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Abstract 
Efficient memory sharing between CPU and GPU threads 

can greatly expand the effective set of GPGPU workloads. 

For increased programmability, this memory should be 

uniformly virtualized, necessitating compatible address 

translation support for GPU memory references. However, 

even a modest GPU might need 100s of translations per 

cycle (6 CUs * 64 lanes/CU) with memory access patterns 

designed for throughput more than locality. 

To drive GPU MMU design, we examine GPU memory 

reference behavior with the Rodinia benchmarks and a 

database sort to find: (1) the coalescer and scratchpad 

memory are effective TLB bandwidth filters (reducing the 

translation rate by 6.8x on average), (2) TLB misses occur 

in bursts (60 concurrently on average), and (3) post-

coalescer TLBs have high miss rates (29% average). 

We show how a judicious combination of extant CPU 

MMU ideas satisfies GPU MMU demands for 4 KB pages 

with minimal overheads (an average of less than 2% over 

ideal address translation). This proof-of-concept design 

uses per-compute unit TLBs, a shared highly-threaded page 

table walker, and a shared page walk cache. 

1. Introduction 

Graphics processing units (GPUs) have transformed from 

fixed function hardware to a far more general compute 

platform. Application developers exploit this programmabil-

ity to expand GPU workloads from graphics-only to more 

general purpose (GP) applications. Compared with multi-

core CPUs, GPGPU computing offers the potential for both 

better performance and lower energy [23]. However, there is 

still room for improvement; complex programming models 

and data movement overheads impede further expansion of 

the workloads that benefit from GPGPU computing [29]. 

Currently, processor manufacturers including AMD, Intel, 

and NVIDIA integrate CPUs and GPUs on the same chip. 

Additionally, a coalition of companies including AMD, 

ARM, Qualcomm, and Samsung recently formed the 

Heterogeneous System Architecture (HSA) Foundation to 

support heterogeneous computation [34]. 

Although physical integration is becoming widespread, the 

GPGPU compute platform is still widely separated from 

conventional CPUs in terms of its programming model. 

CPUs have long used virtual memory to simplify data 

sharing between threads, but GPUs still lag behind.  

A shared virtual address space allows “pointer-is-a-

pointer” semantics [30] which enable any pointer to be 

dereferenced on the CPU and the GPU (i.e., each data 

element only has a single name). This model simplifies 

sharing data between the CPU and GPU by removing the 

need for explicit copies, as well as allowing the CPU and 

GPU to share access to rich pointer-based data structures.  

Unfortunately, there is no free lunch. Translating from 

virtual to physical addresses comes with overheads. 

Translation look-aside buffers (TLBs) consume a significant 

amount of power due to their high associativity [15, 16, 33], 

and TLB misses can significantly decrease performance [6, 

17, 20]. Additionally, correctly designing the memory 

management unit (MMU) is tricky due to rare events such 

as page faults and TLB shootdown [10].  

Current GPUs have limited support for virtualized ad-

dresses [11, 12, 36]. However, this support is poorly 

documented publicly and has not been thoroughly evaluated 

in the literature. Additionally, industry has implemented 

limited forms of shared virtual address space. NVIDIA 

proposed Unified Virtual Addressing (UVA) and OpenCL 

has similar mechanisms. However, UVA requires special 

allocation and pinned memory pages [25]. The HSA 

foundation announced heterogeneous Uniform Memory 

Accesses (hUMA) which will implement a shared virtual 

address space in future heterogeneous processors [28], but 

details of this support are neither published nor evaluated in 

public literature.  

Engineering a GPU MMU appears challenging, as GPU 

architectures deviate significantly from traditional multi-

core CPUs. Current integrated GPUs have hundreds of 

individual execution lanes, and this number is growing. For 

instance the AMD A10 APU, with 400 lanes, can require up 

to 400 unique translations in a single cycle! In addition, the 

GPU is highly multithreaded which leads to many memory 

requests in flight at the same time. 

To drive GPU MMU design, we present an analysis of the 

memory access behavior of current GPGPU applications. 

Our workloads are taken from the Rodinia benchmark suite 

[9] and a database sort workload. We present three key 

findings and a potential MMU design motivated by each 

finding: 



1. The coalescing hardware and scratchpad memory 

effectively filter the TLB request rate. Therefore, the L1 

TLB should be placed after the coalescing hardware to 

leverage the traffic reduction. 

2. Concurrent TLB misses are common on GPUs with an 

average of 60 to a maximum of over 1000 concurrent 

page walks! This fact motivates a highly-threaded page 

table walker to deliver the required throughput. 

3. GPU TLBs have a very high miss rate with an average 

of 29%. Thus, reducing TLB miss penalty is crucial to 

reducing the pressure on the page table walker, and 

thus, we employ a page walk cache. 

Through this data-driven approach we develop a proof-of-

concept GPU MMU design that is fully compatible with 

CPU page tables (x86-64 in this work). Figure 1 shows an 

overview of the GPU MMU evaluated in this paper. This 

design uses a TLB per GPU compute unit (CU) and a shared 

page walk unit to avoid excessive per-CU hardware. The 

shared page walk unit contains a highly-threaded page table 

walker and a page walk cache.  

The simplicity of this MMU design shows that address 

translation can be implemented on the GPU without exotic 

hardware. We find that using this GPU MMU design incurs 

modest performance degradation (an average of less than 

2% compared to an ideal MMU with an infinite sized TLB 

and minimal latency page walks) while simplifying the 

burden on the programmer. 

In addition to our proof-of-concept design, we present a 

set of alternative designs that we also considered, but did 

not choose due to poor performance or increased complexi-

ty. These designs include adding a shared L2 TLB, includ-

ing a TLB prefetcher, and alternative page walk cache 

designs. We also analyzed the impact of large pages on the 

GPU TLB. We find that large pages do in fact decrease the 

TLB miss rate. However, in order to provide compatibility 

with CPU page tables, and ease the burden of the program-

mer, we cannot rely solely on large pages for GPU MMU 

performance.  

The contributions of this work are: 

 An analysis of the GPU MMU usage characteristics 

for GPU applications, 

 A proof-of-concept  GPU MMU design which is 

compatible with x86-64 page tables, and 

 An evaluation of our GPU MMU design that shows a 

GPU MMU can be implemented without significant 

performance degradation. 

