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AUTHOR SUMMARY

Modern society depends on
increasingly interdependent
systems that are prone to
widespread failure. For
example, transportation,
communication, power grids,
and other infrastructures
support one another and the
world’s interconnected
economies. Barrages of
incidents large and small—
downed power lines,
grounded aircrafts, natural
disasters, and the like—cause
avalanches of repercussions
that cascade within and
among these systems (1).
Although interdependence
confers benefits, its effect on
the risk of failure at the
individual system level and at
the collective level remains
poorly understood. Here we
analyze how the
interconnectivity
(interdependence) between
networks affects the sizes of
their cascades of load
shedding. For networks derived from interdependent power
grids, we show that interdependence can have a stable
equilibrium. An isolated network suppresses its large cascades
by connecting to other networks, but too many
interconnections exacerbate its largest cascades—and those of
the whole system. We develop techniques to estimate this
optimal amount of interconnectivity, and we examine how
differences in network capacity and load affect this
equilibrium. Our framework advances the current
mathematical tools for analyzing dynamical processes on
interdependent (or modular) networks, and it improves our
understanding of systemic risk in coupled networks.

In the basic process that we consider, a system contains
many elements, each of which sheds its load onto neighboring
elements whenever it reaches its capacity. This is captured by
the classic sandpile model of Bak–Tang–Wiesenfeld, a
paradigm for the power law statistics of cascades in many
disciplines, from neuronal avalanches to financial instabilities
to electrical blackouts (2). In a basic formulation on a graph
of nodes and edges, each node has a capacity for holding
grains of sand (interpreted here as load or stress). Grains of
sand are dropped randomly on nodes, and whenever a node
has more sand than its capacity, it topples and sheds all its
sand onto its neighbors, which may in turn have too much
sand and topple, and so on. Thus, dropping a grain of sand
can cause an avalanche (cascade) of toppling. These
avalanches, like blackouts in power grids (3), occur in sizes

characterized by a power law
distribution: They are often
small but occasionally
enormous.

The Bak–Tang–Wiesenfeld
model was originally
formulated on a lattice.
Given the relevance of
networked systems, the
dynamics have recently been
studied on isolated networks,
but not yet on
interdependent (or modular)
networks. Here we study it
on two networks with sparse
connections between them.
The two networks model
either two different types of
infrastructures or two
modules within one
infrastructure, and the
interconnections between
them model their
interdependence. We
explicitly study networks
extracted from two
interdependent power grids
in the southeastern United

States and an idealization of them that is more amenable to
mathematical study. In this idealization, each node is
connected to a node in the other network with probability p

(Fig. P1, Inset).
Our main result is that interdependence can have a stable

equilibrium (Fig. P1). Some interconnectivity is beneficial to
an individual network because the other network acts as a
reservoir for extra load. The gold curve of Fig. P1 shows that
the chance of a large cascade in a network can be reduced by
70% by increasing the interconnectivity p from 0.0005 to
0.075. Too much interdependence, however, becomes
detrimental for two reasons. First, new interconnections open
pathways for the neighboring network to inflict additional
load. Second, each interconnection augments the system’s
capacity, making available more load that fuels even larger
cascades in each network. As a result, the chance of a large

Fig. P1. The chance that a network a coupled to another network b

suffers a cascade spanning more than half the network (gold curve) has a

stable minimum at a critical amount of interconnectivity p!. Networks

seeking to mitigate their largest cascades would prefer to build or

demolish interconnections to operate at this critical point p!. The blue

(red) curve is the chance that a cascade that begins in a (b) topples at

least 1,000 nodes in a. Increasing interconnectivity only exacerbates the

cascades inflicted from b to a (red), but interestingly, it initially suppresses

the local cascades in a. (From simulations on coupled random three-

regular graphs; the inset depicts a small example with 30 nodes per

network and p ¼ 0.1).
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cascade in an individual network eventually increases with
interconnectivity p, so p

! is a stable minimum.
This second factor—that new interconnections increase a

network’s capacity for load—has global consequences. With
more load available, larger cascades in the system as a whole
become possible. Therefore, networks that interconnect to one
another to mitigate their own cascades (Fig. P1) may
unwittingly cause larger global cascades in the whole system.
This consequence of increased capacity is a warning for the
interconnections under construction among, for example,
different power grids to accommodate long-distance trade and
renewable sources of energy (4).

The results in Fig. P1 show that networks suppressing their
largest cascades would seek the optimal level of
interconnectivity p

!. However, as shown in the main article,
building interconnections to reach p

! increases the occurrence
of small cascades. Conversely, networks can suppress their
smallest cascades the most by seeking isolation, p ¼ 0. But
suppressing their smallest cascades exacerbates their largest
ones (left side of Fig. P1), just as extinguishing small forest
fires can incite large ones, and engineering power grids to
suppress small blackouts can increase the risk of large
ones (3).

Finally, we determine how asymmetry among networks
affects the level of interconnectivity that each network
considers optimal. For instance, two interconnected power
grids may differ in capacity, load, redundancies, demand,
susceptibility to line outages, and age of infrastructure. We

capture these differences with a parameter that controls the
rates at which cascades begin in either network. We show that,
in any asymmetric situation, the equilibrium will be frustrated,
with only one of the grids able to achieve its optimal level of
interconnectivity.

Determining how interdependence affects the functioning of
networks is critical to understanding the infrastructures so vital
to modern society. Whereas others have recently shown that
interdependence can lead to alarmingly catastrophic cascades
of failed connectivity (5), here we show that interdependence
also provides benefits, and these benefits can balance the
detriments at stable equilibria. We expect that this work will
stimulate calculations of critical points in interconnectivity
among networks subjected to other dynamics. As critical
infrastructures such as power grids, transportation,
communication, banks, and markets become increasingly
interdependent, resolving the risks of large cascades and the
incentives that shape them becomes ever more important.
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Understanding how interdependence among systems affects

cascading behaviors is increasingly important across many fields of

science and engineering. Inspired by cascades of load shedding in

coupled electric grids and other infrastructure, we study the Bak–

Tang–Wiesenfeld sandpile model on modular random graphs and

on graphs based on actual, interdependent power grids. Starting

from two isolated networks, adding some connectivity between

them is beneficial, for it suppresses the largest cascades in each

system. Too much interconnectivity, however, becomes detrimental

for two reasons. First, interconnections open pathways for neigh-

boringnetworks to inflict large cascades. Second, as in real infrastruc-

ture, new interconnections increase capacity and total possible load,

which fuels even larger cascades. Using a multitype branching pro-

cess and simulations we show these effects and estimate the optimal

level of interconnectivity that balances their trade-offs. Such equili-

bria could allow, for example, power grid owners to minimize the

largest cascades in their grid.We also show that asymmetric capacity

among interdependent networks affects the optimal connectivity

that each prefers and may lead to an arms race for greater capacity.

Ourmultitypebranchingprocess framework provides buildingblocks

for better prediction of cascading processes on modular random

graphs and on multitype networks in general.

vulnerability of infrastructure ∣ complex networks

Networks that constitute our critical infrastructure increasingly
depend on one another, which enables cascades of load,

stress, and failures (1–6). The water network, for instance, turns
turbines and cools nuclear reactors in the electrical grid, which
powers the transportation and communications networks that
underpin increasingly interdependent global economies. Barrages
of disturbances at different scales—volcanic eruptions (7), satellite
malfunctions (4), earthquakes, tsunamis, wars (8)—trigger cas-
cades of load shedding in interdependent transportation, commu-
nication, and financial systems. Interdependence can also increase
within a particular infrastructure, with consequences for cascading
failures. The electrical grid of the United States, for example, con-
sists of over 3,200 independent grids with distinct ownership—
some private, others public—and unique patterns of connectivity,
capacities, and redundancies (9). To accommodate rising demand
for electricity, long-distance trade of energy (10), and new types of
power sources (11), interconnections among grids bear ever more
load (12), and many new high-capacity transmission lines are
planned to interconnect grids in the United States and in Europe
(13). Fig. 1 shows the interconnections planned to transport wind
power (11). Though necessary, these interconnections affect sys-
temic risk in ways not well understood, such as in the power grid,
where the modular structure affects its large cascades. For exam-
ple, the August 14, 2003 blackout, the largest in North American
history, spread from a grid in Ohio to one in Michigan, then to
grids in Ontario and New York before overwhelming the northeast
(10, 14).

