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Abstract

Objective metrics for visual quality assessment often base their reliability on the explicit modeling of the highly
non-linear behavior of human perception; as a result, they may be complex and computationally expensive.
Conversely, machine learning (ML) paradigms allow to tackle the quality assessment task from a different
perspective, as the eventual goal is to mimic quality perception instead of designing an explicit model the human
visual system. Several studies already proved the ability of ML-based approaches to address visual quality
assessment; nevertheless, these paradigms are highly prone to overfitting, and their overall reliability may be
questionable. In fact, a prerequisite for successfully using ML in modeling perceptual mechanisms is a profound
understanding of the advantages and limitations that characterize learning machines. This paper illustrates and
exemplifies the good practices to be followed.
1. Introduction
Providing the user with an excellent experience is one of
the main goals of present-day electronic multimedia devices.
Any technology concerned with digital media distribution
and delivery is expected to preserve or, better, to enhance
the visual quality of the handled media. Nevertheless,
maintaining or improving the perceived visual quality across
the different stages of the distribution chain (acquisition,
storage, transmission, and delivery to the user) is a challen-
ging task, and due to technological limitations (e.g., errors
in acquisition, bandwidth constraints, unreliable transmis-
sion channels), it is likely that the media reaches the user in
a rather distorted appearance. As a consequence, it is im-
portant that multimedia delivery systems are equipped at
different stages with means for visual quality verification
and, when necessary, restoration.
To guarantee a pleasant user experience, it is essential

that the control of visual quality is based on perceptually
coherent criteria. Systems in charge to assess the quality
of the incoming video (or image) signal should accurately
reproduce perceptual mechanisms underlying the human
visual system (HVS). At the same time, the eventual
* Correspondence: j.a.Redi@tudelft.nl
2Intelligent Systems Department, Delft University of Technology, Mekelweg 4,
Delft 2628 CD, The Netherlands
Full list of author information is available at the end of the article

© 2013 Gastaldo et al.; licensee Springer. This i
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
computational complexity of these systems is a crucial
issue. When implemented in hardware circuitry for real-
life applications (e.g., televisions, mobile phones, tablets),
embedded devices should be able to estimate quality on
the fly, after the signal receiving and before the actual
visualization of the media.
A variety of methods for automated (objective) quality as-

sessment of images and video have been proposed in the lit-
erature [1-3]. Traditional approaches usually decouple the
quality assessment task into two steps, by first defining a
feature-based representation of the signal, and then map-
ping this lower-dimensional description into quality scores.
This is usually accomplished by fitting a regression function
over ground truth data (i.e., subjective quality scores) [3].
Many of these approaches improve their reliability by expli-
citly modeling the highly non-linear behavior of the HVS;
hence, they usually are complex and computationally
expensive. As a result, in practice, most objective qual-
ity assessment methods prove to be either too complex
for real-time applications or not accurate enough.
Machine learning (ML) methods allow to tackle the qual-

ity assessment task from a different perspective: they mimic
the HVS response to quality losses rather than explicitly
modeling it. Objective quality assessment based on ML
paradigms conforms to the two-step approach of trad-
itional methods, though modifying the balance between
the computational efforts involved in each step. In the first
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step, a meaningful feature-based representation of the dis-
tortion affecting the media is defined. In the second step,
the learning machine handles the actual mapping of the
feature vector into quality scores and reproduces percep-
tual mechanisms (path (a) in Figure 1). Such an approach
relies on the ability of ML tools to learn from examples,
the complex, non-linear mapping function between fea-
ture vectors and quality scores. Consequently, (1) rela-
tively simple, computationally inexpensive metrics can be
designed, and (2) most of the computational power is
spent in the off-line training phase of the learning machine
[4]. A trained ML-based system can therefore support real-
time quality assessment on an electronic device with a
minimal overhead to the metric computational cost.
The ML-based framework is general and can support

every type of perceived quality assessment. Several stud-
ies proved the effectiveness of methodologies that
exploit ML tools to address both video [5-12] and image
[13-24] quality assessment. Furthermore, as a major con-
firmation of the potential of these technologies in percep-
tual quality assessment, a CI-based framework has been
adopted in multiple methods for audio quality assessment,
including the ITU standard, PEAQ [25].
This paper provides an overview of the benefits that

the use of ML can bring to the visual quality assessment
(VQA) problem, in terms of both accuracy and compu-
tational complexity. In particular, the paper aims to pro-
vide an answer to some basic questions in this context,
i.e., (1) what are the advantages of a ML-based approach
to visual quality assessment? (2) what are the possible
alternatives in deploying CI paradigms? and (3) what are
the crucial issues that should be taken into account
when implementing ML-based quality predictors?
(a)

(b)

f

DS
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Feature
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Figure 1 ML-based image/video quality assessment system. The input
represented in a low-dimensional feature space and then mapped into the
modules: 'feature extractor' and 'prediction system'; path (b) augments the
prediction system in the task of making a decision about the metric to be
To do so, on top of a detailed discussion of existing
approaches, the setup of a ML-based objective quality
metric will be commented and exemplified step by step.
The rest of the paper is organized as follows: Section 2

first summarizes the basic functioning of machine learn-
ing paradigms and then shows how they can be employed
to support VQA. Section 3 explores more in detail the is-
sues to be addressed when setting up a ML-based predic-
tion system and possible solutions to overcome them.
Section 4 analyzes some practical examples of the use of
ML for supporting objective visual quality and provides
comparison between the prediction accuracy obtained by
ML-based VQA systems and the prediction accuracy
obtained by state-of-the-art VQA systems. Open issues in
ML-based VQA are discussed in Section 5. Finally,
Section 6 makes some concluding remarks.

2. Machine learning for visual quality assessment
Over the past decades, research in ML yielded effect-
ive theoretical models, which proved successful in
several applications such as computer vision [26],
data mining [27], and bioinformatics [28]. This suc-
cess is due to the fact that machine learning para-
digms represent a powerful technology for tackling
clustering, classification, and regression problems in
complex non-linear domains. As such, over the last 10
years, the interest has grown within the VQA community
towards using ML technologies to model the perceptual
mechanisms underlying the HVS. Nevertheless, ML has its
own limitations, which are easily exposed when a naive use
of it is done. A prerequisite for successfully using ML is in
fact a thorough understanding of the advantages and limi-
tations that characterize learning machines and of the
Q
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(distorted) signal DS and, if available, the original signal (OS) are first
quality space by means of a ML tool. Path (a) includes the two basic
framework with a module that is specifically designed to support the
applied.



