
Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling 1

Special Issue on Model-Driven Organisations

Supporting the Model-Driven Organization Vision through

Deep, Orthographic Modeling

Christian Tunjic*,a, Colin Atkinsona, Dirk Draheimb

a Software Engineering Group • University of Mannheim • Mannheim, Germany
b Large-Scale Systems Group • Tallinn University of Technology • Tallinn, Estonia

Abstract. In a model-driven organization, all stakeholders are able to deal with information about an

organization in the way that best supports their goals and tasks. In other words, they are able to select

models of the organization at the optimal level of abstraction (e. g. platform independent) in the optimal

form (e. g. graph-based) and with the optimal scope (e. g. a single component). However, no approach exists

today that seamlessly supports this capability over the entire life-cycle of organizations and the IT systems

that drive them. Enterprise architecture modeling approaches focus on supporting model-based views of

the static “architecture” of organizations (i. e. enterprises) but generally provide little if any support for

operational views. On the other hand, business intelligence approaches focus on providing operational views

of organizations and usually do not accommodate static architectural views. In order to fully support the

model-driven organization (MDO) vision, therefore, these two “worlds” need to be unified and a common,

natural and uniform approach for defining and supporting all forms of views on organizations, at all stages

of their life-cycles, needs to be defined and implemented in an efficient and scalable way. This paper

presents a vision for achieving this goal based on the notions of deep and orthographic modeling. After

explaining the background to the problem and introducing these two paradigms, the paper presents a novel

approach for unifying them, along with a prototype implementation and example.

Keywords. Orthographic System Modeling • Enterprise Architecture Modeling • Business Intelligence

Communicated by T. Clark. Received 2016-10-25. Accepted after 1 revision on 2018-01-23.

1 Introduction

The core idea behind the MDO vision is to allow

all stakeholders in an organization to fulfill their

assignments using representations of (parts of)

that organization that best suit their skills and tasks

(Clark et al. 2013). This need occurs across all

phases of an organization’s life-cycle (from analy-

sis and design to operation and maintenance), at all

levels of abstraction (from platform-independent

to platform-specific) and for all manner of tasks

(from planning and development to delivery and

usage). Moreover, it must be supported in the

face of constant change across all aspects of the

* Corresponding author.

E-mail. tunjic@informatik.uni-mannheim.de

organization’s structure, behavior and knowledge

(Bittmann 2014).

The key requirement implied by this vision is

support for views or perspectives – that is, rep-

resentations of (parts of) an organization that

let stakeholders see and manipulate its proper-

ties in the optimal form for their needs. Since

such views provide “a simplified mapping for

a special purpose” they conform to the widely

accepted definition of “model” by Stachowiak

(1973). More specifically, they provide or repre-

sent a “mapping to the original”, the information

they provide is a “reduction of the original” and

they are created for highly “pragmatic purposes”.

The idea of describing a complex architecture

via a collection of “models” that each provide a

http://dx.doi.org/10.18417/emisa.13.7
tunjic@informatik.uni-mannheim.de

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

2 Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

distinct view of the subject is also proposed in

the IEEE1471/ISO42010 standard for Systems

and Software Engineering – Architecture Descrip-

tion (IEEE Architecture Working Group 2000;

ISO/IEC/IEEE 2011).

To support such a vision across an organiza-

tion’s entire life-cycle some views need to por-

tray relatively static “architectural” aspects of

the organization (i. e. its enterprise architecture)

while others need to portray relatively dynamic

“operation-time” aspects of the system (i. e. busi-

ness intelligence). The discipline in which the

idea of using views to capture the static, architec-

tural properties of an organization is most mature

in the Enterprise Architecture (EA) modeling

discipline, characterized by approaches such as

Zachman (Zachman 1987), TOGAF (The Open

Group 2009), RM-ODP (ISO/IEC/ITU-T 1997),

Archimate (Iacob et al. 2012) and MEMO (Frank

2002). These all define some kind of “viewpoint

framework” defining the constellation of views

available to stakeholders and the kind of “models”

which should be used to portray them. Some, like

Archimate, RM-ODP and MEMO, define their

own specialized languages (with multiple sub-

languages) to portray views, while others are less

prescriptive about precisely what kind of language

should be used.

At the operational level, the discipline that

focuses on providing operational information (run-

time and historical) to business stakeholders of

enterprises is commonly known as “business in-

telligence”. Modern business intelligence ap-

proaches also rely heavily on the notion of views,

but primarily in the form of tables (e. g. spread-

sheets) or pictorial visualizations rather than as

expressions in formal languages (e. g. process

modeling languages, programming languages, on-

tology modeling languages). Second, business

intelligence views tend to be organized and iden-

tified in a completely different way to EA mod-

eling views. They are typically defined using

multi-dimensional data models (e. g. Online An-

alytical Processing (OLAP)) in so called “data

warehouses” which allow information to be aggre-

gated by users on demand. In contrast, the view

types available in EA modeling approaches are

usually predefined (i. e. before domain modeling

begins) and fixed.

At the present time, there is little commonal-

ity between the EA modeling approaches used to

describe the static, architectural views of organi-

zations and their IT systems (including software

specifications and code), and the business intel-

ligence approaches used to provide operational

views. Moreover, transitioning from one to the

other at the end of the development phase when

a system is first deployed and put into operation,

is usually a laborious and error prone process

which requires many transformations of informa-

tion (variously called compilation, deployment

and configuration steps). Many observers have

recognized that this paradigm shift between the

development and operation phases of a system’s

life-cycle introduces significant accidental com-

plexity and causes many problems (De Lara et

al. 2014). A new research area called DevOps

has emerged in recent years with the aim of sim-

plifying the process of software deployment and

blurring the boundaries between development and

operations (Davis and Daniels 2015; Lwakatare

et al. 2015). At the model level, similar underly-

ing goals are being explored under the label of

“models at run-time” (Aßmann et al. 2014).

In order to realize the full vision of the MDO,

therefore, view-based paradigms used in the de-

velopment and operation phases of a system’s life-

cycle need to be unified and a common, natural and

uniform framework for defining and supporting all

views of an organization, regardless of their focus,

needs to be defined and implemented in an efficient

and scalable way. The premise of this paper is that

the optimal way to achieve this is through the inte-

gration of two alternative, emerging paradigms for

modeling – so called “deep modeling” (De Lara et

al. 2014) and “orthographic modeling” (Atkinson

et al. 2010). The first of these contributes to the

MDO vision by providing a natural way to support

“models at run-time” and allows operation and

instance data to be incorporated seamlessly into

a “multi-level” model. The second contributes

to the MDO vision by supporting a natural and

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling 3

Special Issue on Model-Driven Organisations

scalable strategy for supporting views, and pro-

viding a natural metaphor for navigating around

them, that accommodates both the architectural

(e. g. EA modeling) and operational (e. g. OLAP)

interpretation of views.

The goal of this paper is to present this vi-

sion, and demonstrate its practicality through a

prototype implementation and a small example.

The next section starts by presenting the three

main established domains and disciplines that

form the background to the approach – enterprise

architecture management, business intelligence

and multi-level modeling. Sect. 3 then describes

the MEMO approach to EA modeling which has

pioneered the use of the latter to streamline the in-

tegration of, and transition between, architectural

and operational views of an organization. Sect. 4

presents the final ingredient for the presented ap-

proach by explaining the motivation for, and key

ideas behind, the orthographic modeling approach.

Sect. 5 then presents the contribution of the paper

which is a new, general purpose environment for

deep orthographic modeling, which synergetically

leverages the deep and orthographic modeling

approaches. To demonstrate the conceptual fea-

sibility of the approach and show that it at least

has the capabilities of existing methods, Sect. 6

then uses the new environment to model a small

example. Finally, Sect. 7 and Sect. 8 conclude

with a summary and some closing remarks.

2 Background

In this section we set the scene for the rest of the

paper by describing the emerging technologies

and disciplines which are relevant to the proposed

approach. We first provide overviews of the fields

of EA management and business intelligence from

the perspective of the viewpoint frameworks they

use to organize models. After that we provide an

overview of multi-level modeling.

2.1 Enterprise Architecture Management

The importance of Enterprise Architecture Man-

agement (EAM) is reflected in the wide range of

modeling tools that are marketed as EAM tools

(Brand 2015; Roth et al. 2014). The goal of these

tools is to impose a certain bookkeeping discipline

on enterprise architecture management and ensure

that information is only manipulated and updated

in appropriate ways. This is clearly shown in

the collection of critical features contained in the

magic quadrant for enterprise architecture tools

(Brand 2015). Essentially, EAM tools represent

an IT landscape’s meta data repository (or meta-

model repository in the terminology of Brand

(2015)) and through this facilitate an organiza-

tion’s decision support capabilities, presentation

capabilities and various other advanced analysis

capabilities.

Deploying an EAM tool within a system land-

scape initiates a trail of IT system documentation,

but this trail exists in its own right and is not gen-

uinely integrated in the IT system landscape. Inte-

gration with the rest of the landscape is a crucial

problem for the current generation of EAM tools.

For example, Brand (2015) states that an EAM

tool “must integrate with project and portfolio

management (PPM), application portfolio man-

agement (APM), governance, risk and compliance

(GRC), and IT financial management”. However,

interoperability with, and traceability against, IT

development systems is not among the critical ca-

pabilities identified. Consequently, the traditional

EAM tool market sticks, non-disruptively, to the

established categories of IT tools, projects and

work organization.

The sub-discipline of EAM which focuses most

strongly on supporting the alignment of all ingre-

dients of an enterprise, including IT systems is

EA modeling. The systematic modeling of EAs

can be traced back to the introduction of the Zach-

man Framework in 1987 (Zachman 1987), and

since this time a large number of alternative EA

modeling frameworks and approaches have been

developed ranging from proprietary approaches,

e. g., SAP PowerDesigner (SAP 2016) and govern-

mental reference architectures, e. g., FEAF (US

Federal Government 2013) to open, consortium-

managed standards, e. g., TOGAF (The Open

Group 2009). The one thing that they all share in

common is reliance on some kind of “viewpoint

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

4 Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

framework” to define the constellations of models

that should be used to represent an enterprise ar-

chitecture. Apart from that, however, they differ

tremendously in their precise goals, scope and

level of detail.

2.2 Business Intelligence

The general term used to describe approaches that

focus on providing operational views of organi-

zations and their execution history is “business

intelligence”. In particular, the consolidation

and analysis of operational information is typi-

cally referred to as data warehousing (Draheim

2012). The multi-dimensional data model of

data warehousing with its specific combination of

subject-orientation and time-variance (Codd et al.

1993) has become a central pillar in today’s busi-

ness analytics and decision support (Inmon 1992).

Data warehousing offers analysts exactly what

they need in order to understand the operational

performance of an organization – a transformed,

de-normalized presentation of the operational data

as an easy-to-explore data universe (i. e. a model

that invites the data analyst to delve into it and start

navigating: dicing, slicing, aggregating, querying,

testing hypotheses and so forth).

The data warehousing paradigm represents a

step towards the model-driven organization vi-

sion from two different and important perspec-

tives. On the one hand, it demonstrates the power

of a multi-dimensional conceptual model for se-

lecting views, and on the other hand it helps to

reduce barriers and tensions in the business/IT

alignment of today’s organizations. However,

data warehousing comes with a lot of baggage –

namely, the legacy of current enterprise system

landscapes. This is unavoidable because data

warehousing approaches address how to integrate

a multi-dimensional data model into an existing

system landscape. This is ultimately the goal of

the non-volatile aspect of data warehousing, i. e.,

ETL (extraction-transformation-loading) (Vassil-

iadis 2009), data marts, data integration strategies

and so forth. However, the pragmatic, engineering

flavour of data warehouses that made them such a

huge success in the past hinders the transition to

the next higher conceptual level, i. e. the level of

the model-driven organization.

One of the most important application areas for

the data warehousing paradigm is management

accounting. Initially, when budgets are first elab-

orated in the individual departments, accounting

information is usually represented in spreadsheets

in a multi-dimensional manner. It is then put into

the process-oriented ERP (enterprise resource

planning) systems (e. g. SAP FI/FM) by hand, be-

cause of the ubiquitous ERP/spreadsheet-divide

usually favoured in today’s organizations (Dra-

heim 2012). The information is then extracted

again from the ERP systems, cleansed and trans-

formed into the data warehouse to support business

analytic (i. e. the process by which managers make

decisions that impact the budgeting process, using

for example the spreadsheet cockpits of a rolling

budgeting process). The whole process is there-

fore a big cycle – multi-dimensional budgeting

information is captured in spreadsheets, saved in

process based ERP systems, extracted into a multi-

dimensional data warehouse and finally used for

multi-dimensional budgeting work using spread-

sheets. The big problem for today’s enterprises is

that this cycle is slow, error-prone, opaque, com-

plex, unreliable, obfuscated, non-automatic and

non-standardized.

2.3 Multi-Level Modeling

One of the main causes of the current complexity

in transitioning from the development phase to

the operation phase of a system’s life-cycle is the

“hard” shift in classification levels usually involved

(De Lara et al. 2014). This is because today

the technologies used to represent information

in the two phases are almost always two-level

technologies that can only support a single type-

level and a single instance-level at a given time.

For example, traditional models used in software

engineering (e. g. UML diagrams) can usually

not be directly instantiated in the tool used to

define them (Gerbig 2017). In order to deploy the

types described in models they usually need to

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling 5

Special Issue on Model-Driven Organisations

be transformed to the types supported in the run-

time execution environments of a programming

language.

As pointed out by Frank (2014) and others, the

key to moving towards an MDO vision where

the transition between development (views) and

operational (views) is seamless and smooth, is

to adopt information-representation technologies

which do not require hard shifts between classifi-

cation levels (Clark et al. 2013; Frank 2016). Such

technologies are increasingly being called multi-

level or deep modeling approaches in the literature

(Igamberdiev et al. 2016; Neumayr et al. 2016).

The key characteristic of multi-level modeling

technologies is that they can seamlessly support

an unlimited number of classification hierarchies

without any kind of deployment or compilation

step to make types modeled at one classification

level available for instantiation at the next classifi-

cation level. On the contrary, since all levels are

“soft”, types are instantly available for use at the

level below. In recent years a number of multi-

level modeling approaches have been published

and there is a growing number of multi-level tool

implementations (Igamberdiev et al. 2016).

One particular form of multi-level modeling is

the so called “deep modeling” approach which sup-

ports multi-level modeling using a particular set

of inter-related concepts. The first is the Orthogo-

nal Classification Architecture (OCA) (Atkinson

and Kühne 2001, 2002) which separates linguis-

tic classification from ontological classification

(Kühne 2006) and organizes them in two orthog-

onal dimensions as shown in Fig. 1. An OCA

environment usually has three linguistic levels

(L2–L0), where L2 contains the linguistic (meta-

)model (i. e. the basic set of concepts which are

used to represent the deep model), L1 contains the

domain content (i. e. the deep model containing

the user data) and L0 containing the “real world”

objects that are described in the deep model.

