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Abstract. In a seagrass restoration project, we explored the potential for enhancing the
restoration process by excluding antagonistic engineering interactions (i.e., biomechanical
warfare) between two ecosystem engineers: the bioturbating lugworm Arenicola marina and
the sediment-stabilizing seagrass Zostera noltii Hornem. Applying a shell layer underneath
half of our seagrass transplants successfully reduced adult lugworm density by over 80% and
reduced lugworm-induced microtopography (a proxy for lugworm disturbance) at the wave-
sheltered site. At the wave-exposed site adult lugworm densities and microtopography were
already lower than at the sheltered site but were further reduced in the shell-treated units.
Excluding lugworms and their bioengineering effects corresponded well with a strongly
enhanced seagrass growth at the wave-sheltered site, which was absent at the exposed site.
Enhanced seagrass growth in the present study was fully assigned to the removal of lugworms’
negative engineering effects and not to any (indirect) evolving effects such as an altered
biogeochemistry or sediment-stabilizing effects by the shell layer. The context-dependency
implies that seagrass establishment at the exposed site is not constrained by negative
ecosystem-engineering interactions only, but also by overriding physical stresses causing poor
growth conditions. Present findings underline that, in addition to recent emphasis on
considering positive (facilitating) interactions in ecological theory and practice, it is equally
important to consider negative engineering interactions between ecosystem-engineering
species. Removal of such negative interactions between ecosystem-engineering species can
give a head start to the target species at the initial establishment phase, when positive
engineering feedbacks by the target species on itself are still lacking. Though our study was
carried out in a marine environment with variable levels of wave disturbance, similar
principles may be expected to apply to other ecosystems that are inhabited by ecosystem
engineers.
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INTRODUCTION

Approximately 30–50% of the Earth’s coastal ecosys-

tems have been severely degraded in the last decades,

often due to anthropogenic disturbances such as

eutrophication or overexploitation (Orth et al. 2006,

Barbier et al. 2008). Even though these areas make up

just 4% of the Earth’s total surface, systems such as salt

marshes, coral reefs, and seagrass meadows are of great

economic and ecological importance because large

human populations depend on them for storm buffering,

fisheries, and enhanced water quality (Orth et al. 2006,

Barbier et al. 2008). Moreover, they serve as key habitat

in the life cycles of many marine animal species.

Although these ecosystems were initially considered

highly resilient to human disturbance, we now know

that most coastal ecosystems do not respond linearly to

change, but may often collapse without warning (Silli-

man et al. 2005, van der Heide et al. 2007, Hughes et al.

2010). It has also emerged that recovery or restoration of
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coastal ecosystems is extremely difficult (Bakker et al.

2002, Orth et al. 2006, Halpern et al. 2007, Omori 2010).

Various studies have shown that sudden collapse and

lack of recovery in coastal ecosystems may follow

alternative stable state behavior and can be attributed

to disturbance of positive feedback mechanisms (e.g.,

van de Koppel et al. 2001, van der Heide et al. 2007).

Such feedbacks typically arise from the ability of the

foundation species (e.g., corals, seagrasses, reef-forming

shellfish, marsh plants) to ameliorate environmental

stress (i.e., ‘‘ecosystem engineering’’) (e.g., Jones et al.

1994, Madsen et al. 2001). Because these (self-)

facilitation mechanisms typically act above a certain

density or size (e.g., van der Heide et al. 2007, 2008,

Bouma et al. 2009), coastal ecosystems are prone to

threshold behavior. The ecosystem seems stable above

the threshold size or density, while recovery and

restoration are nearly impossible when the threshold is

not bridged (Hobbs and Norton 1996, Halpern et al.

2007, Suding and Hobbs 2009).

Today, (self-) facilitation and positive feedbacks are

well recognized as important factors to consider for

coastal ecosystem conservation and restoration (Crain

and Bertness 2006, Halpern et al. 2007). The potential

role of negative interactions between contrasting eco-

system engineers in restoration efforts has recently been

neglected, despite the early recognition of its potential

importance in marine habitats (see review in Peterson

1980, 1991). For example, this has been shown for the

negative effect of deposit feeders on filter feeders by

making sediment more erosive, causing filter feeding to

be hampered by more turbid water (i.e., trophic group

amensalism; Rhoads and Young 1970). Several studies

have also demonstrated that negative interactions

between benthos and vegetation can be very strong

(Philippart 1994, Hughes et al. 2000, Hughes and

Paramor 2004, Siebert and Branch 2006, Berkenbusch

et al. 2007, van Wesenbeeck et al. 2007). For instance,

‘‘biomechanical warfare’’ between ecosystem-engineer-

ing salt marsh vegetation and infauna can cause a

bimodal species distribution on the salt marsh–mudflat

interface, as bioturbation prevented plant colonization

in the invertebrate-dominated state and invertebrates

were excluded by sediment compaction in the plant-

dominated state (van Wesenbeeck et al. 2007).