This paper is organized as follows. First, Section 2 dis-

cusses background on GPU architecture, GPU virtual 

memory support, and CPU MMU design. Section 3 explains 

our simulation infrastructure and workloads. Then, Section 

4 presents our three data-driven GPU MMU designs 

concluding with our proof-of-concept design. Section 5 

discusses correctness issues. Next, Section 6 shows other 

possible designs we considered, and finally, Section 7 

discusses related work and Section 8 concludes. 

2. Background 

This section first introduces the GPU architecture and 

current GPU virtual memory support. Then, we discuss the 

memory model of current GPUs and our target system. 

Finally, we cover background on CPU MMUs. 

  GPU Architecture 2.1.

The important details of the GPGPU architecture are 

shown in Figure 2. Figure 2b shows an overview of the 

heterogeneous architecture used in this paper. In this 

architecture, the CPU and GPU share main memory. The 

CPU and GPU share a virtual address space and cache 

coherence is maintained between the CPU and GPU caches. 

Only a single CPU core is shown in Figure 2b; however, 

this architecture supports any number of CPU cores. This 

design is loosely based on future features announced for 

HSA [29]. 

Figure 2a shows an overview of the GPU Compute Unit 

(CU)—called a streaming multiprocessor (SM) in NVIDIA 

terminology. Within each CU is a set of lanes—called 

shader processors (SPs) or CUDA cores by NVIDIA and 

stream processors by AMD—which are functional units that 

can execute one lane instruction per cycle. Instructions are 

fetched, decoded and scheduled by the instruction fetch unit 

which is shared by all lanes of the CU. The lanes on each 

CU also share a large, banked, register file. Each lane is 

associated with a scalar thread, and a set of concurrently 

executing threads on the CU lanes is a warp. We model a 

32-thread warp similar to NVIDIA GPU architecture. 
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Figure 1: Proposed proof-of-concept GPU MMU.  
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Figure 2: Overview of the heterogeneous architecture used. 



Due to the parallelism available in GPUs, it is difficult to 

describe the performance in CPU terms. In this paper, we 

use instruction to refer to the static instruction that all 

threads execute. We use the term warp instruction to 

represent a dynamic instruction which is executed by all 

lanes on a single cycle per the Single-Instruction Multiple-

Thread (SIMT) execution model. And we use lane instruc-

tion to mean a dynamic instruction executed by a single lane 

on a CU.  

GPUs provide developers with different kinds of memory 

accesses. Most memory operations can be separated into 

two categories: Scratchpad memory—small, directly 

addressed software-managed caches private to each CU 

(called “shared memory” and “local memory” by NVIDIA 
and AMD, respectively)—and global memory that is shared 

by all CUs and addressed with CPU virtual addresses in our 

shared virtual memory system. Accesses to scratchpad 

memory cannot cause cache misses and use direct addresses 

that are not translated. All accesses to global memory are 

issued to the coalesce unit. This logic examines the 

addresses from all lanes and attempts to minimize the 

memory requests required. If all addresses issued by the 

lanes are contiguous and within a single cache block—the 

common case for graphics workloads—the coalescer takes 

the lane requests (which number up to the size of the warp) 

and generates a single memory access. After coalescing, the 

memory request is issued to a write-through L1 cache. 

Figure 2 shows that each CU’s L1 cache is backed by a 

write-back L2 cache shared by all CUs on the GPU. 

 GPU TLB and Virtual Memory Support 2.2.

Although current GPUs have virtual memory support, it is 

incompatible with the CPU virtual memory. Current GPU 

virtual memory, including IOMMU implementations [38], 

use a separate page table from the CPU process which is 

initialized by the GPU driver when the kernel is launched. 

Additionally, GPU virtual memory does not support demand 

paging or on the fly page table modifications by the 

operating system. This lack of compatibility increases the 

difficulty of writing truly heterogeneous applications. 

Designs for TLBs specific to GPUs have been published 

in the form of patents [11, 36]. However, there has been no 

evaluation of these techniques in the public literature. 

Additionally, Wong et al. found evidence of TLBs imple-

mented in NVIDIA GPUs [37]. However, the specific TLB 

design is not publicly documented. 

 GPU Programming Model 2.3.

Current GPGPU programming models consider the GPU 

as a separate entity with its own memory, virtual address 

space, scheduler, etc. Programming for the GPU currently 

requires careful management of data between CPU and 

GPU memory spaces.  

Figure 3 shows an example CUDA application. Figure 3a 

shows a simple kernel that copies from one vector (in) to 

another (out). Figure 3b shows the code required to use the 

vectorCopy kernel using the current separate address space 

paradigm. In addition to allocating the required memory on 

the host CPU and initializing the data, memory also is 

explicitly allocated on, and copied to, the GPU before 

running the kernel. After the kernel completes, the CPU 

copies the data back so the application can use the result of 

the GPU computation. 

There are many drawbacks to this programming model. 

Although array-based data structures are straightforward to 

move from the CPU to the GPU memory space, pointer-

based data structures, like linked-lists and trees, present 

complications. Also, separate virtual address spaces cause 

__device__ void vectorCopy(int *in, int *out) { 
 out[threadId.idx] = in[threadId.idx]; 
} 

(a) Simple vector copy kernel  

void main() { 

 int *d_in, *d_out; 
 int *h_in, *h_out; 

 // allocate input array on host 

 h_in = new int[1024];  
 h_in = ... // Initial host array 
 // allocate output array on host 

 h_out = new int[1024]; 

 // allocate input array on device 
 d_in = cudaMalloc(sizeof(int)*1024); 

 // allocate output array on device 
 d_out = cudaMalloc(sizeof(int)*1024); 

 // copy input array from host to device 

 cudaMemcpy(d_in, h_in, sizeof(int)*1024, HtD); 

 vectorCopy<<<1,1024>>>(d_in, d_out); 

 // copy the output array from device to host 

 cudaMemcpy(h_out, d_out, sizeof(int)*1024, DtH); 