The second is the Clabject concept which

plays the roles of both Classes and Objects si-

multaneously. The Clabject concept has two

sub-classes – Entity and Connection, which can

be used to model entities (cf. classes/objects) and

O
n

to
lo

g
ica

l D
im

.

Linguis�c Dim.

Clabject
potency

Organiza�onType2

O0

University1

UniversityOfMannheim0

O1

O2

L
0

L
1

L
2

Figure 1: Orthogonal Classification Architecture

connections (cf. associations/links) respectively.

Users normally only work with the L1 linguistic

level since this contains the domain content. In

Fig. 1 there are three ontological levels (O0–O2),

but the number of levels is unlimited and can be

changed according to the needs of the domain to

be modeled. The O0 level is the most abstract

while the O2 is the least abstract. Generally the

On level contains the instances of the On−1 level.

The user data (i. e. the L1) is modeled in a unified

way using the basic set of model elements defined

in L2.

The third concept is the deep instantiation mech-

anism, which gives the approach its name. This

controls the instantiation of Clabjects in the on-

tological levels within L1 using a non-negative

Integer property called potency. A Clabject’s

potency governs the extent of its influence over

Clabjects instantiated from it. An instance of

a Clabject in the lower (i. e. less abstract) onto-

logical level has a potency that is one less than

that of the Clabject. Since potency cannot have

a negative value, a Clabject with potency “0”

cannot have further instances in subsequent onto-

logical levels. In the presented example in Fig. 1,

the Clabject OrganizationType in the ontologi-

cal level O0 has a potency value of “2”. This

means the model element OrganizationType can

have instances at the next two ontological levels,

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

6 Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

instance of

M

Meta Meta Model

Meta Models

Models

3

M2

M1

OML OrgML SML

MML

ITML

instance of

Figure 2: MEMO Language Architecture (Frank 2014)

relative to O0, but UniversityOfMannheim with a

potency value of “0” cannot be further instantiated

at the next ontological level (O3). The same ap-

proach is used for Attributes of Clabjects, i. e.

their influence can be controlled using the prop-

erties called durability and mutability. While

durability has the same meaning as the potency,

the mutability states how often the value of an

Attribute can be changed with respect to the in-

stantiation of the Clabject at different ontological

levels.

3 Multi-Level, Enterprise Architecture

Modeling

The advantages of multi-level modeling for EA

modeling have been most clearly articulated and

demonstrated by Frank (1994), who have recently

evolved their MEMO EA modeling method into

a fully-fledged multi-level modeling approach,

implemented using the XModeler tool (Clark and

Willans 2013). The key new piece of technology

that makes this possible is a special, multi-level-

aware meta-meta-model, called FMMLx (Frank

2014). As shown in Fig. 2, which illustrates the

new MEMO environment’s language architecture,

FMMLx is the top level model. This can be

instantiated to define further languages at the

meta-model level (M2) which, in turn, can be

instantiated to create user models at the M1 level

below. The data at run-time, normally shown

within models, exists at the M0 level which is

instantiated from M1.

The key differences to a classical model stack,

such as the UML infrastructure, are that (a) the

number of levels can be extended as needed to

best represent the domain in hand and (b) the

same concepts are usable in the same way at all

levels. Thus, modelers do not need to resort

to different concepts to represent instantiation at

different levels (e. g. stereotypes versus standard

instantiation). This, in turn allow users to define

new languages (e. g. view types) as easily as they

can use languages to model domain content.

MEMO predefines, out-of-the-box, several

domain-specific modeling languages. At the time

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling 7

Special Issue on Model-Driven Organisations

Human

Resources

Technology

Employees

Skills

Machinery

Pla�orms

Applica�ons
Object Model

IS Architecture

IT Infrastructure

Project

Organisa�on

Structure

Joint Ventures

Strategic

Business Units
Value System

Value Chain

Service

Process

Task

Service

Transac�on

Workflow

SLA

Performance

Indicators

Performance

Indicators

Opera�onal

Goals

Compe��veness

Strategic Goals

Opportuni�es

Strategy

Organisa�on

Informa�on

System

Resource Structure Process Goal

Aspects

P
e

rs
p

e
ct

iv
e

s

Figure 3: MEMO High-level Framework (Frank 2014)

of writing, these are: the strategy modeling lan-

guage (MEMO-SML) (Frank 2002), the organiza-

tion modeling language (MEMO-OrgML) (Frank

2011), the object-oriented modeling language

(MEMO-OML) (Frank 2002), the organizational

goal modeling language (MEMO-GoalML) (Bock

and Frank 2016) and the IT infrastructure mod-

eling language (MEMO-ITML) (Kirchner 2008).

In addition there are more specific languages to

describe indicator systems (MetricML) (Strecker

et al. 2012) and decision processes (DecisionML)

(Bock 2015). These languages define the view

types that can be used to portray information

about the system or organization in question. As

illustrated in Fig. 3, these are organized as a

two dimensional matrix based on the perspec-

tive they offer and the aspects they convey. For

instance, business process models are assigned

to the perspective “organization” and the aspect

“process”, whereas structural descriptions of the

enterprise are assigned to the aspect “structure”

and a value of the perspective dimension accord-

ing to the needed abstraction level. As illustrated

in Fig. 3, the cells of MEMO’s matrix, which

essentially constitutes its viewpoint framework,

contain (or refer to) views (i. e. models) which are

expressed using one of the languages mentioned

above. MEMO also allows views to be mapped to

combinations of cells in order to support models

which span multiple perspectives and/or aspects.

Fig. 4 shows an example of the use of the

MEMO Framework. In the example, two lan-

guages of the framework, MEMO-SML and

MEMO-OrgML, are used to model aspects of

an Insurance Brokerage company. In terms of

MEMO’s viewpoint framework, the presented

example is situated in the cells represented by

“strategy / process” and “organization / process”.

The view corresponding to the first cell uses the

MEMO-SML language to describe an excerpt

of a strategy model in the example that shows a

value chain with one activity group being decom-

posed into further activities. Similarly, the view

corresponding to the second cell uses the MEMO-

OrgML language to model business processes

which are part of an organization model. In order

to ensure the overall consistency of views covering

all cells shown in the viewpoint framework, the

concepts from the different cells refer to each other.

In the shown example the boundary between the

two cells is the relationship of the Activity and

the Business Processmodel elements. The activ-

ities coming from the strategy model are related to

one or more business processes which describe the

activities in the organizational model. This pro-

vides clear traceability from the strategic concepts

down to their realization on the organizational and

technical levels.

The key property of the MEMO modeling ar-

chitecture shown in Fig. 2 is that all the levels are

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

8 Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

Start

Bezeichner Claim arrived

Verification of
Substantial

Matter

Formal CheckProcess
Customer
Request

Insurance Broker Form not ok

Form ok

Claim
rejected

Claim
accepted

Claim Processing
Cars

Claim Processing
Liability

Claim Processing
Fire

Contracting
Claim

Processing
Risk

Assessment

Inbound
Logistics

Operations
Outbound
Logistics

Marketing
Sales

Service

Staff

Clerk

costAwareness ...
motivation ...
qualification

IT

ClaimProcessing

size ...

Management

Activity
Group

Activity

Business
Process

Strategic
Resource Position

Organization Unit

Figure 4: MEMO Example (Frank 2002)

“soft” in the sense that they are immediately ac-

cessible and changeable without transformations

or code generation. In fact, from the point of view

of the underlying tools, all levels are just data.

MEMO does not focus on supporting views of

operational information but the multi-view model-

ing framework makes it easy to do so. To support

operational information in a seamless way a fur-

ther layer, MO, would need to be added containing

instances of the models at level M1. To do this

efficiently, of course, MEMO would need to be

extended with additional languages to describe

such things as configuration and operational his-

tory information, and ultimately to support the

definition of executable models (i. e. code). How-

ever, the basic capability for seamless extensibility

and deployability is provided by the underlying

multi-level modeling infrastructure.

4 Orthographic Modeling

Although MEMO represents a significant step

forward over existing EA modeling approaches in

terms of its ability to support seamless, multi-level

modeling, and through this a seamless transition

from development to operation (in the sense of

DevOps), it is much more traditional in terms of its

viewpoint framework. We believe that, to create

the ideal foundation for MDO, it is necessary to

integrate the benefits of multi-level modeling with

a new kind of viewpoint framework that provides

a more systematic and intuitive way of organizing

and navigation around views. In this section we

first motivate the need for such a vision and then

explain the basic idea behind our approach which

we refer to as “orthographic modeling”.

4.1 Multi-View Modeling Realization

Strategies

Although EA modeling approaches agree on the

use of multiple views to describe an enterprise

architecture, there is no consensus on how these

views should be organized and supported. Atkin-

son et al. (2015) present a number of dichotomies

that characterize the range of fundamental design

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling 9

Special Issue on Model-Driven Organisations

choices available for multi-view specification en-

vironments, including EA modeling approaches,

based on the existing literature and state-of-the-

art. The most important of these are summarized

below.

Rigorous versus Relaxed. This is the most basic

dichotomy which basically characterizes the level

of formality and prescriptive guidance provided

by an approach. “Relaxed” approaches such as

Zachman and TOGAF provide few if any rules

about what specific languages should be used to

represent different views and how they should be

populated, while “rigorous” approaches such as

Archimate, RM-ODP and MEMO provide strong

constraints on these issues. Except for extremely

small organizations, relaxed approaches are unable

to provide the control and discipline needed to

support a fully-fledged MDO.

Synthetic versus Projective Views. One of the

most fundamental design choices when realizing

a multi-view approach is whether views are “syn-

thetic” or “projective”. Although the term was

coined by some of the earliest work on multi-view

approaches (Finkelstein et al. 1992), this terminol-

ogy was popularized in the IEEE1471/ISO42010

standard for Systems and Software Engineering –

Architecture Description (ISO/IEC/IEEE 2011)

which defines the difference in the following way:

“In the synthetic approach, an architect constructs

views of the system-of-interest and integrates these

views within an architecture description using

model correspondences. In the projective ap-

proach, an architect derives each view through

some routine, possibly mechanical, procedure of

extraction from an underlying repository.”

Projective approaches therefore revolve around

a repository that stores a representation (i. e. a

model) of the system from which the views are gen-

erated on demand by an automated transformation.

The term Single Underlying Model (SUM) (Atkin-

son and Draheim 2013; Atkinson et al. 2011)

is often used to refer to this repository as it is

conceptually a single, complete and high-fidelity

model of the real system. Most EA modeling

approaches, including MEMO, do no explicitly

explain whether they are synthetic or projective,

leaving the choice open to individual tools. The ex-

ception is RM-ODP (ISO/IEC/ITU-T 1997) which

is explicitly based on, and strongly advocates, the

synthetic approach. The big problem with syn-

thetic approaches is that inter-view consistency

has to be maintained on a pairwise basis. This

becomes untenable for large MDOs since the num-

ber of inter-view consistency relationships that

have to be maintained grows exponentially with

the square of the number of views.

System-Centric versus Component-Centric

Views. Another important property of multi-view

modeling approaches is how the subject of views

is characterized – using a system-centric strategy

or a component-centric strategy (Atkinson et al.

2015). In the former all views are characterized

(i. e. identified) as being views “of” the same

subject – the system. This means that the view-

points, and thus the viewpoint framework, are

determined only by the view types. In the latter,

all views are characterized (i. e. identified) as

being views of a distinct subject, either the system,

or a component (i. e. a part) of the system. This

means that viewpoints are determined not only by

a view type but also by a view subject.

All mainstream EA modeling approaches today,

including MEMO, support system-centric views.

Of course, users of approaches based on synthetic

views invariably create models that only describe

a part of the system (e. g. a server, a process, a

department etc.) since it is usually impossible to

create views of the whole system. However, when

doing so they have to go outside the viewpoint

framework and use ad-hoc techniques to character-

ize what a view is describing. This in turn leads

to numerous problems, including duplication of

information, confusing characterization of views

and the lack of guidelines for filling them with

content (Atkinson and Tunjic 2014b).

Abstract versus Concrete. Another impor-

tant design issue in EA modeling approaches

is whether views are essentially “abstract” (i. e.

logical) concepts that have no direct represen-

tation, “concrete” (i. e. physical) concepts that

have a physical representation (e. g. on a computer

screen or in a printed document) or a mixture

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

10 Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

of both (Atkinson et al. 2015). The difference

revolves around whether the views are intended

to correspond to individually “viewable” chunks

of information that can be seen in one go on a

computer screen or in a document, or a more

loosely-related collection of model elements that

cannot conveniently be viewed in one piece. The

former kind of view is often referred to as a “dia-

gram”, while the latter is often referred to as an

“abstraction level” or “perspective”.

None of the existing EA approaches make their

position on this issue explicit, but in practice they

invariably adopt just one of the approaches to the

exclusion of the other. Because of the high level of

granularity and abstraction at which they operate,

the views of relaxed EA modeling methods such

as Zachman and TOGAF are abstract. The same is

true of the RM-ODP method, however, which de-

spite being rigorous has very large grained views

that cover information from a particular high level

perspective. According to RM-ODP, the creation

of concrete diagrams is a tool issue which lies

beyond the method itself. The views of most other

rigorous methods such as Archimate and MEMO

are concrete since they are defined using a pre-

scribed language and are intended to be rendered

for physical representations. In practice, to model

large scale approaches, a mixture of both kinds of

views is necessary. Ideally it should be possible to

define both abstract and concrete views using the

same metaphor and to allow the latter to be nested

arbitrarily inside the former. We therefore refer

to this as the requirement for “composite views”

since regarding abstract and concrete views as

being leaves in the composite pattern (Gamma

et al. 1995), and thus being arbitrarily nestable,

provides the perfect model.

In fact, the users of all existing methods already

have to learn to work with both kinds of views

because abstract views have to be broken down

into smaller, individually viewable “models” (i. e.

diagrams), while concrete views have to be orga-

nized in some way into larger, cohesive bodies of

information. The problem with all existing EA

methods is that one or other of the two forms of

views (i. e. abstract or concrete) is implicit and

has to be handled by users in an ad-hoc way out-

side the framework of the method. In the case

of MEMO for example, what the method calls

“views” are concrete views, while what the meth-

ods calls “perspectives” or “aspects” are abstract

views.

4.2 Orthographic Software Modeling

As argued in the previous section, none of the

well known approaches to EA modeling provides

the ideal combination of realization choices to

support the view-based modeling of large systems

and organizations. The goal of the Orthographic

Software Modeling (OSM) approach proposed by

Atkinson et al. (2010) is to support such a combi-

nation in an efficient and highly intuitive way by

appealing to the successful notion of orthographic

projection used in CAD tools for engineering

physical artifacts. This is illustrated in Fig. 5.

The left-hand shows orthographic projections of a

physical object (a house) while the right-hand side

shows orthographic projections of some abstract

entity that is not physically visible. As implied

by its name, OSM was originally focused on the

orthographic modeling of software, but in general

the cloud in the middle of the figure can represent

any well defined conceptual or physical object,

including complete IT systems or socio-technical

systems such as organizations.