Researchers have begun to model cascades of load and failure
within individual power grids using probabilistic models (15),
linearized electric power dynamics (16, 17), and game theory (18).

The first models of interdependent grids use simplified topologies
and global coupling to find that interconnections affect critical
points of cascades (19), which suggests that they may affect the
power law distributions of blackout size (12, 15). Models with in-
terconnections among distinct infrastructure have focused on the
spread of topological failures, in which nodes are recursively re-
moved (20–22), and not on the dynamical processes occurring
on these networks. These models find that interdependence causes
alarmingly catastrophic cascades of failed connectivity (20–22). Yet
as we show here, interdependence also provides benefits, and these
benefits can balance the dangers at stable critical points.

Here we develop a simple, dynamical model of load shedding
on sparsely interconnected networks. We study Bak–Tang–
Wiesenfeld sandpile dynamics (23, 24) on networks derived from
real, interdependent power grids and on sparsely coupled, random
regular graphs that approximate the real topologies. Sandpile
dynamics are paradigms for the cascades of load, self-organized
criticality, and power law distributions of event sizes that pervade
disciplines, from neuronal avalanches (25–27) to cascades among
banks (28) to earthquakes (29), landslides (30), forest fires (31, 32),
solar flares (33, 34), and electrical blackouts (15). Sandpile cas-
cades have been extensively studied on isolated networks (35–41).
On interdependent (or modular) networks, more basic dynamical
processes have been studied (42–45), but sandpile dynamics
have not.

We use a multitype branching process approximation and
simulations to derive at a heuristic level how interdependence
affects cascades of load. Isolated networks can mitigate their
largest cascades by building interconnections to other networks,
because those networks provide reservoirs to absorb excess load.
Build too many interconnections, however, and the largest cas-
cades in an individual network increase in frequency for two rea-
sons: Neighboring networks inflict load more easily, and each
added interconnection augments the system’s overall capacity
and load. These stabilizing and destabilizing effects balance at
a critical amount of interconnectivity, which we analyze for syn-
thetic networks that approximate interdependent power grids.
As a result of the additional load introduced by interconnections,
the collection of networks, viewed as one system, suffers larger
global cascades—a warning for the increasing interdependence
among electrical grids (Fig. 1), financial sectors, and other infra-
structure (11–13). Finally, we study the effects of capacity and
load imbalance. Networks with larger total capacity inflict larger
avalanches on smaller capacity networks, which suggests an arms
race for greater capacity. The techniques developed here advance
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the theoretical machinery for dynamical processes on multitype
networks as well as our heuristic understanding of how interdepen-
dence and incentives affect large cascades of load in infrastructure.

Theoretical Formulation

Sandpile Dynamics. Introduced by Bak, et al. in 1987 and 1988 (23,
24), the sandpile model is a well-studied, stylizedmodel of cascades
that exhibits self-organized criticality, power laws, and universality
classes, which has spawned numerous related models with applica-
tions inmany disciplines (e.g., refs. 30, 31, 33, 34, and 46). In a basic
formulation on an arbitrary graph of nodes and edges, one drops
grains of sand (or “load”) uniformly at random on the nodes, each
of which has an innate threshold (or capacity). Whenever the load
on a node exceeds its threshold, that node topples, meaning that it
sheds (or moves) its sand to its neighbors. These neighbors may in
turn become unstable and topple, which causes some of their
neighbors to topple, and so on. In this way, dropping a grain of
sand on the network can cause a cascade of load throughout the
system—often small but occasionally large. The cascade finishes
once no node’s load exceeds its capacity, whereupon another grain
of sand is dropped, and the process repeats. Probability measures
of the size, area, and duration of avalanches typically follow power
laws asymptotically in the limit of many avalanches (47).

Many classic versions of the sandpile model (23, 46, 47) con-
nect the nodes in a finite, two-dimensional lattice and assign all
nodes threshold four, so that a toppled node sheds one sand grain
to each of its four neighbors. The lattice has open boundaries, so
that sand shed off the boundary is lost, which prevents inundation
of sand. A few variants of the model on lattices can be solved
exactly if the shedding rules have Abelian symmetry (47).

More recently, sandpile models have been studied on isolated
networks, including Erdős-Rényi graphs (35, 36), scale-free graphs
(39–41), and graphs generated by the Watts–Strogatz model on
one- (37) and two-dimensional (38) lattices. A natural choice for
the capacities of nodes—which we use here—is their degree, so that
toppled nodes shed one grain to each neighbor (39, 48). Other
choices include identical (39), uniformly distributed from zero to
the degree k (40), and k1−η for some 0 ≤ η < 1 (40, 41), but all
such variants must choose ways to randomly shed to a fraction of
neighbors. Shedding one grain to each neighbor is simpler and
exhibits the richest behavior (39). A natural analog of open bound-
aries on finite lattices is to delete grains of sand independently with
a small probability f as they are shed. We choose the dissipation
rate of sand f so that the largest cascades topple almost the entire
network.

The mean-field solution of sandpile cascades is characterized
by an avalanche size distribution that asymptotically obeys a

power law with exponent −3∕2 and is quite robust to network
structure. (For example, on scale-free random graphs, sandpile
cascades deviate from mean-field behavior only if the degree dis-
tribution has a sufficiently heavy tail, with power law exponent
2 < γ < 3; ref. 39.) Nevertheless, sparse connections among
interdependent networks divert and direct sandpile cascades in
interesting, relevant ways.

Topologies of Interacting Networks. Here we focus on interdepen-
dent power grids and idealized models of them. We obtained
topological data on two interdependent power grids—which we
label c and d—from the US Federal Energy Regulation Commis-
sion (FERC).* (All data shown here are sanitized to omit sensi-
tive information.) Owned by different utilities but connected to
one another in the southeastern United States,† power grids c and
d have similar size (439 and 504 buses) but rather different aver-
age internal degrees (2.40 and 2.91, respectively). The grids are
sparsely interconnected by just eight edges, making the average
external node degrees 0.021 and 0.018, respectively. More infor-
mation on c and d is in Table S1. As in other studies, we find that
these grids have narrow degree distributions (49–51) and are
sparsely interconnected to one another (12).

To construct idealized versions of the real grids, consider two
networks labeled a and b. Because of the narrow degree distribu-
tion of the real grids, we let network a be a random za-regular
graph (where each node has degree za) and network b be a random
zb-regular graph. These two are then sparsely interconnected as
defined below. To define this system of coupled networks more
formally, we adopt the multitype network formalism of refs. 45
and 52. Each network a, b has its own degree distribution,
paðkaa;kabÞ and pbðkba;kbbÞ, where, for example, paðkaa;kabÞ is
the fraction of nodes in network a with kaa neighbors in a and
kab in b. We generate realizations of multitype networks with these
degree distributions using a simple generalization of the configura-
tion model: All nodes repeatedly and synchronously draw degree
vectors ðkoa;kobÞ from their degree distribution po (where
o ∈ fa;bg), until the totals of the internal degrees kaa, kbb are both
even numbers and the totals of the external degrees kab, kba
are equal.‡

We interconnect the random za, zb-regular graphs by Bernoulli-
distributed coupling: each node receives one external “edge stub”
with probability p and none with probability 1 − p. Hence the
degree distributions are paðza;1Þ ¼ p; paðza;0Þ ¼ 1 − p, and
pbð1;zbÞ ¼ p; pbð0;zbÞ ¼ 1 − p. We denote this class of interacting
networks by the shorthand RðzaÞ-BðpÞ-RðzbÞ; we illustrate a small
example of Rð3Þ-Bð0.1Þ-Rð4Þ in Fig. 2.

