Develop

Parser/ Mapping

Start

Done
agreed?

no

Requirements

of Domain

Requirements on

External Syntax

DesignCollaboration Development

yes

Feedback

D
o

m
a

in
 M

o
d

e
l

E
x

te
rn

a
l

D
S

L

Figure 1. An incremental development approach for developing a domain
model and an external DSL

• In the Feedback phase, the domain and technical experts

give feedback to the language developers on the domain

model’s contained concepts.

At every stage of the development process, the stake-

holders can change or extend the requirements. Hence, the

DSL developers have to discuss with the domain experts the

new requirements and perform changes in the domain model

and its dependent components. Afterwards, the changes can

be taken into the updating process of the DSL. The same

incremental development approach can be used for each

feature of the DSL.

III. THE CASE STUDY

The case study focuses on advanced telecom services

offered by mobile virtual network operators (MVNO). An

MVNO serves as a proxy between customers and the audio

and video streaming providers. It offers services that process

media search requests and stream the customers’ favoured

media content. This functionality makes it possible for the

customers to watch, for example, live soccer matches with a

selected audio commentary language. In Table I, we explain

the offered services by the MVNO enterprise.

Service Description

Login This service authenticates the cus-
tomers to access the system

Search This service offers the functionality of
searching movies in a favoured lan-
guage

Stream This service streams the selected movie
in the selected language to the customer

Table I
THE MVNO’S OFFERED SERVICES

The terms and conditions of the offered services are

regulated by appropriate SLAs that contain various QoS

requirements for the services. The key features of the

case study are that the services have to meet particular

QoS requirements. It should be possible to associate the

listed MVNO services with QoS compliance concerns. For

example, any service needs to be available at least 99%, i.e.,

running and answering the customer’s requests.

It is crucial for the MVNO to monitor and avoid any

potential violations with regard to the services offered to

the clients. Also, the MVNO services’ quality depends on

the third party services’ quality, making it unavoidable to

monitor any performance drops of the quality of the third

parties’ services. Hence, monitoring QoS in this case study

is a non-trivial task.

A. The Initial Version of the Case Study’s Implementation

The initial QoS requirement in the industrial case study

was the annotation of services with particular QoS compli-

ance concerns. Furthermore, it was required to specify asser-

tions for runtime QoS compliance violations. An example of

a QoS requirement of the MVNO’s Search service is that an

assertion should be thrown if the Availability of the Search

service is lower then 99%.

Search {

AVAILABILITY assert <99%,

PROCESSINGTIME assert >2min

}

predicate: String
value: double

unit: String

Assertion

package: String
URI: String

Service QoS

Availabilty
Processing

Time

Delivery

Rate

Minimal

Frame Rate

Figure 2. The initial version of the case study’s implementation

We show In Figure 2 the initial version of the external

DSL, the domain model model and the corresponding map-

pings. The external DSL has a textual and block-oriented

concrete syntax. The DSL users specify services by listing

the service names, annotate them with the domain model’s

QoS compliance concerns within the curly braces ({...}),

and define assertions by using the assert keyword. The

domain model’s class Service can be instantiated to define

services in the DSL, such as the Search service. Services

can consist of QoS compliance concerns, which is assured

by the composition between the Serivce and QoS classes.

As required, the class Assertion provides the facility for

defining assertions which should be thrown if QoS violations

occur during the runtime of the system.

During the project’s lifetime, new requirements were

discovered which lead to extensions and changes of the

domain model. The next section describes the extensions

and changes of the domain model’s initial version.

B. The Current Version of the Case Study’s Implementation

The current version requires to associate QoS compliance

concerns with processes that orchestrate existing services.

A further requirement is to define rules of QoS conditions

that are checked during the runtime of the system. If

a condition is violated, the appropriate action should be

performed, similar to the previous version. The reason of

the introduction of rules is to be able to define gradations

of to QoS requirements that are connected with an AND

logical operator. An example of QoS compliance concerns

corresponding to the offered Search service is: If the

Availability is less then 99%, then send a e-mail to the

system administrator, AND if the Availability is less then

95%, then send an SMS.

WatchMeSLA {

Search {

AVAILABILITY [<99% mailTo "...", <95% smsTo "..."],

PROCESSINGTIME [>2min smsTo "..."]