Controller-X

Model-Part-Z

GUI-Part-Y

Helper-Part-X

command-x2y

sta
rt-x

y
z

command-y2x

command-y2z

Helper-Part-Y

command-y2y

The System

Product-Name

Product-Price

Product-Group

Product-Descrip�on

Please enter data to specify the product

Submit Cancel

Copyright xyz

Demo-GUI-Element for Orthographic Projec�on Figure

Figure 5: Orthographic Projection

The orthographic projection metaphor inher-

ently suggests the realization choices described in

the previous subsection. First, the approach has

to be rigorous since the rules for determining the

content of a view once the viewpoint is known

have to be completely unambiguous. Second, the

very idea of orthographic projection calls for indi-

vidual views to be thought of as projections from

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling 11

Special Issue on Model-Driven Organisations

the underlying artifact (i. e. a SUM) rather than as

artifacts in their own right from which the proper-

ties of the viewed object are derived. Third, since

it is practically impossible to include all informa-

tion about a large system in a single concrete view,

it is convenient to employ component-based views

which “zoom in” on one part of the system (e. g.

a particular room or feature of a house). Fourth,

since such fine-grained views need to be though

of as belonging to larger-grained views (e. g. a

front view of the door is a part of the front view

of the house) all views need to be composable to

arbitrary depths.

.
.
.

.
.
.

.
.
.

View

...

StructuralSpecifica�on

O0

Component 2

0

name :String

SubjectComponent 2

0

name :String

acquires
2

0

Opera�on 1

name :String

A�ribute 1

name :String

type:String

O1

*

*

1

*

*

1

toComponent

fromSubject
component

component

a�ribute

opera�on

1

0
ShoppingCart:SubjectComponent

name = 'ShoppingCart'

1

0
Valida�onService:Component

name = 'Valida�onService'

1

0

:acquires

*
toComponent

*

fromSubject

Cell

Figure 6: View Selection based on Dimensions

Previous papers on OSM have characterized the

challenge of building an OSM environment as hav-

ing three main ingredients (Atkinson et al. 2010).

The first is to identify a suitable dimension-based

metaphor for identifying and navigating around

views of a logical subject rather than a physical

object. Obviously the normal dimensions of the

real world are not suitable for software systems or

organizations. This idea is shown schematically in

Fig. 6. All views are identified and conceptualized

as existing within a multi-dimensional space and

are selected by picking the appropriate coordi-

nates. Concrete views correspond to individual

cells or small combinations of cells, while abstract

cells correspond to large collections of cells that

reflect a slice or sub-cube of the dimension space.

For example, in a viewpoint framework contain-

ing a dimension called Platform Independence,

all the concrete views that share the value PIM

in this dimension (but have different values for

other dimensions) can be regarded as making up

an abstract view corresponding to a “platform

independent model” of the system. Moreover, all

views are inherently identified by the subject they

are portraying as well as the properties they are

displaying.

The second ingredient of OSM is the “on de-

mand generation” generation of views from a

Single Underlying Model (SUM) which holds all

information concerning the system under develop-

ment. The SUM has no visual representation and

is never accessed directly by the user so it can only

be seen and manipulated through the views. Since

they are generated automatically, on demand, such

views naturally represent projections of (parts of)

a system. The consistency between the views is

guaranteed by their continuous synchronization

with SUM. This principle is shown schematically

in Fig. 7.

The third core ingredient is a view-based

method which inherently promotes the use of mul-

tiple dimensions and views to represent a system.

The initial software engineering-oriented version

of the OSM approach adopted the KobrA (Atkin-

son 2002) method for this purpose. However, to

support the MDO vision through orthographic

modeling a more general method (i. e. definition

of views and dimensions) is required.

5 Deep Orthographic Modeling

As explained in Sect. 3, the MEMO method has pi-

oneered the use of multi-level modeling technolo-

gies to seamlessly integrate development-time (i. e.

architectural) views and run-time (i. e. operational)

views of organizations to facilitate the MDO vision.

However, its viewpoint framework for identify-

ing, characterizing and navigation around views

is rather traditional. On the other hand, “classic”

OSM proposes a new metaphor for addressing

the latter requirement which naturally supports

component-centric and composite views, but does

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

12 Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

Model of the
System (SUM)

The System

Opera�on Specifica�on

View

UML Classes

View

Ac�vi�es

View

Java Source

View

Decision Tables

View

Figure 7: SUM-based Projective on Demand View Generation

nothing to address the seamless integration of

architectural and operational views. The contri-

bution of this paper is therefore to combine these

two approaches, the deep variant of multi-level

modeling and orthographic modeling into a single

unified approach for enabling the MDO vision.

The motivation for attempting this unification is

the expectation that (a) the two approaches are

naturally compatible and will deliver a powerful

synergy, and (b) the unified, deep orthographic

modeling approach will provide the best platform

for supporting the flexible, view-based modeling

metaphor needed for realizing the MDO.

Essentially, deep orthographic modeling uses

the same principles as “classic” orthographic mod-

eling, but uses deep modeling technology for the

underlying storage and model representation plat-

form. This is illustrated schematically in Fig. 8.

In order to fully exploit the capabilities of deep

modeling we apply the technology also on the

views, which means that the SUM, the projected

views and the projections of the views are based

on the deep modeling technology. Thus each of

the rectangular elements in the figure are intended

to represent instances of the OCA shown in Fig. 1.

The thin orange strip along in each OCA rectangle

is mean to represent the linguistic meta-model

in the L2, while the large grey section of each

OCA rectangle is meant to represent the domain

content distributed over an arbitrary number of

ontological levels.1 Note that not only the SUM

and the view are in general deep models, but also

the transformations (i. e. rules and traces). Notice

also that all of content in the SUM is “greyed out”

to convey the idea that it cannot be directly seen

and has not concrete syntax. In contrast, one or

more of the ontological levels in the views are

highlighted in color to convey the idea that they

are physically rendered using a concrete syntax.

The following sections present the main con-

ceptual ingredients and prototype realization of

such a deep orthographic modeling environment.

To support the concepts presented in the next sec-

tions, we use UML class diagram like notations

to describe the environment configuration and

provide a kind of construction kit. The definition

of the construction kit will be modeled in the M1

layer, while the M0 layer will be used when the

environment is used to specify a concrete project.

5.1 Deep Single Underlying Model

The SUM plays the central role in an orthographic

modeling environment since it serves as the place

where all known information about the system or

organization in question is stored. “All informa-

tion” means the data which is needed to provide a

detailed, precise and full description of the system

1 Although only three levels are hinted at in Fig. 1, since

this is a highly schematic diagram, in general, the number of

levels is flexible.

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling 13

Special Issue on Model-Driven Organisations

SUM

Figure 8: Architecture of Deep Orthographic Modeling

(SUM, Views and Projections realized using Deep Modeling)

of interest in the form of a model. The data can

range from the system’s behavioral properties and

feature specifications to its architectural composi-

tion and executable descriptions (and ultimately,

running instances). In the ideal case the real sys-

tem can be derived directly from the SUM, or

“is” the SUM. The SUM should also ideally be

redundancy free, so a given piece of information

about the system is only stored once.

Architects who are working on the SUM to de-

scribe a system work with projective views. This

means they never directly “see” the SUM, so it

does not need to support bindings to concrete syn-

taxes and can be optimized for storing information

efficiently. This allows the SUM to be defined

as a redundancy free model using the “informa-

tion compression” and “information expansion”

approaches described in (Atkinson et al. 2015).

By the term “information compression” we mean

the process by which information belonging to

many concepts in the SUM is compressed into

fewer concepts in a view. This is used in views

which provide some kind of overview by aggre-

gating information similar to OLAP views. By

the term “information expansion” we describe the

process by which information from many views

(or many model elements of one view) is stored

in one model element in the SUM. This can be

applied to conceptual concepts that are relevant

across many abstraction layers (e. g. organization

and information system perspectives of MEMO).

The common concepts of the views exist only

once in the SUM, but can be seen multiple times

in different views by expanding the single SUM

representation. This approach is practicable since

the SUM does not care about the visual represen-

tations of the compressed and expanded concepts.

The visual representations of concepts are han-

dled outside the SUM when they are projected into

views and are visualized according to the rules

and language of each view.

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

14 Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

In order to capture all relevant information

about the system under discussion, the SUM must

be sufficiently expressive. The concepts which can

be used in the SUM to store user data are defined in

the most abstract ontological level (the meta-meta

level) of the SUM. The key question, therefore, is

which concepts are needed in the SUM to provide

the needed expressiveness to capture sufficient

information for a detailed and full specification

of a system. This challenge is addressed by the

methodologist who, in orthographic modeling,

has the role of setting up the environment by

defining the ontological meta-model of the SUM,

the needed views and the dimensions used to

navigate around the available views. In short, the

methodologist is responsible for setting up the

framework used to specify the system according

to a specific method.

For a software system, a method such as KobrA

(Atkinson 2002) could be used, while for EA mod-

eling a method such as Archimate or MEMO could

be adapted. Based on the choice of method, the

methodologist can provide a configuration for the

orthographic modeling environment by defining

the needed artifacts. The views and dimensions

for the orthographic modeling environment can

be derived from the chosen method. For KobrA,

natural views are structural, behavioral and func-

tional, as defined by the method. Since KobrA

supports the model-driven development approach,

it also makes sense to reflect the platform indepen-

dence of a view in the definition of the dimensions.

For the MEMO approach, suitable candidates for

dimensions are the two concerns which define the

MEMO high-level Framework as shown in Fig. 3).

When used for a view-based, model-driven or-

ganisation, the SUM is a model containing all

known information about the organization of inter-

est as it can be seen in Fig. 7. When represented

as a deep model, the SUM can represent infor-

mation at all levels of classification seamlessly,

using the same notation and concepts. This in

turn, means that operational data, which typically

occupy the lower ontological levels, and archi-

tectural data, which typically occupy the higher

ontological levels, are accessible seamlessly using

the same language and conventions. The most ab-

stract level in a deep model (i. e. O0) contains the

(domain) meta-model for the information shown

in the views. The levels below (i. e. O1 . . . On)

contain descriptions of the organization at differ-

ent levels of abstraction and classification (i. e.

architectural and operational). The number of

ontological levels for a particular specification

depends on the domain and the scenario in hand.

Moreover, the number of ontological levels and

types storeable in the SUM is not limited and can

easily be extended as needed without recompila-

tion and redeployment of code.

When a deep modeling infrastructure is used

to store the SUM, the contents of the SUM are

represented using the linguistic concepts of the

deep modeling language (L2). In the presented

approach, the structure of the SUM follows the

OCA as shown in Fig. 8. Since the SUM should

ideally have a predefined ontological meta-model

that defines the types used to capture user data, we

describe the SUM using two distinct parts – the

predefined part which we call the “SUM language”

and the evolving part containing user data which

we call the “SUM content”. The SUM language

is usually contained in the top ontological level(s)

(i. e. O0), while the SUM content is contained in

the subsequent ontological levels. The language

and the content parts can be seen as two disjoint

sets of model elements.

SumLanguage

1..*

SumContent

sumLanguageConcept

Sum

SumConcept
0..*

1 1

sumContentConcept

Figure 9: Structure of the Deep Model SUM

The structure of the SUM is shown in Fig. 9 as

a UML class diagram. The Sum model element

contains the SumLanguage and SumContent ele-

ments. Both are composed of elements of the

type SumConcept which is used as a placeholder

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling 15

Special Issue on Model-Driven Organisations

or pointer element for any concept of the deep

modeling language (e. g.Clabject, Attribute,

Level, Classification, . . .). For example

if the deep model from Fig. 1 were the SUM,

the SumLanguage would contain instances of

SumConcept pointing to the ontological level

O0 and the Clabject OrganizationType. The

SumContent, in turn, would contain instances of

SumConcept pointing to the following concepts

– the ontological levels O1 and O2, the Univer-

sity and UniversityOfMannheim Clabjects and

the corresponding Classification relationships

which classify University as an instance of Or-

ganizationType and UniversityOfMannheim as an

instance of University.

The SumLanguage must have at least one

SumConcept in order to enable the creation of

ontological instances to store user data. However,

the SumContent can be empty. This is the case,

for example, when the Sum does not yet contain

any user data at the start of a new project.

5.2 Deep Projective Views

Views are the user interfaces in view-based envi-

ronments. They must be integrated in a way that

ensures the consistency of the distributed infor-

mation used to specify a system. In a projective

approach, consistency must be ensured between

the available views and the SUM since this ensures

the overall consistency of all the views. The views

are automatically consistent with one another if

they are individually consistent with the SUM.

The projective approach implies that views are

projections of the SUM, i. e. they show particular

parts of the SUM which describe the system under

development. But how many views are needed to

specify a system and what content should the views

have? The orthographic modeling environment

must have sufficient views to allow architects to

describe every relevant aspect and part of the

organization in question.

When defining the views in an orthographic

modeling environment to support a particular

method the methodologist must first define the

view language for a view. The view language is

the predefined part of a view which describes the

domain concepts represented in the view. In other

words, it defines the concepts which can be used

to embed user data and thus information about the

organization into the views. The view language

plays the role of a meta-model in classical two-

level modeling and contains the types which can

be instantiated in order to capture user data. Af-

ter defining the view language the methodologist

must define how the view is projected from the

SUM, and vice versa. This step includes manip-

ulations of the SUM, that is – definition of types

in the SUM used in the view and the definition of

concrete relationships between the view and the

SUM.

The relationship between a view and the SUM in

the context of orthographic modeling is shown in

Fig. 10. The view language is the static predefined

part of a view and the projection rules are the static

predefined rules which relate types from the view

language to corresponding types from the SUM

language. The view content is the dynamic content

of a view which contains user data from the SUM.

The projection traces are derived according to

the projection rules and capture the relationship

between the user data from the SUM and the

corresponding user data presented in the view.

The set of types from the SUM language that are

projected to the view language is the scope of the

view. The view scope belongs to the static part

of a view. The view footprint, on the other hand,

belongs to the dynamic part of a view since it is

the user data from the SUM which is mapped to

view content by the projection traces.

The following subsections present the struc-

ture of views in orthographic modeling and their

relationship to the SUM.

5.2.1 View Language and View Content

In order to provide stable projections of views

from the SUM, we divide views into two parts

– the view language and view content. The for-

mer corresponds to the notion of a meta-model in

classical two-level modeling, but in our case the

view language can span more than one ontologi-

cal level. The latter corresponds to the model in

classical two-level modeling environments, which

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

16 Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

Model of the
System (SUM)

The System

View

View Language

View Content

Projec�on Rules

Projec�on Traces

View Scope

View Footprint

Figure 10: Projection-based Relationship between SUM and View

is an instance of a meta-model. Again this can

also span multiple ontological classification rela-

tionships, if desired. The two parts are separated

since the projection rules must be defined on the

types in the language part of a view and the SUM.