Gastaldo et al. EURASIP Journal on Image and Video Processing 2013, 2013:54 Page 3 of 15
http://jivp.eurasipjournals.com/content/2013/1/54
application-specific context. In the following subsection,
we briefly summarize the basic functioning of machine
learning paradigms; readers already familiar with the topic
can refer directly to Section 2.2.
2.1 Basic functioning of learning machines
The learning problem is set under a probabilistic frame-
work. Inductive learning is achieved by involving the
process of learning from examples: the system induces a
general rule from a set of observed instances. In its most
general setting, the problem definition can be formalized
using the following notation.

� Dataset, , is a collection of data samples (patterns)
holding Np input–output pairs (xi,yi).

� Input space, , is the space used to describe
individual data items, e.g., x ∈ Rm, and is the
m-dimensional Euclidean space.

� Output space, , is the space of possible predictions;
classification problems involve a binary setting y ∈
{−1,+1}, whereas for a regression problem, target
values span a continuous range, e.g., y ∈ [−1,1].

� True function, f, is the (unknown) function, y = f(x),
which models the relationship between the input
space and the output space .

� Hypothesis space, , is the set of functions that the
learning algorithm examines to approximate the true
function f.

Inductive learning methods exploit a learning algorithm
to explore the hypothesis space, , for identifying the hy-
pothesis h(w,x) ∈ that best approximates the true func-
tion, f, given a set of adjusted parameters w. The learning
procedure uses the examples drawn from to select h,
under the basic assumption that those examples are inde-
pendent, identically distributed elements drawn from the
‘true’ distribution p( ) (which is stationary but un-
known). In fact, a relevant constraint is that the dataset
actually conveys reliable information about the unknown
target function, y = f(x). The challenges in this learn-
ing problem are the following: framing a correct repre-
sentation of inputs and outputs (i.e., selecting and

so that f exists [4]), sampling the problem domain
(p( )) in a dense enough way, and selecting the hy-
pothesis space that best fits the given task. The basic
trade‐off lies in picking out a hypothesis space that is
powerful enough to support the input/output relation-
ship, yet simple enough to be scanned efficiently.
To ensure this, care should be put in selecting both the

eventual set of machine adjustable parameters w and the
loss function (x,y,w) that will be used to quantify the per-
formance of h(w,x) ∈ . The loss function, , sets the pen-
alty for an incorrect prediction of the input, x, by a
hypothesis, h. This occurs when, for an input–output pair
(xi,yi) ∈ , one obtains h x;wð Þ ¼ ŷ≠y.
2.2 ML-based visual quality assessment systems
ML is typically used to support visual quality assessment
within a two-step framework. The modeling process is
indeed decoupled in two tasks:

1. The definition of a suitable descriptive basis for the
input video signal, i.e., a feature-based description
f ∈ , where is a feature space (i.e., the input
space X, above):

f ¼ ϕ S; S′ð Þ ð1Þ

S is the input signal and S’ is the reference signal
(if needed). In the (possibly low-dimensional)
feature space, , the media can be represented in a
manner that is informative with respect to its visual
quality. Quality assessment systems that process
both the distorted signal and the original one are
referred to as full reference (FR). Instead, reduced
reference (RR) systems only require a limited set of
numerical features extracted from the original
signal, paying the (reasonable) additional cost of
transmitting side information to the video chain
endpoint. No reference (NR) systems assess
perceived quality without any information on the
original signal [1,2].

2. The modeling through empirical learning of the
non-linear mapping function, γ ∈ , between the
feature space and a scalar measure of the
perceived quality, q ∈ :

γ : F→q ∈ 0; 1½ �; ð2Þ

where the quality score is normalized to the range
[0,1] without loss of generality. It should be noticed
that the true function f that γ is expected to
approximate is the transfer function of the human
visual system.

The first task aims at reducing the dimensionality
of the original data space, which is virtually of infin-
ite dimension, when processing video signals. The
ability of the feature space, , to characterize the under-
lying perceptual phenomenon is critical to the effective-
ness of the overall framework. This aspect will be further
discussed in Section 3.1.
The second task takes advantage of the ability of ML par-

adigms to deal with multidimensional data characterized
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by complex relationships, which are learned from examples
using a training algorithm. This, in turn, allows to bypass
the challenging issue of designing an explicit model of the
perceptual mechanisms that map into quality judg-
ments. More details on both the selection of the model
space and the actual selection of the γ (training and
model selection) will be given in Section 3.
Figure 1 schematizes a ML-based image quality assess-

ment system. Path (a) includes the two basic modules: ‘fea-
ture extractor’ and ‘prediction system.’ The former module
yields a vector of numerical descriptors, which the latter
uses to associate a quality score with the input signal. The
prediction system may include either one (single predictor
setup) or an ensemble (multiple predictor setup) of learning
machines trained to assess the quality score. The rationale
behind using multiple predictors for quality assessment is
that different types of signals might map into quality differ-
ently, and thus, using specialized predictors for each signal
type would bring to more accurate quality estimations. Ex-
amples are using specialized predictors (and/or feature sets)
to estimate quality losses brought about by specific distor-
tions (e.g., compression, noise, blur) [16,19] or to model
quality preferences in a specific, narrow range of the quality
scale [22].
When the prediction module involves multiple predic-

tors, the ML-based quality assessment system is augmented
with a module that gathers further information about the
incoming signal (path (b) in Figure 1). Such module is spe-
cifically designed to support the prediction system in the
task of making a decision about the metric to be applied
(or about the strategy to be applied in combining the differ-
ent metrics). The framework is quite flexible in that it can
be easily adapted to both image and video signals. In the
latter case, either a temporal pooling strategy is deployed at
the feature extraction step (or directly by the quality predic-
tion module) or a continuous evaluation of quality over
time is performed. In this case, the feature vector f is con-
tinuously computed from the input sequence and enters
the quality assessment system at the required frequency.
In practical terms, implementing the framework depicted

in Figure 1 corresponds to facing three crucial issues:

1. The definition of the features that describe an input
signal, image, or video (the input space )

2. The selection of the ML tool(s) to be used to
implement the prediction system h, i.e., the selection
of the learning algorithm to be adopted to explore a
hypothesis space

3. The selection of the methods to train the system
and to test its generalization performance robustly.
This means defining the assembly of the dataset, ,
and the criteria to evaluate the effectiveness of a
hypothesis, h, at modeling f when processing input
samples not included in
The next section explores more in detail these issues
and possible solutions to overcome them.