}

}

package: String
URI: String

ServiceProcess

IdentifierSLA

predicate: String
value: double
unit: String

Condition
Action

smsTo: String

SMS

mailTo: String

Mail

QoS

Processing
Time

Availability

Delivery
Rate

Minimal
Frame Rate

Rule

Figure 3. The current version of the case study’s implementation

In Figure 3 we illustrate the current version of the

external QoS DSL, the domain model, and the corresponding

mapping. In the upper portion we show the current version of

the external QoS DSL that has a textual and block-oriented

concrete syntax. The QoS rules are specified within square

brackets ([...]) and separated by commas (,). The lower

portion of Figure 3 illustrates the domain model.

C. Case Study: Implementation Details

FMF::Class create SLA

FMF::Class create Identifier

FMF::Class create Process -superclasses Identifier

FMF::Class create Service -superclasses Identifier

FMF::Class create QoS

FMF::Class create Availability -superclasses QoS

...

FMF::Class create Rule

FMF::Class create Condition -attributes {

predicate String

value double

unit String

}

FMF::Composition create IdentifierQoS -ends {

{Identifier -aggregatingEnd true}

{QoS -roleName qosConcerns -multiplicity * -navigable true}

}

...

Figure 4. The implementation of the current domain model in Frag

Figure 4 shows an excerpt of the current domain

model’s implementation within the language workbench

Frag [10]. The classes of the domain model, such as SLA

or QoS, are defined by using the FMF::Class create

statement. The attributes of the domain model’s classes,

such as predicate of value, are defined by using the

-attributes extension of the FMF::Class create state-

ment. Relationships between the classes can be specified

by using FMF::Composition create statements, such as

the IdentifierQoS relation between the Identifier and

QoS classes.

After the implementation of the domain model, the ex-

ternal DSL was designed and developed. The upper portion

of Figure 5 illustrates an example of specifying QoS com-

pliance concerns by using the external DSL. The lower part

Figure 5 shows an excerpt of the implemented mapping that

maps the parsed QoS compliance concerns onto the domain

model.

DSL::DSLMapping create ServiceMapping -mapping {

@rep * {

@seq {

@elt serviceName {$token == SERVICE_NAME} {

create an instance of the Service class

Service create $serviceName

}

@elt qosConcerns {$token == QOS_CONCERNS} {

parse the specified QoS concerns and

assign them to the Service object

$service qosConcerns \

QoSMapping map [QoSParser parse $qosConcerns] "..."

}

}

DSL::DSLMapping create QoSMapping -mapping {

@rep * {

@seq {

@elt qosMeasurement {$token == QOS} {

if {[string compare $qosMeasurement "Availability"]==0} {

create an instance of the Availability class

Availability create $qosMeasurement

}

}

@elt actions {$token == ACTIONS} {

parse the actions

}

}

WatchMeSLA {

Search {

AVAILABILITY [<99% mailTo "...", <95% smsTo "..."],

PROCESSINGTIME [>2min smsTo "..."]

}

}

Figure 5. The implementation of the current external DSL using Frag

D. Answering the Stated Questions under Examination

Question 1: Is the incremental development approach

applicable in the case study?

In the context of the case study, the requirements were

not well defined at the beginning, making later changes

unavoidable. To answer the question, the choice of following

an incremental development process was successful. It was

important to two-fold the incremental development process,

starting with the domain model’s design and followed by

the development of the external DSL. After a positive

feedback of the stakeholders, the language developers started

to implement the external DSL on a stable version of the

domain model.

Question 2: How do changes of the requirements impact

the domain model and its dependent components, such as

the external DSL?

To investigate the impact of the requirements’ changes,

we conduct a simple quantitative evaluation [2]. First, we

calculated and compared the absolute model size of each

version of the domain model [6]. Comparing the initial and

current versions, the model size increased about 80%.

We also used the lines of code (LOC) metrics of the

implemented parsers and mappings for comparing them with

the absolute model size of the corresponding domain models.

The current DSL increased about 85% in comparison to

the initial one. Comparing the enhancement of the external

DSLs’ parsers and mappings with the enhancement of the

domain model sizes, a linear relation can be observed.