Measures of Avalanche Size. We are most interested in the ava-
lanche size distributions saðta;tbÞ;sbðta;tbÞ, where, for example,
saðta;tbÞ is the chance that an avalanche begun in network a
(indicated by the subscript on sa) causes ta, tb many topplings in
networks a, b, respectively. These distributions count the first top-
pling event, and they are defined asymptotically in that sa, sb are
frequencies of avalanche sizes after the networks have undergone
many cascades. To study sa and sb, we simulate sandpile avalanches
and approximate them using a multitype branching process.

Fig. 1. The power grid of the continental United States, illustrating the

three main regions or “interconnects”—Western, Eastern, and Texas—and

new lines (in red) proposed by American Electric Power to transport wind

power (11, 13).

*We scraped the network topologies of two “areas” of the southeastern region of

the US power grid from simulation output provided by the FERC via the Critical Energy

Infrastructure Information, http://www.ferc.gov/legal/ceii-foia/ceii.asp

†These two power grids are also connected to other grids, which we ignore in this paper

but could model with more types of nodes.

‡A standard practice in the literature regarding admissible joint degree distributions is that

the average interdegrees hkabi, hkbai of the degree distributions must be equal (45, 53).

This practice is more restrictive than necessary: Most any joint degree distributions can be

used, as long as conditioning on valid degree sequences (even internal and equal external

total degrees) leaves some probability. We derive the effective degree distributions,

which are convolutions of the input ones, in Lemma 1 in the Appendix.
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Multitype Branching Process Approximation. In these next two sec-
tions, we present an overview of our mathematical formulation,
with details left toMaterials andMethods. We develop a branching
process approximation that elucidates how sandpile cascades
spread in interconnected networks, advances theoretical tools for
cascades on multitype networks, justifies using this model as an
idealization of real infrastructure like power grids, and estab-
lishes an open and relevant mathematical challenge. However,
readers more interested in the applications of the model may wish
to skip to Results.

Sandpile cascades on networks can be approximated by a
branching process provided that the network is locally tree-like
(i.e., has few short cycles), so that branches of a nascent cascade
grow approximately independently. The interacting networks
RðzaÞ-BðpÞ-RðzbÞ are tree-like provided they are sparse and large
enough (with at least several hundred nodes) because the edges
are wired uniformly at random. Power grids are approximately
tree-like: The clustering coefficient of power grids c and d, for
example, is C ≈ 0.05, an order of magnitude larger than an Erdős-
Rényi random graph with equally many nodes and edges, but still
quite small. Although tree-based approximations of other dyna-
mical processes work surprisingly well even on non-tree-like
graphs, power grid topologies were found to be among the most
difficult to predict with tree-based theories (54). Here we find
that analytic, tree-based approximations of sandpile dynamics
agree well with simulations even on the real power grid topologies
(Fig. 3 and Figs. S1 and S2).

Cascades on interacting networks require a multitype branch-
ing process, in which a tree grows according to probability distri-
butions of the number of events of various types generated from
seed events. We consider two basic event types, a and b topplings
—i.e., toppling events in networks a and in b. These simplify
the underlying branching process of sheddings, or grains of sand
shed from one network to another, of which there are four types:
aa, ab, ba, and bb sheddings. (Note that there is no distinction
between topplings and sheddings on one, isolated network,
because sand can only be shed from, say, a to a.)

A key property of sandpile dynamics on networks, which en-
ables the branching process calculations, is that in simulations
the amount of sand on a node is asymptotically uniformly distrib-
uted from zero to one less its degree (i.e., there is no typical
amount of sand on a node) (48, 55). Hence the chance that a
grain arriving at a node with degree k topples it equals the chance
that the node had k − 1 grains of sand, which is 1∕k. So sandpile
cascades are approximated by what we call 1∕k percolation: The
cascade spreads from node u to node v with probability inversely
proportional to the degree of v. That this probability decays in-
versely with degree suggests a direct interpretation for infrastruc-
ture: Important nodes have k times more connectivity than
unimportant (degree 1) nodes, so they are k times less likely
to fail (they are presumably reinforced by engineers). But when
important nodes do fail, they cause k times more repercussions
(shedded grains of sand). We found some evidence for this in-
verse dependence on degree in the power flowing through buses
(nodes) in power grids: Each additional degree correlates with
an additional 124 mVA of apparent power flowing through it
(R2 ¼ 0.30; see Fig. S3).

The details of the branching process analysis extend the stan-
dard techniques as presented in Materials and Methods. We give
here only the crux of the derivation. Suppose a grain of sand is
shed from network o ∈ fa;bg to network d ∈ fa;bg (origin net-
work, o; destination network, d). What is the chance that this
grain shed from o to d (an od shedding) causes rda and rdb many
grains to be shed from network d to a and from d to b, respec-
tively, at the next time step? This probability distribution, de-
noted qodðrda;rdbÞ, is the branch (or children) distribution of
the branching process for sheddings. Fig. 2 illustrates qab as an
example. Neglecting degree–degree correlations [the subject of
so-called Pðk;k0Þ theory; ref. 54], a grain shed from network o
to d arrives at an edge stub chosen uniformly at random, so it
arrives at a node with degree pdðrda;rdbÞ with probability propor-
tional to rdo because that node has rdo many edges pointing to
network o. Using this fact and the chance of toppling found above
(1∕total degree), we approximate asymptotically that

qodðrda;rdbÞ ¼
rdopdðrda;rdbÞ

hkdoi

1

rda þ rdb
[1]

for rda þ rdb > 0, where hkdoi is the expected number of edges
from d to o, ∑kda ;kdb

kdopdðkda;kdbÞ. To normalize qod, set

qodð0;0Þ≔ 1 − ∑
rdaþrdb>0

qodðrda;rdbÞ; [2]

which is the probability that the destination node does not topple
(i.e., that it has fewer grains than one less its total degree).

Note that for an individual, isolated network the analogous
branch distribution qðkÞ simplifies considerably: In the equivalent
of Eq. 1 there is a cancellation of k in the numerator of with 1∕k
on the right (39–41). Thus the expected number of children

events hqðkÞi ¼ ∑kk
kpðkÞ
hki

1

k ¼ 1. Each seed event gives rise to

one child on average, which then gives rise to one child on aver-
age, etc., which is called a “critical” branching process. (If less
than one child on average, the branching process dies out; if more

Fig. 2. A random three- and four-regular graph connected by Bernoulli-

distributed coupling with interconnectivity parameter p ¼ 0.1 [Rð3Þ-Bð0.1Þ-

Rð4Þ]. We also illustrate the shedding branch distribution qabðrba;bbÞ, the

chance that an ab shedding causes rba, rbb many ba, bb sheddings at the next

time step. Note these random graphs are small and become tree-like when

they are large (⪆1;000 nodes).

A B

C D

Fig. 3. The multitype branching process (red curves) approximates simula-

tions of sandpile cascades on the power grids c, d (blue curves) surprisingly

well, given that power grids are among themost difficult network topologies

on which to predict other dynamics (54). We plot the four marginalized

avalanche size distributions (using the labels a, b for grids c, d). For example,

Fig. 3A, plotting ∑tb
saðta;tbÞ versus ta, is the chance an avalanche begun in a

topples ta nodes in a. Vertical axes’ labels are the expressions in the plots.

Here dissipation f ¼ 0.1.
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than one it may continue indefinitely.) The branching process ap-
proximations of sandpile cascades on the interacting networks
studied here—coupled random regular graphs a, b and power
grids c, d—are also critical, because the principle eigenvalue
of the matrix of first moments of the branch distributions is one.

The branching process of sheddings is high dimensional, with
four types aa, ab, ba, bb recording origin and destination net-
works. Transforming the shedding branch distributions qod to the
toppling branch distributions ua, ub is easy; the key is that a node
topples if and only if it sheds at least one grain of sand (for details,
see Materials and Methods). Transforming to toppling distribu-
tions also halves the dimensions of the branching process of top-
plings, simplifying calculations.