Meadows of the seagrass Zostera noltii Hornem are

notoriously hard to restore, and initial establishment is

especially difficult as positive feedbacks are still lacking

(i.e., Byers et al. 2006, van der Heide et al. 2007, van

Katwijk et al. 2009). Historically, Zostera meadows are

found to co-occur with the bioturbating lugworm

Arenicola marina (Jacobs et al. 1983), though they may

encounter negative worm effects (i.e., Philippart 1994,

Reise and Kohlus 2008). At present, in some areas of

northwestern Europe the Zostera noltii biomass distri-

bution appears to be correlated with the presence of

shallow layers of clay, compressed peat, or shells that

naturally exclude bioturbating lugworms (Reise 2002,

Reise and Kohlus 2008; D. J. de Jong, W. B. J. T.

Giesen, M. M. van Katwijk, and W. Suykerbuyk,

personal observation in Scheldt Estuary). Moreover,

settlement of Zostera noltii has been observed in plots

where lugworms were excluded for experimental pur-

poses (Reise 1983, Reise and Kohlus 2008). The absence

of seagrass recovery on former seagrass grounds that are

now inhabited by lugworms, despite the improved water

quality with respect to increased transparency and

reduced nutrient concentrations over the last decades,

may suggest that the lugworm presence and/or activity

may hamper recolonization by seagrass within our study

area.

In this study we test to what extent restoration of

Zostera noltii meadows at formerly suitable seagrass

habitats would benefit from removal of negative effects

by the bioturbating lugworm Arenicola marina and how

this depends on abiotic conditions (sheltered vs. wave

exposed). Removal of these negative ecosystem-engi-

neering effects on initial seagrass establishment was

tested in a large-scale Zostera noltii restoration by

comparing sod transplantations with and without

lugworm reduction by means of a shallow shell layer

(cf. Reise 2002). To test the general relevance of

excluding such negative engineering interactions, we

tested this method under contrasting abiotic conditions

(wave exposed vs. wave sheltered) that may cause other

sources of sediment disturbance. We hypothesize that

minimizing lugworm-induced sediment disturbance will

enhance seagrass growth, unless other sources of abiotic

stress cause sediment disturbance.

METHODS

Study area

Our experiment was performed in the Eastern Scheldt

estuary (southwestern Netherlands), a former arm in the

river Scheldt delta (Fig. 1A). After a severe flood in

1953, the estuary was heavily engineered to secure safety

against flooding: freshwater input openings in the

eastern part of the estuary were cut off by dams and

the estuary mouth in the west was partially closed by a

storm surge barrier. Since then, the system has changed

(e.g., Louters et al. 1998), and the extensive seagrass

meadows (up to 1000 ha) have decreased during the

building of these so-called Delta Works. More surpris-

ingly, this seagrass decline has persisted long after the

completion of the Delta Works and is ongoing today,

despite the higher transparency of the water column and

lower nutrient loading.

Presently, only several dozen hectares of the seagrass

Zostera noltii Hornem remain (data from the Dutch

Ministry of Infrastructure and the Environment), which

appear to be concentrated on relatively stable sediments

without lugworm presence (e.g., natural shell layers,

heavy clay from former dikes, or salt marsh remnants;

D. J. de Jong, W. B. J. T. Giesen, M. M. van Katwijk,

and W. Suykerbuyk, personal observations). Exact

June 2012 1225SUPPRESSING BIOENGINEERS IN RESTORATION



mechanistic causes of this massive and persistent

seagrass decline have not yet been identified. It has

been observed that the lugworm relief had increased at

many intertidal former seagrass locations (D. J. de Jong,

W. B. J. T. Giesen, M. M. van Katwijk, and W.

Suykerbuyk, personal observations). No previous sea-

grass transplantation or restoration efforts have been

performed in the Eastern Scheldt estuary. Renewal of

the stone cladding of the defense walls requires

mitigating measures for the directly endangered seagrass

that follow European Union regulations. This led to the

present transplantation project.

Experimental set-up

A total of 441 m2 of native Zostera noltii Hornem

sods (196 sods of 1.5 3 1.5 m) with a vegetation cover

ranging from 10% to 70% (sod vegetation cover, 33% 6

2% [mean 6 SE]) were transplanted to two tidal flats,

one sheltered (Krabbenkreek flat) and one relatively

more exposed (Slikken van den Dortsman), in the

Eastern Scheldt estuary early in the growing season

(June 2007) (Fig. 1B, C). Sods were mechanically

harvested in custom-made wooden boxes from a natural

meadow at the donor site Slikken van Viane. They were

protected against desiccation during transport and

replanted within 24 h to 28 plots divided over the

sheltered (16) and exposed (12) sites. Plots were

distributed evenly 10 m apart in rows at an average

emerging time of 50–60% (Fig. 1B, C). To test the effect

of plot size, plots consisted of either five or nine sods

placed in a checkerboard configuration (Fig. 1D).

