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Abstract

Real-time programmers have to deal with the problem of
relating timing constraints associated with source code to
sequences of machine instructions. This paper describes
an environment to assist users in the specification and
analysis of timing constraints. A user is allowed specify
timing constraints within the source code of a C program.
A user interface for a timing analyzer was developed to
depict whether these constraints were violated or met. In
addition, the interface allows portions of programs to be
quickly selected with the corresponding bounded times,
source code lines, and machine instructions automatically
displayed. The result is a user-friendly environment that
supports the user specification and analysis of timing con-
straints at a high (source code) level and retains the accu-
racy of low (machine code) level analysis.

1. Introduction

One controversial aspect of real-time systems is
whether timing analysis should be performed at a high
(source code) or low (machine code) level. An advantage
of high-level analysis is that the results of the timing pre-
dictions can be easily related to a user. Timing bounds
are obtained for each high-level language construct, which
includes statements, loops, and functions. The assump-
tion is that timing bounds for a specific machine can be
associated with each of these constructs. Unfortunately,
current architectural features, such as pipelines and
caches, preclude a single a priori time associated with a
high-level language construct. In addition, global com-
piler optimizations can affect how a specific construct is
translated and its associated timing behavior. While much
more accurate timing bounds can be obtained by perform-
ing the analysis at the machine code level, it is still impor-
tant to relate these timing predictions in a manner that a
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user can understand. A user needs to know the correspon-
dence between sequences of machine instructions and
lines of source code.

This problem is similar to the one of symbolic debug-
ging of optimized code. Many users are willing to rely on
symbolic debugging of unoptimized code given that the
behavior of the unoptimized and optimized programs are
semantically equivalent. However, correct behavior of
real-time programs demands that the results are produced
on time. Thus, the timing analysis should be at the level
of the optimized machine instructions or the compiler
should maintain an accurate mapping between the high-
level and low-level representations.

This paper describes an environment to support the
specification and analysis of timing constraints. The envi-
ronment allows specification of constraints at the source
code level, performs the timing analysis at the machine
code level, and provides a graphical display of the rela-
tionship between the machine instructions (i.e. assembly
code) and the corresponding source code. The timing
analysis is performed for the MicroSPARC I processor
[2]. Other papers are available for readers interested in
how the timing predictions are actually obtained [3], [4].

2. Overview

The design of the environment described in this paper
includes the following goals:
(1) A user should be able to quickly specify constraints and

obtain timing predictions for the specified portions of a pro-
gram.

(2) The user should only be allowed to select portions of the
program for which timing bounds can be obtained.

(3) The ability to specify constraints and obtain timing predic-
tions should not inhibit compiler optimizations from being
performed.

(4) The correspondence between source code and machine
code of the program selected by the user for timing predic-
tion should be graphically depicted.

Figure 1 gives an overview of the context in which
timing predictions are obtained. Control-flow informa-
tion, which includes timing constraint specifications, is
stored as a side effect of the compilation of a file. This
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Figure 1: Overview of Obtaining Timing Predictions

control-flow information is passed to a static cache simu-
lator, which constructs the control-flow graph of the pro-
gram that consists of the call graph and the control flow of
each function. The program control-flow graph is then
analyzed for a given cache configuration and a categoriza-
tion of each instruction’s potential caching behavior is
produced. Next, a timing analyzer uses the instruction
caching categorizations along with the control-flow infor-
mation provided by the compiler, which includes the
source lines associated with each basic block, to estimate
the best-case and worst-case performance for each loop
and function within the program.1 Finally, a graphical
user interface (GUI) is invoked that allows the user to
request the status of the constrained sections and timing
predictions for other specified portions of the program.

3. Related Work

There has been much work on proposing real-time
language constructs to express timing constraints. Many
authors have added real-time constructs to existing lan-
guages, such as C [5], C++ [6], and Euclid [7]. In addi-
tion, many new real-time languages with features for
expressing timing constraints have been proposed and
implemented. Unfortunately, there has been little work in
the area of providing support for user analysis of timing
constraints.