In contrast to the content part, the language part is

static from the perspective of an architect using the

orthographic modeling environment to describe

an organization.

name : String

View

ViewContent

1

ViewLanguage

Projec�onTraceProjec�onRule

1

1..* 0..*

1..* 0..*

ViewConcept

viewContentConceptviewLanguageConcept

Figure 11: Structure of a View

The concrete structure of a view is shown in

Fig. 11. The ViewLanguage element contained

by the View element contains the types or the

meta-model of the view. The ViewContent part of

a View is a container for the concepts that repre-

sents user data in the view. The ProjectionRule

part of a View describes how the projection is

realized as a transformation – i. e. it identifies

which concepts from the SUM are projected

to the view. While the ProjectionRules de-

fine the projection on the type-level, i. e. on the

meta-model, the ProjectionTraces hold the map-

pings of the concepts on the instance-level. The

ProjectionTraces of a view are automatically

generated by the orthographic modeling envi-

ronment as soon as a view is projected. The

ProjectionRules are used to query the user-data

from the SUM and show it in the view. During

this process the ProjectionTraces are generated

and assigned to the View.

The view language and content parts of a

view are shown in the upper part of Fig. 11.

The ViewConcept element is used in the same

way as the SumConcept element, described

in the previous section. The ViewConcepts

which belong to a ViewLanguage are contained

in the viewLanguageConcept relation of the

ViewLanguage. In a view language there must

be at least one viewLanguageConcept. In a simi-

lar way to the view language, as shown in Fig. 11,

view content is represented by the ViewContent

element contained by a View. The ViewConcepts

which belong to a ViewContent are contained in

the view content’s relation viewContentConcept.

As in the SUM, the data in the view’s content part

can contain information about an organization at

different levels of abstraction and classification

(i. e. architectural and operational).

To realize our approach and exploit the ben-

efits of a deep modeling infrastructure, we use

the level-agnostic modeling language (LML) de-

fined by Kennel (2012) and implemented in the

melanee tool by Gerbig (2017), based on the

Eclipse Modeling Framework (EMF) (Budinsky

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling 17

Special Issue on Model-Driven Organisations

et al. 2003). Beyond the ability to handle the on-

tological levels dynamically, melanee provides

advanced features for visualizing deep models

in multiple formats and notations (Gerbig 2017).

These employ visualizers to influence the appear-

ance of the concepts in the deep model. These

visualizers, of which there can be many at the same

time, can be customized by the user at run-time

to provide the most suitable concrete syntax for

each specific holder. Moreover, users can toggle

between domain specific visualizations and gen-

eral purpose visualizations of models or model

elements at any time. For instance a bpmn like

deep model (OMG 2011a) can have two domain

specific visualizations defined, one presenting the

concepts using the regular bpmn symbols and a

second presenting the concepts using a general

purpose notation (e. g. UML like). While the

former is likely to be preferred by bpmn experts,

the latter is probably more accessible to bpmn

beginners who are not familiar with the graphical

notation.

The visualizers are defined in the context of the

domain concepts, which means that every concept

can have its own visualizer. If no domain specific

visualizer is defined for a concept its instances

will be rendered using a default general purpose

visualization. The general purpose visualization

renders entities (i. e. classes or objects) using the

usual rectangular notation from the UML, and con-

nections using the flattened hexagon notation as

used in entity-relationship diagrams. Furthermore

connections can be collapsed into lines to save

space in a diagram. A strength of melanee is its

capability to use the visualizers of a domain spe-

cific visualization across many ontological levels

based on the classification hierarchy. A visualizer

defined for a concept at O0, can be automatically

used for its instances at all the ontological levels

below (O1 . . . On).

5.2.2 View Projection

This section describes how information in the

SUM is projected into a view. The transformations

that enact the projection process are basically

defined at the level of the types in the SUM and

view languages. Defining the projections at the

type-level makes the views generic since they

can be applied to specific parts of the same as it

evolves. In other words, this approach supports

the notion of component-centric views that portray

a particular component.

SumConcept

Projec�onTrace

ViewConcept

Environment Condi�on

name : String

View

view
Content
Concept

sum
Content
Concept

sum
Language
Concept

view
Language
Concept

1..*1..*

1..*1..*

1rule

0..* trace

0..* 1..*

0..1

1
1

Projec�onRule

Figure 12: View Projection Structure

Fig. 12 shows the structure of a view projection.

The figure summarizes the concepts from the

previous sections and extends the structure for the

orthographic modeling environment.

Projection Rules

A projection rule is defined as a relation between

the SUM and a view relating one or more types

from the SUM with one or more types from the

view. This is controlled by a condition expres-

sion which can constrain the projection in or-

der to project a specific set of concepts. The

ProjectionRule element from Fig. 12 therefore

has references to the language concepts from the

SUM and the view (sumLanguageConcept and

viewLanguageConcept) and it contains an element

of type Condition which is used to provide fine-

grained control to the projection rule. Since the

projection rules are defined on the types, they are

applicable to all instances in a specific projection.

Using the Condition, a projection rule can be

configured to project a chosen subset of all the in-

stances of the types. This feature allows the re-use

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

18 Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

of view definitions – i. e. the methodologist defines

one view (-type) which can have many entities

(-instances) in an orthographic modeling environ-

ment. The input to the Condition is derived from

the orthographic modeling environment, or more

specifically, from the dimension-based navigation

mechanism (cf. Sect. 5.3). This mechanism allows

on-the-fly view generation based on the content

of the SUM which is used as a parameter in the

projection rule (Atkinson and Tunjic 2016).

The ability to parameterize a view’s projection

definition follows the idea of component-centric

views, as presented in Sect. 4, and plays an im-

portant role in the generation of subject-oriented

views, which are views of a specific part of the

SUM and are used in Sect. 5.3, for the definition

of the dimension-based navigation approach. The

projection of a view from the SUM is usually

achieved using multiple projection rules. For ex-

ample, there is often at least one projection rule

for each type.

Projection Traces

The views generated by a projective approach con-

tain user data derived from the SUM. Projecting

user data from the SUM into a view populates it

with user data according to its projection rules.

Since the view is derived from the SUM it cannot

contain any user data which is not in the SUM.

The views in our approach are therefore always

abstractions of, or windows onto, the SUM. The

transformation of the information from the SUM

to the view gives rise to projection traces which

map the concepts in the view content with the

corresponding concepts in the SUM content. Pro-

jection traces are created when projection rules

are applied to project (i. e. transform) user data

from the SUM into a view. A projection rule can

lead to many projection traces, but may also lead

to no projection traces – this is the case when the

types from the SUM referred to in the projection

rule have no instances. The ability, to retrieve the

mappings of the concepts on the type and instance-

level allows the definition of rules which can be

used for synchronization mechanisms between the

SUM and the views in order to ensure the consis-

tency of all view. This is realized using lens-based

technologies developed by Foster et al. (2007) as

explained by Tunjic and Atkinson (2015).

Fig. 12 shows the structure of the projec-

tion trace elements. A ProjectionTrace re-

sults from the application of a ProjectionRule

and is assigned to it via the rule relation.

In contrast, a ProjectionRule can have many

ProjectionTraces assigned to it, since a sin-

gle ProjectionRule can result in the projection

of many instances of its defined types and thus

create many ProjectionTraces. The concepts

from the view and the SUM which are “traced”

by a ProjectionTrace are referenced via the

sumContentConcept and viewContentConcept

relations. The projected View contains informa-

tion about the alignment of the concepts on both

the type and instance-levels and thus contains the

ProjectionRules and the ProjectionTraces.

5.3 Dimension-based View Navigation

In view-based modeling, every view should exist

for a reason. In the IEEE1471/ISO42010 standard,

the existence of views is based on concerns of the

stakeholders, so every view takes at least one con-

cern into account. The problem for architects

when dealing with many views is to find the right

view for their needs. The search for the right views

can be guided by concerns, but since concerns

are predefined and static, the views which can

be derived from them are predefined and static

as well. To be able to support suitable views,

whose contents are defined dynamically as de-

scribed in Sect. 5.2.1, we use a multi-dimensional

cube (hyper-cube) metaphor for navigating around

views. The approach has some similarities to the

OLAP navigation model known from the data

warehouse domain (Kimball and Ross 2013) but

goes beyond it by mixing operational views (pri-

marily at the lower, more concrete ontological

levels) and static views (primarily at the higher,

more abstract ontological levels).

Our approach is a mixture of the two extremes

mentioned above. To define a view, we use prede-

fined static parameters and to describe what the

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling 19

Special Issue on Model-Driven Organisations

view should be of, we use dynamic parameters.

Both parameter types are mapped to dimensions

which span the hyper-cube. The available views

are contained in the hyper-cube and are situated in

cells – one for each view. A cell, and thus a view,

is selected by picking values for each dimension.

Figure 6 shows the idea of the hyper-cube, in

which a view is assigned to a cell. The content and

type of the view are influenced by the dimension

values of the cell in which the view is located.

5.3.1 Hyper-Cube Definition

This section provides an overview of the structure

of the hyper-cube approach. As shown in Fig. 13,

a Cube contains many Dimension elements which

span the hyper-cube, with the number of dimen-

sions determining the order of the cube. The

Zachman Framework (Zachman 1987), for exam-

ple, can be realized with two dimensions. The

dimensions which span a cube can be static or dy-

namic. A cube must have at least two dimensions

– one static and one dynamic. The Dimension

model element is therefore defined as abstract,

while its sub-classes (i. e.DynamicDimension and

StaticDimension) can be used to create concrete

dimensions. Both dimension kinds are described

by a unique name.

DynamicDimension Sta�cDimension

DynamicDimensionElement Sta�cDimensionElement

Cube

2..*

0..* 1..*0..*

name : String

DimensionElement

name : String

Dimension

Figure 13: Hyper-Cube Structure

The dimensions of the cube, as well as the

views themselves, should ideally be orthogonal to

each other with minimal overlap. The dimensions

contain elements of the type DimensionElement

which represent the values of the dimension.

To allow dimension elements to be either

static or dynamic the DynamicDimensionElement

and StaticDimensionElement elements are de-

fined as specializations of the abstract class

DimensionElement.

All values of all dimensions must have names.

Static dimensions can contain only static dimen-

sion values and there must be at least one. They

are used to describe the type of a view, since

the view-type is also static and predefined. An

example of a static dimension is Platform Indepen-

dence, with its static dimension values CIM, PIM

and PSM from the MDA specification (Belaunde

et al. 2003).

A dynamic dimension consists of dynamic di-

mension values derived from the SUM. Addition-

ally, a dynamic dimension can have further static

dimension values. Examples of static dimension

values in dynamic dimensions are: none and all.

These can be used if the values of the dimension

are not relevant for a view, or if all values are

relevant for a view. A dynamic dimension can, in

contrast to a static dimension, also be empty. This

is the case when the dynamic dimension has no

static dimension values defined and no suitable

concepts for the dimension exist in the SUM. An

example of a dynamic dimension is Component.

The dimension values of this dimension would

usually be the list of all available instances of

the type Component. Using the aforementioned

example of a static dimension, it is possible to se-

lect a platform-independent view of a component

by choosing the value PIM from Platform Inde-

pendence and the appropriate component from

Component.

5.3.2 Deriving Values for Dynamic

Dimensions

This section presents the mechanism used to derive

the dynamic values of dynamic dimensions. This

mechanism is an essential part of our approach

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

20 Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

0..*

DynamicDimensionElement
1

DynamicDimension

SumConcept
1 1

sumContentConcept sumLanguageConcept

child

0..*

parent

1..*

0..*

name : String

DynamicDimensionContentProvider

displayProperty : String

query : Expression

Figure 14: Dynamic Dimension Content Provider

and supports the usage of content from the SUM

to create dynamic dimension values. Figure 14

gives an overview of the concept by extending

Fig. 13. The parts of Fig. 13 which are not relevant

for this section are omitted.

In order to populate a dynamic dimension with

DynamicDimensionElements we use the concept

of DynamicDimensionContentProviders. Dy-

namic dimension content providers are responsible

for querying the SUM for information about partic-

ular concepts. The results are dynamic dimension

elements which are assigned to the corresponding

dynamic dimensions. A dynamic dimension must

therefore have at least one dynamic dimension

content provider, with a well defined name, which

provides appropriate concepts for querying the

SUM for relevant information using the type of

the concept and a query expression. The type is

given by the sumLanguageConcept relation result-

ing in a SumConcept from the SUM language. The

query expression states which concepts should be

queried. It is possible to accept all available in-

stances, of the type given by sumLanguageConcept,

or to filter it according to a particular condition.

For example, “get all Components at the top level”,

means that all components that are not contained

by other Components should be selected. The re-

sult of a query can be empty if no suitable concepts

in the SUM exist. The dynamicDimensionElement

relation provides all dynamic dimension ele-

ments which result from the considered dy-

namic dimension content provider. In order

to get the DynamicDimensionContentProvider

of a DynamicDimensionElement the relation

dynamicDimensionContentProvider can be used.

The information from the SUM shown us-

ing dynamic dimension elements are instances

of the type defined by sumLanguageConcept.

Therefore the element DynamicDimensionElement

owns the relation sumContentConcept which

points to the SumConcept from the SUM con-

tent. The property displayProperty states which

property of the DynamicDimensionElement’s

sumContentConcept should be displayed as the

dimension value. Usually the name property is

used as the dimension value, so the dynamic di-

mension which contains all components contains

all names of the components.

As shown by the parent – child relationship in

Fig. 14, a dynamic dimension content provider can

contain another content provider. This is the case

when a hierarchical structure is needed within a

dimension. This functionality can be used if, for in-

stance, a dynamic dimension contains all instances

of business processes and business processes can

have sub-processes. A containing dynamic dimen-

sion content provider can be used to reflect this

container-like structure in the dimension. Another

example could be the representation of informa-

tion which belongs together, e. g. the business

processes and their instances. The business pro-

cesses can be represented in the top hierarchical

dimension while their instances would be repre-

sented in the next sub-dimension. In this case

the top hierarchical dimension would contain the

architectural data, while the sub-dimension would

contain the operational data.

5.3.3 Views in a Hyper-Cube

In the previous sections we defined the structure

and the behavior of the dynamic hyper-cube. In

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling 21

Special Issue on Model-Driven Organisations

this section we discuss the concepts which support

the assignment of views to cells in the dynamic

hyper-cube. To this end, we introduce the concept

of defining a slice or sub-cube of the hyper-cube

in order to assign views to it. The assigned views

correspond to abstract views as defined in Sect. 4.

Since a slice is just a special case, the term sub-

cube will be used in the following. A sub-cube

is defined when one or more of the coordinates

that select cells are left undefined. This occurs,

for example, at framework configuration time

because the values of dynamic dimensions are

no yet available. It is therefore not possible to

identify a particular cell at this stage because

it is not possible to select concrete values for

all dimensions. Selecting concrete values for

only some of the dimensions and leaving the

other unspecified defines a sub-cube of the hyper-

cube. Such sub-cubes correspond to the notion of

abstract views as explained in Sect. 4.