Planting configurations were evenly applied over the

control and exclusion plots at both locations (Fig.

1B, C). In every second transplantation plot, adult

lugworms (Arenicola marina) were excluded by placing

a 10 cm thick shell layer (local cockle shell fragments

with a diameter of 4 cm) at a depth of 8–18 cm below the

sediment surface, both underneath the seagrass sods and

the surrounding plot sediment (Fig. 1E, F) (after Reise

2002). In the control plots, sediment was similarly

removed and replaced to adjust for sediment handling.

Basic transplant characteristics (i.e., plant coverage

and area), as well as lugworm and other biological

parameters, were monitored at monthly intervals during

the growing season from June until October. The area

covered by seagrass (in square meters) is considered to

be the main indicator for transplantation success

(Schanz and Asmus 2003), with area being measured

and cover being estimated by eye using a 25325 cm grid

and cross-checking between workers. Lugworm fecal

cast counts per area were used as a quantitative proxy

for the numbers of worms present (cf. Farke and

Berghuis 1979, Flach and Beukema 1994). Juvenile

and adult lugworms were divided by the diameter of the

cylindrical-shaped cast; rule of thumb: juvenile ,

diameter cast 1 mm , adult. In order to prevent severe

underestimation of lugworm numbers, cast counts were

not performed on a rainy day or prior to 2 h after the

transplants emerged from the water (sensu Cadee 1976).

Lugworm-induced microtopography (also referred to as

lugworm relief ) was measured as the vertical height

difference between a lugworms’ pit and adjacent mound.

This parameter was used as a simple integrative proxy

for the potential negative engineering effects of lug-

worm-induced sediment disturbance (e.g., direct burial,

unearthing rhizomes, and sediment instability) on

seagrass survival, as it accounts for size and activity

differences between local lugworm communities and can

easily be compared across sites with other sources of

sediment disturbance such as wave exposure.

Sediment characteristics

Additional measurements of pore water nutrients

(alkalinity, pH, NO3
�, NH4

þ and ortho-PO4, sheltered

sites only) and sediment composition (grain size

distribution and organic content, both sites) were

performed just after maximum seagrass biomass and

area were reached in the growing season (early

September). Alkalinity (by titration with 0.01 mol/L

HCl to pH 4.2; Lamers et al. 1998) and pH were

determined directly after sampling, whereupon samples

were frozen (�208C) until further analysis. Ammonia

and ortho-phosphate concentrations were measured

colorimetrically on an auto-analyzer (BranþLuebbe,

Almere, The Netherlands), using hypochlorite (Berthe-

lot reaction) and ammonium-molybdate, respectively.

Organic matter content in freeze-dried sediments (upper

5 cm) was estimated as mass loss by ignition at 5508C

after acidifying samples with HCl. Grain size distribu-

tion on the same sediment sieved over 1 mm was

measured by laser diffraction on a particle sizer

(Malvern, Worcestershire, UK).

Statistical analysis

All results are summarized as means6 SE. In advance

of statistical analysis, data were checked for normality

and if necessary transformed (Table 1). As planting

configuration had no effect on seagrass survival (data

not shown), plots are treated as replicates in further

statistical analysis. Differences between transplantation

sites and anti-lugworm treatments were analyzed using

ANOVA with treatment nested in location, followed by

post hoc Tukey’s honestly significant differences (HSD)

multiple means comparison tests at the 0.05 confidence

limit. Effects of control and shell treatment on pore

water and sediment data were tested by independent-

samples t test. All tests were performed using Statistica

(StatSoft, Tulsa, Oklahoma, USA).

RESULTS

Shell layers successfully reduced the mean numbers of

adult lugworms at both the sheltered (P , 0.01) and the

exposed (P , 0.01) transplantation sites (Fig. 2A).

Although initially the ambient number of lugworms at

the exposed site was almost 2.5 times lower than that at

the sheltered location, the proportional reduction of
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adult worms due to the shell layer was of the same order

of magnitude (81.3% vs. 86.8% for sheltered and

exposed, respectively). The shell treatment significantly

promoted (P , 0.05) settlement of juvenile lugworms in

the absence of adult worms at both sites (277.8% vs.

290.4% increase for shell-treated compared to control

plots, respectively, both at wave-sheltered and wave-

exposed sites; Fig. 2B). Adult lugworm numbers

remained stable during at least three more years (data

not shown).

Lugworm-induced microtopography, and thereby the

negative engineering effect of lugworms on seagrass, was

significantly reduced by the shell treatment at the

sheltered location (P , 0.01; Fig. 2C). Exclusion plots

could be easily recognized by the reduction of this

characteristic pit and mound landscape. At the exposed

site, similar anti-lugworm measures and their propor-

tional effects on lugworm numbers resulted in relatively

higher reduction of lugworm relief between control and

treated plots of the exposed site compared to the

sheltered site (50.5% vs. 37.0% reduction, respectively).