4. Specification of Timing Constraints

Real-time programs may often have timing constraints
on portions of source code, which are sometimes referred
to as critical sections. It is desirable to have these timing
constraints expressed within the source code and be auto-
matically checked as programs are being developed and
later maintained. Ideally, the timing analysis could occur
each time the program is linked and the user can be

1 The user is prompted for the minimum and maximum loop itera-
tions of loops when it could not be calculated by the compiler. Note that
at this time only pipeline and instruction caching behavior is analyzed
[3], [4]. Work is currently proceeding on analyzing data caching behav-
ior.

informed of any potential timing constraint violations. In
addition, the user may wish to monitor the constrained
sections of code to determine how close the predicted
worst-case execution time is to violating a timing con-
straint. Finally, the ability to obtain timing predictions on
constrained code portions should not inhibit the optimiza-
tions performed by a compiler.

The ability to capture these constraints was accom-
plished by modifying the front end of a C compiler called
vpcc [9]. This constraint information was passed through
the back end of a C compiler called vpo [10]. Source
lines associated with basic blocks are tracked while per-
forming the optimizations in vpo. The back end conveys
the constraint information along with the correspondence
between source lines and assembly code to the timing
analyzer in the control-flow information.

The environment described in this paper allows users
to specify timing constraints in the source code on func-
tions, loops, and paths. Figure 2 depicts the three types of
constraints that can be specified. The code within this fig-
ure contains a function that calculates the sum and count
of the nonnegative and negative values of a matrix. The
function is constrained to no more than 2 milliseconds. A
best-case constraint for the function was not specified.
The inner loop within the function has a best-case con-
straint of 500 nanoseconds and a worst-case constraint of
3 microseconds. A path is specified by annotating source
lines, which must be contained within the path. If a
source line contains an invocation of a function, then the
time required to execute that function (and any other func-
tions that could be invoked from it) is included when the
timing analyzer determines if the constraint was satisfied.
These annotations are of the form @n, where n is the path
identifier. The annotations require only a few characters
to facilitate their placement on the source lines being
specified. One of the annotations within a path must have
a best and/or worst-case constraint. There are two over-
lapping paths within the inner loop that have constraints.
Path 1 goes through source lines 13 and 15 and path 2
goes through lines 13, 18, and 19. Thus, this simple
method of specifying paths is quite flexible.



1 functimebnd [:2ms]
2 void Sum(Array, Nonnegcnt, Negcnt, nonnegsum, Negsum)
3 matrix Array;
4 int *Nonnegcnt, *Negcnt, *Nonnegsum, *Negsum;
5 {
6 int i, j;
7 void Addnonneg(), Addneg();
8
9 *Nonnegsum = *Negsum = *Nonnegcnt = *Negcnt = 0;

10 for (i=1; i <= MAXSIZE; i++)
11 looptimebnd [500ns:3us]
12 for (j=1; j <= MAXSIZE; j++)
13 if (Array[i][j] >= 0) { @1[:150ns] @2[10ns:100ns]
14 Addnonneg(Array[i][j], Nonnegsum);
15 (*Nonnegcnt)++; @1
16 }
17 else {
18 *Negsum += Array[i][j]; @2
19 (*Negcnt)++; @2
20 }
21 }

Figure 2: Source Code with Timing Constraints

Figure 3: Main Window at Function Level

5. User Interface

The user interface is invoked after the timing analyzer
has analyzed the entire program. Figures 3 and 4 depict
the three windows that are always displayed for the timing
analysis graphical user interface. Figure 3 shows the
main window of the user interface. The top section of the
main window displays a message indicating the current
action the user can perform with a mouse selection in the
middle section. The middle section of the main window
has a specific portion highlighted, which indicates the cur-
rent program construct for which best-case and worst-case
timing predictions are displayed in the lower part of this
section. Portions of the middle section of the window
associated with other program constructs can be selected
by simply clicking on the appropriate line. The bottom
section of the main window contains buttons that allow
the user to select the level of information displayed.

Figure 4 shows the two other windows in the user
interface that are always displayed. The left window con-
tains a display of the source code of the program being
analyzed. The highlighted lines are the executable source
lines that correspond to the highlighted construct in the
middle section of the main window. Whenever a different
construct is selected in the main window, the highlighted
lines in the source and assembly windows are automati-
cally updated and scrolled to the appropriate position.

