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Abstract. Gillman and Jerison have shown that when A" is a realcompact space,
every function in C(X) that belongs to all the free maximal ideals has compact
support. A space with the latter property will be called fi-compact. In this paper we
give several characterizations of /¿-compact spaces and also introduce and study a
related class of spaces, the ^-compact spaces ; these are spaces X with the property that
every function in C(X) with pseudocompact support has compact support. It is shown
that every realcompact space is ^-compact and every i/i-compact space is /¿-compact.
A family & of subsets of a space X is said to be stable if every function in C(X) is
bounded on some member of #". We show that a completely regular Hausdorff space
is realcompact if and only if every stable family of closed subsets with the finite
intersection property has nonempty intersection. We adopt this condition as the
definition of realcompactness for arbitrary (not necessarily completely regular
Hausdorff) spaces, determine some of the properties of these realcompact spaces, and
construct a realcompactification of an arbitrary space.

1. Introduction. The support of a real continuous function / on a topological
space A" is the closure of the set of points in Afat which/does not vanish. Gillman
and Jerison have shown that when A'is a realcompact space, the functions in C(X)
with compact support are precisely the functions which belong to every free maximal
ideal in C(X). This result, and other general background material, may be found
in our basic reference [GJ].

A space with the property of the Gillman-Jerison result will be said to be p-
compact. Other writers have shown that discrete spaces (Kaplansky [Ki, Theorem
28]), P-spaces (Kohls [K2, Theorem 3.9]), and spaces that admit complete uniform
structures (Robinson [Ri]) are /x-compact. Examples given in [GJ] show that not
every space is /^-compact, and not every /x-compact space is realcompact.

In this paper we show that a third class of spaces may be interpolated between
the realcompact and /x-compact. This class, of ip-compact spaces, consists of those
spaces X for which every function in C(X) with pseudocompact support has
compact support. Examples will be given to show that the three classes of spaces are
distinct. Every P-space (hence every discrete space) and every space that admits a
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74 MARK MANDELKER [May

complete uniform structure is </r-compact; thus the result that every ¡¡¿-compact
space is /¿-compact is a common extension of the results of Kaplansky, Kohls, and
Robinson. We also give several characterizations of/¿-compact spaces.

A characterization of realcompact spaces is obtained here which permits the
concept of realcompactness to be extended to spaces which are not necessarily
completely regular Hausdorff, and for which the main results of this paper and
many of the properties of realcompact spaces are still valid. Defining a family J^
of subsets of a space X to be stable if every function in CiX) is bounded on some
member of ¡F, we show that a space X is realcompact if and only if every stable
family of closed subsets with the finite intersection property has nonempty inter-
section. For completely regular Hausdorff spaces we show the equivalence of this
condition and the usual definition of realcompactness, while for arbitrary spaces
we adopt this condition as the definition of realcompactness. We determine some
of the properties of these realcompact spaces and construct a realcompactification
of an arbitrary space.

The author wishes to thank L. Gillman, D. G. Johnson, D. Plank, and the referee
for helpful comments concerning this paper.

2. Supports. In any topological space X, the support of a function /in CiX) is
the set Sif) = clx{x e X : fix) ^ 0}. Any subset of X that is the support of some
function in CiX) is called a support in X. An arbitrary closed set in X, even a zero-
set, need not be a support. For example, a nonempty nowhere dense set is never a
support.

We are interested in functions with compact support. A weaker condition on a
subset 5 of X is that it be pseudocompact, i.e., every function in C(S) is bounded.
Still weaker is the following condition.

Definition. A subset S of a space X is relatively pseudocompact in X if every
function in CiX) is bounded on S.

Theorem 2.1 below shows that for supports this condition is equivalent to
pseudocompactness. The equivalence does not hold for arbitrary subsets of X, not
even for closed subsets. For example, the Tychonoff plank T (see [GJ, 8.20]) is a
pseudocompact space, and hence every subset is relatively pseudocompact;
however, the right edge N (which is closed in T) is a countably infinite discrete
space, and thus not pseudocompact. In a normal space, of course, the two con-
ditions are equivalent for any closed subset.

The following theorem says that if a support S in X admits an unbounded con-
tinuous function, then some unbounded continuous function on S may be extended
continuously over X.