Surprisingly, this reduction in relief was not found

significantly different from that found at the sheltered

site.

FIG. 1. (A) Location of the study areas in the southwest delta area of The Netherlands. Letters indicate the donor site (D) and
the wave-exposed (E) and sheltered (S) Zostera noltii seagrass transplantation sites in the Eastern Scheldt estuary. (B, C) Detailed
top view of (B) the wave-sheltered Krabbenkreek flats and (C) the wave-exposed Slikken van den Dortsman flats; shading indicates
anti-lugworm (Arenicola marina) treatments (application of shells), and numbers indicate planting configuration. (D) Schematic top
view of plots with two different planting densities (five and nine patches), their configuration (a checkerboard pattern), and the plot
area that was reworked for the anti-lugworm treatment. (E) Schematic cross section of the plots indicating the manner in which
sediments are reworked and organized. Colors indicate different sediment origins or treatments. At the far right is a schematic of a
lugworm burrow indicating the significance of the anti-lugworm treatment on lugworm burrowing. (F) Large-scale seagrass
transplantation in progress at the sheltered site. Shells applied to exclude lugworms are seen in the foreground. Placement of
seagrass sod on the shell treatment is seen in the background.

TABLE 1. Results of nested ANOVA on the number of adult and juvenile lugworms (Arenicola marina), their induced
microtopography, and the related seagrass (Zostera noltii) area detected at each treated plot on two tidal flats.

Dependent variable Transformation Factor SS df MS F P

Adult lugworms square root location 23.14 1 23.14 8.28 0.006
treatment(location) 122.74 2 61.37 21.96 ,0.001
error 120.16 43 2.79

Juvenile lugworms fourth root location 1.75 1 1.75 1.53 0.223
treatment(location) 14.39 2 7.19 6.29 0.004
error 49.21 43 1.14

Lugworm relief fourth root location 128.31 1 128.31 22.84 ,0.001
treatment(location) 71.81 2 35.91 6.39 0.004
error 235.91 42 5.62

Seagrass area log location 1.23 1 1.23 4.12 0.054
treatment(location) 3.67 2 1.84 6.13 0.007
error 7.19 24 0.30

Note: The study was conducted in the southwest delta area of The Netherlands.
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Although reduction of lugworm microtopography

was comparable at both sites, surprisingly no such

comparable effects on seagrass growth were found. That

is, at the sheltered site, seagrass growth was significantly

promoted in plots that excluded Arenicola by shells as

compared to the control plots (P , 0.05; Fig. 2D) (data

17 and 18 July 2008). However, no such difference was

found at the exposed transplantation site, where

seagrass growth was low both in the presence and

absence of worm exclusion. Seagrass growth responses

at the sheltered site could not be ascribed to shell layer

effects on sediment and pore water characteristics, as

these were unaffected (Table 2) except for a slightly

lower median grain size (D50SED) in the exposed

lugworm-exclusion plots (t14¼ 2.38, P , 0.05). Planting

configuration (five or nine sods) had no effect on

seagrass survival at either site at any point in time (data

not shown).

DISCUSSION

The use of facilitative interactions is now a common

recommendation in restoration and conservation efforts,

and ecosystem engineers causing such interactions are

increasingly considered to be conservation and restora-

tion target species (Boogert et al. 2006, Byers et al. 2006,

Crain and Bertness 2006, Halpern et al. 2007).

Surprisingly, however, these papers neglect the potential

restoration benefits of the removal of negative interac-

tions originating from ecosystem engineers, despite the

fact that such interactions can play an important role in

marine habitats (Rhoads and Young 1970, Philippart

1994, Hughes et al. 2000, Hughes and Paramor 2004,

Siebert and Branch 2006, Berkenbusch et al. 2007, van

Wesenbeeck et al. 2007). In this study, we show that

suppressing such negative ecosystem-engineering effects

could be a useful approach in restoration and conser-

vation efforts by giving at least a better start during the

initial establishment phase. Using the seagrass (biosta-

bilizer)–lugworm (biodestabilizer) interaction as a model

system, we showed that seagrass growth was significant-

ly enhanced by excluding lugworms in a lugworm-

dominated area. Removing negative engineering inter-

actions may be especially important for reestablishing

those species whose initial establishment is hampered by

thresholds but who subsequently benefit from self-

facilitating positive feedbacks. The latter is clearly the

case in seagrass (van der Heide et al. 2007, 2011, van

Katwijk et al. 2010).