3. Setting up a ML-based quality assessment system
3.1 Defining the feature space
The feature space, , is crucial to the overall perform-
ance of the framework and involves two main issues.
The first aspect concerns the significance of the feature
space itself, as one requires that the space retains the
relevant information to the application prediction task.
If the relation between the input space and the output
space is completely random, no learning can take place
[4]. The feature space should carry information on how
the distortion in the image is perceived by the HVS. In
other words, no ML paradigm can repair a defective
feature-space design by restoring missing information.
The dimensionality of the feature space is the second

crucial issue. If the function γ spans a high-dimensional
domain, the so-called curse of dimensionality [29] may sig-
nificantly affect the ability of the ML predictor to converge
to the true function. The following example should clarify
this aspect. Let L be the edge length of a m-dimensional
hypercube in which the data samples are uniformly dis-
tributed; then, the edge length N of a hyper-cubical neigh-
borhood that captures a fraction α of samples is given by

Nm αð Þ ¼ L⋅α
1

m= ð3Þ

The graph in Figure 2 gives, for different values of α,
the ratio N/L as a function of the input space dimen-
sionality m. The graph shows that if one wants to cover
1% of the data distribution (α = 0.01) in a ten-dimensional
input space, the neighborhood should be extended to
more than half of L. In fact, such distorted sampling effect
becomes even more apparent as the dimensionality of the
input space increases, and thus, in high-dimensional
spaces, any dataset of reasonable size can only sparsely
populate the input space. The consequent, possible de-
crease in overall performance is even more important
whenever a limited amount of data is available, as it is
often the case in VQA (see Section 3.3.1)
In summary, the feature space should encode all and

only the information that is relevant to quality assessment.
Models of the HVS have to be implemented to extract rele-
vant features and then simplified, possibly through an ap-
propriate feature selection procedure [4]. Feature selection
[30] and/or dimensionality reduction [31] can remove noise
from data and take out non-informative features, which
carry either redundant or inappropriate information. This,
in turn, protects the eventual prediction system against an
uncontrolled increase in the computational complexity. At
the same time, one can rely on ML paradigms that are less
prone to curse of dimensionality, e.g., support vector ma-
chines (SVMs) [32].



Figure 2 Curse of dimensionality.
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3.2 Selecting the ML paradigm
A huge set of ML paradigms have been proposed in the
literature. Those paradigms can be categorized according
to (1) the class of functions they adopt as the hypothesis
space, , and (2) the strategy they use to identify the
hypothesis h that best mimics the target function, f. In
practice, two main families of learning machines turned
out to be popular for visual quality assessment, namely
(feedforward) neural networks and kernel machines.
The regression strategy of both feedforward neural

networks and kernel machines implements the decision
function, ŷ ¼ h x;wð Þ as a weighted series, whose basic
terms, ϕ(x), typically embed non-linear functions:

ŷ ¼ h xð Þ ¼ ∑
i
wiφi xð Þ þ w0: ð4Þ

Classification machines just yield a binary output by
applying the operator sign(⋅) to f(x).
The training procedure adjusts the degrees of freedom

(i.e., the coefficients w = {w0,wi}) in such a way that the
non-linear relation (4) reproduces the desired input–
output mapping. Training may prove demanding from a
computational viewpoint and is typically completed off-line.
The trained system, instead, can be easily implemented in an
electronic device for real-time quality assessment, thanks to
the straightforward expression of (4) [33].
In feedforward neural networks [34], the input–output

mapping (4) is attained by arranging several elementary
units (‘neurons’) into a layered structure that has no
feedback between layers. The series expansion (4) of a
feedforward network with a single hidden layer holding
Nh neurons is then expressed as

h xð Þ ¼ PNh

j¼1
w′

jaj xð Þ þ b′: ð5Þ

The coefficients w′ are denoted as ‘weights’, b′ is a bias,
and aj(x) is a non-linear activation function. Theory
proves that feedforward networks embedding a sigmoidal
activation function, sigm(r) = (1 + e−r)−1, can support ar-
bitrary mappings [35]. There is no established design cri-
terion to dimension the parameter Nh; however, the
literature provides both theoretical [36] and practical cri-
teria [37] to address that task. The multilayer perceptron
(MLP) [34] is possibly the most popular type of feed-
forward network. The MLP learning problem is usually
tackled by the backpropagation (BP) algorithm [34],
which applies a stochastic gradient-descent strategy over
the weight space.
Kernel machines tackle the problem of pattern recog-

nition by exploiting the so-called kernel trick [32]: em-
pirical samples are projected in a high-dimensional
Hilbert space, where the mapping function is easier to
retrieve. A kernel function K(xi,xj) allows treating only
inner products of pattern pairs, disregarding the specific
mapping of each single pattern. As a consequence, the
kernel trick allows the formulation of non-linear variants
of any algorithm that can be formalized in terms of dot
products.
SVMs are a very popular implementation of a kernel ma-

chine [32]. The series expansion (4) in this case is expressed
in terms of kernel dot products, setting wi = αiyi, w0 = b:

f SVM xð Þ ¼
Xnp

i

αiyiK xi; xð Þ þ b: ð6Þ

In expression (6), the ‘bias’ term b and coefficients αi
should be adjusted by the training process [32]. Com-
mon choices for the kernel function K(xi,xj) are the ra-
dial basis function and, less frequently, the polynomial
kernel. The generalization performance of a SVM de-
pends on parameters regulating the trade-off between
accuracy and complexity in the training process [32] and
the kernel-specific parameters.
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Although the above ML models provide a powerful
way of approaching a general class of problems, the
eventual behavior of the prediction system cannot be
directly understood. Both feedforward neural networks
and kernel machines - just as several other ML para-
digms - involve the application of non-linear operators;
as a result, they are often categorized as ‘black box’ ap-
proaches. In this regard, some recent work on video
quality assessment [12] favored ML methodologies that
could lead to ‘white box’ models, i.e., for which the pre-
dictive system can be translated into a set of intelligible
rules. An interesting example of such methodologies is
genetic programming (GP) [38,39]. GP belongs to the
class of evolutionary algorithms, which relies on stochastic
search procedures based on the evolutionary principles
such as natural selection, mutation, and reproduction.
The core idea is that algorithms (i.e., models in ) that
process a predefined set of variables (i.e., the input fea-
tures) through a sequence of operations can be ‘evolved’
in order to find an optimal algorithm h that best approxi-
mates f. Evolution is achieved by applying analogies of nat-
ural genetic operations (reproduction, crossover, mutation)
to a population of candidate algorithms (the model space
). Best algorithms are selected for reproduction based on

their fitness, i.e., their performance at modeling f (which is
typically defined based on the application domain). Then,
they slightly mutated in order to further explore the
solution space nearby the good (fittest) algorithms
already found. After several iterations of the selection-
reproduction-mutation process, high fitness solutions
can be found. This framework, originally developed to
evolve computer programs, was recently shown to be
applicable to tackle ML problems [40]. There remain a
number of significant open issues in the field of evolu-
tionary computing; one of the most critical concerns is
the lack of a reliable theoretical framework to provide
bounds on generalization performances of the predict-
ive system.