Self-Consistency Equations. We analyze implicit equations for the
avalanche size distributions sa, sb using generating functions
(56). Denote the generating functions associated to the toppling
branch distributions ua, ub and the avalanche size distributions sa,
sb by capital letters U and S; for example,

Uaðτa;τbÞ≕ ∑
∞

ta;tb¼0

uaðta;tbÞτ
ta
a τ

tb
b for τda;τdb ∈ C:

The theory of multitype branching processes (57) implies the self-
consistency equations

Sa ¼ τaUaðSa;SbÞ; Sb ¼ τbUbðSa;SbÞ; [3]

where eachS is evaluated at ðτa;τbÞ. In other words, the left-hand
equation in [3] says that, to obtain the distribution of the sizes of
cascades begun in a, the cascade begins with an a toppling (hence
the τa out front), which causes at the next time step a number of a
and b topplings distributed according to Ua, and these topplings
in turn cause numbers of a and b topplings distributed according
to Sa and Sb.

We wish to solve Eq. 3 forSa andSb, because their coefficients
are the avalanche size distributions sa, sb of interest. In practice,
however, these implicit equations are transcendental and difficult
to invert. Instead, we solve Eq. 3 with computer algebra systems
using three methods—iteration, Cauchy integral formula, and
multidimensional Lagrange inversion (58)—to compute exactly
hundreds of coefficients; for details, see Materials and Methods.
Fig. 3 shows good agreement between simulation of sandpile
cascades on power grids c, d and the branching process approx-
imation (obtained by iterating Eq. 3 seven times starting from
Sa ¼ Sb ¼ 1, with branch distributions calculated from the em-
pirical degree distributions of c, d). For more details on the agree-
ment, including how the degrees of nodes with external links
account for the characteristic “blips” in the avalanche size distri-
butions of the power grids, see Figs. S1 and S2.

These numerical methods are computationally feasible for the
probabilities of the smallest avalanches, but we are most interested
in the probabilities of the largest avalanches—that is, in the asymp-
totic behaviors of saðta;tbÞ;sbðta;tbÞ as ta;tb → ∞. Unfortunately the
technique used for an isolated network—an expansion at a singu-
larity of U—fails for sandpile cascades on Bernoulli-coupled
random regular graphs and on the power grids, because their gen-
erating functions have singularities at infinity and none in the finite
plane (see Materials and Methods). Generalizing these asymptotic
techniques to “multitype cascades” with singularities at infinity
poses an outstanding mathematical challenge. Nevertheless, three
tactics—simulations, computer calculations of coefficients of Sa,
Sb, and analytical calculations of the first moments of the branch
and avalanche size distributions—suffice to obtain interesting con-
clusions about the effect of interdependence on critical cascades of
load, as discussed next.

Results

Locally Stabilizing Effect of Interconnections. We first answer this
question, would an isolated network suppress its largest cascades
of load by connecting to another network? For coupled random
regular graphs RðzaÞ-BðpÞ-RðzbÞ, yes; increasing interconnectivity
p suppresses an individual network’s largest cascades, but only up
to a critical point p� (Fig. 4).

First we introduce notation. For a cascade that begins in
network a, the random variables Taa, Tab are the sizes of the
“local” and “inflicted” cascades: The number of topplings in a
and in b, respectively. For example, a cascade that begins in a and
that topples 10 a nodes and 5 b nodes corresponds to Taa ¼ 10,
Tab ¼ 5. We denote Ta to be the random variable for the size of a
cascade in network a, without distinguishing where the cascade
begins. (We define Tba, Tbb, Tb analogously.) Dropping sand
uniformly at random on two networks of equal size means that
avalanches begin with equal probability in either network, so
PrðTa ¼ taÞ ¼ ∑tb

ðsaðta;tbÞ þ sbðta;tbÞÞ∕2.
In Fig. 4 we plot the probability of observing a large avalanche

in a (that topples at least half of all its nodes) as a function of
interconnectivity p, as measured in numerical simulations on
the Rð3Þ-BðpÞ-Rð3Þ topology. We distinguish between those ava-
lanches that begin in a (blue local cascades), begin in b (red in-
flicted cascades), or in either network (gold). With increasing
interconnectivity p, large inflicted cascades from b to a (red
curve) increase in frequency due in large part to the greater ease
of avalanches traversing the interconnections between networks.
More interesting is that increasing interconnectivity suppresses
large local cascades (blue curve) for small p, but amplifies them
for large p. The 80% drop in PrðTaa > 1;000Þ and 70% drop
in PrðTa > 1;000Þ from p ¼ 0.001 to p� ≈ 0.075� 0.01 are the
locally stabilizing effects of coupling networks. The left inset
in Fig. 4 is the rank-size plot showing the sizes of the largest
avalanches and their decrease with initially increasing p, and
the same holds for simulations on the power grids c and d (right
inset).§ The curve PrðTa > CÞ and the location of its critical point
p� in Fig. 4 is robust to changing the cutoff C ∈ ½400; 1;500�. Thus
a network such as a seeking to minimize its largest cascades
would seek interconnectivity that minimizes PrðTa > CÞ, which

Fig. 4. Interconnectivity is locally stabilizing, but only up to a critical point.

The main plot, the results of simulations on Rð3Þ-BðpÞ-Rð3Þ (2 × 106 grains;

f ¼ 0.01; 2 × 103 nodes/network), shows that large local cascades decrease

and then increase with p, whereas large inflicted cascades only become more

likely. Their average (gold curve) has a stable minimum at p� ≈ 0.075� 0.01.

This curve and its critical point, p�, are stable for cutoffs C in the regime

400 ≤ C ≤ 1;500. (Insets) Rank-size plots on log–log scales of the largest

cascades in network a (Left) for p ¼ 10−3, 10−2, 10−1 and in power grid d con-

nected to c by 0, 8, or 16 edges.

§To adjust interconnectivity between the real power grids c and d, we (i) delete the eight

interconnections so that they are isolated, (ii) leave the eight original interconnections,

and (iii) add eight additional interconnections in a way that mirrors the empirical degree

distribution.
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we estimate to be p� ≈ 0.075� 0.01 for Rð3Þ-BðpÞ-Rð3Þ with 2 ×

10
3 nodes per network.
This central result appears to be generic: changing the system

size, internal degrees, or type of degree distribution (so long as it
remains narrow) may slightly change p� but not the qualitative
shape of Fig. 4 (see Figs. S4 and S5). Furthermore, this effect
of optimal connectivity is unique to interconnected networks:
adding edges to a single, isolated network does not reduce the
chance of a large cascade (and hence produce a minimum like
in Fig. 4). [This result for an isolated network is expected because
sðtÞ ∼ t−3∕2 for all narrow degree distributions; ref. 39.] Whereas
adding links within a network can only increase its vulnerability to
large cascades, adding links to another network can reduce it.
Note that we cannot derive analytical results for Fig. 4 because
the standard techniques for single networks fail for multitype gen-
erating functions with singularities at infinity, and inverting Eq. 3
numerically is practical only for exactly computing the probabil-
ities of small cascades (Ta < 50) and not large ones (Ta > 103)
(see Materials and Methods).

Intuitively, adding connections between networks diverts load,
and that diverted load tends to be absorbed by the neighboring
network rather than amplified and returned, because most cas-
cades in isolated networks are small. One way to see the diversion
of load is in the first moments of the toppling branch distributions
ua, ub. For RðzaÞ-BðpÞ-RðzbÞ, the average numbers of topplings
at the next time step in the same and neighboring networks,
respectively, decrease and increase with the interconnectivity p
as huaia ¼ 1 − p∕ð1þ zaÞ;huaib ¼ p∕ð1þ zbÞ, where, for example,
huaia ≡∑ta ;tb

tauaðta;tbÞ.
However, introducing too many interconnections is detrimen-

tal, as shown in Fig. 4. Interconnections let diverted load more
easily return and with catastrophic effect. In addition, each inter-
connection augments the networks’ capacity and hence average
load, so that large avalanches increase in frequency in individual
networks and in the collection of networks, as discussed next.