Sub-Cubes

/dimension : List

SubCube

name : String

View

Sta�cDimensionElement

1

0..*

0..*

name : String

DynamicDimensionContentProvider

displayProperty : String

query : Expression

Figure 15: The Concept of a SubCube

Figure 15 shows the mechanism for defining

sub-cubes of a hyper-cube. A sub-cube is defined

by selecting a value for each existing dimension re-

gardless of whether it is a dynamic or static dimen-

sion. The derived list property dimension contains

every dimension that is available for the consid-

ered hyper-cube. The derivation is based on the re-

lationships dynamicDimensionContentProvider

and staticDimensionElement, since both belong

to a dimension. The length of the list dimension

must be equal to the number of dimensions in the

hyper-cube and the content must be distinct.

The relationship staticDimensionElement al-

lows the choice of static dimension values

to define the sub-cube. The static dimen-

sion values can be contained by both static

and dynamic dimensions. The relationship

dynamicDimensionContentProvider allows dy-

namic dimension values to be chosen using the

content providers. The values returned by the

content providers depend on the content of the

SUM and are thus not defined at method configu-

ration time. Hence the sub-cube uses the content

providers and not the concrete dynamic dimension

values.

At configuration time the Views are assigned

to the sub-cubes using the SubCube relation of

View. Every view must be assigned to exactly one

sub-cube in order to be usable in a project. The

view, which is related to a sub-cube is an abstract

view.

Figure 16 shows a view which is assigned to a

sub-cube. The sub-cube is defined by the static

dimension values PIM and Structural and a dy-

namic dimension content provider which returns

all components. When a view is assigned to a

sub-cube only the view language is available but

not the view content, since the dynamic dimen-

sion values from the dynamic dimension content

providers are not available at this point in time and

the view content is thus empty. This is depicted

in the figure by showing only the view language

part of the view assigned to the sub-cube since

the view content part is not available at method

configuration time.

The static dimension values of a sub-cube de-

scribe the view language of the view which is

assigned to the sub-cube. Thus, the view language

of a view depends on the static dimension values.

From Sub-Cubes to Concrete Cells

In this section, the concept of a sub-cube will be

extended to show how concrete cells are derived

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

22 Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

.
.
.

S
tru

ctu
ra

l

B
e

h
a

v
io

ra
l

.
.
.

.
.
.

PIM

.

.

.

PSM

ShoppingCart

Valida�onService

...

Projec�on

Pla
�o

rm
 In

dep
en

den
ce

C
o

m
p

o
n

e
n

t

.
.
.

.
.
.

.
.
.

View-Language

...

StructuralSpecifica�on

O0

Component 2

0

name :String

SubjectComponent 2

0

name :String

acquires
2

0

Opera�on 1

name :String

A�ribute 1

name :String

type:String

O1

*

*

1

*

*

1

toComponent

fromSubject
component

component

a�ribute

opera�on

SubCube

Figure 16: View Assigned to a Sub-Cube

from the previously defined sub-cubes. We there-

fore extend Fig. 15 and introduce the concept of

a Cell which contains information about exactly

one dimension value for each available dimension.

The structure of a cell, and its relationship to the

previously described concepts, is shown in Fig. 17.

The concrete cells are available as soon as a

configured framework is used in a real project

which must have a SUM from which the dy-

namic dimension values can be derived. In this

step, the DynamicDimensionContentProviders

generate DynamicDimensionElements based

on their configuration. As soon as the

dynamicDimensionElement relation of a

DynamicDimensionContentProvider is not empty,

the SubCubes which use the content provider

can retrieve the actual dimension values for this

dynamic dimension. Once this information is

available, the SubCube can generate the concrete

cells by using the concrete dynamic dimension

values. The cell containment relation is used to

get all Cell elements of a SubCube. The relation

can also be empty when no suitable cells exist

(e. g. when there are no components available in

the SUM) so the corresponding cells do not exist.

The Cell elements have the same

staticDimensionElements as their owning

SubCube. The relation dynamicDimensionElement

depends on the result of the content

provider and contains one value for each

dynamicDimensionContentProvider from the

owning SubCube. The derived property dimension

of a Cell must contain exactly one dimension

value from each available dimension.

The relation cell of a View denotes the assign-

ment of a view to a concrete cell, while the view

corresponds to a concrete view. These relations

are generated when the orthographic modeling en-

vironment is used to specify a system in a concrete

project. At run-time, the content providers query

the SUM and produce concrete cells. In this step,

the View which is assigned to a SubCube gets as-

signed to all the generated Cells of that SubCube.

The view content is generated at the moment when

a View is assigned to a Cell. Then the environment

parameters are used in the conditions of the projec-

tion rules, resulting in the projection of concepts

from the SUM content to the view’s content part.

This procedure is triggered automatically as soon

as the content of the SUM changes, i. e. as soon

as the set of dynamicDimensionElement relations

of a DynamicDimensionContentProvider used by

a SubCube changes. If the set grows by one, at

least one new view is generated. In other words,

when a new component is created, the view having

the component as subject will automatically be

available. The reverse case when the set shrinks

by one is analogous.

The cells to which the views are assigned de-

scribe the content of the views. Hence we can

say that the view content of a view depends on

the dynamic dimension values which define the

cells. Figure 6 shows a view which is assigned to a

cell. The view has a language part because of the

assignment to a SubCube, and it has a content part

because of the automatic assignment to a Cell.

View Projection using Cells

This section extends the view projection defini-

tions from Sect. 5.2.2 using the definitions from

the previous sections concerning the hyper-cube.

We can now replace the Environment element by

the hyper-cube definitions, since the hyper-cube

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling 23

Special Issue on Model-Driven Organisations

/dimension : List

SubCube

name : String

View

Sta�cDimensionElement

0..*

DynamicDimensionElement

0..*

/dimension : List

Cell

1 0..1

0..*

1

0..*
name : String

DynamicDimensionContentProvider

displayProperty : String

query : Expression

0..*0..*

Figure 17: The Concept of a Concrete Cell

provides the environment for views using dimen-

sions and cells. The updated structure is shown in

Fig. 18.

name : String

View

Condi�on

SumConcept

DynamicDimensionElement

/dimension : List

Cell0..1

0..1

1

1..* 0..*

1..* 1

sum
Content
Concept

sum
Language
Concept

Projec�onRule

Figure 18: View Projection-Rule and Cell Properties

The projection rules of a view, project con-

tent from the SUM using concepts from the

SUM language, which are accessable via the

sumLanguageConcept relation. In the projection

rule, all instances of the sumLanguageConcept are

retrieved by “allInstances()”-like operations

and projected to the content part of the view. The

Condition of a ProjectionRule serves as a filter

for the projection rule. The Condition influ-

ences the ProjectionRule using the information

about the elements to which the View is related.

The parameters of the environment are now the

dynamicDimensionElements of the Cell. Since

the DynamicDimensionElements are derived from

the SUM content, they hold the corresponding

information in the sumContentConcept relation.

A projection rule used to project components from

the SUM to a view can be controlled by a condition

which uses the dynamic dimension value of the

component dimension to project only the compo-

nent which is assigned to the dynamic dimension

value. The condition can also be used to query

any possible content from the SUM, using query

languages like the OCL (OMG 2011c), ModelJoin

(Burger et al. 2016) or other mechanisms like

decision trees (Breiman 1984).

6 Deep Orthographic Modeling Example

To show how the deep modeling approach de-

scribed in the previous section would be applied

in practice, and demonstrate that it at least has the

capabilities of exiting EA modeling frameworks,

in this section we apply it to the MEMO exam-

ple presented in Sect. 3. More specifically, we

show how our framework can be configured to

support a part of the MEMO Framework based

on that example. We therefore extended the proto-

type implementation described by Atkinson et al.

(2013a) to support the approach described in the

previous section. The ability to configure the

orthographic modeling environment to a partic-

ular view-based method with support for deep

modeling and dimension-based view navigation,

significantly extends the power of the tool. The

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

24 Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

current tooling implementation, which we call

doreen, uses the eclipse-based melanee tool

as the underlying deep modeling platform and the

deep-atl transformation language to realize the

deep modeling projections.

In this case study, we focus on the behavioral

part of the enterprise specification – the other parts

can be realized in a similar way. The behavioral

part of an enterprise is mainly specified by the as-

pect dimension’s “process” value (cf. Fig. 3). The

values of the perspective dimension (i. e. “strat-

egy”, “organisation” and “information system”)

are used to specify the enterprise’s behavior at

different abstraction levels. These range from

strategic views (e. g. for defining value chains)

to implementation views (e. g. for defining the

underlying information systems).

At the strategical level, the value chains of the

enterprise are described. In the MEMO Frame-

work, value chains are composed of the activities

to be performed at the strategical level. These are

further used in the description of business pro-

cesses, situated at the organizational level. The

mapping of the activities to business processes

shows how the activities are realized by the under-

lying business. In this example we focus on this

part of the MEMO Framework and realize it using

two views, one view at the strategical level and one

at the organizational level. The SUM is tailored

to this small excerpt of the MEMO Framework

and provides the needed concepts to capture the

information conveyed by the two identified views.

The method configuration for this example is

intentionally incomplete since it is only intended

to provide an idea of how the MEMO approach

can be supported in the orthographic modeling

framework. Since the artifacts for the models (i. e.

the SUM and the views) are represented using deep

modeling technology (Gerbig 2017), the models

can be easily extended to capture other parts of

the MEMO Framework. The extension of the

orthographic modeling environment is performed

by a person playing the role of the methodologist,

and requires the addition of further model elements

to the SUM language and further views to support

all of the perspective and aspect values. Since the

extension would include the modification of the

deep modeling language artifacts, a redeployment

of the environment based on the changes is not

needed. This is because the meta-model of the

deep models can be manipulated at run-time with

the help of emendation services to maintain the

overall consistency of a deep model (Atkinson

et al. 2012). The deep models for the example

are shown using the general purpose visualization,

but can be easily adapted to a MEMO domain

specific visualization by creating the appropriate

visualizers.

6.1 SUM Language

In order to provide a single consistent description

of the enterprise under discussion, all information

from the available views must be integrated into

a SUM which provides a detailed and full spec-

ification of the enterprise. The SUM language

for the part of the MEMO Framework relevant to

this case study is shown in Fig. 19. The shown

SUM language is a simplified version of the more

detailed meta-model presented by Frank (2014).

The language comprises concepts to capture the

activities of a value chain using the Activity

model element. The realization of the activities

on the organizational level is represented by the

implementedBy model element, linking the ac-

tivity to one or more BusinessProcesses. The

business processes are further described using the

model elements Process and Event. The tran-

sition between the Processes to the Events and

vice versa is realized by the linkPEmodel element.

The deep model in the figure is presented using

the general purpose visualization. The entities are

presented using the rectangular notation, while

the connections are presented using the collapsed

notation, which renders a connection as a line with

a black dot.

The model elements used to define the SUM lan-

guage are enhanced with potency and durability

properties to define the influence range of the

model elements. Since BusinessProcesses

can be executed in running enterprises, the

BusinessProcess model element has a potency

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling 25

Special Issue on Model-Driven Organisations

O0

O1

O2

MEMO - SUM Language

ac�vity bProcess

Process2

name : String

dura�on : Integer

2

2

Event2

name : String2

implementedBy1

Ac�vity1

name : String1

BusinessProcess2

name : String2

bProcess bProcess

process event

pPartOf2 ePartOf2

linkPE2

event

process

Figure 19: MEMO – SUM Language

value of “2” so that it can have instances at onto-

logical level O1 and O2. The same is true of the

model elements belonging to BusinessProcess

such as (Process and Event) and the correspond-

ing connections (pPartOf, ePartOf and linkPE).

The attributes of these model elements are also

defined with the same influence range as their

owning model elements. This means it is possible

to use the attributes in the ontological levels O1

and O2. The duration attribute of the model

element Process is used in the ontological level

O2 to store the execution duration of a Process in

the running enterprise.

6.2 View Language

There are two views of relevance for this example.

One, the activities view, provides the ability to

create activities (instances of Activity) at the

strategic level and one or many business processes

(instances of BusinessProcess) used to realize the

activities. The other, the business process view, is

used to further describe the business processes by

defining the actions and events which occur within

them. Since the second view is more interesting,

we will focus on this view here. Figure 20 shows

the view language for the business process view.

The BusinessProcess model element in this view

is the subject of the view since it is meant to be the

view of a particular business process. The subject-

oriented approach for defining views avoids the

creation of views that convey information about

an arbitrary part of the enterprise and enhances

the structure of the enterprise specification.

The deep model used for the view language of

the business process view as shown in Fig. 20 is

able to capture types of BusinessProcesses in

the ontological level O1 as well as their instances

situated in O2. The BusinessProcesses in O2

represent the executed business processes in the

running enterprise. While most of the defined

model elements can be used at both the O1 and

O2 ontological levels, this is not the case for the

avgDuration attribute of the BusinessProcess

model element. This attribute is only available un-

til O1. The value of this attribute is derived dynam-

ically in the view projection step and aggregated to

show the average duration of a BusinessProcess

type, using the duration information captured in

the instances of the BusinessProcess. Since this

attribute depends on the subsequent ontological

level, it does not make sense to include it in O2

since there are no BusinessProcesses at O3. This

ability to derive information from across many lev-

els of abstraction is also supported in the MEMO

Framework by applying the stereotype “«obtain-

able»” to an attribute. In the context of deep

modeling, this concept can be applied over many

abstraction levels (e. g. to derive some value in O1

from O3).

The second derived attribute in the presented

view language is the duration attribute of

BusinessProcess. This attribute shows the time

needed for a BusinessProcess instance (on O2) to

finish by summing up the duration values of the

Processes belonging to that BusinessProcess.

In the current example, most of the model

elements used to define the view language are

similar to the corresponding model elements in

the SUM language, but this is not always the

case. The presented framework allows almost any

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

26 Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

BusinessProcess2

name : String

dura�on : Integer

2

2

avgDura�on : Integer1

O0

O1

O2

MEMO - Business Process View Language

Process2

name : String

dura�on : Integer

2

2

Event2

name : String2

bProcess bProcess

process event

pPartOf2 ePartOf2

linkPE2

event

process

Figure 20: MEMO – View Language of Business

Process View

arbitrary mapping between the model elements

from the SUM and their counterparts in the views.

This mapping can be defined in the projection rules

based on the goal and intention of a view. The

complexity of the mapping influences the degree

of back propagation of the view’s information to

the SUM when a BusinessProcess is changed

at the O1 level for example. In pure read-only

views, which are mostly used for reporting, the

complexity of the projection rules does not matter

since no back propagation is intended.

6.3 View Projection

In order to project information from the SUM to

the views and propagate the information from the

views back to the SUM, view projections are cre-

ated as described in Sect. 5.2.2. In this example,

atl (ATLAS Transformation Language) (Bézivin

et al. 2003) is used to query the appropriate con-

cepts from the SUM and project them to the view.