3.3 Training and model selection
A typical issue with empirical training is to obtain a high
prediction accuracy while avoiding the risk of overfitting,
i.e., an effective performance on the data included in the
training set but a poor performance when processing
unseen data. Three factors concur to effective learning:

1. Training set. The training patterns should give a
sufficiently large and representative sample of the
data population that one wants to generalize. In
fact, the generalization ability of the eventual
model ŷ ¼ h x;wð Þ cannot cover samples that lie
outside the distribution of the training set. Since
the training set is actually a subset of the patterns
included in the dataset , attention should be paid
to the process of data collection. This is even more
important in visual quality assessment, where a
time-consuming process needs to be completed to
associate quality scores to visual stimuli; as a major
consequence, available datasets usually include a
limited number of input–output pairs.

2. Model selection. The settings of the machine
adjustable parameters (e.g., the number of neurons
Nh in a feedforward neural network or the kernel
function and its parameters in a SVM) determine
the generalization ability of a ML model. Overly
complex models exhibit higher risks of overfitting
[41]. In the lack of established theoretical guidelines
for model selection, one usually relies on empirical
data-driven model selection criteria that proved
effective [29].

3. Fair estimation of the generalization performance. The
accuracy at predicting quality on unseen data is the
practical criterion to evaluate the effectiveness of a
trained system. Generalization theory [32] provides a
variety of criteria to bound the generalization error of
a learning machine, but these approaches often lack
practicality. The empirical measure of the error on test
data still seems the most reliable method to get an
accurate approximation of the system's performance.

3.3.1 Training data
It has been anticipated in Section 3 that the composition
of the dataset plays a crucial role when developing a
prediction system based on ML methodologies. In visual
quality assessment, datasets are sets of pairs {image, hu-
man quality score}. As human judgment represents the
ground truth, collecting material for creating datasets is
an expensive and time-consuming task. As a result,
many datasets are not public, and those that are publicly
available are of limited size. Table 1 gives an overview of
some of the most popular public datasets in the area of
image quality assessment (for a full overview, we de-
mand the reader to see [42]). It summarizes their main
characteristics: number of image contents, total number
of distorted images involved in the subjective experi-
ment, number of distortion types evaluated, and format
of the subjective scores. For video quality assessment,
two datasets are mostly used as benchmarks: the LIVE
video database [43] and the EPFL video database [44].
Database [43] involves a set of 150 distorted videos created
from 10 reference videos using four different distortion
types: MPEG-2 compression, H.264 compression, simu-
lated transmission of H.264 compressed bitstreams through
error-prone IP networks, and through error-prone wireless
networks. The EPFL video database includes a total of 78
distorted videos generated from 12 original video se-
quences with two spatial resolutions (CIF and 4CIF);
the distorted videos have been obtained by first applying
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Figure 3 The cross-validation procedure. The dataset is
divided into three sets: the training set TG, the validation set VS, and
the test set TS. Each model hypothesis hi, i = 1,…, k is first trained
on TG; its performance is then evaluated on VS. Based on this
performance, the best model (in the figure, h2) is then selected, and
its performance finally estimated based on its prediction error on
the data included in the test set TS.

Table 1 Image quality databases

Database Image
contents

Size of the
database

Number of
distortions

Format of the
subjective scores

LIVE [45] 29 779 5 DMOS

TID2008 [46] 25 1,700 17 MOS

CSIQ [47] 30 886 6 DMOS

IVC [48] 10 185 4 MOS

Toyama [49] 14 168 2 MOS
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H.264 compression to the original videos and then
corrupting the bistreams according to six different packet
loss rates.
For both image and video data, we can notice a hetero-

geneity among the databases' constituency in terms of
types of distortions applied to the signals to be assessed.
In order to cover as many distortions as possible and in-
crease the amount of data for training, researchers occa-
sionally merge multiple database into a single one to
determine their model and its generalization performance.
However, this procedure is controversial, as merging of
databases is not straightforward [50]. This aspect will be
further commented in Section 5.

3.3.2 Model selection and robust estimation of the
generalization performance
Cross-validation [29] represents the most robust strategy
to reliably evaluate the generalization performance of a
ML-based quality assessment system. As shown in
Figure 3, is randomly split into three non-overlapping
subsets: a training set, TG, a validation set, VS, and a test
set, TS. TG is the collection of data used for the learning
procedure, whereas the validation set supports model se-
lection. After completing several training runs for a set of
tentative models hi ∈ , the set VS is tested to evaluate
the generalization performance of the various alternatives,
and the model with the best performance is selected. Fi-
nally, the prediction accuracy of that model is measured
on the test set TS, whose patterns have not been involved
in any phase so far. It is important to understand that (1)
generalization performance should be estimated once that
model selection has been finalized, and (2) the patterns in-
cluded in the test set should not have been involved in
model selection. In fact, it is not rare that researches that
exploit ML-based predictors do not provide details
about the parameterization of the involved ML model
or about the model selection process. This eventually
undermines the reliability of the published results in
terms of prediction performance.
As mentioned in Section 3.1, in video quality assess-

ment, the size, Np, of the dataset is usually quite small,
which potentially undermines the assumption that TG -
which is a subset of - actually is a representative sam-
ple of the population. Therefore, research often relies on
a ‘multi-run’ version of the conventional cross-validation
procedure. In this case, multiple iterations of the model
selection procedure are performed by varying the split-
ting of data over the training, validation, and test sets
[4]. This setup eventually gives a robust estimate of the
generalization error. The k-fold strategy and the boot-
strap strategy represent common approaches toward
that purpose.