 // continue host computation with result 
 ... h_out 

 //Free memory 
 cudaFree(d_in); cudaFree(d_out); 
 delete[] h_in; delete[] h_out; 

} 

(b) Separate memory space implementation 

int main() { 
 int *h_in, h_out; 

 // allocate input/output array on host 

 h_in = cudaHostMalloc(sizeof(int)*1024);  
 h_in = ... // Initial host array 
 h_out = cudaHostMalloc(sizeof(int)*1024); 

 vectorCopy <<<1,1024>>> (h_in, h_out); 

 // continue host computation with result 
 ... h_out 

 //Free memory 
 cudaHostFree(h_in); cudaFree(h_out); 
} 

(c) “Unified virtual address” implementation 

int main() { 

 int *h_in, h_out; 

 // allocate input/output array on host 
 h_in = new int[1024];  

 h_in = ... // Initial host array 
 h_out = new int[1024]; 

 vectorCopy <<<1,1024>>> (h_in, h_out); 

 // continue host computation with result 
 ... h_out 

 delete[] h_in; delete[] h_out; 

} 

(d) Shared virtual address space implementation 
 

Figure 3: Example GPGPU application  



data to be replicated. Even on shared physical memory 

devices, like AMD Fusion, explicit memory allocation and 

data replication is still widespread due to separate virtual 

address spaces. Additionally, due to replication, only a 

subset of the total memory in a system is accessible to GPU 

programs. Finally, explicit separate allocation and data 

movement makes GPU applications difficult to program and 

understand as each logical variable has multiple names 

(d_in, h_in and d_out, h_out in the example). 

Beginning with the Fermi architecture, NVIDIA intro-

duced “unified virtual addressing” (UVA) [25] (OpenCL 

has a similar feature as well). Figure 3c shows the imple-

mentation of vectorCopy with UVA. The vectorcopy 

kernel is unchanged from the separate address space kernel. 

In the UVA example, instead of allocating two copies of the 

input and output vectors, only a single allocation is neces-

sary. However, this allocation requires a special API which 

creates difficulties in using pointer-based data structures. 

Separate allocation makes composability of GPU kernels in 

library code difficult as well, because the allocation is a 

CUDA runtime library call, not a normal C or C++ alloca-

tion (e.g. new/malloc/mmap). Memory allocated via 

cudaMallocHost can be implemented in two different ways. 

Either the memory is pinned in the main memory of the 

host, which can lead to poor performance [24], or the data is 

implicitly copied to a separate virtual address space which 

has the previously discussed drawbacks. 

Figure 3d shows the implementation with a shared virtual 

address space (the programming model used in this paper). 

In this implementation, the application programmer is free 

to use standard memory allocation functions. Also, there is 

no extra memory allocated, reducing the memory pressure. 

Finally, by leveraging the CPU operating system for 

memory allocation and management, the programming 

model allows the GPU to take page faults and access 

memory mapped files. From publicly available information, 

HSA hUMA seems to take this approach [28]. 

 CPU MMU Design 2.4.

The memory management unit (MMU) on CPUs translates 

virtual addresses to physical address as well as checks page 

protection. In this paper we focus on the x86-64 ISA; 

however, our results generalize to any multi-level hardware-

walked page table structure. The CPU MMU for the x86-64 

ISA consists of three major components: 1) logic to check 

protection and segmentation on each access, 2) a translation 

look-aside buffer to cache virtual to physical translations 

and protection information to decrease translation latency, 

and 3) logic to walk the page table in the case of a TLB 

miss. In this work, we use the term MMU to refer to the unit 

that contains the TLB and other supporting structures. Many 

modern CPU MMU designs contain other structures to 

increase TLB hit rates and decrease TLB miss latency. 

The x86-64 page table is a 4-level tree structure. By 

default, the TLB holds page table entries, which reside in 

the leaves of the tree. Therefore, on a TLB miss, up to four 

memory accesses are required. The page table walker 

(PTW) traverses the tree from the root which is found in the 

CR3 register. The PTW issues memory requests to the page 

walk cache that caches data from the page table. Requests 

that hit in the page walk cache decrease the TLB miss 

penalty. Memory requests that miss in the page walk cache 

are issued to the memory system similar to CPU memory 

requests and can be cached in the data caches.  

The x86-64 ISA has extensions for 2 MB and 1 GB pages 

in addition to the default 4 KB page size. However, few 

applications currently take advantage of this huge page 

support. Additionally, it is important for an MMU to 

support 4 KB pages for general compatibility with all 

applications.  

3. Simulation Methodology and Workloads 

We used a cycle-level heterogeneous simulator, gem5-gpu 

[27], to simulate the heterogeneous system. gem5-gpu is 

based on the gem5 simulator [8], and integrates the GPGPU 

timing model from GPGPU-Sim [1]. We used gem5’s full-

system mode, running the Linux operating system. gem5-

gpu models full coherence between the CPU and GPU 

caches as future systems have been announced supporting 

cache coherence [28]. Results are presented for 4 KB pages. 

Large page support is discussed in Section 6.4. Table 1 

shows the configuration parameters used in obtaining our 

results.  

We use a subset of the Rodinia benchmark suite [9] for 

our workloads. We do not use some Rodinia benchmarks as 

the input sizes are too large to simulate. The Rodinia 

benchmarks are GPU-only workloads, and we use these 

workloads as a proxy for the GPU portion of future 

heterogeneous workloads. We add one workload, sort, to 

this set. Sort is a database sorting kernel that sorts a set of 

records with 10 byte keys and 90 byte payloads. All 

workloads are modified to remove the memory copies, and 

all allocations are with general allocators (new/malloc/ 

mmap). Although we are running in a simulation environ-

ment and using reduced input sized, many of our working 

sets are much larger than the TLB reach; thus, we expect 

our general findings to hold as working set size increases. 

As a baseline, we use an ideal, impossible to implement 

MMU. We model an ideal MMU with infinite sized per-CU 

TLBs and minimal latency (1 cycle cache hits) for page 

walks. This is the minimum translation overhead in our 

simulation infrastructure. 