Enhanced seagrass growth in the present study was

fully assigned to the lugworm exclusion and not to any

(indirect) evolving effects such as an altered biogeo-

chemistry (Table 2) or sediment-stabilizing effects by the

shell layer. From previous studies on Zostera it is known

that sediment stabilization improves success at relatively

exposed locations (van Katwijk and Hermus 2000, Reise

and Kohlus 2008), but that this is not always the case at

sheltered locations (van Katwijk and Hermus 2000). In

our study the reverse holds true: the success was only

promoted at sheltered sites. Therefore, this explanation

does not hold for our situation. At the relatively exposed

FIG. 2. Effects of hydrodynamic forcing (wave sheltered vs. wave exposed) and lugworm exclusion method (control in white vs.
exclusion in black) on density of (A) adult and (B) juvenile lugworms (counts of fecal casts), (C) lugworm relief (lugworm-induced
microtopography, used as proxy for lugworm disturbance), and (D) seagrass area per plot (used as proxy for restoration success).
Data are from 17 and 18 July 2008, 13 months after transplantation. Bars represent meanþSE. Different letters above bars indicate
significant differences (Tukey’s HSD, P , 0.05).
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site no positive effect of lugworm exclusion on seagrass

growth was found, although the proportional reduction

of lugworm disturbance was comparable to that

observed at the sheltered site. We expect this to be due

to poorer growth conditions at the exposed site, due to

direct physical disturbances by waves and currents

(dislodgement or mechanical stress) or to indirect effects

of increased hydrodynamics, such as increased sediment

dynamics (resulting in burial or erosion) (e.g., Cabaço

and Santos 2007; Han et al. 2012) or decreased epiphyte

grazer densities (increasing algal overgrowth and thus

light reduction for the seagrass plants) (Schanz and

Asmus 2003). This indicates that excluding negative

ecosystem-engineering interactions to initiate a popula-

tion is only useful in areas where growth is not limited

by other overriding (physical) stresses.

Feasibility and long-term consequences of our method

Our large-scale shell treatment proved to be a good

measure for promoting initial seagrass establishment

success by excluding adult lugworms and their negative

effects, which is an important step in restoration. Extra

costs for the application of a shell layer were ;20% of

the total transplantation costs. For restoration purpos-

es, lugworm exclusion by shells has major advantages

over using nets, as have been used in scientific studies on

lugworm exclusion (Reise 1983, Philippart 1994, Vol-

kenborn and Reise 2006). First, shells are natural

material that can generally be easily obtained locally.

Second, in contrast to nets as used by Volkenborn and

Reise (2006), shell layers only exclude large lugworms

and allow smaller ones to establish. This is advanta-

geous because the full exclusion has several side effects,

such as the accumulation of fine sediment and the

blockage of interstitial pores causing enhanced nutrient

and sulphide levels (Volkenborn et al. 2007) that may

have negative effects on seagrass performance (i.e.,

Touchette and Burkholder 2000, Calleja et al. 2007).

The present approach of removing negative engineer-

ing interactions was specifically aimed at improving the

initial establishment for ecosystems that are difficult to

restore due to establishment thresholds, but can later

maintain themselves by self-facilitating positive feed-

backs. Maximal establishment is the first requirement to

enhance long-term success. However, although the

treatment most likely will continue to diminish negative

engineering interactions over the long term (the shell

layer will not easily get lost), this does not necessarily

warrant long-term success. During winter, when lug-

worms are less active and seagrass is dormant, grazing

or physical disturbances from storm-driven waves,

freezing, and ice rafting may form a second bottleneck

to meadow persistence and thus restoration success.

Unfortunately, these processes appeared to be important

at our restoration sites, as seagrass transplantation

suffered large losses during subsequent winters. Still,

during summers, the shell treatment had a consistent

positive effect on seagrass survival and growth similar to

that shown in Fig. 2. Present observations suggest that

the proposed method of removing negative engineering

interactions will be most beneficial in those areas where

biological activity causing such interactions is the main

driver restricting seagrass growth year round.

CONCLUSIONS

Dynamic ecosystems that do not respond linearly to

changes but are characterized by threshold behavior

(such as coastal ecosystems) are notoriously difficult to

restore (Rapport et al. 1998, Hobbs et al. 2006, van der

Heide et al. 2007, Suding and Hobbs 2009) and are also

sensitive to environmental perturbations (Scheffer et al.

2001, Pascual and Guichard 2005). Thorough under-

standing of system feedbacks, criticalities, shifts, and

thresholds is needed to predict and thereby prevent

transitions toward a barren state (Pascual and Guichard

2005, Scheffer et al. 2009, Firn et al. 2010). We provide

TABLE 2. Sediment and pore water composition in control and exclusion (shell) plots at sheltered
and exposed transplantation sites.