Note that the source lines within the display are num-
bered. This allows a user to identify constructs that are
referenced by line numbers in the main window. The
right window contains a display of the assembly code for
the program. The highlighted assembly lines correspond
to the code generated for the highlighted source lines.

Note that a comment precedes each basic block that iden-
tifies the block number and the associated source lines.
These comments in the assembly window and the line
numbers in the source window allow a user to quickly
grasp the relationship between the high-level (source
code) and low-level (machine code) representations.

Figure 4 also illustrates a pitfall a user may face with
the tool. Source code lines are only tracked to a basic
block level. Sometimes optimizations move individual
instructions from one basic block to another. For
instance, the last instruction in block 5 of Figure 4 corre-
sponds to the assignment of zero to itmp.l at line 40 in
the source code. This instruction was copied from block
10 into block 5 when filling the delay slot for the preced-
ing branch. The user has the responsibility to ensure that
the selected source lines correspond to the assembly
instructions that are examined by the timing analyzer.

The timing analyzer constructs a tree to simplify the
process of bounding the timing performance of a pro-
gram. Each node in the tree corresponds to a function or
natural loop instance. A function is analyzed as though it
was a natural loop that iterates only once when entered.

The most straightforward approach for allowing one to
obtain timing predictions from various portions of the
program would be to allow the user to move up or down a
single node of the timing tree at a time. The authors real-
ized that most users would not be interested in traversing
a graph representing the combined call graph and loop
nesting structure of the program. Instead, users would
most likely want the capability of accessing specified por-
tions of the program as quickly as possible. The user
interface described in this paper provides three different
methods for quickly accessing portions of a program.



Figure 4: Source Code and Assembly Code Windows

Figure 5: Constraints Window

6. Selecting Portions of a Program
Using the Constraints Window

The first method for accessing portions of the program
involves using the constraints window after clicking the
Constraints button in the main window. The different
portions of the program that can be accessed are the por-
tions specified in the source code timing constraints.

Figure 5 shows the constraint window, which contains a
scrollable display of the user-specified constraints. A user
may choose to have the source and assembly windows
display the code associated with a constraint by simply
clicking on the appropriate line within the scrollable sec-
tion. At that point the associated code portion will be
highlighted and scrolled to the appropriate position in
both the source and assembly windows.



Figure 6: Main Window at Loop Level Figure 7: Main Window at Path Level

For each constraint the window displays the specified
and predicted best and worst-case times in clock cycles2

and the location of the constrained source code. If the
user did not specify a best or worst-case time in the tim-
ing constraint, then the corresponding field in the display
is left blank. If the best-case predicted time is less than
the specified best-case timing constraint, then an asterisk
follows the predicted time to indicate that the constraint
has been violated. Likewise, an asterisk will follow the
worst-case predicted time if it exceeds its corresponding
worst-case specified time. It is possible that a user may
select a set of lines that cannot be executed in a single
path (as in constraint 7 of Figure 5), such as the then and
else portions of an if-then-else construct.

7. Selecting Portions of a Program
Using the Main Window

The second method for accessing different portions of
the program involves clicking the More Detail button
after selecting the appropriate construct in the middle sec-
tion of the main window. There are five lev els of detail a
user is allowed to view. The top level and initial display
for the middle section of the main window is the list of
functions within the program. This top level is depicted
in Figure 3, which was discussed earlier in the paper. The
function selected by default upon initialization of the
interface is the main function, which results in displaying
the best and worst-case clock cycles representing the

2 These specified and predicted times are given in clock cycles as
opposed to a time unit (e.g. microseconds). A later section of the paper
will describe how the environment supports detailed pipeline analysis of
the code portions. This analysis is easily accomplished by presenting
performance information based on cycles.