4. ML-based quality assessment: practical
examples
Section 3 discussed a number of good practices to set up
a ML-based quality assessment system. The goal of this
section is to better illustrate those practices by analyzing
some practical examples drawn from the literature. Re-
markable examples of the use of ML for supporting ob-
jective visual quality assessment are reviewed according
to their use of a single or multiple predictors (see
Section 2.2). Section 4.1 will analyze ML-based VQA
systems with a single predictor setup (path (a) in Figure 1);
thus, a framework in which a single general mapping
function is entitled to model the perceptual mechanism.
Conversely, Section 4.2 will examine ML-based VQA sys-
tems that also include path (b); hence, the prediction sys-
tem models the perceptual mechanism by exploiting
different specialized mapping functions, and a supporting
block drives the selection of the correct mapping function
by analyzing the input signals. For the sake of clarity,
Table 2 summarizes the principal characteristics of the



Table 2 The ML-based systems analyzed in this paper

VQA method Target Reference signal
availability

Number of
features

Feature space Mapping
function

ML paradigm

Narwaria and Lin [24] Image/video FR 256 SVD Single SVM

Charrier et al. [22] Image FR 25 Spatial/frequency criteria Multiple SVM

Redi et al. [16] Image RR 60 Correlogram Multiple SVM/CBP

Li et al. [18] Image NR 4 Perceptual contents Single GRNN

Moorthy and Bovik [19] Image NR 88 Steerable pyramid decomposition Multiple SVM

Staelens et al. [12] Video NR 4 Bitstream-based parameters Single GP
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systems that will be analyzed in the following sections. Fi-
nally, Section 4.3 will deal with a crucial point: the ability
of the ML-based systems to provide a reliable estimation
of the perceptual mechanisms.

4.1 Visual quality assessment by adopting a single
mapping function
Coupling the feature-based description to a quality score
by means of a single function is possibly the most popu-
lar approach to VQA. As such, many ML-based systems
have been proposed that use a single predictor to ac-
complish the objective estimation of visual quality. In
the domain of image quality assessment, the works pub-
lished by Li et al. [18] and by Narwaria and Lin [24] pro-
vide two interesting examples of such systems.
In the NR VQA of Li et al. [18], the feature space is

designed to characterize a few perceptual aspects of the
image content: the degree of coherency of the local fre-
quencies comprising the image, the available local infor-
mation content of the image, and the perceptually
relevant rate of change of image luminance. The predic-
tion system is supported by the general regression neural
network (GRNN, [51]), which receives as input the four
features worked out from the distorted image and yields
as output the corresponding quality score. A GRNN is a
probabilistic neural network, which in principle can
guarantee fast learning. However, the eventual trained
machines may prove computationally less efficient than
feedforward neural networks, as both computational
complexity and memory occupation of the trained
GRNN increase with the size of the training set. The
LIVE database provided the dataset for both training the
GRNN and evaluating the performance of the eventual
prediction system. A fivefold cross-validation scheme
has been adopted for this purpose, where the five folds
were designed to not share any image content. The
paper provides the setup of the only adjustable param-
eter of GRNN, the smoothness of fit σ; however, details
about the model selection procedure are missing.
Narwaria and Lin [24] propose a FR ML-based frame-

work that can be used both for image and video quality
assessment. Singular value decomposition (SVD) is
exploited to extract meaningful perceptual-related infor-
mation from images (or video frames). In practice, SVD
is used to remap the image (i.e., a matrix) into a coord-
inate system where the covariance matrix is diagonal. As
a result, an input matrix I of size r × c is factorized as
follows: I = U⋅S⋅Vt, where U is a r × r orthogonal matrix
and V is a c × c orthogonal matrix. S is an r × c matrix
whose off-diagonal entries are all 0's and whose diagonal
elements are the singular values, which appear in de-
scending order. The feature space F is designed to rep-
resent the difference between (a) the matrixes U, S, and
V as obtained from the original image and (b) the corre-
sponding matrixes that are obtained from the distorted
version of that image. This eventually results in a 2B-di-
mensional feature space; here, B is a parameter that
characterizes the feature extraction process, which firstly
operates on a local basis (B × B blocks) and then aggre-
gates information to generate a single image descriptor.
In the paper, the authors set the value of B to 128. A
SVM is employed to implement the prediction system;
such choice is possibly motivated by the need to exploit
a ML paradigm that is less prone to the curse of dimen-
sionality, which may represent a major issue when deal-
ing with a 256-dimensional input space. The overall
framework is validated through a very robust setup. In
the image quality assessment configuration, the dataset

is obtained using eight different databases, according
to two different setups. First, the overall framework is
trained and then tested on each of the eight datasets
separately. A k-fold cross-validation strategy is adopted
for each of the eight different experiments, with k set de-
pending on the number of reference images in the
datasets. Also in this case, folds are designed so that no
reference images (and their distorted versions) are
shared among them. In a second setup, cross-database
performance is evaluated by training the SVM on the
features extracted from the images of one dataset; then,
the model is tested on the images of another dataset. Fi-
nally, the ability of the proposed framework to deal with
video quality assessment is evaluated by training the sys-
tem with the image databases and then using the LIVE
video database and the EPFL video database as test sets.
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The thorough testing procedure followed by Narwaria
et al. is to be regarded as a best practice to correctly esti-
mate the generalization ability of ML-based VQAs. Un-
fortunately, an aspect that the paper does not seem to
address properly is model selection: both in the case of
image quality assessment and video quality assessment
details are not provided about the setup of the three ad-
justable parameters that characterize the proposed
SVM-based prediction system.
Further attempts of designing VQA systems based on

a single ML predictor were made, e.g., by Liu et al. [17],
who used a feedforward neural network to predict the
mean opinion scores (MOS) of images distorted with
JPEG compression and blur. In [14], second-order histo-
grams were used to characterize distortion perception,
and then a PCA was adopted to select the most signifi-
cant features. An extreme learning machine [52], i.e., an
extension of the classic multilayer perceptron paradigm,
was used to accomplish the final mapping due to its high
non-linear modeling capabilities.
In the video domain, support vector machines have

been used to predict the visibility of packet loss artifacts
[53], whereas circular backpropagation (CBP, [54])
neural networks have supported the prediction of the
annoyance brought about by MPEG artifacts [6]. Le Cal-
let and others [8] used instead a time-delay neural net-
work for video quality assessment as it has the ability to
represent a relationship between events in time.
Recently, Staelens et al. [12] proposed an interesting

and novel approach to NR VQA. They propose a
framework that (1) does not require a complete de-
coding of the received video stream to estimate per-
ceived quality and (2) makes use of a white box ML
paradigm, the GP-based symbolic regression method
[38]. The authors use a tree-based regression model
to represent the mapping function γ, where a set of
predefined operators (e.g., summation, multiplication)
combine a set of candidate features directly comput-
able from the encoded bitstream. Trees are evolved in
order to optimize the fitness function, which evaluates
both the tree performance in predicting the MOS,
and its complexity (i.e., its number of nodes). In this
way, accurate but simple models are privileged in the
evolution. The resulting model is based on 4 of the
initial 42 features, and its functioning is transparent,
as the operations performed by the tree are observ-
able. As a result, the feature selection process is com-
bined with the learning process in an elegant way.