However, the approach is not strictly bound to atl,

other transformation languages like qvt (OMG

2011b) can also be used. Listing 1 shows the

atl code representing the view projection part

of the view, shown in Fig. 20. The atl code is

written in the deep-atl dialect which can be used

to transform deep models to deep models, deep

models to classical two-level models or classical

two-level models to deep models. The dialect

extends the standard atl language with features

to facilitate the direct selection of ontological con-

cepts and their ontological properties. A detailed

description of deep-atl is available in Atkinson

et al. (2013b).

In order to support the projection of multiple

ontological levels from a source deep model into

a target deep model, we extended the deep-atl

dialect with the concept of “rule potency”. The

rule potency of the source pattern defines the range

of ontological levels which should be transformed.

The ranges are defined by specifying a start and

an end ontological level relative to the ontologi-

cal level of the concept used in the pattern. For

instance, the source pattern in Listing 1 line 5,

selects all instances of the O0.BusinessProcess

ontological concept situated at the ontological

levels O1 and O2. The rule potency of the target

pattern has the same semantics – it defines which

ontological level the selected concepts should be

added to. An example of the rule potency for a

target pattern is contained in line 7 of the example

atl code. Since the value is equal to the rule po-

tency of the source pattern, the rule transforms the

instances (from O1) of the O0.BusinessProcess

ontological concept and the instances of the in-

stances (from O2), to instances (to O1) of the

target pattern concept O0.BusinessProcess and

to instances of the instances (to O2). If for exam-

ple, only the business process instances from the

ontological level O2 from the SUM are needed in

a view, then the rule potency value of “2” must be

applied to the source pattern. This functionality

allows complete classification hierarchies to be

easily transformed from one deep model to another

deep model.

1 -- @atlcompiler atlMLMcompiler

2

3 rule BusinessProcess2BusinessProcess {

4 from

5 s : SUM!O0.BusinessProcess 1..2 (

thisModule.isSubject(s))

6 to

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling 27

Special Issue on Model-Driven Organisations

7 t : VIEW!O0.BusinessProcess 1..2 (

8 name <- s.name ,

9 _l_.name <- s._l_.name ,

10 duration <- thisModule.

sumDurationOfProcesses(s),

11 avgDuration <- thisModule.

avgDurationOfInstances(s)

12)

13 }

14 rule Process2Process {

15 from

16 s : SUM!O0.Process 1..2 (thisModule.

processBelongToSubject(s))

17 to

18 t : VIEW!O0.Process 1..2 (

19 name <- s.name ,

20 _l_.name <- s._l_.name ,

21 duration <- s.duration

22)

23 }

24 rule pPartOf2pPartOf {

25 from

26 s : SUM!O0.pPartOf 1..2 (thisModule.

pPartOfBelongToSubject(s))

27 to

28 t : VIEW!O0.pPartOf 1..2 (

29 bProcess <- s.bProcess ,

30 process <- s.process

31)

32 }

33 rule Event2Event {

34 from

35 s : SUM!O0.Event 1..2 (thisModule.

eventBelongToSubject(s))

36 to

37 t : VIEW!O0.Event 1..2 (

38 name <- s.name ,

39 _l_.name <- s._l_.name

40)

41 }

42 rule ePartOf2ePartOf {

43 from

44 s : SUM!O0.ePartOf 1..2 (thisModule.

ePartOfBelongToSubject(s))

45 to

46 t : VIEW!O0.ePartOf 1..2 (

47 bProcess <- s.bProcess ,

48 event <- s.event

49)

50 }

51 rule linkPE2linkPE {

52 from

53 s : SUM!O0.linkPE 1..2 (thisModule.

linkPEBelongToSubject(s))

54 to

55 t : VIEW!O0.linkPE 1..2 (

56 process <- s.process ,

57 event <- s.event

58)

59 }

Listing 1: ATL Transformation for MEMO Business

Process Views

The view projection definition contains six

atl rules, each responsible for the projection

of one concept. The projection is defined on

the type-level (i. e. in terms of the concepts con-

tained in the view and SUM language). In this

case the concepts are contained in the O0 on-

tological level of the deep models. The rule

BusinessProcess2BusinessProcess projects onto-

logical instances of the O0.BusinessProcess con-

cepts from the SUM to the view as ontologi-

cal instances of the O0.BusinessProcess onto-

logical concept, defined in the view language.

Within the atl rules, the properties of the con-

cepts can also be projected, e. g. the linguistic

and ontological name properties (line 8 and 9)

of the O0.BusinessProcess concepts. Here the

l.name (line 9) corresponds to the linguistic

name, whereas the name (or _o_.name) corre-

sponds to the ontological name property. The

shorthand notation for the ontological properties

can be used since the concepts in the from and to

part of the atl rule are ontological concepts.

While the concepts of the BusinessPro-

cess2BusinessProcess rule are linguistic Entities

their properties are linguistic Attributes. The

rule linkPE2linkPE on the other hand projects

concepts which are linguistic Connections.

So the binding of the properties defined in

the rule includes linguistic Attributes and

ConnectionEnds. The latter are used to nav-

igate from a Connection to an Entity. In

the rule linkPE2linkPE in line 56 and 57 the

ConnectionEnd properties process and event are

used.

Most of the concepts’ properties are directly

projected to their counterparts (e. g. the name

properties). This is because the view language

largely overlaps with part of the SUM language.

The property assignments in the lines 10 and 11

are an exception. As defined in the view lan-

guage the property duration shows the duration

of the execution of a business process instance

(on O2). Therefore the helper sumDurationOfPro-

cesses() summarizes the duration property values

of all process instances (on O2), belonging to the

given business process and returns the result as

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

28 Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

an Integer. The property avgDuration shows the

average duration of all business process instances.

To this end, the helper avgDurationOfInstances()

computes the average of the duration property

values over all business process instances. This

aggregation of information crosses the type/in-

stance boundary since information from O2 is

aggregated and stored in O1.

As mentioned earlier, the view showed in the

example overlaps significantly with the SUM, but

this need not be the case. In general, our presented

approach allows any kind of view to be projected

from the SUM. The derivation can be performed

directly (e. g. line 8) or using some aggregation

mechanisms (e. g. line 10). Furthermore, the ag-

gregation is not limited to properties of concepts.

It is possible to aggregate many concepts from

the SUM and generate one single concept in a

view, or to generate many concepts in a view based

on one single concept from the SUM. Since the

prototype relies on atl, all capabilities of the

transformation language (helpers, do-blocks, lazy

rules,. . .) can be used to derive the contents of

views. By aggregating information, it is possible

to create views which act like reporting views in

business intelligence. For instance, it is possible

to show the frequency of the execution of a par-

ticular Process by considering all executions of

a BusinessProcess type. Another example from

the software modeling area is to create a view

which shows a Class enhanced by the concepts

which it inherits based on its inheritance tree.

Each rule in Listing 1 has a filter which in atl

is placed in the from part of a rule. Note that the

atl helpers used by the filters are omitted in the

atl module shown in order to enhance readability.

The role of a filter is to ensure that only the needed

concepts from the SUM are projected to the view

using information from the orthographic modeling

environment (i. e. what/who is the subject of the

view and how are the other concepts related to

the subject). The views in orthographic modeling

should be minimal in terms of the number of con-

cepts they support, but they should be sufficiently

expressive to fulfill their purpose (Atkinson and

Tunjic 2014a). All the filters in the shown atl

module depend on the subject parameter which is

provided by the orthographic modeling environ-

ment. The resulting view is thus a subject-oriented

view since it omits contain concepts which are

not relevant from the perspective of the view’s

subject.

6.4 Hyper-Cube

In order to provide a navigation mechanism for the

MEMO Framework a hyper-cube must be defined

in terms of orthogonal dimensions as described

in Sect. 5.3. Each cell in the resulting hyper-cube

is identified by a collection of dimension’s values

(i. e. coordinates) and may or may not be associated

with a concrete view. In the following, we first

show the hyper-cube configuration used in our

example and then show the configuration applied

to an exemplary SUM to obtain concrete dynamic

dimension elements using content providers.

The MEMO high-level Framework is based

on two orthogonal dimensions – aspects and

perspectives. In this example, we use these two

dimensions and their values as static dimensions

for the hyper-cube. We further define a dynamic

dimension with the name BusinessProcesses

which is used to show all BusinessProcessmodel

elements contained in the SUM. It is of course

possible to define further dynamic dimensions for

further views, but to keep the example as simple

as possible we use only one dynamic dimension

to demonstrate the capabilities of our approach.

We define therefore the DynamicDimension

BusinessProcesses, which contains a Dynamic-

DimensionContentProvider. This content pro-

vider provides the DynamicDimensionElements

for this dynamic dimension. Since the un-

derlying deep modeling platform is able to

capture information which span many abstrac-

tion levels, and the example SUM spans three

ontological levels (O0 . . . O2), we use the nest-

ing dimension concept to represent instances

of the business process types. We also define

a second DynamicDimensionContentProvider

which is contained by the first via a child rela-

tion. Figure 21 shows the configured hyper-cube

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling 29

Special Issue on Model-Driven Organisations

for the MEMO-based example. Again, to en-

hance readability the following abbreviations

are used to refer to the dimension elements:

StaticDimension (SD), DynamicDimension

(DD), StaticDimensionElement (SDE) and

DynamicDimensionContentProvider (DDCP).

MEMO:Cube

dimensions

Aspect:SD

Perspec�ve:SD

BusinessProcesses:DD

Resource:SDE

Structure:SDE

Process:SDE

Goal:SDE

Strategy:SDE

Organiza�on:SDE

Informa�onSystem:SDE

displayProperty="name"

BusinessProcessType:DDCP

query=BusinessProcess->allInstances()

dynamicDimension

ContentProvider

sta�c
DimensionElement

sta�c
DimensionElement

displayProperty="name"

BusinessProcessInstance:DDCP

query=parent->allInstances()

child

parent

Figure 21: MEMO – Hyper-Cube

Using the project configuration information, the

content providers for the dynamic dimension ex-

tract the appropriate dynamic dimension elements

so they can be shown as values of the dynamic

dimension. Figure 22 shows the application of

the shown configuration to the MEMO example.

The three tables (Aspects, Perspectives and Busi-

nessProcesses) represent the dimensions, while

their contents represent the dimension values. A

cell is selected when a dimension value for each

dimension is picked. In Fig. 22 the selected cell

has the values (i. e. coordinates) “Process – Orga-

nization – CPC_exec-01”.

The SUM in the example has two instances

of business process on the ontological level O1

Figure 22: MEMO – Hyper-Cube with Navigation

Dimensions

(ClaimProcessingCars and ClaimProcessingFire).

These are queried by the BusinessProcessType con-

tent provider using the query “BusinessProcess-

>allInstances()”. The operation allInstances()

returns all instances of a model element situ-

ated at the next ontological level. The two in-

stances of business processes in the SUM are

further types of their instances which are situ-

ated on the ontological level O2 (CPC_exec-01,

CPC_exec-02, CPC_exec-03 and CPF_exec-01).

These are queried by the nested content provider

BusinessProcessInstance which calls the opera-

tion allInstances() on the business process types

provided by their content provider. Finally, the

instances of the business processes (from O1 and

O2) are displayed as DynamicDimensionElements

in the DynamicDimension BusinessProcesses us-

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

30 Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

ing a tree structure derived from the structure of

the used content providers. This shows business

process instances as children of the corresponding

business process types.

The presented approach provides the mecha-

nisms to define any needed cell using the concepts

of static and dynamic dimensions. For the current

MEMO example, it would also be possible to show

the sub-processes of the business process types

in the nesting dimension and show the business

process instances in a further dynamic dimension

(e. g. BusinessProcessInstances). In this case the

relationship between the dynamic dimension ele-

ments of the BusinessProcess dimension would be

of kind “contained-by”, rather than “instance-of”,

since the model elements in the top dimension

would be the containers of the model elements in

the nested dimension. This configuration would

be equivalent to OLAP drill-down/roll-up opera-

tions. Beyond the shown use cases the hyper-cube

can also be used to create views which are used

for reporting, as in business intelligence. In this

case the dynamic dimensions could be used as the

grouping and filtering criterion which let the archi-

tect dynamically control the content of views. The

interpretation of the dynamic dimension elements

used for grouping and filtering would be realized

using aggregations in the projection rules. Tech-

nically these would be handled by the underlying

transformation language.

6.5 Views in the Hyper-Cube

As described in Sect. 5.3.3, views are assigned to

cells of the hyper-cube using so-called SubCubes.

The SubCubes are sub-cubes of the hyper-cube

which are defined by StaticDimensionElements

and DynamicDimensionContentProviders. The

business process view in the example is assigned

to the SubCube which is defined by the Organiza-

tion and Process StaticDimensionElements and

the DynamicDimensionContentProvider which

provides all business processes available in the

SUM.

Figure 23 shows the SubCube of the Busi-

nessProcessView from Fig. 20, based on the

hyper-cube configuration shown in Fig. 21.

:SubCube
sta�cDE

dynamicDimension

ContentProvider

BusinessProcessView:View

subCube

Organiza�on:SDE

Process:SDE

displayProperty="name"

BusinessProcessInstance:DDCP

query=parent->allInstances()

Figure 23: MEMO – SubCube of Business Process

View

The SubCube is defined by the Process

and Organization StaticDimensionElements

(SDE) and the BusinessProcessInstance

DynamicDimensionContentProvider (DDCP). The

BusinessProcessInstance DynamicDimension-

ContentProvider is used to return the instances

of business process types. For this purpose

it uses the business process from its parent

DynamicDimensionContentProvider as can be

seen from the query expression. Note that the

view content part of the view shown in Fig. 23 is

empty since no concrete value for the dynamic

dimension is available at this point.

:Cell
sta�cDE

dynamic

DimensionElement

BusinessProcessView:View

cell

Organiza�on:SDE

Process:SDE

CPC_exec-01:DDE

Figure 24: MEMO – Cell of Business Process View

Since the orthographic modeling environment

uses the method configuration in a project, the

SubCubes are used to generate the Cellswhich ulti-

mately contain the view content. Based on the Fig-

ures 22 and 23, Fig. 24 shows the generated Cell

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling 31

Special Issue on Model-Driven Organisations

for the CPC_exec-01 business process instance.

The DynamicDimensionContentProvider’s Dyna-

micDimensionElement (DDE) with the name

“CPC_exec-01” has been picked, leading to a

concrete cell which is defined by a single dimen-

sion value from each dimension. Besides the

“CPC_exec-01” cell, further cells are generated

for all dynamic dimension elements returned by

the content providers. The content of the view,

shown in Fig. 24, is not empty since it contains

at least the subject of the view – the CPC_exec-

01 business process instance. As well as the

business process instance, the view can contain

further concepts which are relevant for the subject,

e. g. instances of the sub-processes, events and

relations.

Finally, Fig. 25 shows two versions of the con-

crete content of the view which is contained in the

selected cell shown in Fig. 22. On the left-hand-

side of the double dashed vertical line (a), the view

content is shown using the default general pur-

pose visualization and on the right-hand-side (b)

it is shown using a domain specific visualization.