Theorem 2.1. In any topological space X, any relatively pseudocompact support
is pseudocompact.

Proof. Let S be a support in Xthat is not pseudocompact; thus S=c\x {X—Z)
for some zero-set Z in X, and there is a function h ̂  1 in C(5) that is unbounded,
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hence unbounded on X—Z. It follows from [GJ, 1.20] that X—Z contains a
C-embedded subset D of Son which h is unbounded, and thus from [GJ, 1.18] that
D is completely separated from the zero-set W=Z n Sin S; hence we may choose
geC(S) with^ = 0 on Dandg=l on W. Put/=(1/A) Vg on Sand/=1 on X-S.
Clearly fe C(X), f>0, and l/f is unbounded on D. Thus S is not relatively
pseudocompact.

Corollary 1. Any support in a pseudocompact space is also pseudocompact.

Corollary 2. For any topological space X, the family of all real-valued con-
tinuous functions with pseudocompact support is an ideal (possibly improper) in
C(X); it is all ofC(X) if and only if X is pseudocompact.

When A' is a completely regular Hausdorff space, it is clear that a subset 5 of X
is relatively pseudocompact if and only if cluX 5 is compact, where vXis the Hewitt
realcompactification of X (see [GJ, 8E]). Thus, in the case of a completely regular
Hausdorff space, Theorem 2.1 follows from a result of A. W. Hager and D. G.
Johnson [Hi, p. 96], [C1; Theorem 4.1], which shows, in fact, that in this case, if
the closure of any open set is relatively pseudocompact, then it is pseudocompact.
In the case of a support, the proof given in [Cj] applies to an arbitrary topological
space; the proof given above, however, seems simpler. Also, the result as stated
above for supports is sufficient for use in the proof of Theorem 4.4 in [CJ. Other
properties of relatively pseudocompact sets may be found in [N2],

Theorem 2.2. Let Xbe any topological space. Every function in C(X) that belongs
to all the free maximal ideals has pseudocompact support.

Proof. Let/e C(X) with nonpseudocompact support S. Thus S is not relatively
pseudocompact and X- Z(f) contains a C-embedded subset D of X on which some
g e C(X) is unbounded. Since D is completely separated from Z(f), there is a
zero-set Win X with Z)s Wand Wn Z(f)= 0. For every heJV, the zero-set Zn,
of points in X at which | g | ^ n, meets W, and thus there is a z-ultrafilter JÍ on X
containing If and all the sets Zn. Obviously P|n Zn= 0 ; hence JÍ is free and/does
not belong to the corresponding free maximal ideal.

In the case of a completely regular Hausdorff space, this result is essentially the
content of the lemma in [R2]. In fact, in this case the proof may be simplified by
noting that W is not compact, and hence belongs to some free z-ultrafilter, by the
following result of [GJ, 4.10].

(a) A zero-set in a completely regular Hausdorff space is compact if and only if
it belongs to no free z-filter.

The proof above actually provides the following analogue for arbitrary spaces of
the sufficiency in (a). A zero-set that belongs to no free z-filter is relatively pseudo-
compact. The converse of this result, however, is not true; for example, in any
pseudocompact, noncompact, completely regular Hausdorff space X, the set X
itself is a relatively pseudocompact zero-set that does belong to a free z-filter.
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3. «/«-compact spaces. It is easily seen (see, e.g., [GJ, 7E]) that every function in
CiX) with compact support belongs to every free maximal ideal in CiX). When the
converse holds we shall call X /¿-compact. Thus

Definition. A space X is p-compact if any function in CiX) that belongs to all
the free /¿aximal ideals has compact support.

In [GJ, 8.19] it is shown that every realcompact space is /¿-compact, and a
counterexample to the converse is given. We show below that between these classes
of spaces we may interpolate the following third class.

Definition. A space X is ¡¡¡-compact if every function in CiX) with «/«eudocom-
pact support has compact support.

Theorem 3.1. For any space X, each of the following conditions implies the next.
The converses are not true.

(1) X is realcompact.
(2) X is ¡¡¡-compact.
(3) X is p.-compact.