Parameter Treatment

Sheltered Exposed

Mean SE Mean SE

D50SED (lm) control 159.13 8.54 179.08 1.19

shell 168.70 5.74 175.40 0.98

Org CSED (%) control 1.27 0.13 0.55 0.09
shell 1.04 0.14 0.69 0.12

NH4 (lmol/L) control 91.82 11.18 � � � � � �

shell 104.17 13.15 � � � � � �

ortho-PO4 (lmol/L) control 13.14 2.62 � � � � � �

shell 14.24 1.34 � � � � � �

pH control 7.48 0.02 � � � � � �

shell 7.49 0.03 � � � � � �

Alkalinity (meq/L) control 2.75 0.12 � � � � � �

shell 3.03 0.10 � � � � � �

Notes: Sampling was conducted in early September 2007, three months after transplantation.
Significant differences between treated and untreated plots are indicated in bold (t test, P , 0.05).
Abbreviations are: D50SED, median grain size of the sediment; Org CSED, organic carbon fraction
of the sediment. All other parameters refer to the pore water.
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compelling experimental evidence demonstrating that

exclusion of negative ecosystem-engineering interactions

may be useful in initiating the reestablishment of those

species whose initial establishment is hampered by

thresholds but who subsequently benefit from self-

facilitating positive feedbacks. Present findings under-

line that in addition to the recent growing awareness of

the need to consider positive (facilitating) interactions in

ecological theory (i.e., Bruno et al. 2003, Brooker and

Callaway 2009) and ecological conservation and resto-

ration projects (Byers et al. 2006, Crain and Bertness

2006, Halpern et al. 2007, van Katwijk et al. 2009), it is

equally important to also consider negative engineering

interactions between ecosystem-engineering species in

restoration projects. This result reemphasizes and (by

specifically focusing on negative engineering interac-

tions) extends a wealth of older theory (Rhoads et al.

1970, Peterson 1980, 1991, Reise 1985, Wilson 1991).

Similar to positive feedbacks, such negative engineering

interactions may also cause threshold dynamics. Though

our study was carried out in a marine environment,

similar principles may be expected to apply to other

ecosystems dominated by ecosystem engineers (Rietkerk

et al. 2004, Scheffer et al. 2009).

ACKNOWLEDGMENTS

We gratefully acknowledge Paul Giesen, Kris Giesen, Martin
Versteeg, Tine Driessen, Christiaan Stouten, and Roy van de

Voort for their technical and/or management support, and Jan
Hendriks, Rob Leuven, and Alan Ziegler for valuable

comments on earlier versions of the manuscript. We acknowl-
edge B. T. L. Bruinisse for the successful execution of the

transplants and Projectbureau Zeeweringen (executive part of
Dutch Ministry of Infrastructure and the Environment) for

funding this work.

LITERATURE CITED

Bakker, J. P., P. Esselink, K. S. Dijkema, W. E. van Duin, and
D. J. de Jong. 2002. Restoration of salt marshes in the
Netherlands. Hydrobiologia 478:29–51.

Barbier, E. B., et al. 2008. Coastal ecosystem-based manage-
ment with nonlinear ecological functions and values. Science
319:321–323.

Berkenbusch, K., A. A. Rowden, and T. E. Myers. 2007.
Interactions between seagrasses and burrowing ghost shrimps
and their influence on infaunal assemblages. Journal of
Experimental Marine Biology and Ecology 341:70–84.

Boogert, N. J., D. M. Paterson, and K. N. Laland. 2006. The
implications of niche construction and ecosystem engineering
for conservation biology. BioScience 56:570–578.

Bouma, T. J., M. Friedrichs, B. K. van Wesenbeeck, S.
Temmerman, G. Graf, and P. M. J. Herman. 2009.
Density-dependent linkage of scale-dependent feedbacks: a
flume study on the intertidal macrophyte Spartina anglica.
Oikos 118:260–268.

Brooker, R. W., and R. M. Callaway. 2009. Facilitation in the
conceptual melting pot. Journal of Ecology 97:1117–1120.

Bruno, J. F., J. J. Stachowicz, and M. D. Bertness. 2003.
Inclusion of facilitation into ecological theory. Trends in
Ecology and Evolution 18:119–125.

Byers, J. E., K. Cuddington, C. G. Jones, T. S. Talley, A.
Hastings, J. G. Lambrinos, J. A. Crooks, and W. G. Wilson.
2006. Using ecosystem engineers to restore ecological
systems. Trends in Ecology and Evolution 21:493–500.

Cabaço, S., and R. Santos. 2007. Effects of burial and erosion
on the seagrass Zostera noltii. Journal of Experimental
Marine Biology and Ecology 340:204–212.

Cadee, G. C. 1976. Sediment reworking by Arenicola marina on
tidal flats in Dutch Wadden Sea. Netherlands Journal of Sea
Research 10:440–460.

Calleja, M. L., N. Marba, and C. M. Duarte. 2007. The
relationship between seagrass (Posidonia oceanica) decline
and sulfide porewater concentration in carbonate sediments.
Estuarine, Coastal and Shelf Science 73:583–588.