Table 1: Details of simulation parameters 

CPU 1 core, 2 GHz, 64 KB L1, 2 MB L2 

GPU 16 CUs, 1.4 GHz, 32 lanes 

L1 cache (per-CU) 64 KB, 4-way set associative, 15 ns latency 

Scratchpad memory 16 KB, 15 ns latency 

GPU L2 cache 1 MB, 16-way set associative, 130 ns latency 

DRAM 2GB, DDR3 timing, 8 channels, 667 MHz 

 



4. Designing a GPU MMU through Analysis 

We meet the challenges of designing a GPU MMU by 

using data to evolve through three architectures to our 

proof-of-concept recommendation (Design 3). Design 3 

enables full compatibility with x86-64 page tables with less 

than 2% performance overhead, on average. Table 2 details 

the designs in this section as well as the additional designs 

from Section 6. 

We start with a CPU-like MMU (Design 0) and then 

modify it as the GPU data demands. Design 0 follows CPU 

core design with a private MMU at each lane (or “core” in 
NVIDIA terminology). Design 0 has the same problems as a 

CPU MMU—high power, on the critical path, etc.—but 

they are multiplied by the 100s of GPU lanes. For these 

reasons, we do not quantitatively evaluate Design 0. 

 Motivating Design 1: Post-coalescer MMU 4.1.

Here we show that moving the GPU MMU from before to 

after the coalescer (Design 0 → Design 1) reduces address 

translation traffic by 85%.  

GPU memory referencing behavior differs from that of 

CPUs. For various benchmarks, Figure 4 presents opera-

tions per thousand cycles for scratchpad memory lane 

instructions (left bar, top, blue), pre-coalescer global 

memory lane instructions (left bar, bottom, green), and post-

coalescer global memory accesses (right bar, brown). The 

“average” bars represent the statistic if each workload was 

run sequentially, one after the other. 

Figure 4 shows that, for every thousand cycles, the 

benchmarks average: 

 602 total memory lane instructions, 

 268 of which are global memory lane instructions 

(with the other 334 to scratchpad memory), and 

 Coalescing reduces global memory lane instructions 

to only 39 global memory accesses. 

In total, the rate of memory operations is reduced from 

602 to 39 per thousand cycles for an 85% reduction. 

Although the coalescing hardware is effective, the bench-

marks do show significant memory divergence. Perfect 

coalescing on 32 lanes per CU would reduce 268 global 

memory lane instructions (per thousand cycles) by 32x to 9, 

which is much less than the 39 observed.  

To benefit from this bandwidth filtering, Design 1 in-

cludes a private per-CU L1 TLB after scratchpad memory 

access and after the coalescing hardware. Thus, the MMU is 

only accessed on global memory accesses. Figure 5 shows 

Design 1 in light gray and Table 2 details the configuration 

parameters. 

 Motivating Design 2: Highly-threaded page 4.2.

table walker 

Here we show that Design 1 fails to perform well (average 

performance is 30% of an ideal MMU), isolate the problem 

to bursts of TLBs misses (60 concurrent), and advocate for a 

highly-threaded PTW (Design 2).  

Now that we have mitigated the bandwidth issues, we 

might expect Design 1 to perform well; it does not. For each 

benchmark and the average, Figure 6 shows the perfor-

mance of Design 1 (leftmost, blue) compared to an ideal 

MMU with an impossibly low latency and infinite sized 

TLBs. Performance is good when it is close to the ideal 

MMU’s 1.0. (Designs 2 (green) and 3 (brown) will be 

discussed later.) 

Figure 6 results show that Design 1 (blue) performs: 

 Poorly on average (30% of ideal’s), 
 Sometimes very poorly (about 10% of ideal for back-

prop, bfs, and pathfinder), and 

 Occasionally adequately (gaussian and lud). 

These performance variations occur for various reasons. 

For example, bfs is memory bound—having few instruc-

tions per memory operation—making it particularly 

sensitive to global memory latency. On the other hand, 

gaussian and lud perform well, in part because the working 

set sizes are relatively small. 

Investigating Design 1’s poor performance lead to an 

obvious culprit: bursts of TLB misses. For each benchmark 

and the average, Figure 7 shows the average (left, blue) and 

maximum across CUs (right, green) occupancy of the page 

walk queue when each page walk begins. Note that the y-

axis is logarithmic. 

Figure 7 shows that when each page walk is issued: 

 An average of 60 page table walks are active at that 

CU, and 

 
Figure 4: All memory operations global memory operations, 

and global memory accesses per thousand cycles. 

Table 2: Configurations under study. Structures are sized so each 
configuration uses 16 KB of storage. 

 Per-CU 

L1 TLB 

entries 

Highly-threaded 

page table  

walker 

Page walk 

cache size 

Shared 

L2 TLB 

entries 

Ideal MMU Infinite Infinite Infinite  None 

Section 4     
Design 0 N/A: Per-lane MMUs  None None 

Design 1 128 Per-CU walkers None None 

Design 2 128 Yes (32-way) None None 
Design 3 64 Yes (32-way) 8 KB None 

Section 6     

Shared L2 64 Yes (32-way)  None 1024 
Shared L2  

& PWC 
32 Yes (32-way) 8 KB 512 

Ideal PWC 64 Yes (32-way) Infinite None 

Latency 1 cycle 20 cycles 8 cycles 20 cycles 

 



 The worst workload averages 140 concurrent page 

table walks.  

Moreover, additional data show that, for these workloads, 

over 90% of page walks are issued within 500 cycles of the 

previous page walk, which is significantly less than the 

average page walk latency in this design. Also, almost all 

workloads use many more than 100 concurrent page walks 

at the maximum. Therefore, these workloads will experience 

high queuing delays with a conventional blocking page table 

walker. This also shows that the GPU MMU requires 

changes from the CPU-like single-threaded page-table 

walker of Design 1. 

This high page walk traffic is primarily because GPU 

applications can be very bandwidth intensive. GPU 

hardware is built to run instructions in lock step, and 

because of this characteristic, many GPU threads simultane-

ously execute a memory instruction. This, coupled with the 

fact each CU supports many simultaneous warp instructions, 

means GPU TLB miss traffic will be high.  