4.2 Visual quality assessment by adopting multiple
mapping functions
The second category of models we are interested in ana-
lyzing is that of VQA using multiple predictors to ac-
complish quality estimation. The rationale behind this
setup is that not all types of signals map into quality in
the same way. For example, it has been shown that vid-
eos with different quality levels are evaluated according
to different criteria [55]. Also, it is well known that sen-
sitivity and annoyance to different distortions follow dif-
ferent perceptual mechanisms. As a result, in some
cases, it might be appropriate to first identify the type of
signal whose quality has to be evaluated and then use a
specialized predictor trained to assess quality related to
the specific characteristics of that signal type. The works
published by Redi et al. [16], Moorthy and Bovik [19],
and Charrier et al. [22], all dealing with image quality as-
sessment, represent interesting examples of such setup.
The system presented in [16] exploits different specific

mapping functions tuned to address a specific image dis-
tortion among a set of candidate ones. This strategy has
been adopted by multiple studies in the literature, such
as [21] and [56]; thus, it is worthwhile to analyze in de-
tail. In [16] and according to the scheme proposed in
Figure 1, a dedicated block is designed to analyze the in-
coming signals and to identify the predictor to be ap-
plied. The feature space is designed to capture the effect
of structural distortions on color distribution. First, color
correlograms are computed for a set of non-overlapping
blocks of the images (original and distorted); then, from
each correlogram, statistical features that summarize the
changes in the structure of the block are extracted.
Global-level feature information is then obtained by
extracting the envelope of the distribution of each fea-
ture across the image, i.e., using percentiles to aggregate
block-based information. The authors adopt a feature se-
lection procedure based on the Kolmogorov-Smirnov
test to select from the candidate features those that more
informatively characterize the perceptual phenomenon.
This results in a 30-dimensional vector characterizing
both the input image and the reference image. Such vector
first enters a SVM-based distortion identification module,
working as multiclass classifier. The authors adopted a
standard approach to implement this module, which ex-
ploits d one-versus-rest classifiers (d being the number of
distortions), i.e., classifiers that are designed to solve the
binary problem ‘one distortion versus the others’. Once
the distortion has been identified, the input vector is
forwarded to the corresponding mapping function, taken
out of a set of predictors modeled by exploiting CBP net-
works [54]. These networks belong to the family of feed-
forward neural networks and provide an effective tool to
tackle regression tasks. A fivefold cross-validation strategy
was used to evaluate the generalization performance of
the trained objective assessment system; the LIVE data-
base provided the dataset . Indeed, the paper [16] also
analyzes the generalization performance of the two ML-
based blocks separately and discusses model selection
details.



Table 3 Performance on the LIVE database of ML-based
systems analyzed in this paper

Pearson’s correlation SROCC

SSIM 0.90 0.91

Narwaria and Lin [24] 0.98 -

Charrier et al. [22] - 0.97

Redi et al. [16] 0.91 0.91

Li et al. [18] 0.82 0.81

Moorthy and Bovik [19] 0.91 0.91
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The framework proposed by Moorthy and Bovik [19]
uses natural scene statistics to tackle NR image quality
assessment. Analogously to [16], the prediction system
includes different distortion-specific mapping functions.
However, in this case the final quality score for an input
image is predicted by combining the outcomes of the
different mapping functions. To this purpose, a specific
module is designed to provide a probabilistic distortion
identification estimate that eventually drives the predic-
tion system. In [19], the authors structure an 88-
dimensional feature space. Those features are obtained
by exploiting the peculiarities of wavelet transforms,
which can perform mirror models of spatial decomposi-
tions occurring in the V1 area of the primary visual cor-
tex. The steerable pyramid decomposition [57] over two
scales and six orientations is exploited to this purpose.
SVMs provide the ML paradigm to support both the
‘probabilistic distortion identification’ block and the
‘quality prediction’ block. The former block exploits
SVMs to provide - for each candidate distortion - the
probability that the input image is affected by that dis-
tortion; in fact, the paper does not discuss the details of
the implementation of this module. The latter block uses
SVMs to implement the distortion-specific mapping
functions. The approach was cross-dataset validated,
based on the LIVE for training and model selection and
on the TID2008 for evaluating the generalization per-
formance of the framework. The paper does not supply
details about the parameterization assigned to the SVM-
based predictors after model selection.
Charrier and others [22] also proposed a multiple pre-

dictor system, but with a different flavor. In this case,
the selector module aims at dividing the quality scale in
five sectors, each corresponding to a specialized map-
ping function for that quality range. The underlying as-
sumption is that different perceptual mechanisms are
involved when one judges a heavily degraded image or a
slightly degraded image [55]. The feature space includes
25 quantities, which belong to two categories: spatial cri-
teria and spatial frequency criteria. The first category in-
volves features integrated in the multi-scale structural
similarity index (MS-SSIM) proposed in [58]; the second
category exploits features derived from the steerable
pyramid decomposition of the image. Both the classifica-
tion block that select the mapping function to be applied
and the prediction system have been implemented using
SVMs. The selection module is obtained using the the-
ory of evidence framework [59]: the eventual decision is
finalized by taking into account the confidence associ-
ated to the outputs of ten binary SVM-based classifiers,
which correspond to the ten binary problems that stem
from a problem with five classes. The mapping functions
supporting the prediction system are modeled using
SVM as regression tool. The authors used a subset of
the LIVE database to complete training and model selec-
tion, while the remaining part of the LIVE database and
the TID2008 database have been used as test set. Details
concerning the parameterization of the ML-based
models, as obtained after model selection, are not
reported.

4.3 Performance: ML-based approaches versus state-of
-the-art systems
The performance of a VQA system should be evaluated
by estimating its prediction accuracy. While other fac-
tors may play an important role (e.g., computational
complexity of the system and technical feasibility of im-
plementation into consumer electronic devices), the abil-
ity of the system to reliably assess subjective perception
of quality represents without doubt the first element to
be analyzed. In the context of the present paper, indeed,
the key point is the comparison between the prediction
accuracy obtained by ML-based VQA systems and the
prediction accuracy obtained by state-of-the-art VQA
systems.
As detailed in the previous sections, it is uneasy to

compare the performance of ML-based VQA systems, as
most of them adopt a different testing setup. In the area
of image quality assessment, however, it is common to
adopt the SSIM index [60] as benchmark. Indeed, most
of the works analyzed above (and listed in Table 2) re-
port a comparison of the performance of their proposed
algorithm with it. To give a general overview of ML-
based VQA performance, we summarize in Tables 3 and
4 the (available) Pearson's correlation coefficient and
Spearman's correlation coefficient (SROCC) [3] between
the quality scores predicted by SSIM and the systems in
Table 2 and the human quality scores. We then detail
better the single metric performance below.
For the sake of completeness, two important aspects

should be addressed before starting the discussion about
the performances. First, as anticipated above, most of
the works listed in Table 2 do not provide clear state-
ments about model selection outcomes; this actually
hinders the reproducibility of the experiments. Second,
in a few cases, the authors estimated the performance of
state-of-the-art algorithms on the proposed experiments