Crain, C. M., and M. D. Bertness. 2006. Ecosystem engineering
across environmental gradients: implications for conserva-
tion and management. BioScience 56:211–218.

Farke, H., and E. M. Berghuis. 1979. Spawning, larval
development and migration of Arenicola marina under field
conditions in the western Wadden Sea. Netherlands Journal
of Sea Research 13:529–535.

Firn, J., A. P. N. House, and Y. M. Buckley. 2010. Alternative
states models provide an effective framework for invasive
species control and restoration of native communities.
Journal of Applied Ecology 47:96–105.

Flach, E. C., and J. J. Beukema. 1994. Density-governing
mechanisms in populations of the lugworm Arenicola-marina
on tidal flats. Marine Ecology Progress Series 115:139–149.

Halpern, B. S., B. R. Silliman, J. D. Olden, J. P. Bruno, and
M. D. Bertness. 2007. Incorporating positive interactions in
aquatic restoration and conservation. Frontiers in Ecology
and the Environment 5:153–160.

Han, Q., T. J. Bouma, F. G. Brun, W. Suykerbuyk, and M. M.
van Katwijk. 2012. Resilience of Zostera noltii to burial and
erosion disturbances. Marine Ecology Progress Series
449:133–143.

Hobbs, R. J., et al. 2006. Novel ecosystems: theoretical and
management aspects of the new ecological world order.
Global Ecology and Biogeography 15:1–7.

Hobbs, R. J., and D. A. Norton. 1996. Towards a conceptual
framework for restoration ecology. Restoration Ecology
4:93–110.

Hughes, R. G., D. Lloyd, L. Ball, and D. Emson. 2000. The
effects of the polychaete Nereis diversicolor on the distribu-
tion and transplanting success of Zostera noltii. Helgoland
Marine Research 54:129–136.

Hughes, R. G., and O. A. L. Paramor. 2004. On the loss of
saltmarshes in south-east England and methods for their
restoration. Journal of Applied Ecology 41:440–448.

Hughes, T. P., N. A. J. Graham, J. B. C. Jackson, P. J. Mumby,
and R. S. Steneck. 2010. Rising to the challenge of sustaining
coral reef resilience. Trends in Ecology and Evolution
25:633–642.

Jacobs, R., H. H. Hegger, and A. Raswillems. 1983. Seasonal-
variations in the structure of a Zostera community on tidal
flats in the SW Netherlands, with special reference to the
benthic fauna. Proceedings of the Koninklijke Nederlandse
Akademie Van Wetenschappen Series C, Biological and
Medical Sciences 86:347–375.

Jones, C. G., J. H. Lawton, and M. Shachak. 1994. Organisms
as ecosystem engineers. Oikos 69:373–386.

Lamers, L. P. M., H. B. M. Tomassen, and J. G. M. Roelofs.
1998. Sulfate-induced entrophication and phytotoxicity in
freshwater wetlands. Environmental Science and Technology
32:199–205.

Louters, T., J. H. van den Berg, and J. P. M. Mulder. 1998.
Geomorphological changes of the Oosterschelde tidal system
during and after the implementation of the delta project.
Journal of Coastal Research 14:1134–1151.

Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch, and
D. F. Westlake. 2001. The interaction between water
movement, sediment dynamics and submersed macrophytes.
Hydrobiologia 444:71–84.

Omori, M. 2010. Degradation and restoration of coral reefs:
experience in Okinawa, Japan. Marine Biology Research 7:3–
12.

WOUTER SUYKERBUYK ET AL.1230 Ecological Applications

Vol. 22, No. 4



Pascual, M., and F. Guichard. 2005. Criticality and disturbance
in spatial ecological systems. Trends in Ecology and
Evolution 20:88–95.

Peterson, C. H. 1980. Approaches to the study of competition
in benthic communities in soft sediments. Pages 291–302 in V.
Kennedy, editor. Estuarine perspectives. Academic Press,
New York, New York, USA.

Peterson, C. H. 1991. Intertidal zonation of marine-inverte-
brates in sand and mud. American Scientist 79:236–249.

Philippart, C. J. M. 1994. Interactions between Arenicola
marina and Zostera noltii on a tidal flat in the Wadden Sea.
Marine Ecology Progress Series 111:251–257.

Rapport, D. J., W. G. Whitford, and M. Hilden. 1998.
Common patterns of ecosystem breakdown under stress.
Environmental Monitoring and Assessment 51:171–178.

Reise, K. 1983. Experimental removal of lugworms from
marine sand affects small zoobenthos. Marine Biology
74:327–332.

Reise, K. 1985. Tidal flat ecology: an experimental approach to
species interactions. Springer Verlag, New York, New York,
USA.

Reise, K. 2002. Sediment mediated species interactions in
coastal waters. Journal of Sea Research 48:127–141.

Reise, K., and J. Kohlus. 2008. Seagrass recovery in the
northern Wadden Sea? Helgoland Marine Research 62:77–
84.