Therefore, Design 2 includes a shared multi-threaded page 

table walker with 32 threads. Figure 5 shows how Design 2 

builds on Design 1 in dark gray and Table 2 details the 

configuration parameters. The page walk unit is shared 

between all CUs on the GPU to eliminate duplicate 

hardware at each CU and reduce the hardware overhead. On 

a TLB miss in the per-CU L1 TLBs, the shared page walk 

unit is accessed and executes a page walk. 

 Motivating Design 3: Add a page walk cache 4.3.

Here we show that Design 2 performs much better than 

Design 1 for most workloads but still falls short of an ideal 

MMU (30% of ideal on average). For this reason, we 

introduce Design 3 that adds a shared page walk cache to 

perform within 2% of ideal. 

The second bars in Figure 6 (green) show the performance 

of each benchmark for Design 2. Results from this figure 

show that Design 2: 

 Often performs much better than Design 1, but  

 That these benefits are inconsistent and short of ideal  

We find the workloads that perform best have been tuned 

to tolerate long-latency memory operations and the addition 

of the TLB miss latency is hidden by thread parallelism. 

On the other hand, some workloads, e.g., bfs and nw, 

actually perform worse with Design 2 than Design 1. We 

isolated the problem to the many requests from one CU 

queuing in front of another CU’s requests rather than being 

handled more round-robin as in the single-threaded page-

table walker of Design 1. While this specific effect might be 

fixed by changing PTW queuing from first-come-first-serve, 

we seek a more broadly effective solution. 

To better understand why Design 2 falls short of ideal, we 

examined the TLB miss rates. Figure 8 shows the miss rates 

(per-CU, 128 entry) for each benchmark and the average. 

Figure 8 results show that per-CU TLB miss rates: 

 Average 29% across benchmarks and 

 Can be as high as 67% (nw). 

Needless to say, these rates are much higher than one 

expects for CPU TLBs. Gaussian is a low outlier, because of 

high computational density (compute operations per byte of 

data) and small working set (so all TLB misses are compul-

sory misses). 

This high miss rate is not surprising. With many simulta-

neous warps and many threads per warp, a GPU CU can 

issue memory requests to a very large number of pages. In 

addition, many GPU applications exhibit a memory access 

pattern with poor temporal locality reducing the effective-

ness of caching translations. If an access pattern has no 

temporal locality (e.g. streaming), even with perfect 
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Figure 5: Overview of the GPU MMU designs. Design 1 is 

shown in light gray. Design 2 is shown in light and dark gray. 
And Design 3 is shown in light and dark gray and black. 

 
Figure 7: Average and max size of the page walk queue for 

each per-CU MMU in Design 1. Log scale, bold line at 2. 

 
Figure 6: Performance of each design relative to an ideal MMU. 

See Table 2 for details of configurations. 



coalescing, each CU could potentially access 128 bytes per 

cycle. This translates to only 32 cycles to access an entire 4 

KB page, in the worst case. 

As discussed previously, the global memory access rate on 

GPUs is quite low (39 accesses per thousand cycles on 

average) and consequently the TLB request rate is small. 

Therefore, it’s possible that even though the GPU TLB 
exhibits high miss rates the miss traffic (misses per cycle) 

could be relatively low. However, this is not the case. There 

is an average of 1.4 TLB misses per thousand cycles and a 

maximum of 13 misses per thousand cycles. 

We investigated several alternatives to improve on Design 

2, discussed further in Section 6, and settled on one. Our 

preferred Design 3 includes a page walk cache with the 

shared page walk unit to decrease the TLB miss latency. 

Figure 5 shows how Design 3 builds on Design 2 in black 

and Table 2 details the configuration parameters. 

Returning to Figure 6, the third bars (brown) show per-

formance of Design 3 relative to an ideal MMU (1.0): 

 Design 3 increases performance for all benchmarks 

over Design 2 and 

 Design 3 is within 2% of the ideal MMU on average. 

This increase in overall performance occurs because the 

page walk cache significantly reduces the average page 

walk time reducing the number of cycles the CU is stalled. 

Adding a page walk cache reduces the average latency for 

page table walks by over 95% and correspondingly 

increases the performance. The performance improvement 

of Design 3 is in part due to reducing the occupancy of the 

page walk buffers since the page walk latency decreased. 

This fact is most pronounced for bfs and nw, which suffered 

from queuing delays. 

 Summary of Proof-of-Concept Design 4.4.

(Design 3) 

This section summarizes our proof-of-concept Design 3 

and presents additional details to explain its operation. 

Figure 5 details Design 3. The numbers correspond to the 

order in which each structure is accessed. Design 3 is made 

up of three main components, the per-CU post-coalescer L1 

TLBs, the highly-threaded page table walker, and a shared 

page walk cache, discussed below. 

Per-CU post-coalescer L1 TLBs—Each CU has a private 

TLB that is accessed after coalescing and scratchpad 

memory to leverage the traffic reduction. On TLB hits, the 

memory request is translated then forwarded to the L1 

cache. On TLB misses, the warp instruction is stalled until 

the shared page walk unit completes the page table lookup 

and returns the virtual to physical address translation. 

Stalling at this point in the pipeline is common for memory 

divergent workloads, and the associated hardware is already 

present in the CUs. 

Highly-threaded page table walker—The PTW design 

consists of a hardware state machine to walk the x86-64 

page table and a set of page walk buffers that hold the 

current state of each outstanding page walk, shown in 

Figure 9. On a TLB miss, the page walk state machine 

allocates a page walk buffer entry and initializes the 

outstanding address to the value in the CR3 register, which 

holds the address of the root of the page table. Next, the 

page walk state machine issues the memory request 

corresponding to the buffer entry. When memory responds, 

the page walk buffers are queried for the match, and the 

state for that request is sent to page walk state machine, 

which then issues the next memory request or returns final 

translation. 

The PTW also has supporting registers and logic to handle 

faults that occur when walking the page table. Concurrent 

page faults are serialized and handled one at a time by the 

operating system. Page faults are discussed in detail in 

Section 5.1 

This design can also extend to other ISAs that have 

hardware page table walkers. For example, the ARM MMU 

also defines a hardware page table walker and this can be 

used in place of the x86-64 page walk state machine 

included in our current design. 