Table 4 Performance on the TID2008 database of ML-based
systems analyzed in this paper

Pearson’s correlation SROCC

SSIM 0.78 0.90

Narwaria and Lin [24] 0.75 -

Charrier et al. [22] - 0.90

Moorthy and Bovik [19] - 0.88
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by exploiting the available Matlab routines; in other case,
though, the performance associated to state-of-the-art
algorithms has been obtained by considering the numer-
ical results already provided in the literature.
In [24], Narwaria and Lin compared their FR system

with the SSIM algorithm on seven different experiments
involving as many image databases; the results provided
in the paper show that their framework was able to at-
tain a better Pearson's correlation coefficient than SSIM
in all the experiments. The paper also reported on the
results obtained with experiments involving cross-database
evaluation, as discussed in Section 4.1; in this case, a com-
parison with SSIM has not been proposed. Indeed, it is in-
teresting to note that numerical results proved that the
performance of the proposed framework somewhat de-
creased when TID2008 is used as test set. Such outcome is
not surprising: this database involves a few distortion types
that are not addressed in other databases; hence, the
ML-based predictor is required to model portions of
the p( , ) that the training set covered only partially.
The performance of the FR approach presented by

Charrier et al. in [22] is documented through a compari-
son with SSIM on two different experiments; SROCC
was adopted as performance indicator. The first experi-
ment involved the LIVE database: the results show that
the proposed system was able to slightly outperform
SSIM. The second experiment addressed cross-database
evaluation: the LIVE database was used as training set
and the TID2008 database was used as test set. Two are
the interesting outcomes of this experiment. First, the
performance on the cross-database evaluation is not as
good as the performance on the LIVE database; however,
as already discussed, this behavior may partially be as-
cribed to the characteristics of the TID2008 database.
Second, the proposed system seems still able to outper-
form the SSIM algorithm.
Redi et al. [16] used the LIVE database to estimate the

performance of their RR system; indeed, they provided a
comparison with the SSIM algorithm based on the
Pearson's correlation coefficient. In this regard, one
should take into account that SSIM is a FR metric; thus,
the comparison is not completely fair. However, the re-
sults show that the proposed system compares favorably
with SSIM, which outperforms noticeably the RR metric
only when JPEG2000 compression is involved.
Two different approaches for NR quality assessment
are proposed in the works by Li et al. [18] and by
Moorthy and Bovik [19]. The first approach exploits a
small set of features and a single mapping function,
while the second approach utilizes a 88-dimensional fea-
ture space and multiple distortion-oriented mapping
functions. In [18], the performance of the proposed sys-
tem has been evaluated using the LIVE dataset. A com-
parison with the NR algorithm BIQI [61] has been
provided; Pearson's correlation coefficient, SROCC, and
root mean square error (RMSE were used as perform-
ance indicators. The results prove that the proposed sys-
tem in general was able to obtain the same performance
as BIQI; in fact, BIQI was evidently outperformed when
considering the RMSE indicator.
In [19], performance evaluation comprised two differ-

ent experiments. In the first, only the LIVE database has
been involved. The second addressed cross-database
evaluation, with LIVE database as training set and
TID2008 database as test set; indeed, in this case, the ex-
periment involved only the images of TID2008 that were
corrupted with the distortions also covered by LIVE. For
the first experiment, the paper reported the comparison
with two different versions of the BIQI algorithm and
with the BLIINDS [62] algorithm; Pearson's correlation
coefficient, SROCC, and RMSE were used as perform-
ance indicators. The results show that the proposed ML-
based framework was able to markedly outperform
state-of-the-art approaches. For the second experiment,
only a comparison with the FR metric SSIM has been
reported. In this case, results show that SSIM attained a
better performance in terms of SROCC; however, one
should consider that the comparison involve a FR metric
and a NR metric.
In the area of video quality assessment, usually the

video quality metric (VQM) [63] is adopted as bench-
mark. In [12], Staelens et al. presented a comparison be-
tween their FR framework and the VQM metric; the
EPFL database provided the test set, while the frame-
work was trained using eight video sequences not be-
longing to standard benchmarks. The results show that
the GP-based system compared favorably with VQM
both in terms of Pearson's correlation coefficient and
SROCC. The FR VQA system proposed in [24] by
Narwaria and Lin can actually also deal with video sig-
nals. The paper reported on the results of performance
evaluations that involved the LIVE video database and
the EPFL database; however, a comparison with VQM
has not been provided. An analysis of those results
shows that the proposed ML-based framework was able
to obtain a suitable prediction accuracy on the EPFL vid-
eos (Pearson's correlation coefficient close to 0.9). On
the other hand, results are less satisfactory on the LIVE
videos (Pearson's correlation coefficient lower than 0.8).
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The overall outcome of this summary analysis seems
to be the following: studies published in the literature
show that quality assessment systems that exploit ML
paradigms can attain prediction accuracy comparable to
or even higher than what is found with state-of-the-art
methodologies. This is a key aspect, which in turn con-
firms that ML tools can play an important role in the
area of visual quality assessment. The interesting point
is that the works listed in Table 2 cover a wide range of
approaches, which differ in terms of features, ML tools,
and overall scheme of the prediction system. Indeed,
they all proved able to compare favorably with ‘conven-
tional’ approaches to VQA. On the other hand, a few
open issues remain that need to be addressed before
ML can be considered a reliable option for the devel-
opment of VQA systems. These issues will be discussed in
Section 5.