Proof. Every closed subspace of a realcompact space is realcompact [GJ, 8.10],
and any pseudocompact realcompact space is compact [GJ, 5H]. Hence (1) implies
(2). Theorem 2.2 shows that (2) implies (3). The counterexamples to the converses
are given below.

A 5-space is a completely regular Hausdorff space in which every G6 is open.
Every discrete space is a P-space, but not conversely; see [GJ, 4JKN].

Theorem 3.2. Every P-space and every space that admits a complete uniform
structure is ¡¡¡-compact.

Proof. Every subspace of a P-space is a P-space, and every pseudocompact
P-space is finite [GJ, 4K].

Every closed subspace of a complete space is complete, and every pseudocompact
complete space is compact [GJ, 15CQ].

If X is metrizable, then since it admits a complete structure [GJ, 15.24], it is
«/«-compact. However, this also follows directly from the fact that any pseudo-
compact metrizable space is compact.

Since X itself is always a support, the following is immediate.

Theorem 3.3. Every pseudocompact ¡¡¡-compact space is compact.

Example 1. The P-space X constructed in [GJ, 9L] is not realcompact; hence
not every «/«-compact space is realcompact. Since X is of nonmeasurable cardinal,
Shirota's Theorem [GJ, 15.20] shows that X does not admit a complete uniform
structure. Thus not every «/«-compact space admits a complete uniform structure.
Hence, if measurable cardinals exist, the class of spaces that admit complete
structures lies properly between the classes of realcompact spaces and «/«-compact
spaces.
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Example 2. The space of countable ordinals is /x-compact, as noted in [GJ, 8.19],
but since it is pseudocompact (and not compact), it is not «/"-compact; hence not
every /x-compact space is ¡/«-compact. This also shows that a pseudocompact /x-
compact space need not be compact (cf. Theorem 3.3).

4. /x-compact spaces. In this section we give a few characterizations of p-
compact spaces. One of the characterizations involves the following concept. When
Afis a completely regular Hausdorff space, a subset A of the Stone-Cech compactifi-
cation ßX is said to be round if whenever cLjx Z contains A, where Z g Z(X), then
clgxZ is a neighborhood of A (see [M]).

Theorem 4.1. A subset A of ßX is round if and only if, for any Z e Z(X),

int.4 (chjx Zn A) = intÍX clÍX Z n A.

Proof. Necessity. Let p e int,, (clÍX Z n A). Choose W e Z(X) such that
peA-clßX WcclßXZnA. Thus AcdßXZ u dßX W=clßX(Z u W), and by
hypothesis we have A^intßX clÍX (Z u W). Hence

/? eint„ clÍX (ZulC)n (ßA'-cW W) s clÄXZ,

so p e intßX clßXZ. Thus int¿ (clflXZ n A)^intßX c\ßxZ n ^4. The opposite in-
clusion is immediate.

Sufficiency. Let AcclßXZ for some ZeZ(X). Then ,4 = int^ (clsx Z n .4)
= intÖX clßX Z C\ A and hence cliX Z is a neighborhood of ^4.

Theorem 4.2. For an,y completely regular Hausdorff space X, the following are
equivalent.

(1) X is p-compact.
(2) ßX— X is a round subset ofßX.
(3) For any Z e Z(A"), intiX_x (clÄX Z- A') = intÄX cl^ Z- X.
(4) Every cozero-set with noncompact closure contains a noncompact zero-set.
(5) Any function in C(X) that belongs to all the free maximal ideals has real-

compact support.

Proof. The equivalence of (1) and (2) was noted in [M, Theorem 5.1]. The
equivalence of (2) and (3) is a special case of Theorem 4.1. A function belongs to
every free maximal ideal if and only if its zero-set meets every noncompact zero-set
[GJ, 4E.2]; hence (1) and (4) are equivalent. The equivalence of (1) and (5) follows
from Theorem 2.2.

Condition (3) cannot be extended by replacing the sets cliX Z, for Z e Z(X)
(which form a base for the closed sets in ßX) by arbitrary closed sets in ßX. For
example, the condition does not hold for the closed subset /8R — R of ß'R.