While the first ontological level (O0) contains the

view language, the content is situated in the second

and third ontological level. In this example, the

ontological level O1 contains the architectural in-

formation and the O2 the operational information.

The concepts in O1 and O2 are projections of the

corresponding concepts from the SUM created

according to the defined projection rules. The

correspondence between the view and the SUM

concepts is further captured by the projection

traces which are generated by the projection rules

in the projection process. The concepts in the view

content are ontological instances of the concepts

from the view language. The view content of the

presented view spans two ontological levels since

it shows a business process instance along with its

type. According to the hyper-cube, the instance

“CPC_exec-01” is picked as the subject for the

view. Based on the projection rules from Listing 1

both the business process instance and its business

process type are projected into the view. This is

defined by the rule potency value in the atl rules.

In order to realize the domain specific visual-

ization shown in Fig. 25 (b) every concept from

the view language (see Fig. 20) needs to be pro-

vided with a corresponding visualizer. Since the

instances (O1 and O2) “inherit” the visualizers

from the types (O0), the concepts contained in

the view content part will automatically be ren-

dered using the domain specific visualizers. The

domain specific visualizers are taken from the orig-

inal example from Frank (2002) but are slightly

modified to fit to our example. The modification

basically ignores the distinction between “man-

ually”, “semi-automatically” or “automatically”

executed processes. In order to support the differ-

ent types the SUM language, view language and

view projection rules need to be extended. In the

view language the three types would be modeled

using one concept per process type, whereas in the

SUM they could be mapped to a single concept.

The concept’s type in the SUM can be identified

using an attribute. This is an example of the “in-

formation expansion” approach, described in in

Sect. 5.1. The view presented in Fig. 25 shows the

two properties obtained by aggregating informa-

tion about operations executed in the projection

process. The duration property of the CPC_exec-

01 model element contains the sum of all duration

values of the owned Process instances in millisec-

onds. The domain specific visualization provides

a more meaningful way of presenting the prop-

erty – the value is converted from milliseconds to

seconds with the corresponding unit indicator as

suffix. The second aggregated value in this view

is the avgDuration of the ClaimProcessingCars

model element. This property value is derived

by accumulating all duration property values of

all instances of the ClaimProcessingCars model

element (in O2). Due to the durability property

value (“1”) of the avgDuration Attribute (see

Fig. 20), the property only exists at the O1 onto-

logical level and not at the following levels. This

value indicates that the execution duration of the

CPC_exec-01 business process instance is above

the average execution duration of over all business

process instances.

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

32 Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

O0

MEMO - Business Process View Content

O1

O2

CPC_exec-01

:Process
Customer
Request

:ClaimArrived
:FormalCheck

:FormOk
:Verifica�onOf

Substan�alMa�er:ClaimRejected

dura�on = 27,800 sec

6,300 sec 9,400 sec

12,100 sec

ClaimProcessingCars

Process
Customer
Request

ClaimArrived
FormalCheck

FormNotOkFormOk

Verifica�onOf
Substan�alMa�er ClaimRejectedClaimAccepted

avgDura�on = 17,300 sec

O0

MEMO - Business Process View Content

O1

O2

ClaimProcessingCars:BusinessProcess1

ProcessCustomer
Request:Process1

ClaimArrived
:Event1

FormalCheck
:Process1

FormNotOk
:Event1

FormOk
:Event1

ClaimRejected
:Event1

ClaimAccepted
:Event1

Verifica�onOfSubst-
an�alMa�er:Process1

avgDura�on = 173000

CPC_exec-01:ClaimProcessingCars0

:Process
CustomerRequest0

:ClaimArrived0 :ClaimRejected0

:Verifica�onOf
Substan�alMa�er0

dura�on = 278000

dura�on = 63000 dura�on = 121000

:FormOk0

:FormalCheck0

dura�on = 94000

(a) general purpose visualiza�on (b) domain specific visualiza�on

Figure 25: MEMO – View Content of Business Process View with Subject CPC_exec-01 (Frank 2002)

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling 33

Special Issue on Model-Driven Organisations

7 Discussion

In this paper we have presented an approach for

supporting Model Driven Organizations that lever-

ages deep modeling and orthographic modeling in

a unified, view-based environment to seamlessly

support architectural and operational views of the

underlying organization. In this section, we dis-

cuss how the presented approach realizes the goals

set out in Sect. 4, and what benefits this offers

to enterprises. We also discuss limitations and

weaknesses.

7.1 Deep, Projective, Component-based,

Composite Views

The key requirement for the approach, as out-

lined in Sect. 4, is a viewpoint framework that

cleanly and fundamentally supports projective,

component-based, composite views of an organi-

zation. The presented realization approach not

only achieves all these goals, it does so in a generic

way that can be easily customized and used by

normal architects and administrators.

Projective views are supported by the funda-

mental principle of using a SUM to capture all

knowledge about the organization under descrip-

tion and to generate views of the SUM, on demand,

by the application of explicitly modeled transfor-

mations as shown in Listing 1. The languages

for representing the view and SUM content (Fig-

ures 19 and 20), as well as the transformations for

projecting information between them (Listing 1),

are written using mature model-driven develop-

ment principles (i. e. class-based structural model-

ing, atl-like transformation definition etc.). New

views can thus be added to the modeling envi-

ronment using the basic skills of model-driven

development.

Deep views are supported by realizing both, the

SUM and the views using a multi-level modeling

platform rather than a standard two-level platform.

In our case we used the deep, multi-level platform

known as melanee (Gerbig 2017). This provides

two important capabilities for modeling views that

are not available in traditional EA modeling ap-

proaches and tools. First, views can themselves

be multi-level in that they represent information

that exist at two or more levels of classification.

This is illustrated by Fig. 25 which shows a pro-

cess (type) definition (ClaimProcessingCars), at

the O1 level and an executed instance of that pro-

cess (CPC_exec-01) at the operational O2 level.

Second, and more importantly, it allows views

to represent information at any level (operation,

type, meta-type,. . .), using the same modeling

techniques.

Component-based views are supported by pa-

rameterizing all projection transformations by the

model element in the SUM representing the com-

ponent (i. e. part) of the organization that is being

looking at. Thus, the various atl rules in List-

ing 1 which are used to project business process

views are explicitly parameterized by the business

process instance chosen as the subject of a view.

Figure 25 shows a view that results when one

specific instance of one specific business process

of the Insurance Sales organization is selected as

the subject of the view. In the example viewpoint

framework, developed in Sect. 6, views containing

more than one business process cannot be created,

because they cannot even be identified in the ex-

ample hyper-cube, although this could of course

be changed if desired by extending the hyper-cube

and adding further views.

Finally, composite views, in which abstract

views and concrete views can be nested, are sup-

ported by the dimension based navigation/identi-

fication system which uniquely integrates static,

architectural dimensions and dynamic, operational

dimensions. This is perhaps the most innovative

aspect of the approach presented in this paper.

Concrete views, which are intended to be physi-

cally rendered on some device or medium, must

have all of their coordinates explicitly selected.

Thus, the view shown in Fig. 25 corresponds to

the unique set of coordinates shown in Fig. 22.

On the other hand, abstract views, which are in-

tended to encapsulate other abstract and concrete

views, are not required to have all coordinates

explicitly selected. They therefore correspond

to sub-hyper-cubes or slices of the overall hyper-

cubes traced out by the dimension space. Thus,

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

34 Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

for example, the slice represented schematically

in Fig. 16 by selecting the structural dimensions

and leaving the rest unspecified is an abstract view

providing a structural perceptive on the system.

To actually see any information a concrete view

(i. e. a sub-view of the abstract view) would have

to be selected by specifying all the coordinates.

The nesting of abstract and concrete views within

abstract views therefore takes place by the natural

OLAP-like metaphor of “slicing and dicing”.

7.2 Model-Driven DevOps

The original motivation for the approach was to

support the MDO vision by making it possible

for all stakeholders in an organization to fulfill

their assignments using representations of (parts

of) an organization that best suit their skills and

tasks. This includes stakeholders that are more

interested in relatively static, architectural views

such as developers and architects, and stakeholders

who are more interested in dynamic and historical

data, such as managers and system administrators.

In essence, therefore, the key challenge was to

support a model-driven approach to DevOps, in

which the advantages of model-driven develop-

ment could be seamlessly and uniformly exploited

for both development and operation.

The approach presented in this paper achieves

this goal by leveraging the synergy between the

emerging paradigms of multi-level modeling and

orthographic modeling. The first of these, multi-

level modeling, provides the fundamental basis

for the seamless integration of development and

run-time views by allowing information across

all levels of classification to be manipulated and

represented using the same powerful feature of

model-driven development. This is demonstrated

explicitly by Fig. 25 in the example which shows

operational (instance) information presented next

to architectural (type) information within the

same view using the same object-oriented princi-

ples of typing and language definition/application.

Instance-level objects do not always have to be

shown along with their types – views can also focus

on just one ontological level of abstraction such as

the instance-level or type-level or meta-type-level

etc.

Orthographic modeling also plays a critical

role in supporting the ability to work seamlessly

with development and operational views at the

same time because it is the key to making the

views accessible within a single, unified viewpoint

framework. More specifically, it provides the ba-

sis for integrating architectural concerns such as

abstraction level, opaqueness and perspective (e. g.

structural, behavioral, etc.) with operational con-

cerns such as aggregation and instance analysis.

As illustrated by Fig. 16, therefore, the set of coor-

dinates used to identify a concrete view combines

relatively static choices about what type of view

is desired (i. e. structural, platform independent)

with more dynamic choices about what the subject

is (i. e. what the view is looking at).

Most EAM tools today cannot support the same

level of flexibility and seamlessness. In most tools,

view types are usually defined by programming

a new kind of editor or dashboard using a stan-

dard programming language and relative low-level

representation of data. The resulting views are

therefore usually not created by model-based tech-

niques and thus cannot benefit from the benefits

of type safety or the productivity enhancements

through domain specific languages. Moreover,

when model-based techniques are used, the re-

sulting views can only display information at one

classification level immediately below the defined

language due to the use of two-level modeling

technology.

The other big problem with most EAM tools

today is that the views are organized in relatively

simple and ad-hoc ways in the form of some

kind of tree with arbitrary nesting and naming

conventions. Moreover, if they make some kind

of distinction between the underlying model ele-

ments and views, they usually allow users to ma-

nipulate the underlying model elements directly

and in arbitrary ways. The approach presented

in this paper essentially balances the discipline

and productivity advantages of model-driven en-

gineering at development-time with the flexibility

and convenience of OLAP-like data analysis at

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling 35

Special Issue on Model-Driven Organisations

operation-time. It therefore provides a realization

of the interactive data warehouse vision presented

by Draheim (2013).

7.3 Challenges and Future Work

Production-ready implementations of deep, or-

thographic modeling environments that can be

used in industrial projects are clearly still a long

way off, and their development presents numerous

challenges. First, the dynamic, on-the-fly gener-

ation and updating of views whenever the SUM

is changed presents some problems for rendering

them, especially in graphical forms. Users of

graphical models are usually frustrated when the

layout of models changes in between re-renderings.

Finding a good solution to this problem is an open

research question, but should be addressable by

retaining partial layout information at the client

side (i. e. the computers used to visualize views).

There are a lot of issues related to the initial

creation and evolution of SUMs. For example,

given that most companies have many legacy meta-

models and tools, how can they be integrated into

a SUM and how can the SUM be changed? These

are challenging questions, but no harder than the

challenges involved in maintaining multiple data

source. Other research teams are working on this

specific problem (Burger et al. 2016).

Finally, like all new paradigms there are a lot

of issues related to the usability and uptake of

the approach. It is not only unclear what view-

point frameworks (i. e. dimension spaces) and

view types are best suited for particular domains,

it is a major challenge to migrate to the new ap-

proach and help stakeholders learn how to use it

effectively.

8 Conclusion

The core idea behind the MDO vision is to allow

all stakeholders in an organization to fulfill their

assignments using representations of (parts of)

that organization that best suit their skills and

tasks. This includes stakeholders who are mainly

interested in static, architectural aspects of an or-

ganization such as architects and methodologists,

and stakeholders who are more interested in dy-

namic or historical aspects of a system such as line

managers and administrators. The contributions

of this paper are (a) to make the case that a deep,

orthographic modeling framework provides the

best platform for realizing such a vision, based

on experiences in building/using enterprise sys-

tems (Draheim 2010; Draheim and Weber 2002,

2003a,b) and on an analysis of the state-of-the-art

in EA modeling, and (b) to demonstrate the fea-

sibility of the approach by means of a prototype

realization.

Three key innovations were needed to develop a

viewpoint framework to achieve this goal. The first

was to find a way of mixing static, architectural

concerns and dynamic, operational concerns into

a single, dimension-based paradigm for navigating

around concrete and abstract views and allowing

them to be nested. The second was to find a way

of defining transformations (i. e. projections) that

could (a) be parameterized by the subjects of views

as well as their types and (b) allow view subjects

to be derived at run-time from the SUM via the

dimension-based navigation scheme. The third

was to find a way of generalizing the two previ-

ous capabilities so that they support and leverage

deep SUMs, views and transformations, and allow

viewpoint frameworks to be configured by method-

ologists for different methods (i. e. constellations

of views).

While the presented realization and accompa-

nying prototype demonstrates the basic feasibility

of the approach, as explained in Sect. 7 there

are numerous challenges still to be overcome and

many questions still to be answered. Our research

has essentially reached the “design artifact” phase

of the design sciences research approach (Hevner

et al. 2004; Offermann et al. 2009). The next

step is to systematically generate and evaluate

experimental data as well as quantitative and sub-

jective feedback on the MDO approach. In other

words, we are about to enter the case-study/action

research phase (Runeson et al. 2012; Sein et al.

2011) in which we will exercise the prototype on

a realistic scenario.