execution of the entire program. The remaining four lev-
els are shown in Figures 6 through 9. Selection of a func-
tion, loop, path, subpath, or range of instructions will
cause the corresponding bounded prediction of cycles to
be displayed and the appropriate lines to be highlighted in
the other two windows. The loops displayed are the loops
within the selected function. A path is defined as a unique
sequence of basic blocks connected by control-flow tran-
sitions. Each loop path starts with the loop header and is
terminated by a block with a transition to the loop header
or to an exit block outside the loop. The paths at a func-
tion level start with the initial block in the function and
are terminated by blocks containing return instructions.
Note that if a path contains a transition to a header of a
more deeply nested loop, then the entire child loop is rep-
resented as a single step along that path. A subpath is a
subset of the blocks within a path that are connected by
control-flow transitions. A subpath is selected by pressing
the mouse button with the cursor on the subpath starting
block and releasing it on the ending block. The final level
of detail consists of machine instructions. Only the
instructions within the initial and ending block of the sub-
path are shown. The user selects a beginning instruction
from the initial block by holding down the mouse button
and selects an ending instruction from the last block by
releasing the button.3 Hence, the user is allowed to obtain
a very fine-grain level of timing predictions.

Thus, there are five lev els of detail in a program that a
user can view: functions, loops, paths, subpaths, and
ranges of machine instructions. At most five selections in
the main window are required for a user to quickly choose

3 The source window is not updated when a range of instructions
within a subpath is selected since source code lines are only tracked to
the basic block level.



Figure 8: Main Window at Subpath Level Figure 9: Main Window at Assembly Level

any specifiable portion of the program. The appropriate
timing analysis information is extracted for each user
selection. If there is more than one instance of the user
selected portion (i.e. multiple instances can occur when
the portion of source code can be reached via different
sequences of calls), then the fastest of the best-case times
and the slowest of the worst-case times of the different
instances are displayed.

8. Selecting Portions of a Program
Directly from the Source Window

The other method for accessing a portion of the pro-
gram is to select lines of source code directly by using the
mouse as depicted in Figure 10. After clicking on the
Select Path button, the user highlights the source lines
within the path to be timed. A user may quickly obtain
the best-case and worst-case timing predictions for a seg-
ment of code by selecting only two source lines, which
would indicate the start and the end of the path.

Once the user has highlighted the source lines of inter-
est, then the timing bounds can be obtained by clicking on
the Accept button. At this point a popup is displayed that
allows the user to select the best or worst-case path or
indicates that no path exists that executes instructions
from every selected source line. In addition, the user can
select to view the loop or function that most tightly
encloses the highlighted lines.

Figures 11 and 12 show the best and worst case set of
source lines, respectively, that would be displayed associ-
ated with the source lines selected in Figure 10. In con-
trast to the best case path, both if statements are entered
in the worst-case path. Note that instructions associated
with other source lines may have to be executed as well
ev en in the best case. The basic block associated with

source line 36 has to be executed to be able to reach line
40 from line 31. Likewise, other lines may have to be
executed since their corresponding machine instructions
are in a selected basic block. For instance, the initializa-
tion of the for loop at line 41 is in the same basic block as
the assignment statement at line 40. Thus, it must include
all source lines associated with a basic block if any source
lines in that block are selected.

Figure 10: Selecting a Path via the Source Code



Figure 11: Best Case Path from Source Lines
Selected in Figure 10

Figure 12: Worst Case Path from Source Lines
Selected in Figure 10

9. Supporting Detailed Analysis
of Timing Constraints

The user interface can also be used to display informa-
tion to the user about how the timing prediction was
obtained. This information may aid a user in rewriting
constrained code to satisfy a violated constraint. The user
can select buttons at the bottom of the assembly window
shown in Figure 4 to obtain a pipeline diagram of the best
and worst-case performance of a path containing no loops
or calls. Figure 13 shows both the best and worst-case
pipeline diagrams associated with a path through a loop.
In contrast to Figure 4, the assembly window has been
redrawn to include numbers with each assembly instruc-
tion. These numbers are referenced in the scrollable
pipeline diagrams to indicate when each instruction enters
a giv en stage of the pipeline. The source code window is
also covered by the pipeline diagram windows since the
user may confuse the source line numbers with the
instruction numbers in the pipeline diagram. Pipeline dia-
grams are useful since a user may wish to understand why
a sequence of instructions required a given number of
cycles. For instance, a user can determine that load stalls
occurred at cycles 7 (between instructions 146 and 147)
and 10 (between instructions 148 and 149) in the best-
case diagram of Figure 13. In addition, a user may wish

to know why there is a difference between best and worst-
case times. In this example, the worst-case time requires
36 more cycles than the best-case time due to four instruc-
tion cache misses. Other potential pipeline stalls due to
structural or data hazards can also be quickly analyzed by
a user.