Globally Destabilizing Effect of Interconnections. Adding intercon-
nections amplifies large global cascades. That is, the largest ava-
lanches in the collection of networks—viewed as one system with
just one type of node—increase in size with interconnectivity.
Here we are interested in the total avalanche size distribution
sðtÞ, the chance of t topplings overall in a cascade. Fig. 5 shows
the extension of the right-hand tail of sðtÞ in simulations on
Rð3Þ-BðpÞ-Rð3Þ with increasing interconnectivity p. The rank-size
plot inset shows more explicitly that the largest avalanches in-
crease with p. Similar results occur in simulations on power grids
c, d (see SI Text).

What amplifies the global cascades most significantly is the
increase in total capacity (and hence average load available
for cascades) and not the increased interdependence between
the networks. (Recall that capacities of nodes are their degrees,
so introducing new edges between networks increments those
nodes’ degrees and capacities.) To see this effect on coupled ran-
dom regular graphs, we perform the following rewiring experi-
ment. Beginning with two isolated random regular graphs,
each node changes one of its internal edge stubs to be external
with probability p. The degree distributions become, for example,
paðza − 1;1Þ ¼ p; paðza;0Þ ¼ 1 − p, which we call “correlated-
Bernoulli coupling” because the internal and external degrees
are not independent. Fig. S6 shows that the largest global ava-
lanches are not significantly enlarged with increasing “rewired in-
terconnectivity” p for random three-regular graphs with such
coupling. Furthermore, the enlargement of the largest cascades
observed in the rank-size plot in the inset of Fig. 5 is on the order
of the extra average load resulting from the additional intercon-
nectivity (and the same holds for simulations on the power grids).

The amplification of global avalanches, though relatively
small, is relevant for infrastructure: Additional capacity and de-
mand often accompany—and even motivate—the construction of
additional interconnections (11, 13). Furthermore, in reality it is
more common to augment old infrastructure with new intercon-
nections as in Fig. 1 (Bernoulli coupling) rather than to delete an
existing internal connection and rewire it to span across networks
(correlated-Bernoulli coupling). Thus, building new interconnec-
tions augments the entire system’s capacity, and hence average
load, and hence largest cascades.

Interconnectivity That Mitigates Cascades of Different Sizes. Fig. 4
shows that networks seeking to mitigate their large avalanches
seek optimal interconnectivity p. Networks mitigating their small
or intermediate cascades would seek different optimal intercon-
nectivity p, as shown in Fig. 6 [the results of simulations on
Rð3Þ-BðpÞ-Rð3Þ]. Fig. 6A shows that the probability of a small cas-
cade in network a (1 ≤ Ta ≤ 51) increases monotonically with p,
so that networks mitigating the smallest cascades seek isolation,
p ¼ 0. By contrast, the chance of a cascade of intermediate size,
100 ≤ Ta ≤ 150 (Fig. 6B), has a local maximum at p� ≈ 0.05, so
networks mitigating intermediate cascades would demolish all in-
terconnections (p ¼ 0) or build as many as possible (p ¼ 1). By
contrast, the largest cascades 400 ≤ Ta ≤ 1;500 (Fig. 6 C and D)
occur with minimal probability at p� ≈ 0.075� 0.01. For more

Fig. 5. Increasing the interconnectivity p between two random three-regu-

lar graphs extends the tail of the total avalanche size distribution sðtÞ, which

does not distinguish whether toppled nodes are in network a or b. The inset

shows a rank-size plot on log–log scales of the number of topplings t in the

largest 104 avalanches (with 2 × 106 grains of sand dropped), showing that

adding more edges between random three-regular graphs enlarges the lar-

gest global cascades by an amount on the order of the additional number of

interconnections. As expected theoretically (39), when a and b nodes are

viewed as one network, sðtÞ ∼ t−3∕2 for large t (green line).

A B

C D

Fig. 6. (A) Networks mitigating the smallest cascades 1 ≤ Ta ≤ 51 seek

isolation p ¼ 0, whereas (B) networks suppressing intermediate cascades

100 ≤ Ta ≤ 150 seek isolation p ¼ 0 or strong coupling p ¼ 1, depending

on the initial interconnectivity p in relation to the unstable critical point

p� ≈ 0.05. But networks like power grids mitigating large cascades (C and

D) would seek interconnectivity at the stable equilibrium p� ≈ 0.075� 0.01.

The bottom figures and the location of p� are robust to changes in the win-

dow ℓ ≤ Ta ≤ ℓþ 50 for all 400 ≤ ℓ ≤ 1;500.
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plots showing the change in concavity and the robustness of the
stable critical point p� for large cascades, see Fig. S7.

Other models of cascades in power grids conclude that upgrad-
ing and repairing the system to mitigate the smallest blackouts
may increase the risk of the largest blackouts (15). Similarly,
extinguishing small forest fires, a common policy in the 20th
century, increases forest vegetation and thus the risk of large for-
est fires—a phenomenon known as the “Yellowstone effect” (32).
The results here augment these conclusions to include inter-
connectivity. Networks building interconnections in order to sup-
press their large cascades cause larger global cascades (by an
amount on the order of the additional capacity). Networks sup-
pressing their small or intermediate cascades may seek isolation
(p ¼ 0), which amplifies their large cascades, or (for intermediate
cascades) strong coupling (p ¼ 1), which amplifies both large
local and global cascades.

Capacity Disparity. Two networks that are interdependent are
rarely identical, unlike the Rð3Þ-BðpÞ-Rð3Þ topologies studied
thus far, so we determine the effect of capacity disparity on cas-
cades. Because the capacities of nodes are their degrees, we study
RðzaÞ-BðpÞ-RðzbÞ with different internal degrees, za ≠ zb. We find
that interdependence is more catastrophic for smaller capacity
networks, in that they suffer comparatively larger inflicted cas-
cades. They still prefer some interconnectivity, but less than
the higher capacity network.

Using the theoretical branching process approximation, we
compute how much larger inflicted cascades are from high- to
low-capacity networks. Differentiating Eq. 3 with respect to τa,
τb and setting τa ¼ τb ¼ 1 yields four linear equations for the
first moments of the avalanche size distributions sa, sb in terms
of the first moments of the branch distributions ua, ub. For
RðzaÞ-BðpÞ-RðzbÞ, the four first moments of sa, sb are all infinite,
as expected, because in isolation these networks’ avalanche size
distributions are power laws with exponent −3∕2 (39–41). Never-
theless, we can compare the rates at which the average inflicted
cascade sizes diverge by computing their ratio

hsaib
hsbia

¼
1þ za
1þ zb

; [4]

where, e.g., hsaia ≡∑ta ;tb
tasaðta;tbÞ (see SI Text for the derivation).

Thus zb > za implies that the inflicted cascades from b to a are
larger on average than those from a to b. Fig. S8 shows qualitative
agreement with simulations.

As a result of Eq. 4, the low-capacity network prefers less in-
terconnectivity than the high-capacity network. In simulations of
Rð3Þ-BðpÞ-Rð4Þ, for instance, low-capacity network a prefers
p�a ≈ 0.05, whereas high-capacity b prefers p�b ≈ 0.3. For systems
like power grids seeking to mitigate their cascades of load, these
results suggest an arms race for greater capacity to fortify against
cascades inflicted by neighboring networks.

Incentives and Equilibria in Power Grids.Because different networks
have unique susceptibilities to cascades (due to capacity disparity,
for example), equilibria among real networks are more nuanced
than on identical random graphs. Next we explore how the level
of interconnectivity and load disparity affect sandpile cascades on
the power grids c and d. [Although sandpile dynamics do not obey
Ohm’s and Kirchoff’s laws nor the flow of load from sources to
sinks, as in physical power flow models (e.g., refs. 16 and 17), they
do closely resemble some engineers’ models of blackouts, and
blackout data show evidence of criticality and power laws; ref. 15.]
To interpret results, we suppose that the owners of the power
grids c, d are rational, in that they wish to mitigate their largest
cascades but care little about cascades overwhelming neighbor-
ing grids.