Rhoads, D. C., and D. K. Young. 1970. Influence of deposit-
feeding organisms on sediment stability and community
trophic structure. Journal of Marine Research 28:150–178.

Rietkerk, M., S. C. Dekker, P. C. de Ruiter, and J. van de
Koppel. 2004. Self-organized patchiness and catastrophic
shifts in ecosystems. Science 305:1926–1929.

Schanz, A., and H. Asmus. 2003. Impact of hydrodynamics on
development and morphology of intertidal seagrasses in the
Wadden Sea. Marine Ecology Progress Series 261:123–134.

Scheffer, M., J. Bascompte, W. A. Brock, V. Brovkin, S. R.
Carpenter, V. Dakos, H. Held, E. H. van Nes, M. Rietkerk,
and G. Sugihara. 2009. Early-warning signals for critical
transitions. Nature 461:53–59.

Scheffer, M., S. Carpenter, J. A. Foley, C. Folke, and B.
Walker. 2001. Catastrophic shifts in ecosystems. Nature
413:591–596.

Siebert, T., and G. M. Branch. 2006. Ecosystem engineers:
Interactions between eelgrass Zostera capensis and the
sandprawn Callianassa kraussi and their indirect effects on
the mudprawn Upogebia africana. Journal of Experimental
Marine Biology and Ecology 338:253–270.

Silliman, B. R., J. van de Koppel, M. D. Bertness, L. E.
Stanton, and I. A. Mendelssohn. 2005. Drought, snails, and
large-scale die-off of southern US salt marshes. Science
310:1803–1806.

Suding, K. N., and R. J. Hobbs. 2009. Threshold models in
restoration and conservation: a developing framework.
Trends in Ecology and Evolution 24:271–279.

Touchette, B. W., and J. M. Burkholder. 2000. Review of
nitrogen and phosphorus metabolism in seagrasses. Journal
of Experimental Marine Biology and Ecology 250:133–167.

van de Koppel, J., P. M. J. Herman, P. Thoolen, and C. H. R.
Heip. 2001. Do alternate stable states occur in natural
ecosystems? Evidence from a tidal flat. Ecology 82:3449–
3461.

van der Heide, T., A. Smolders, B. Rijkens, E. H. van Nes,
M. M. van Katwijk, and J. Roelofs. 2008. Toxicity of
reduced nitrogen in eelgrass (Zostera marina) is highly
dependent on shoot density and pH. Oecologia 158:411–419.

van der Heide, T., E. H. van Nes, G. W. Geerling, A. J. P.
Smolders, T. J. Bouma, and M. M. van Katwijk. 2007.
Positive feedbacks in seagrass ecosystems: implications for
success in conservation and restoration. Ecosystems 10:1311–
1322.

van der Heide, T., E. H. van Nes, M. M. van Katwijk, H. Olff,
and A. J. P. Smolders. 2011. Positive feedbacks in seagrass
ecosystems: evidence from large-scale empirical data. PLoS
ONE 6:7.

van Katwijk, M. M., A. R. Bos, V. N. de Jonge, L. Hanssen,
D. C. R. Hermus, and D. J. de Jong. 2009. Guidelines for
seagrass restoration: importance of habitat selection and
donor population, spreading of risks, and ecosystem engi-
neering effects. Marine Pollution Bulletin 58:179–188.

van Katwijk, M. M., A. R. Bos, D. C. R. Hermus, and W.
Suykerbuyk. 2010. Sediment modification by seagrass beds:
muddification and sandification induced by plant cover and
environmental conditions. Estuarine Coastal and Shelf
Science 89:175–181.

van Katwijk, M. M., and D. C. R. Hermus. 2000. Effects of
water dynamics on Zostera marina: transplantation experi-
ments in the intertidal Dutch Wadden Sea. Marine Ecology
Progress Series 208:107–118.

van Wesenbeeck, B. K., J. van de Koppel, P. M. J. Herman,
J. P. Bakker, and T. J. Bouma. 2007. Biomechanical warfare
in ecology; negative interactions between species by habitat
modification. Oikos 116:742–750.

Volkenborn, N., S. I. C. Hedtkamp, J. E. E. van Beusekom, and
K. Reise. 2007. Effects of bioturbation and bioirrigation by
lugworms (Arenicola marina) on physical and chemical
sediment properties and implications for intertidal habitat
succession. Estuarine Coastal and Shelf Science 74:331–343.

Volkenborn, N., and K. Reise. 2006. Lugworm exclusion
experiment: responses by deposit feeding worms to biogenic
habitat transformations. Journal of Experimental Marine
Biology and Ecology 330:169–179.

Wilson, W. H. 1991. Competition and predation in marine soft-
sediment communities. Annual Review of Ecology and
Systematics 21:211–241.

June 2012 1231SUPPRESSING BIOENGINEERS IN RESTORATION