10. Implementation

The user interface is not invoked until the timing anal-
ysis tree is already constructed. Each node within this
tree represents a loop or function. Each of these nodes is
distinguished by function instances, where a function is
uniquely identified by the sequence of call sites required
for its invocation. If the user requests a timing prediction
for a function, loop or path, then this information can be
obtained directly from the timing tree. If a function con-
taining the selected code portion has more than one
instance, then the best-case timing prediction is the fastest
one of the best-case predictions among all instances.
Likewise, the worst-case timing prediction would be the
slowest of the worst-case predictions.

Timing predictions for subpaths and ranges of instruc-
tions are not stored in the timing analysis tree since there
are many combinations of subpaths and ranges of instruc-
tions within a single path. If a user requests information



Figure 13: Best and Worst-Case Pipeline Diagrams

for a subpath or a range of instructions, then the appropri-
ate function within the timing analyzer is reinvoked for
each instance of the loop or function in which the subpath
or range is contained.

The user interface was implemented using the X
Toolkit (Xt) Intrinsics [11] and Xlib [12] libraries. Both
libraries come with each distribution of X-Windows.
Thus, use of these libraries and the proliferation of X-
Windows should enhance the portability of the interface.

11. Future Work

One area in which the user interface could be
enhanced is to allow highlighting and selection of por-
tions of a source line. For instance, Figure 12 shows a

subpath that includes the initialization of a for loop.
Yet, the entire first line of the for statement is high-
lighted, which inappropriately includes the test condition
and increment as well. Likewise, the selection of this
loop for timing predictions should not include the initial-
ization portion of the for statment. In addition, consider
the for loop from source lines 45-51 in the same figure.
There are two paths through this loop. However, both
paths would be highlighted identically in the source win-
dow since the conditional control flow within the loop is
entirely contained in line 46, which consists of an assign-
ment statement containing a conditional expression. Yet,
the user interface would allow both paths to be selected
via the main window and the appropriate assembly
instructions would be highlighted.



The user interface could also support selecting por-
tions of source code that includes portions of a line. The
character position within the lines where the mouse is
pressed and released would affect the corresponding
assembly code selected. For instance, if a user wished to
select a for loop with the mouse in the source window,
then one could select a character on the for statement
that was after the initialization of the loop. The user
could also select a portion of an arithmetic expression.
For instance, a function call associated with some observ-
able event could be selected [13]. Thus, the compiler and
timing analyzer would have to track character positions
along with source lines to a basic block level.

12. Conclusions

The user interface described in this paper provides
three methods to allow a user to quickly select a portion
of a program for timing prediction. The first method
allows a user to quickly inspect whether or not the timing
constraints specified in the source code were violated.
The second method uses a menu selection approach,
which permits a very fine level of selection. For instance,
consider that C conditional expressions (i.e. a > b ? a
: b), logical operators (i.e. ||, &&, and !), and assign-
ment of boolean expressions (e.g. v = i == j;) often
are expressed on a single source line. Yet, the resulting
assembly instructions will consist of multiple basic
blocks. Likewise, macro calls may be expanded to also
generate multiple basic blocks. The menu selection
approach allows selection of subpaths down to the
machine instruction level. The third method allows a user
to directly select paths from the source window. This
method is functionally equivalent to specifying a path
constraint in the source code using the first method.

This paper describes a solution for resolving the con-
troversy of whether timing analysis should be performed
at a high or low lev el. This controversy is a result of the
desire to relate timing constraints to the source code and
to obtain as accurate timing predictions as possible. A
user-friendly interface has been presented that assists real-
time programmers in relating the analysis of timing con-
straints associated with source code lines to sequences of
machine instructions. Thus, specifying and presenting
timing predictions at a high (source code) level can be
achieved while retaining the accuracy of low-level
(machine code) analysis.
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