To capture different amounts of demand, numbers of redun-
dancies, ages of infrastructure, susceptibility to sagging power
lines (16, 17), and other factors that affect the rate at which cas-
cades of load shedding and failures begin in each network, we
introduce a load disparity parameter r as follows. Each node
in c is r times more likely than a node in d to receive a new grain
of sand. Increasing r intensifies the load on grid c, the rate at
which cascades begin there, and the sizes of the largest inflicted
cascades from c to d. The larger r is, the more volatile power grid
c becomes.

Given the spatial structure of the power grid networks, there is
no principled way to add arbitrarily many interconnections be-
tween them. However, three different levels of interconnectivity
are natural: (i) Delete the eight interconnections so that c and d
are isolated, (ii) leave the eight original interconnections, and (iii)
add eight additional interconnections in a way that mirrors the
empirical degree distribution.

Fig. 7 shows that there are two ways to amplify the largest in-
flicted cascades in d. The first is to increase the number of inter-
connections (compare red to green-dashed curve in the main
figure). The second is to increase r (compare distance from green
to gold curve in the main figure and in the inset). At a critical r�,
the largest inflicted cascades in d that begin in c (red and green-
dashed curves) are equally large as the largest local cascades in d
that begin in d (blue and gold curves). For 16 interconnections,
we estimate r� ≈ 15 (Fig. 7, Inset), and the inflicted cascades are
larger and smaller, respectively, for r ¼ 10; 20 (Fig. S9)—indicat-
ing that inflicted cascades begin to dominate local cascades at
r� ≈ 15. The actual load disparity between power grids c and d
is r ≈ 0.7, which we estimate by computing the average power in-
cident per node in simulation output from FERC.§ (There are,
however, interdependent power grids in the southeastern United
States with r > 15.) Because r ¼ 0.7, the load is greater on grid d,
so grid d prefers more interconnections and c prefers fewer than
if r were one. Consequently, any equilibrium between the two
grids is frustrated (or semistable): Only one grid can achieve
its desired interconnectivity.

Discussion
We have presented a comprehensive study of sandpile cascades
on interacting networks to obtain a deeper understanding of
cascades of load on interdependent systems, showing both the
benefits and dangers of interdependence. We combine a mathe-
matical framework for multitype networks (45, 52) with models of
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Fig. 7. The critical load disparity at which inflicted cascades in d become

equally large as its local cascades is r� ≈ 15 (for 16 interconnections,

“bridges”). (For eight interconnections, r� > 20; see Fig. S9). Here we show

a rank-size plot in log–log scales of the largest 104 avalanches in power grid

d, distinguishing whether they begin in c (inflicted cascades) or in d (local

cascades), for 8 and 16 interconnections (solid, dashed curves), for r ¼ 1

(Main), r ¼ 15 (Inset), in simulations with dissipation of sand f ¼ 0.05, 106

grains dropped after 105 transients.
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sandpiles on isolated networks (35–41) to derive a multitype
branching process approximation of cascades of load between
simple interacting networks and between real power grids. We
show that some interdependence is beneficial to a network, for
it mitigates its largest avalanches by diverting load to neighboring
networks. But too much interconnectivity opens new avenues
for inflicted load; in addition, each new interconnection adds
capacity that fuels even larger cascades. The benefits and detri-
ments in mitigating large avalanches balance at a critical amount
of interconnectivity, which is a stable equilibrium for coupled
networks with similar capacities. For coupled networks with
asymmetric capacity, the equilibria will be frustrated, in that the
networks prefer different optimal levels of interconnectivity.

We also show that tuning interconnectivity to suppress
cascades of a certain range of sizes amplifies the occurrence of
cascades in other ranges. Thus a network mitigating its small ava-
lanches amplifies its large ones (Figs. 4 and 6), and networks sup-
pressing their own large avalanches amplify large ones in the
whole system (Fig. 5). Similarly it has been found that mitigating
small electrical blackouts and small forest fires appears to in-
crease the risk of large ones (15, 32). Furthermore, the amplifica-
tion of global cascades due to the increase in capacity (Fig. 5) is a
warning for new interconnections among power grids (11, 13)
(Fig. 1), financial sectors, and other infrastructure.

These findings suggest economic and game-theoretic implica-
tions for infrastructure. (Note that here we consider the strategic
interactions of entire networks rather than of individual nodes
in one network, which is more standard, e.g., ref. 59.) For exam-
ple, a power grid owner wishing to mitigate the largest cascades in
her grid would desire some interconnections to other grids, but
not too many. However, what benefits individual grids can harm
society: Grids building interconnections amplify global cascades
in the entire system. More detailed models that combine results
like these with economic and physical considerations of electrical
grids and with costs of building connections may provide more
realistic estimates of optimal levels of interconnectivity. Our
framework—which models a dynamical process on stable, under-
lying network topologies—could also be combined with models
of topological failure in interdependent networks (20–22). Those
studies conclude that systemic risk of connectivity failure in-
creases monotonically with interdependence (“dependency
links”). Whether suppressing cascades of load or of connectivity
failures is more important might suggest whether to interconnect
some (p� > 0) (Fig. 4) or none (p ¼ 0) (20–22), respectively. Our
results are consistent with recent work showing that an intermedi-
ate amount of connectivity minimizes risk of systemic default
in credit networks (60), in contrast to refs. 20, 21 and the more
traditional view that risk increases monotonically with connectiv-
ity in credit networks (e.g., ref. 61).

This work also advances our mathematical understanding of
dynamical processes on multitype networks. Because networks
with one type of node and edge are impoverished views of reality,
researchers have begun to study dynamical processes on multi-
type networks, such as on modular graphs (42–45). Here we de-
rive a branching process approximation of sandpile cascades on
multitype networks starting from the degree distributions, and we
discuss open problems in solving for the asymptotic behavior of
the generating functions’ coefficients, which elude current tech-
niques for isolated networks. We expect that the computational
techniques used here to solve multidimensional generating func-
tion equations, such as multidimensional Lagrange inversion
(58), will find other uses in percolation and cascades in multitype
networks. Finally, in the Appendix we derive the effective degree
distributions in multitype networks, which expands the admissible
degree distributions that others have considered. The machinery
we develop considers just two interacting networks, a and b, or
equivalently one network with two types of nodes. However, this
machinery extends to finitely many types, which may be useful for

distinguishing types of nodes—such as buses, transformers, and
generators in electrical grids—or for capturing geographic infor-
mation in a low-dimensional way without storing explicit loca-
tions—such as buses in the interiors of power grids and along
boundaries between them.

Here we have focused on mitigating large avalanches in mod-
ular networks, but other applications may prefer to amplify large
cascades, such as the adoption of products in modular social net-
works (62) or propagating response-driven surveys across bottle-
necks between social groups (63). Cascades in social networks
like these may require networks with triangles or other subgraphs
added (53, 64, 65); inverting the resulting multidimensional gen-
erating function equations for dynamics on these networks would
require similar multitype techniques as developed here.

We expect that this work will stimulate calculations of critical
points in interconnectivity among networks subjected to other
dynamics, such as linearized power flow equations in electrical
grids (16, 17) and other domain-specific models. As critical infra-
structures such as power grids, transportation, communication,
banks, and markets become increasingly interdependent, resol-
ving the risks of large cascades and the incentives that shape them
becomes ever more important.

Materials and Methods
Power Grid Topologies. To understand coupling between multiple grids, we

requested data from the US Federal Energy Regulation Commission.§ Using

output of power simulations on many connected areas (distinct grids owned

by different utilities) in the southeastern United States, we chose grid d by

selecting the grid with the highest average internal degree and the grid, c, to

which it had the most interconnections (eight). Grids c, d have 439 and 504

buses (nodes) and average internal degrees 2.40 and 2.91. For our purposes

here, the only important details are the narrow degree distributions, the low

clustering coefficients, and the number of interconnections between the

grids. Other details about the grids are in the SI Text.