The fact that (1) implies (3), and the method used in the proof of Theorem 4.1,
is due to Donald Plank [P, 5.11.
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Other characterizations of/¿-compact spaces may be found in [R2]. The condition
(5) above is essentially condition (2) of [R2].

It was noted in §3 that a metrizable space is ¡/«-compact (and hence /¿-compact).
That it is /¿-compact also follows directly from condition (4) of Theorem 4.2: if U
is open and clx U is noncompact, then c\x U contains a sequence {xn}n with no
convergent subsequence; thus a set {yn : n^l} of points of U chosen so that
piyn, xn)^ \/n is a noncompact closed set in X.

In Example 2 we used the fact, noted in [GJ, 8.19], that the space W of countable
ordinals is /¿-compact. This is also easily seen by using condition (2) of Theorem
4.2. If /g C(W) and wx g cl^w Zif), then / must vanish on a tail and hence
cl^w Zif) is a neighborhood of wx. Thus {cu1}=)8W —W is a round subset of jSW.

We saw in Example 2 that pseudocompactness and /¿-compactnesss together do
not imply compactness. However, in the following special case, the implication
does hold.

Theorem 4.3. Let Y be any locally compact, a-compact metrizable space ie.g.
the line), and let Yc XzßY. If X is pseudocompact and p-compact, then X=ßY.

Proof. Let Xbe /¿-compact and X^ßY. Since Y is a cozero-set in ßY, it is also a
cozero-set in X. Choose a noncompact zero-set Z in X with Zs Y. Since Y is
metrizable, Z is C*-embedded in Y and is not pseudocompact. Hence Z is C*-
embedded in Y and since it is a zero-set in X, it is C-embedded in X. Hence Zis not
pseudocompact.

5. Realcompact spaces. Heretofore, these spaces have been defined only in the
context of completely regular Hausdorff spaces—see [GJ, 5.9 and 8.4].

By means of the characterization of realcompact spaces given in Theorem 5.1
below, we may (consistently) define realcompactness for arbitrary topological
spaces. Under the definition given, the properties of realcompact spaces needed for
the proof of Theorem 3.1 remain valid, and hence Theorem 3.1 is true in the general
case. The definitions of «/«-compact and /¿-compact spaces apply to the general case
as given, as does characterization (5) of /¿-compact spaces given in Theorem 4.2.

Definition. We shall say that a family F of subsets of a space X is stable if
every function /in CiX) is bounded on some member of J5".

Theorem 5.1. A completely regular Hausdorff space is realcompact if and only
if every stable family of closed subsets with the finite intersection property has
nonempty intersection.

Proof. Let X be realcompact and suppose !F is a family of closed subsets of X
with the finite intersection property, but with empty intersection. Then the family
{clix F : Fe ¿F} of closed subsets of ßX has the finite intersection property, and
we may choose p e ßX with p e clÄX F for all FeF.lt follows that p e ßX- X and
thus there isfe CiX) with/*(j?) = oo. Thus/is unbounded on each member of F,
and hence F is not stable.
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Now assume that X is not realcompact. Thus there is p e ßX- X such that/*(/>)
is finite for a\\fe CiX). Let J( be the (free) z-ultrafilter on X that converges to p;
it consists of all zero-sets Z in X such that p e c\ex Z. Thus Jt is a family of closed
subsets of X with the finite intersection property and empty intersection. Let
fe CiX). Since/*(/?) is finite,/* is bounded on some zero-set neighborhood W oí
p in ßX. Since p e clfiX ( W n X), we have W n X e JÍ with / bounded on W n X.
It follows that M is stable.

This result may perhaps be considered a partial reply to Hewitt's comment:
" These spaces, which we have called g-spaces, are characterized by no topological
property so simple as bicompactness; indeed, their description may be considered
somewhat recondite," [H5, p. 85]. There are of course other characterizations of a
realcompact space, but this characterization, when used as a definition in the
general case, allows us to extend Theorem 3.1. Specifically, the condition of this
characterization is hereditary for closed subspaces, and, in the presence of pseudo-
compactness, implies compactness. Other characterizations of realcompact spaces
are found in [GJ], [H3], [H5], [Nx], and [W]. An internal characterization has
recently been found by Douglas Harris [H2]. The author wishes to thank Professor
M. C. Rayburn for pointing out that a special form of Theorem 5.1 was observed
in [F].