5. Open issues in ML-based visual quality
assessment
VQA systems can take advantage of the ability of ML
paradigms to deal with non-linear, complex domain.
Section 4 showed (1) that ML-based frameworks in
general compare favorably with state-of-the-art metrics
and (2) that ML models provide flexible yet effective
tools to support various approaches to the design of
the predictive system. Moreover, ML paradigms do not
represent a hindrance to the implementation of quality
assessment systems in consumer electronic devices.
The literature indeed provides several design approaches
for the implementation of ML tools in analog or digital
hardware [33]. In recent years, though, the focus of ML
hardware design shifted towards implementations on re-
configurable digital hardware, i.e., field programmable gate
arrays (FPGAs) [33]. This allows for more flexibility with
respect to network size, type, topology, and other con-
straints while maintaining increased processing density by
taking advantage of the natural parallel structure of neural
networks [33]. Currently, FPGAs provide performance
and logic density similar to ASIC but with the flexibility of
quick design/test cycles.
On the other hand, one should take into account that

a few critical issues remain to be discussed:

� Feature space. The analysis of the existing ML-based
approaches to VQA proposed in Section 4 seems to
indicate that in most cases the design of the feature
space follows a ‘cumulative’ criterion. One selects a
set of features that are possibly correlated with the
perceptual mechanisms to be modeled, without any
deep investigation on the amount of redundancy
involved or on the presence of irrelevant attributes.
The underlying hypothesis often is that ‘the more
features, the better’. However, as shown in Section
3, such an approach may eventually affect the
performance of the prediction system because of the
curse of dimensionality. In general, a ML paradigm
is not designed to provide feature selection abilities,
and this step has to be made explicitly. However,
one can rely on powerful solutions that combine ML
with feature selection [30], as in the case of the
work by Staelens et al. [12]. As several ML-based
approaches to VQA somewhat underestimate this
aspect, one would even expect that better prediction
performance may be obtained by involving feature
selection procedures into the design process. In this
regard, one should also consider that the number of
features to be extracted from the incoming signal
impacts on the computational complexity of the
prediction system.

� Model selection. This aspect possibly represents the
most critical concern. The great majority of the
works published in the literature does not provide
essential details about this procedure. In fact, the
setup of machine adjustable parameters is a central
step for any predictive model, whether based on ML
or not. Moreover, a fair evaluation of the model's
ability to predict unseen patterns can only be
completed once those parameters have been set. In
the case of ML-based VQA frameworks, the
unavailability of parameter settings actually hampers
the reproducibility of the experiments. Therefore,
future works should carefully address this issue to
the purpose of improving the reliability of ML-based
prediction systems.

� Design of the prediction system. Several frameworks
adopted SVM to implement the regression functions
that support the actual mapping between the feature
space and the quality score. Two factors possibly
contribute to this choice: (1) SVM is a very popular
yet powerful paradigm, and (2) SVM can deal with
the curse of dimensionality, which represents a
major issue when the feature space is high
dimensional. A third factor that might indeed favor
the use of SVM is the public availability of off-the
-shelf software implementations of support vector-
based models, such as LibSVM [64], which allow the
immediate use of these tools. However, while SVM
can be considered the most effective classification
model available in the ML area, several powerful
options exist to tackle regression problems; in this
regard, the works by Redi et al. [16], Le Callet et al.
[8], and Staelens et al. [12] represent interesting
examples.

A few additional issues that might be worthwhile ad-
dressing involve more in general the setup of VQA sys-
tems. A first aspect that should be mentioned is that

http://enpub.fulton.asu.edu/resp/vpqm/vpqm12/
http://enpub.fulton.asu.edu/resp/vpqm/vpqm12/
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conventional metrics as well stem from parametric
models. This in turn means that the setup of the param-
eters that characterize the metric usually is the result of
data-driven procedure. In this sense, it is useful to
analyze the results of cross-database experiments that
involve TID2008 database as test set. State-of-the-art
metrics - just as ML-based metrics - exhibit a decrease
in the prediction performance that is related to the pres-
ence of distortions that were not involved in the setup of
the prediction system. The reason for this might lie in
the fact that different databases describe different types
of data populations. The experimental methodology [65]
with which human quality scores are collected largely
varies across databases, with consequent loss of compar-
ability of the data [50,66]. On top of this, human quality
scores can be reported in different ways, e.g., mean opin-
ion scores and differential mean opinion scores (DMOS),
measuring at times impairment annoyance and at times
overall quality [65]. These judgments represent different
psychophysical quantities, not necessarily linearly re-
lated. Such inconsistencies among datasets may actually
represent a problem when dealing with ML methodolo-
gies, since databases cover different signal populations
and sample the relationship (signal, quality judgment) in
a non-uniform way. As a result and as mentioned in
Sections 2.1 and 3.1, obtaining (ML-based) models that
generalize over different databases might prove difficult.
Finally, an aspect that should be taken into account in

using learning machines to support visual quality assess-
ment is that the loss function based on which the
models in are optimized typically measures the pre-
diction error (i.e., the difference between the predicted
quality score and the actual human quality score). As a
result, the models are optimized to predict the actual ab-
solute values of the subjective quality scores. On the
other hand, quality assessment systems are also judged
on how well the scores they predict correlate with sub-
jective judgments [3], independent on their absolute
value. Researchers in VQA that intend to use ML to
support their prediction systems should keep this dis-
crepancy into account, and research is needed to de-
velop ML methods whose risk function takes into
account prediction consistency and monotonicity, be-
sides value accuracy.

6. Conclusions
In this paper, we analyzed advantages and disadvantages
of using machine learning to support visual quality assess-
ment. Through an analysis of the approaches existing in
the literature, we reviewed the common characteristics of
ML-based VQA, showing how these methods can achieve
comparable if not better performance than traditional
methods and pointing out the issues that can expose the
reliability of these systems. Overall, the use of ML in VQA
seems very promising; however, more research is needed
in order to improve several aspects. First, perception-
oriented feature selection strategies should be developed
and deployed to avoid the risk of falling into the curse of
dimensionality; second, robust validation procedures
should be established to test these systems, including
fixed steps such as model selection and fair evaluation
of the generalization error. Finally, a core issue in
establishing reliable ML-based VQA is the availability
of training data; in this sense, developing either re-
alignment procedures [50] or subjective methodologies
that allow the collection of comparable quality scores
across different experiments (e.g., [66]) is desirable.
Future directions in ML-based VQA should include

the extension of this approach to emerging topics such
as 3D video and saliency maps. Indeed, researchers be-
longing to the communities of multimedia signal pro-
cessing and machine learning should also focus on the
adoption of semi-supervised learning models into VQA
systems. In semi-supervised learning [67], one exploits
both unlabeled and labeled data to learn empirically the
true function f; as a major result, the semi-supervised
approach should improve over the model that is learnt
by only using labeled data. In recent years, the interest
in semi-supervised learning has increased, especially
because several application domains exist in which
large datasets are available but labeling is difficult, ex-
pensive, or time consuming: text mining, natural lan-
guage processing, image and video retrieval, and
bioinformatics. VQA can easily be associated to such
domains; as such, we believe that semi-supervised ma-
chine learning approaches can bring significant added
value to the field.
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