Toppling Branch Distributions. To reduce the number of types in the branching

process, we count the number of toppling events in each network rather than

the number of grains of sand shed from one network to another. Here we

derive the toppling branch distributions ua, ub from the shedding branch dis-

tributions qod . [For instance, uaðta;tbÞ is the chance that a toppled node in a

causes ta, tb many nodes in a, b to topple at the next time step.] Note that a

node topples if and only if it sheds at least one grain of sand. Thus a grain

traveling from a network o to network d topples its destination node with

probability 1 − qodð0;0Þ. Denoting ð0;0Þ by 0 and the binomial distribution by

βnk p½ �≡
n
k

� �

pkð1 − pÞn−k , we have

uaðta;tbÞ ¼ ∑
∞

ka¼ta
∑
∞

kb¼tb

paðka;kbÞβ
ta
ka
½1 − qaað0Þ�β

kb
tb
½1 − qabð0Þ�;

because the nodemust have at least ta many a neighbors and at least tb many

b neighbors, only ta, tb of which topple (which are binomially distributed).

The expression for ub is analogous. As an example, the probability generat-

ing function of ua for Bernoulli-coupled random regular graphs

RðzaÞ-BðpÞ-RðzbÞ is

Uaðτa;τbÞ ¼
½p− pτa þ ðza þ 1Þðτa þ za − 1Þ�za ½1þ pðτb − 1Þ þ zb�

ðza þ 1Þzazzaa ðzb þ 1Þ
:

Three Methods for Numerically Solving the Multidimensional Self-Consistency

Equations of a Multitype Branching Process. The most naïve method to solve

the self-consistency equations of amultitype branching process (such as Eq. 3)

is to use a computer algebra system like Mathematica or Maple to iterate [3]

symbolically starting from Sa ¼ Sb ¼ 1, expand the result, and collect coeffi-

cients. To obtain the coefficient saðta;tbÞ exactly, it suffices to iterate [3] at

least ta þ tb þ 1 times. What is more, just a handful of iterations partially

computes the tails (coefficients of terms with high powers in Sa, Sb), but

the amount of missing probability mass in the tails is undetermined. This

method was used in Fig. 3.
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A second method is to symbolically iterate Eq. 3 at least ta þ tb þ 1 times

and to use Cauchy’s integral formula

saðta;tbÞ ¼
1

ð2πiÞ2

ZZ

D

Saðτa;τbÞ

τ
taþ1

a τ
tbþ1

b

dτadτb; [5]

where D ⊂ C
2 is a Cartesian product of circular contours centered at the ori-

gin, each of radius r smaller than the modulus of the pole of Sa closest to the

origin (58). Then calculate one coefficient at a time using

saðta;tbÞ ¼
1

4π2

Z

2π

0

Z

2π

0

Saðre
iθ;reiψ Þ

rtaþtbeiðtaθþtbψÞ
dθdψ :

A third method is Lagrange inversion, generalized to multiple dimensions

by Good in 1960 (58), a result that has seen little use in the networks litera-

ture. We state the theorem in the language of the two-type branching

process considered here, with the notation ~τ ≡ ðτa;τbÞ, ~S≡ ðSa;SbÞ, and
~U≡ ðUa;UbÞ. For the slightly more general result that holds for arbitrary, fi-

nite, initial population, see ref. 58.

Theorem 1. [Good 1960] If Uað ~0Þ > 0 and Ubð ~0Þ > 0 (i.e., every type has a

positive probability of being barren), then for x ∈ f0;1g,

Sað ~τÞ
x
Sbð ~τÞ

1−x ¼ ∑
∞

ma;mb¼0

τ
ma
a τ

mb

b

ma!mb!

�

∂maþmb

∂κma
a ∂κmb

b

�

κxaκ
1−x
b

×Uað ~κÞ
maUbð ~κÞ

mb

�

�

�

�

�

�

�

�

δνμ −
κμ

Uμ

∂Uμ

∂κμ

�

�

�

�

�

�

�

�

��

~κ¼0

; [6]

where μ, ν run over the types fa;bg, δνμ is the Kronecker delta, and jj · jj is the

determinant.

Taking x ¼ 0 givesSb, whereas taking x ¼ 1 givesSa. In practice, hundreds

of terms of Sa, Sb can be computed exactly by truncating the sum in [6] and

using computer algebra systems (see Fig. S10 for more details).

Solving for the Coefficients Asymptotically (and Why Standard Techniques Fail).

To determine the asymptotic behaviors of saðta;tbÞ, sbðta;tbÞ as ta;tb → ∞, the

trick is to solve for the inverses ofSa andSb and to expand those inversesS−1
a

and S−1
b at the singularities of Sa and Sb. This technique works for isolated

networks (39–41, 66), but Sa and Sb have no finite singularities in C
2 for Ber-

noulli-coupled random regular graphs nor for power grids c, d.

We demonstrate this failure of standard asymptotic techniques on the

networks RðzaÞ-BðpÞ-RðzbÞ. Let ~ω≔ ~Sð ~τÞ. Assuming an inverse ~S
−1

of ~S exists,

using [3] we have

~τ ¼ ~S
−1
ð ~ωÞ ¼

~ω

~Uð ~ωÞ
¼

�

ωa

Uað ~ωÞ
;

ωb

Ubð ~ωÞ

�

: [7]

The generating functions Sa, Sb have singularities at ~τ�, ~μ�, respectively, if
~DS−1

a ð ~τ�Þ ¼ ~DS−1
b ð ~μ�Þ ¼ ð0;0Þ, where the operator ~D ¼ ð∂∕∂ωa;∂∕∂ωbÞ is a vec-

tor of partial derivatives. Differentiating Eq. 7 and equating the numerators

to zero gives

Uað ~τ
�Þ − τ�a

∂Ua

∂τa
ð ~τ�Þ ¼ 0; − τ�a

∂Ua

∂τb
ð ~τ�Þ ¼ 0; [8a]

Ubð ~μ
�Þ − μ�b

∂Ub

∂τb
ð ~μ�Þ ¼ 0; − μ�b

∂Ub

∂τb
ð ~μ�Þ ¼ 0. [8b]

The only solution to Eq. 8 is

~τ�
1
¼

�

z2a þ p − 1

p − za − 1
;
p − zb − 1

p

�

→

p→0

ð1 − za;∞Þ; [9a]

~μ�
1
¼

�

p − za − 1

p
;
z2b þ p − 1

p − zb − 1

�

→

p→0

ð∞;1 − zbÞ: [9b]

This solution [9] does not recover the singularities ~τ� ¼ ð1;c1Þ; ~μ
� ¼ ðc2;1Þ

(where c1, c2 are arbitrary) that we should obtain when the networks are

isolated (p ¼ 0) (39). Moreover, although Eqs. 8 vanish at the solutions [9],

the derivatives of [7] do not vanish at these solutions [9], because
~DS−1

a ð ~τ�
1
Þ ¼ ð∞;0Þ, ~DS−1

b ð ~μ�
1
Þ ¼ ð0;∞Þ. Thus we must discard solutions [9].

Solving only the left-hand equations in [8] yields singularities that do re-

cover the correct singularities when p ¼ 0:

~τ�
2
¼

�

z2a þ p − 1

ð1 − zaÞðp − 1 − zaÞ
;τb

�

→

p→0

ð1;τbÞ; [10a]

~μ�
2
¼

�

μa;
z2b þ p − 1

ð1 − zbÞðp − 1 − zbÞ

�

→

p→0

ðμa;1Þ; [10b]

where τb, μa are arbitrary constants satisfying

τb ≠
p − zb − 1

p
; μa ≠

p − za − 1

p
; [11]

so that the derivatives of ~S
−1
ð ~ωÞ [8] evaluated at [10] are finite. However, the

derivatives on the right-hand sides of Eq. 8 (evaluated at the solutions [10]) are

∂S−1
a

∂ωb

ðτ�
2
Þ ¼

�

0;
pðzb þ 1Þðz2a þ p − 1Þð z2a−1

z2aþp−1
Þza

ð1 − zaÞð1 − pþ zaÞ½pðωb − 1Þ þ zb þ 1�2

�

and similarly for ∂S−1
b ∕∂ωaðμ

�
2
Þ (interchange a and b). This derivative vanishes if

and only if p ¼ 0 or za ¼ 1 or ωb ¼ ∞. Hence we cannot find finite singularities

of Sa, Sb; these generating functions are entire functions with singularities

only at τb ¼ μa ¼ ∞, τa ≠ z2aþp−1
p−za−1

, μb ≠
z2
b
þp−1

p−zb−1
. Hence we have no singularities

at which to do an asymptotic expansion for the coefficients sa, sb, as one

can for isolated networks (39–41, 66).