The characterization given in Theorem 5.1 permits the following extension of the
class of (completely regular Hausdorff) realcompact spaces.

Definition. A topological space AMs realcompact if every stable family of closed
subsets with the finite intersection property has nonempty intersection.

The following results extend some of the well-known properties of realcompact
completely regular Hausdorff spaces to the general case. In applying the terms
"compact" and "regular" to a space, we do not imply that the space is Hausdorff.

Theorem 5.2. (a) Any compact space is realcompact.
(b) A pseudocompact realcompact space is compact.
(c) Every closed subspace of a realcompact space is realcompact.
id) Any product of realcompact spaces is realcompact.

Proof. The first three statements are immediate.
For the product theorem, we adapt the proof given in [GJ, 8.12]. Let X=\~[a Xa,

where each space Xa is realcompact, and let J^ be a maximal stable family of closed
subsets of X with the finite intersection property. For each a, let Fa be the family of
all closed subsets G of Xa such that i«-a*-[G] g J*". If g e CiXa), then g°Trae CiX);
choose FeF and a closed bounded subset H of the line such that Fe ig ° «•,)*" [H].
Then ^„-[^[Z/]] g J5", so g is bounded on g"[H] e J^. Thus Fa is a stable family
of closed subsets of Xa with the finite intersection property. For each a, choose
x«e[\Fa, and let x denote the point (xa) of X. Let F=\Jlirat'-[Gl] be a basic
closed set with Fe!F, where G{ is a closed set in Xa¡, l ¿ i£». By the maximality
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of F, one of the sets trttf [G¡] belongs to F; hence Gt e Fa¡, so xUi e G¡ and xeF.
Hence f) F^ 0.

For arbitrary spaces we have the following weakened form of [GJ, 8.16].

Theorem 5.3. A space which is the union of a compact subspace anda C-embedded
realcompact subspace is realcompact.

Proof. Let X= K u Y with K compact and Y realcompact and C-embedded in
X. Let F be a stable family of closed subsets of X with the finite intersection
property. We may assume that F is closed under finite intersections. If every
member of F meets K, then clearly F has nonempty intersection. If some member
of F does not meet K, then @ = {F n Y : Fe F} is a family of closed subsets of
Y with the finite intersection property. Clearly â? is stable; hence f) &^ 0 and
also f)F=¿0.

The following result extends [GJ, 8A]. Another extension will be given in Corol-
lary 6.2.

Theorem 5.4. A C-embedded realcompact subspace of a Hausdorff space is closed.

Proof. Let AT be a C-embedded subspace of a Hausdorff space T that is not closed
and let /? be a limit point of X not in X. Let F be the family of all (closed) subsets
of X of the form F n X, where F is a closed neighborhood of/? in T. It follows that
F is a stable family with the finite intersection property, but empty intersection,
and hence X is not realcompact.

Let X be any space, and let Xcr be the completely regular Hausdorff space
obtained in [GJ, 3.9], with C(Xcr)xC(X).

Theorem 5.5. If X is realcompact, then XCT is also realcompact. The converse is
not true.

Proof. Let J5" be a stable family of closed subsets of XCT with the finite inter-
section property. Put @ = {t~[F] : FeF}, where t.X^Xct is the canonical
mapping. Clearly S? is a stable family of closed subsets of X with the finite inter-
section property; hence (~) &=£ 0 and thus f] F^ 0. Hence XCT is realcompact.

Example 3. For a counterexample to the converse, let X be the regular space of
[H4] on which every real continuous function is constant. It is shown in [H4] that
X is Tx, hence not compact, and thus since it is pseudocompact, it is not realcom-
pact. However, Xcr consists of a single point, and is thus realcompact.

The failure of the converse is not to be lamented. It is desired that Theorem 3.1
be true in the general case, and clearly the space X of this example is not «/«-compact,
and hence must not be realcompact under any definition we might adopt. Since
C(X)xC(Xcr), no definition of realcompactness that preserves Theorem 3.1 can
be algebraically invariant.