Page walk cache—Many modern CPUs contain a small 

cache within the memory management unit to accelerate 

page table walks. Since the latency of the L2 cache of a 

GPU is very long (nearly 300 cycles) a cache close to the 

MMU decreases the page walk latency significantly. We use 

a page walk cache design similar to AMD [3]. It caches 

non-leaf levels of the page table, decreasing the number of 

L2 cache and DRAM accesses required for a page table 

walk. Other page walk cache designs are discussed in 

 
Figure 8: Miss rate for a 128 entry per-CU L1 TLB averaged 

across all CUs. 
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Figure 9: Details of the highly-threaded page table walker 



Section 6.2. However, we do not see a significant perfor-

mance improvement over Design 3 with these alternatives. 

5. Correctness Issues 

In this section, we discuss the issues and implementation 

of page faults and TLB shootdown for the GPU architecture. 

We expect these events to be rare. For instance, often 

workloads are sized to fit in main memory virtually 

eliminating major page faults. Nevertheless, we correctly 

implement page faults and TLB shootdown in Linux 2.6.22 

on top of gem5 full-system simulation, to our knowledge a 

first in public literature. 

 Page fault handling 5.1.

Although rare, the GPU memory management unit archi-

tecture must be able to handle page faults to have correct 

execution. Although there are many ways to implement 

handling page faults, in this GPU MMU architecture we 

chose to slightly modify the CPU hardware by changing the 

interrupt return microcode and adding hardware registers to 

support GPU page faults. With these changes, the GPU 

MMU can handle page faults with no modifications to the 

operating system. Our page fault handling logic leverages 

the operating system running on the CPU core similar to 

CPU MMU page fault logic. We use this design for two 

reasons. First, this design does not require any changes to 

the GPU execution hardware as it does not need to run a 

full-fledged operating system. Second, this design does not 

require switching contexts on the GPU as it can handle 

minor page faults by stalling the faulting instruction. Details 

of our page fault implementation can be found in the 

appendix and the gem5-gpu repository [14]. 

There are two different categories of page faults, major 

and minor. Below we give details on how each is handled. 

Minor page faults—A minor page fault occurs when the 

operating system has already allocated virtual memory for 

an address, but it has not yet allocated a physical frame and 

written the page table. Minor page faults often occur when 

sharing virtual memory between processes, copy-on-write 

memory, and on the initial accesses after memory alloca-

tion. The last is common in our workloads as there are many 

large calls to malloc in which the memory is not touched by 

the CPU process. As an example, in Figure 3c, h_out is 

allocated by the CPU process, but is not accessed until the 

copyVector kernel and causes a minor page fault. 

Minor page faults are low latency, about 5000 cycles on 

average in our workloads. The operating system only needs 

to allocate a physical frame and modify the page table with 

the new physical page number. Since the page fault is low 

latency, we stall the faulting warp instruction in the same 

way as a TLB miss. 

Major page faults—For major page faults, the operating 

system must perform a long-latency action, such as a disk 

access. Stalling an application for milliseconds—while 

likely correct—wastes valuable GPU execution resources. 

To handle this case, the GPU application, or a subset 

thereof, could be preempted similar to a context switch on a 

CPU. However, this technique has drawbacks since the 

GPU’s context is very large (e.g., 2 MB of register file on 

NVIDIA Fermi [25]). Another possibility is to leverage 

checkpointing, and restart the offending applications after 

the page fault has been handled. There are proposals like 

iGPU [21] to reduce the overhead of these events. However, 

none of our workloads have any major page faults so we do 

not focus on this case. 

Page fault discussion—We implemented a hardware-

based technique to handle page faults in the gem5 simulator 

running Linux in full-system mode. Using this implementa-

tion, the Linux kernel correctly handles minor page faults 

for all of our GPU applications. 

For this implementation, the page fault handling logic 

assumes that the GPU process is still running on the CPU 

core. This will be true if the application can run on the CPU 

and GPU at the same time, or the CPU runtime puts the 

CPU core into a low power state and does not change 

contexts. 

However, the CPU runtime may yield the CPU core while 

the GPU is running. In this situation, page faults are still 

handled correctly, but they are longer latency since the CPU 

core must context switch to the process which spawned the 

GPU kernel before the operating system begins handling the 

page fault. An alternative option is to include a separate 

general purpose core to handle operating system kernel 

execution for the GPU. This core can then handle any page 

faults generated by the running kernel. 

 TLB Flushes and shootdown 5.2.

The GPU MMU design handles TLB flushes similarly to 

the CPU MMU. When the CR3 register is written on the 

CPU core that launched the GPU application, the GPU 

MMU is notified via inter-processor communication and all 

of the GPU TLBs are flushed. This is a rare event, so 

performance is not a first order concern. Since there is a 

one-to-one relation between the CPU core executing the 

CPU process and the GPU kernel, on TLB a shootdown to 

the CPU core, the GPU TLBs are also flushed. The GPU 

cannot initiate a shootdown, only participate. When a CPU 

initiates a shootdown, it sends a message to the GPU MMU 

which responds after it has been handled by flushing the 

TLBs. If the GPU runtime allows the CPU processes to be 

de-scheduled during GPU kernel execution, TLB flushes 

and shootdown become more complicated. However, this 

can be handled in a similar way as page faults. If TLB 

shootdown to GPU CUs becomes common, there are many 

proposals to reduce the overheads for TLB shootdown [31, 

35]. 

6. Alternative Designs 

Here, we discuss some alternative designs we considered 

as we developed our proof-of-concept design. These design 

either do not perform as well or are more complex than 

Design 3. We first evaluate the addition of a shared L2 TLB 



and then alternative page walk cache designs. Next, we 

discuss adding a TLB prefetcher and the impact of large 

pages. Finally, we consider the impact of alternative MMU 

designs on area and energy. 

 Shared L2 TLB 6.1.

A shared L2 TLB can capture multiple kinds of data 

sharing between execution units [5]. This cache can exploit 

sharing of translations between separate CUs, effectively 

prefetching the translation for all but the first CU to access 

the page. The shared L2 TLB can also exploit striding 

between CUs where the stride is within the page size (e.g., 

CU 1 accesses address 0x100, CU 2 0x200, etc.).  