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

36 Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

References

Aßmann U., Götz S., Jézéquel J.-M., Morin B.,

Trapp M. (2014) A Reference Architecture and

Roadmap for Models@run.time Systems In: Mod-

els@run.time: Foundations, Applications, and

Roadmaps Bencomo N., France R., Cheng B. H. C.,

Aßmann U. (eds.) Springer, Cham, pp. 1–18

Atkinson C. (2002) Component-based Product

Line Engineering with UML. Component Soft-

ware Series. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA

Atkinson C., Draheim D. (2013) Cloud Aided-

Software Engineering – Evolving Viable Software

Systems through a Web of Views. In: Software En-

gineering Frameworks for the Cloud Computing

Paradigm, pp. 255–281

Atkinson C., Gerbig R., Kennel B. (2012) On-the-

fly emendation of multi-level models. In: Euro-

pean Conference on Modelling Foundations and

Applications Lecture Notes in Computer Science

7349, pp. 194–209

Atkinson C., Gerbig R., Tunjic C. (2013a) A

multi-level modeling environment for SUM-based

software engineering. In: Proceedings of the 1st

Workshop on View-Based, Aspect-Oriented and

Orthographic Software Modelling VAO ’13, 2:1–

2:9

Atkinson C., Gerbig R., Tunjic C. V. (2013b)

Enhancing classic transformation languages to

support multi-level modeling. In: Software & Sys-

tems Modeling 14(2), pp. 645–666

Atkinson C., Kühne T. (2001) The Essence of

Multilevel Metamodeling. In: Proceedings of the

4th International Conference on The Unified Mod-

eling Language, Modeling Languages, Concepts,

and Tools. Springer, London, UK, pp. 19–33

Atkinson C., Kühne T. (2002) Rearchitecting

the UML Infrastructure. In: ACM Transactions

on Modeling and Computer Simulation 12(4),

pp. 290–321

Atkinson C., Stoll D., Bostan P. (2010) Ortho-

graphic Software Modeling: A Practical Approach

to View-Based Development. In: International

Conference on Evaluation of Novel Approaches to

Software Engineering Communications in Com-

puter and Information Science, pp. 206–219

Atkinson C., Stoll D., Tunjic C. (2011) Ortho-

graphic Service Modeling. In: 2011 IEEE 15th

International Enterprise Distributed Object Com-

puting Conference Workshops. IEEE, pp. 67–70

Atkinson C., Tunjic C. (2014a) Criteria for Or-

thographic Viewpoints. In: Proceedings of the

2nd Workshop on View-Based, Aspect-Oriented

and Orthographic Software Modelling - VAO ’14.

ACM, New York, New York, USA, pp. 43–50

Atkinson C., Tunjic C. (2014b) Towards Ortho-

graphic Viewpoints for Enterprise Architecture

Modeling. In: 2014 IEEE 18th International Enter-

prise Distributed Object Computing Conference

Workshops and Demonstrations. IEEE, pp. 347–

355

Atkinson C., Tunjic C. (2016) Towards a Con-

figuration Framework for Orthographic-Software-

Modeling Environments. In: 4th Workshop on

View-Based, Aspect-Oriented and Orthographic

Software Modelling - VAO ’16 Karlsruhe Reports

in Informatics (2016,7), pp. 7–10

Atkinson C., Tunjic C., Möller T. (2015) Fun-

damental Realization Strategies for Multi-View

Specification Environments. In: 2015 IEEE 19th

International Enterprise Distributed Object Com-

puting Conference (EDOC), pp. 40–49

Belaunde M., Burt C., Casanave C., et al (2003)

MDA Guide Version 1.0.1 Object Management

Group (OMG) http : / / www . omg . org / news /

meetings / workshops/ UML_ 2003_ Manual / 00-

2_MDA_Guide_v1.0.1.pdf Last Access: 2018-03-

28

Bézivin J., Dupé G., Jouault F., Pitette G., Rougui

J. E. (2003) First experiments with the ATL model

transformation language: Transforming XSLT into

http://dx.doi.org/10.18417/emisa.13.7
http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf
http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf
http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling 37

Special Issue on Model-Driven Organisations

XQuery. In: 2nd OOPSLA Workshop on Gener-

ative Techniques in the context of Model Driven

Architecture. Vol. 37, pp. 1–18

Bittmann S. (2014) Cooperative-Intrinsic Plan-

ning and Model-Driven Design of Business In-

formation Systems. In: 44. Jahrestagung der

Gesellschaft für Informatik (GI). Lecture Notes in

Informatics Vol. 232, pp. 2281–2286

Bock A. (2015) Beyond Narrow Decision Mod-

els: Toward Integrative Models of Organizational

Decision Processes. In: Proceedings of the 17th

IEEE Conference on Business Informatics. IEEE

Computer Society, Lisbon, Portugal, pp. 181–190

Bock A., Frank U. (2016) MEMO GoalML: A

context-enriched modeling language to support

reflective organizational goal planning and deci-

sion processes. In: Comyn-Wattiau I., Tanaka K.,

Song I., Yamamoto S., Saeki M. (eds.). Lecture

Notes in Computer Science Vol. 9974. Springer,

Cham, pp. 515–529

Brand S. (2015) Magic Quadrant for Enterprise

Architecture Tools. G00271052. Gartner Inc

Breiman L. (1984) Classification and regression

trees. The Wadsworth statistics/probability series.

Wadsworth International Group, Belmont, Calif.

Budinsky F., Steinberg D., Merks E., Ellersick R.,

Grose T. J. (2003) Eclipse Modeling Framework:

A Developer’s Guide. Addison-Wesley, Boston,

Mass.

Burger E., Henss J., Küster M., Kruse S., Happe L.

(2016) View-based model-driven software devel-

opment with ModelJoin. In: Software & Systems

Modeling 15(2), pp. 473–496

Clark T., Frank U., Kulkarni V., Barn B. S., Turk

D. (2013) Domain Specific Languages for the

Model Driven Organization. In: First Workshop on

the Globalization of Domain Specific Languages

GlobalDSL ’13, pp. 22–27

Clark T., Willans J. (2013) Software Language

Engineering with XMF and XModeler. In: For-

mal and Practical Aspects of Domain-Specific

Languages. IGI Global, USA, pp. 311–340

Codd E., Codd S., Salley C. (1993) Providing

OLAP (On-line Analytical Processing) to User-

analysts: An IT Mandate. Codd & Associates

Davis J., Daniels K. (2015) Effective Devops:

Building a Culture of Collaboration, Affinity, and

Tooling at Scale. O’Reilly Media

De Lara J., Guerra E., Cuadrado J. S. (2014)

When and How to Use Multilevel Modelling. In:

ACM Transactions on Software Engineering and

Methodology 24(2), 12:1–12:46

Draheim D. (2010) The Service-Oriented

Metaphor Deciphered. In: Journal of Computing

Science and Engineering 4(4), pp. 253–275

Draheim D. (2012) Smart Business Process Man-

agement. In: 2011 BPM and Workflow Handbook,

Digital Edition. Future Strategies, Workflow Man-

agement Coalition, pp. 207–223

Draheim D. (2013) Towards Total Budgeting and

the Interactive Budget Warehouse. In: Innovation

and Future of Enterprise Information Systems.

Lecture Notes in Information Systems and Organ-

isation, vol. 4, pp. 271–286

Draheim D., Weber G. (2002) Strongly Typed

Server Pages. In: Halevy A., Gal A. (eds.) Next

Generation Information Technologies and Sys-

tems. Springer, Berlin, Heidelberg, pp. 29–44

Draheim D., Weber G. (2003a) Modeling Sub-

mit/Response Style Systems with Form Charts

and Dialogue Constraints. In: Meersman R., Tari

Z. (eds.) On The Move to Meaningful Internet

Systems 2003: OTM 2003 Workshops. Springer,

Berlin, Heidelberg, pp. 267–278

Draheim D., Weber G. (2003b) Storyboarding

form-based interfaces. In: Rauterberg G., Menozzi

M., Wesson J. (eds.) Proceedings of INTER-

ACT’03. IOS Press, pp. 343–350

Finkelstein A., Kramer J., Nuseibeh B., Finkelstein

L., Goedicke M. (1992) Viewpoints: A Framework

for Integrating Multiple Perspectives in System

Development. In: International Journal of Soft-

ware Engineering and Knowledge Engineering

2(1), pp. 31–57

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

38 Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

Foster J. N., Greenwald M. B., Moore J. T., Pierce

B. C., Schmitt A. (2007) Combinators for Bidi-

rectional Tree Transformations: A Linguistic Ap-

proach to the View-update Problem. In: ACM

Transactions on Programming Languages and Sys-

tems 29(3) (17)

Frank U. (1994) Multiperspektivische Un-

ternehmensmodellierung: Theoretischer Hinter-

grund und Entwurf einer objektorientierten En-

twicklungsumgebung. Oldenbourg Verlag

Frank U. (2002) Multi-perspective Enterprise

Modeling (MEMO) – Conceptual Framework and

Modeling Languages. In: Proceedings of the 35th

Annual Hawaii International Conference on Sys-

tem Sciences (HICSS). IEEE, pp. 1258–1267

Frank U. (2011) MEMO Organisation Modelling

Language (1): Focus on Organizational Structure.

48. Institute for Computer Science and Business In-

formation Systems (ICB). University of Duisburg-

Essen, Essen

Frank U. (2014) Multi-perspective enterprise mod-

eling: Foundational concepts, prospects and future

research challenges. In: Software & Systems Mod-

eling 13(3), pp. 941–962

Frank U. (2016) Designing Models and Systems

to Support IT Management: A Case for Multi-

level Modeling. In: Proceedings of the 3rd In-

ternational Workshop on Multi-Level Modelling.

MULTI 2016, pp. 3–24

Gamma E., Helm R., Johnson R., Vlissides J.

(1995) Design Patterns: Elements of Reusable

Object-oriented Software. Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA

Gerbig R. (2017) Deep, Seamless, Multi-format,

Multi-notation Definition and Use of Domain-

specific Languages English. PhD thesis, University

of Mannheim

Hevner A. R., March S. T., Park J., Ram S. (2004)

Design Science in Information Systems Research.

In: MIS Quarterly 28(1), pp. 75–105

Iacob M. E., Jonkers H., Lankhorst M. M., Proper

E., Quartel D. (2012) ArchiMate 2.0 Specification:

The Open Group. Van Haren Publishing

IEEE Architecture Working Group (2000) IEEE

Standard 1471-2000, Recommended practice for

architectural description of software-intensive sys-

tems ANSI/IEEE-Std-1471-2000. IEEE

Igamberdiev M., Grossmann G., Selway M.,

Stumptner M. (2016) An integrated multi-level

modeling approach for industrial-scale data in-

teroperability. In: Software & Systems Modeling

17(1), pp. 269–294

Inmon W. H. (1992) Building the Data Warehouse.

John Wiley & Sons, Inc., New York, NY, USA

ISO/IEC/IEEE (2011) Systems and Software Engi-

neering – Architecture description ISO/IEC/IEEE

42010:2011. ISO

ISO/IEC/ITU-T (1997) RM-ODP. Reference

Model for Open Distributed Processing ISO/IEC

10746, ITU-T Rec. X.901-X.904. ISO

Kennel B. (2012) A Unified Framework for

Multi-Level Modeling. PhD thesis, University of

Mannheim

Kimball R., Ross M. (2013) The Data Warehouse

Toolkit: The Definitive Guide to Dimensional

Modeling. John Wiley & Sons, Inc., New York,

NY, USA

Kirchner L. (2008) Eine Methode zur Unter-

stützung des IT-Managements im Rahmen der Un-

ternehmensmodellierung. Logos-Verlag, Berlin,

Germany

Kühne T. (2006) Matters of (meta-) modeling. In:

Software & Systems Modeling 5(4), pp. 369–385

Lwakatare L. E., Kuvaja P., Oivo M. (2015) Dimen-

sions of DevOps In: Agile Processes in Software

Engineering and Extreme Programming: 16th In-

ternational Conference, XP 2015, Helsinki, Fin-

land Springer, Cham, pp. 212–217

Neumayr B., Schuetz C. G., Jeusfeld M. A., Schrefl

M. (2016) Dual deep modeling: multi-level mod-

eling with dual potencies and its formalization in

F-Logic. In: Software & Systems Modeling 17(1),

pp. 233–268

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling 39

Special Issue on Model-Driven Organisations

Offermann P., Levina O., Schönherr M., Bub U.

(2009) Outline of a Design Science Research

Process. In: Proceedings of the 4th International

Conference on Design Science Research in Infor-

mation Systems and Technology. DESRIST ’09.

ACM, New York, NY, USA, 7:1–7:11

OMG (2011a) Business Process Model and No-

tation (BPMN), Version 2.0 Object Management

Group http://www.omg.org/spec/BPMN/2.0 Last

Access: 2018-03-28

OMG (2011b) Meta Object Facility (MOF) 2.0

Query/View/Transformation Specification, Ver-

sion 1.1 Object Management Group http://www.

omg.org/spec/QVT/1.1/ Last Access: 2018-03-28

OMG (2011c) OMG Object Constraint Language

(OCL), Version 2.3.1 Object Management Group

http://www.omg.org/spec/OCL/2.3.1/ Last Access:

2018-03-28

Roth S., Zec M., Matthes F. (2014) Enterprise

Architecture Visualization Tool Survey 2014 Soft-

ware Engineering for Business Information Sys-

tems (sebis), Technical University of Munich https:

//wwwmatthes.in.tum.de/pages/6u8f5ki1t2yz/ Last

Access: 2018-03-28

Runeson P., Host M., Rainer A., Regnell B. (2012)

Case Study Research in Software Engineering –

Guidelines and Examples. John Wiley & Sons,

Inc., New York, NY, USA

SAP (2016) SAP Power Designer http://go.sap.

com/ product / data- mgmt/ powerdesigner- data-

modeling-tools.html Last Access: 2018-03-28

Sein M. K., Henfridsson O., Purao S., Rossi M.,

Lindgren R. (2011) Action Design Research. In:

MIS Quarterly 35(1), pp. 37–56

Stachowiak H. (1973) Allgemeine Modelltheorie.

Springer, Wien, New York

Strecker S., Frank U., Heise D., Kattenstroth H.

(2012) MetricM: A modeling method in support

of the reflective design and use of performance

measurement systems. In: Information Systems

and e-Business Management 10(2), pp. 241–276

The Open Group (2009) TOGAF 9 - The Open

Group Architecture Framework Version 9 The

Open Group https://www.opengroup.org/togaf/

Last Access: 2018-03-28

Tunjic C., Atkinson C. (2015) Synchronization of

Projective Views on a Single-Underlying-Model.

In: Proceedings of the 2015 Joint MORSE/VAO

Workshop on Model-Driven Robot Software En-

gineering and View-based Software-Engineering.

MORSE/VAO ’15. ACM, L’Aquila, Italy, pp. 55–

58

US Federal Government (2013) FEAF Version

2 https://obamawhitehouse.archives.gov/sites/

default/files/omb/assets/egov_docs/fea_v2.pdf

Last Access: 2018-03-28

Vassiliadis P. (2009) A survey of Extract–

Transform–Load Technology. In: International

Journal of Data Warehousing and Mining

(IJDWM) 5(3), pp. 1–27

Zachman J. A. (1987) A framework for informa-

tion systems architecture. In: IBM Systems Journal

26(3), pp. 276–292

This work is licensed under

a Creative Commons

“Attribution-ShareAlike 4.0

International” license.

http://dx.doi.org/10.18417/emisa.13.7
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/OCL/2.3.1/
https://wwwmatthes.in.tum.de/pages/6u8f5ki1t2yz/
https://wwwmatthes.in.tum.de/pages/6u8f5ki1t2yz/
http://go.sap.com/product/data-mgmt/powerdesigner-data-modeling-tools.html
http://go.sap.com/product/data-mgmt/powerdesigner-data-modeling-tools.html
http://go.sap.com/product/data-mgmt/powerdesigner-data-modeling-tools.html
https://www.opengroup.org/togaf/
https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/egov_docs/fea_v2.pdf
https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/egov_docs/fea_v2.pdf
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