A different extension of realcompactness has been given in [D], but under which
some of the properties of realcompact spaces, for example Theorem 3.1, are lost.
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6. The realcompactification of an arbitrary space. In this section we obtain a
generalization of the Hewitt realcompactification vX of a completely regular
Hausdorff space (see [GJ, Chapter 8]), except that we are able to prove extend-
ability only for continuous mappings into regular realcompact spaces.

Theorem 6.1. Every topological space X has a realcompactification vX, which is
a realcompact space in which X is dense and C-embedded. Every continuous mapping
from X into any regular realcompact space may be extended continuously over vX.
The space X itself is realcompact if and only if X=vX.

Proof. We shall omit those details which are the same as steps in the proof of
the existence of the Stone-Cech compactification of a completely regular Hausdorff
space given in [GJ, Chapter 6], on which this proof is patterned.

For any x e A', we shall let Fx denote the family of all closed subsets of X that
contain x. Clearly Fx is stable. (Note that X is a A-space if and only if the corres-
pondence x -> Fx is one-one. Also, a A-space is a A-space if and only if each Fx
is a maximal family of closed subsets with the finite intersection property.)

Let vX— X be an index set for the collection {Fp : p e vX— X} of all maximal
stable families of closed subsets of X with the finite intersection property and
empty intersection.

For any closed set FçX, put F={pevX : FeF"}; topologize vX by taking
these sets Fas a base for the closed sets. We have Fn Af=Fand F=cluX F; thus
AT is a subspace of vX and is dense in vX.

Let t: X-> Y be a continuous mapping, with Y regular and realcompact. For
any /? e vX, let @" be the family of all closed subsets G of F such that t" [G] e Fv.
Let g e C(Y); then g ° t e C(X), so g » t is bounded on some member F of F".
Thus Fs(g o t)~[H], where His some closed bounded subset of the line. It follows
that T~[g"[H]] eFp and hence g"[H] e (SV; thus g is bounded on a member of
^p. Hence ^p is a stable family of closed subsets of Y with the finite intersection
property. Choose y e f] &p and put r°p=y (if p e X, then t/? e (~) <&" and we
choose y = rp; thus t° extends t).

To establish the continuity of t° at a point p e vX, let V be any closed neighbor-
hood of t0/? in Y. Put T= 7-int V, A = t-[V], B = t^[T], and U=vX-B. Since
T°p $ T, we have T$ &p, so B$FP and U is a neighborhood of/? in vX. We have
VUT= Y, solu£=t)Iand UqI. Now if qe U, then qeland A eFq; hence
Kef and r°q e V. Hence t°[£/]£ V, and t° is continuous at/?.

To show that uA' is realcompact, consider any stable family ^ of closed subsets
of vX with the finite intersection property. Let F be the family of all closed subsets
F of X such that F contains some member of 'S. Let/e C(X) and choose G eS
such that /" is bounded on G. Say |/0|<n on G. Put A={xeR : \x\£n},
B={xeR : \x\ ̂ n}, and F=f~[A]. Let/? e G and suppose F $FP. Since A u5=R,
we have F uf~[B] = X, and thus/-[5] eF". It follows from the definition of the
extension/" that/"(/?) e B, contradicting the choice of/? and n. Hence FeFp, so
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peF. Thus G<=:F, and FeF. Since/is bounded on F, it follows that F is a stable
family of closed subsets of X with the finite intersection property; hence J^sFv
for some p e v X and we have p e F for every FeF. Since the sets F form a base for
the closed subsets of vX, we have p e{~\<S. Hence vX is realcompact.

The following result extends the characterization given in [GJ, 8A].

Corollary 6.2. A regular Hausdorff space is realcompact if and only if it is
dense and C-embedded in no other Hausdorff space.

Proof. The necessity is a special case of Theorem 5.4. Conversely, if Xis regular
and Hausdorff but not realcompact, then for any p e vX— X, the space X u {p} is
Hausdorff.

Example 4. There is no possibility of finding a Hausdorff realcompactification
for an arbitrary Hausdorff space X, even when X is regular. For, let X be Hewitt's
space discussed in Example 3. If X is dense in some Hausdorff realcompact space
T, then every real continuous function on T is also constant ; hence T is pseudo-
compact, hence compact, and the subspace Zis completely regular, which is absurd.
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