The shared L2 TLB is most effective when each entry is 

referenced by many CUs. Figure 10 shows the number of 

CUs that access each L2 TLB entry before eviction. 16 

sharers show all CUs share each entry, and one sharer shows 

no overlap in the working sets. Figure 10 shows most 

applications share each L2 TLB entries with many CUs and 

some share entries with all CUs. In these cases, the shared 

L2 TLB can improve performance by sharing the capacity 

of the L2 TLB between CUs.  

Due to this potential, we investigated two MMU designs 

with shared L2 TLBs. The first design (Shared L2) has 

private L1 TLBs with a shared L2 TLB and no page walk 

cache. In this design the area that is devoted to the page 

walk cache in Design 3 is instead used for the L2 TLB. The 

second design we evaluate (Shared L2 & PWC) contains 

private L1 TLBs, a shared L2 TLB, and a page walk cache. 

In this design each L1 TLB size is reduced to accommodate 

an L2 TLB. All of the designs evaluated use a total of 16 

KB of storage for their implementation. 

Figure 11 shows the performance of these two designs 

relative to an ideal MMU in the first two bars. Parameters 

for each configuration are in Table 2. 

Shared L2—per-CU private L1 TLBs and a shared L2 

TLB: With a shared L2 TLB, many applications perform as 

well as the ideal, like Design 3 (Figure 11 leftmost bars in 

blue). However, bfs, nw, and sort perform at least 2x worse. 

For these applications, decreasing the page walk latency is 

very important as the L1 TLBs experience a high miss rate. 

nn sees a slowdown when using the Shared L2 design 

because there is no sharing of TLB entries between CUs. 

Thus, area dedicated to a page walk cache is more useful for 

this workload. On average, there is more than a 2x slow-

down when using a shared L2 TLB instead of a page walk 

cache. 

Shared L2 & PWC—per-CU private L1 TLBs, a shared 

L2 TLB, and a page walk cache: The second bars (green) in 

Figure 11 show the performance with both a shared L2 TLB 

and a page walk cache compared to an ideal MMU. In this 

configuration, even though the L1 TLB size is reduced, 

performance does not significantly decrease; the average 

performance is within 0.1%. Using both a shared L2 TLB 

and a page walk cache achieves the benefits of both: it takes 

advantage of sharing between CUs and reduces the average 

page walk latency. We chose to not include an L2 TLB in 

our proof-of-concept design as it adds complexity without 

affecting performance. 

 Alternative Page Walk Cache Designs 6.2.

In this work, we use a page walk cache similar to the 

structure implemented by AMD [3]. In this design, physical 

addresses are used to index the cache. Other designs for a 

page walk cache that index the cache based on virtual 

addresses, including Intel-style translation caches, have 

been shown to increase performance for CPUs [2]. We 

chose to use an AMD-style page walk cache primarily for 

ease of implementation in our simulator infrastructure.  

To evaluate the possible effects of other page walk cache 

designs, we evaluated our workloads with an ideal (infinite-

ly sized) page walk cache with a reduced latency to model a 

single access, the best case for the translation cache. The 

rightmost (brown) bars in Figure 11 show the performance 

with a 64 entry L1 TLB and the ideal page walk cache 

compared to an ideal MMU. The ideal page walk cache 

increases performance by an average of 1% over our proof-

of-concept Design 3. For bfs the ideal page walk cache 

increases performance by a more significant 10% over 

Design 3 as this workload is sensitive to the page walk 

latency. From this data, a different page walk cache design 

may be able to increase performance, but not significantly. 

 TLB prefetching 6.3.

We evaluated Design 3 with the addition of a one-ahead 

TLB prefetcher [18]. The TLB prefetcher issues a page walk 

for the next page on each L1 TLB miss and on each prefetch 

buffer hit. The TLB prefetcher does not affect the perfor-

 
Figure 11: Performance of a shared L2 TLB and an ideal PWC 

relative to ideal MMU. See Table 2 for details of configurations. 

 
Figure 10: Sharing pattern for the 512 entry L2 TLB. 16 sharers 

implies all CUs sharing each entry. 



mance of our workloads. Prefetching, on average, has a less 

than 1% impact on performance. One hypothesis as to the 

ineffectiveness of TLB prefetching is the bursty-ness of 

demand misses. Other, more complicated, prefetching 

schemes may show more performance improvement, but are 

out of the scope of this paper. 

 Large pages 6.4.

Large pages reduce the miss rate for TLBs on CPUs. On 

GPUs, due to the high spatial locality of accesses, large 

pages should also work well. When evaluated, for all of our 

workloads except gaussian, 2MB pages reduce the TLB 

miss rate by more than 99%, resulting in more than 100 

times fewer TLB misses. As previously mentioned, since 

the working set for Gaussian fits in the TLB, large pages do 

not provide as much benefit, although the miss rate is 

reduced by over 80%. 

Large pages work well for the workloads under study in 

this paper, but may not perform as well for future, larger 

memory footprint, workloads. Additionally, to maintain 

compatibility with today’s CPU applications, the MMU 

requires 4 KB pages. Alternatively, requiring applications to 

use large pages would place a burden on the application 

developer to use a special allocator API for memory that is 

accessed by the GPU.  

 Energy and area 6.5.

Figure 12 shows the relative area and energy of the MMU 

for a subset of designs. We used a combination of Cacti [22] 

and McPAT [19] to determine relative area and dynamic 

access energy of each structure.  

Figure 12a shows that all configurations are less area than 

the L1 TLB-only Design 2. This is because Design 2 has 

many large and highly associative TLBs, one per CU. The 

other configurations that share structures can amortize the 

overheads and provide higher performance. The shared L2 

design is much more energy hungry than the other configu-

rations. This is because the L1 TLBs do not filter a large 

percentage of requests (the average miss rate is 27%) and 

accesses to a large associative structure are high energy. 

Design 3 with only a page walk cache shows a modest 

energy reduction (20%) and increases performance signifi-

cantly over the Design 2. This energy reduction comes from 

having smaller highly associative structures (L1 TLBs) and 

a larger lower associativity structure (the page walk cache). 