Question 3: What are the drawbacks of a non-incremental

development approach?

In an early stage of the development process the stake-

holders’ requirements are not well-defined and are subject

to permanent changes. Changes of the requirements change

the domain model and affect its dependent components,

such as code generators, parsers, or mappings. During the

case study we discovered that it’s not advisable to follow a

non-incremental development process and to implement the

whole solution at once. To answer the question, a draw-

back of non-incremental development approaches is that

the later the changes the more complex is the development

effort of new and changing requirements. Resultant, a non-

incremental development approach has to deal with time-

consuming maintenance phases.

Question 4: What are general recommendations for sim-

ilar projects?

The current domain model contains four QoS compliance

concerns that originate from the case study’s requirements.

Many other QoS measurements exists [7] that can be con-

sidered as new features or sub-domains in every iteration

of an incremental development approach. Hence, changes

and updates can be kept small and lightweight because the

domain model can evolve in a more independent way from

its dependent components.

A further recommendation is that the development of an

external DSL should start when the domain experts are able

to work with the domain model and all requirements are

fulfilled. But, the need for code generators or an external

DSL can arise at any time during the development process.

IV. RELATED WORK

Kelly and Tolvanen [4] advice to maintain the DSL by

using a pilot DSL to see the influence of the required

changes. The presented incremental DSL development is in

contrast to our approach tailored for their MetaEdit+ CASE

tool.

Bierhoff et al. [1] describe an incremental DSL devel-

opment approach, where the DSL is based on an existing

system. The DSL evolves until it is expressive enough

to specify the applications functionality. Our approach is

designed for developing model-driven systems from scratch

which evolve on changing requirements.

Kosar et al. [5] compares various DSL implementation

approaches based on one DSL. The authors provide em-

pirical results from implementing one language following

ten different implementation approaches. In contrast to our

approach, the implementation is considered as a sub-process

of the whole development process.

V. CONCLUSION

In this paper we presented an industrial case study

which deals with advanced telecom services and its QoS

compliance concerns. In the scope of the case study we

utilized DSLs and the MDD paradigm for developing a

process-driven SOA, following an incremental development

approach. During the case study, the QoS requirements

changed and enhanced, making the maintenance of the case

study’s implementation complex. We stated questions that

were under examination during the industrial case study’s

implementation. The findings during the case study’s imple-

mentation gave answers to the stated questions and provide

guidelines for developers of similar projects.

ACKNOWLEDGMENT

This work was supported by the European Union FP7

project COMPAS, grant no. 215175.

REFERENCES

[1] K. Bierhoff, E. Liongosari, and K. Swaminathan. Incremental
Development of a Domain-Specific Language That Supports
Multiple Application Styles. In OOPSLA – 6th Workshop on
Domain Specific Modeling, pages 67–78, October 2006.

[2] N. Fenton and S. L. Pfleeger. Software metrics (2nd ed.):
a rigorous and practical approach. PWS Publishing Co.,
Boston, MA, USA, 1997.

[3] M. Fowler. Domain Specific Languages, 2009. http://
martinfowler.com/dslwip/ (last accessed: June 2010).

[4] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling:
Enabling Full Code Generation. John Wiley & Sons, March
2008.

[5] T. Kosar, P. E. Martı́nez López, P. A. Barrientos, and
M. Mernik. A preliminary study on various implementation
approaches of domain-specific language. Inf. Softw. Technol.,
50(5):390–405, 2008.

[6] C. F. J. Lange. Model Size Matters. In Workshop on Model
Size Metrics at MoDELS06, 2006.

[7] S. Ran. A model for web services discovery with QoS.
SIGecom Exch., 4(1):1–10, 2003.

[8] T. Stahl and M. Voelter. Model-Driven Software Develop-
ment: Technology, Engineering, Management. John Wiley &
Sons, 2006.

[9] M. Strembeck and U. Zdun. An approach for the systematic
development of domain-specific languages. Softw. Pract.
Exper., 39(15):1253–1292, 2009.

[10] U. Zdun. A DSL toolkit for deferring architectural decisions
in DSL-based software design. Information and Software
Technology, 52(7):733 – 748, 2010.