The design with both a page walk cache and shared L2 TLB 

(Shared L2 & PWC) has the smallest area, but has a modest 

energy increase (25%) over Design 2. Here, there is a 

tradeoff between energy and area reduction. 

7. Related Work 

In this work we build on research accelerating CPU 

MMUs. Page walk caches and translation caches improve 

MMU performance by accelerating the page table walk [3, 

39]. Barr et al. explored other MMU cache structures as 

well and found that a unified translation cache can outper-

form both the page walk cache and the translation cache [2].  

Sharing resources between CPU cores has been studied as 

a way to decrease CPU TLB miss rate. Bhattacharjee and 

Martonosi examine a shared last level TLB [7] and a shared 

page walk cache [4]. These accelerate multithreaded 

applications on the CPU by sharing translations between 

cores. These works target multithreaded applications on the 

CPU and apply similarly to the GPU since, in the common 

case, all CUs of the GPU are running the same application. 

There are also several patents for industrial solutions for 

GPU virtual address translation [11, 36]. However, these 

patents have no evaluation and little implementation details. 

There are multiple attempts to reduce the complexity of 

the GPGPU programming model through software [13, 32]. 

While these frameworks simplify the code for straightfor-

ward applications, like the UVA implementation of the 

vectorcopy example presented, it is still difficult to 

represent complex data structures. 

GPUfs presents a POSIX-like API for the GPU that allows 

the GPU to access files mapped by the operating system. 

Similar to GPUfs, this paper simplifies programming the 

GPU by providing developers with a well-known interface 

(shared virtual address space). Additionally, as a conse-

quence of correctly handling page faults on the GPU, this 

paper also provides a method for the GPU to access files. 

GPUfs accomplishes these goals on current hardware 

through a complicated software library whereas this paper 

implements solutions for future hardware similar to how 

conventional CPUs solve these problems. 

Concurrent with our work, Bharath et al. also investigate 

address translation for GPGPUs [26]. Both papers show that 

modest hardware changes can enable low-overhead GPU 

address translation, but with different designs and emphasis. 

For example, Bharath et al. use a 4-ported TLB and PTW 

scheduling, while we use a single-ported TLB and highly-

threaded PTW. Bharath et al. additionally explore address 

translation effects on GPU warp scheduling, while we 

explore MMU correctness issues, like page faults, in a CPU-

GPU system using gem5-gpu full-system simulation. 

8. Conclusions 

As GPGPUs can issue 100s of per-lane instructions per 

cycle, supporting address translation appears formidable. 

Our analysis, however, shows that a non-exotic GPU MMU 

design performs well with commonly-used 4 KB pages: per-

 
Figure 12: Energy and area of MMU configurations relative to 

Design 2 



CU post-coalescer TLBs, a shared 32-way highly-threaded 

page table walker, and a shared page walk cache. We 

focused on the x86-64 ISA in this work. However, our 

findings generalize to any ISA with a hardware walked and 

tree-based page table structure. The proof-of-concept GPU 

MMU design analyzed in this paper shows that decreasing 

the complexity of programming the GPU without incurring 

significant overheads is possible, opening the door to novel 

heterogeneous workloads. 
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Appendix: GPU Page Fault Handler Imple-

mentation 

Although rare, the GPU memory management unit archi-

tecture must be able to handle page faults to have correct 

execution. Although there are many ways to implement 

handling page faults, in this GPU MMU architecture we 

chose to slightly modify the CPU hardware and make no 

modifications to the operating system. Our page fault 

handling logic leverages the operating system running on 

the CPU core similar to CPU MMU page fault logic. We 

use this design for two reasons. First, this design does not 

require any changes to the GPU execution hardware as it 

does not need to run a full-fledged operating system. 

Second, this design does not require switching contexts on 

the GPU as it can handle minor page faults by stalling the 

faulting instruction.  

The only CPU change necessary is modification of the 

microcode that implements the IRET (return from interrupt) 

instruction. When a page fault is detected by the page table 

walker logic, the address which generated the fault is 

written into the page fault register in the GPU page walk 

unit. Then, the page fault proceeds similar to a page fault 

generated by the CPU MMU. The faulting address is written 

into the CPU core’s CR2 register, which hold the faulting 

address for CPU page faults, and a page fault interrupt is 

raised. Then, the page fault handler in the operating system 

runs on the CPU core. The operating system is responsible 

for writing the correct translation into the page table, or 

generating a signal (e.g. SEGFAULT) if the memory 

request is faulting. Once the page fault handler is complete, 

the operating system executes an IRET instruction on the 

CPU core to return control to the user-level code. To signal 

the GPU that the page fault is complete, on GPU page 

faults, we add a check of the GPU page fault register in the 

IRET microcode implementation. If the address in that 

register matches the CR2 address then the page fault may be 

complete (it is possible the operating system could have 

finished some other interrupt instead). To check if the page 

fault is complete, the page walk unit on the GPU performs a 

second page table walk for the faulting address. If the 

translation is found, then the page fault handler was 

successful and the page fault register on both the page walk 

unit and the CPU are cleared. If the second page walk was 

not successful then the GPU MMU continues to wait for the 

page fault handler to complete. 

There are two different categories of page faults, major 

and minor. Details of each are discussed in Section 5.1.  

Page fault discussion 

We implemented the above technique to handle page 

faults in the gem5 simulator running Linux in full-system 

mode. Using this implementation, the Linux kernel correctly 

handles minor page faults for all of our GPU applications. 

For this implementation, the page fault handling logic 

assumes that the GPU process is still running on the CPU 

core. This will be true if, for instance, the application can 

run on the CPU and GPU at the same time, or the CPU 

runtime puts the CPU core into a low power state and does 

not change contexts. 

However, the CPU runtime may yield the CPU core while 

the GPU is running. In this situation, page faults are still 

handled correctly, but they are longer latency as there is a 

context switch to the process which spawned the GPU work 

before the operating system begins handling the page fault. 

This is similar to what happens when other process-specific 

hardware interrupts are encountered. Another option is to 

include a separate general purpose core to handle operating 

system kernel execution for the GPU. This core can handle 

any page faults generated by the running GPU kernel in the 

same way as described above. 
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Page table

 
Figure 13: Page walk and page fault overview 