Other techniques exist for asymptotically approximating the coefficients

of generating functions, depending on the type of the singularity (ref. 56,

sect. 5). Hayman’s method (ref. 56, sect. 5.4) works for generating functions

with no singularities in the finite plane (i.e., entire functions), like the Sa, Sb

considered here. However, the theorem requires a closed form expression for

the generating function, which we cannot obtain from the self-consistency

equations for the synthetic and real interacting networks of interest. Devel-

oping techniques for asymptotically approximating the coefficients of multi-

dimensional generating functions with singularities at infinity, like those

studied here, poses an important challenge for future studies of dynamical

processes on multitype networks.

Appendix: Effective Degree Distributions in Multitype
Networks
Using the configuration model to generate multitype networks—
including bipartite and multipartite graphs, graphs with arbitrary
distributions of subgraphs, and the modular graphs considered
here—requires matching edge stubs within and among types.
For example, for the interacting networks considered here, the
number of edge stubs pointing from network a to network b must
equal the number from b to a. A standard practice in the litera-
ture (45, 53), which is more restrictive than needed, is to require
that the averages of the interdegrees over the degree distributions
agree (e.g., hkabi ¼ hkbai for two networks a, b of equal size). In
fact, most any degree distributions can be used, as long as con-
ditioning on matching edge stubs among the types of nodes leaves
some probability. Requiring that the degree distributions satisfy,
for example, hkabi ¼ hkbai, merely tips the scales in favor of valid
degree sequences.

Here we derive the effective degree distribution in multitype
networks generated with the configuration model. The idea
is simple: Because nodes draw degrees independently, the prob-
ability distribution of the total number of edge stubs from, say,
network a to b is given by a convolution of the degree distribution.
We state it for the two interacting networks considered here, but
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it can be easily generalized to, say, role distributions (53), which
require matching edge stubs with ratios different from one.

Suppose networks a, b have Na, Nb many nodes, respectively.
Let ~Kab, ~Kba be the random variables for the sequences of “inter-
degrees” kab, kba of the nodes in networks a, b, respectively, drawn
from the input degree distributions paðkaa;kabÞ;pbðkba;kbbÞ.
Suppose, for simplicity, that the internal and external degrees
are independent [paðkaa;kabÞ ¼ paaðkaaÞpabðkabÞ, pbðkba;kbbÞ ¼
pbaðkbaÞpbbðkbbÞ], although this is not essential. We denote
Σ ~k≡∑n

i¼1
ki for ~k ∈ Z

n

Lemma 1.With the assumptions in the previous paragraph, the effec-
tive interdegree distribution for network a is not the input one,
Prð ~Kab ¼ ~kÞ ¼

QNa

i¼1
pabðkiÞ, but rather the conditional probability

distribution

Prð ~Kab ¼ ~k∣Σ ~Kba ¼ Σ ~KabÞ ¼ Prð ~Kab ¼ ~kÞ
p�baðΣ

~kÞ

∑
ℓ

p�abðℓÞp
�
baðℓÞ

;

where p�abð·Þ;p
�
bað·Þ are pab, pba convolved Na, Nb times, respectively.

Proof: Using the independence of ~Kab and ~Kba, we have

Prð ~Kab ¼ ~k∣Σ ~Kba ¼ Σ ~KabÞ ¼
Prð ~Kab ¼ ~kÞPrðΣ ~Kba ¼ Σ ~kÞ

PrðΣ ~Kba ¼ Σ ~KabÞ
:

In the numerator, we recognize PrðΣ ~Kba ¼ Σ ~kÞ to be pba con-
volved Nb times, evaluated at Σ ~k. In the denominator, use inde-
pendence, recognize convolutions, and sum on ℓ ≥ 0.

Lemma 1 shows that the effective interdegree distribution of a
is the input degree distribution pab reduced by an amount given by
a fraction of convolutions. This reduction in probability governs
how many invalid degree sequences must be generated before
generating a valid one. For systems sizes on the order of 104

nodes, as considered here, generating degree sequences until pro-
ducing a valid one is quite feasible, as it takes merely seconds.
However, for millions of nodes or more, it is better to generate
degree sequences ~Kab, ~Kba once, and then repeatedly choose a
node uniformly at random to redraw its degree from its degree
distribution until the degree sequences are valid. However, this
method does not escape the effect in Lemma 1, which is often
subtle but can be substantial if the supports of the convolutions
of the degree distributions have little overlap. The interdegree
distributions used here, Bernoulli and correlated-Bernoulli with
identical expected total interdegree, have “much overlap,” so the
effective interdegree distribution is approximately the input one,
and the correction factor in Lemma 1 can be neglected.
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Robustness of Optimal Interconnectivity. How p� depends on system
size, connectivity, and type of degree distribution.Our central result
is the minimum p� > 0 in the chance of a large cascade in a net-
work when a fraction p of its nodes are connected to nodes in
another network. Important questions are how p� depends on sys-
tem size, behaves in the thermodynamic limit (infinite system
size), and depends on the internal degrees and on the degree dis-
tribution. Here we show that the qualitative form of PrðTa > CÞ
in Fig. 4 appears to be generic.

Doubling the system size and keeping the cutoff C and the dis-
sipation f fixed (at C ¼ half the number nodes in a and at
f ¼ 0.01) does not significantly change Fig. 4, because the dissi-
pation f limits the chance of large cascades. But doubling the sys-
tem size, doubling the cutoff C, and halving the dissipation f (so
that the largest cascades topple nearly the whole system) slightly
decreases p�. Fig. S4 shows similar results as Fig. 4 but for a sys-
tem half the size (1,000 nodes per network, f ¼ 0.02, cutoff
C ¼ 500). In the thermodynamic limit of infinite system size
N, we expect p� to stay bounded away from zero, because what
appears to be the determinant is the ratio of edges between the
networks (pN) and within them (zaN).

Increasing the internal degrees of nodes [say, to coupled ran-
dom four-regular graphs Rð4Þ-BðpÞ-Rð4Þ] increases their capacity
and hence ability to withstand inflicted cascades, so the minimum
in PrðTa > CÞ is therefore larger, p� ≈ 0.2 (Fig. S5), compared to
p� ≈ 0.12 for random three-regular graphs with equally many
nodes (Fig. S4). The networks also have a wider range of optimal
p, as expected, given that pNa external edges are less significant
than the zaNa internal edges when za ¼ 4 (Fig. S5) compared to
za ¼ 3 (Fig. 4 and Fig. S4). Nonetheless, the chance of a large
cascade eventually increases with p. We also note that power grids
more closely resemble random three-regular than four-regular
graphs (see Table S1).

Next we determined the effect of introducing some degree het-
erogeneity by adjusting interconnectivity p between two Erdős-
Rényi random graphs. Similar results were obtained as for ran-
dom regular graphs, indicating that some degree heterogeneity
does not affect these results. (We did not test heavy-tailed degree
distributions because these rarely occur in the physical infrastruc-
ture networks of interest, namely, power grids.)

Finally, we tested whether adding edges at random to a ran-
dom regular graph produces an optimal connectivity that mini-
mizes the chance of a large cascade. Specifically, each node in
a three-random regular graph gains an extra, fourth edge stub
independently with probability p [i.e., degree distribution PðkÞ
is Pð3Þ ¼ 1 − p, Pð4Þ ¼ p]. We find in simulations that
PrðT > 500Þ for a system of 10

3 nodes is largely independent
of the mean degree z. In particular, the chance of a large cascade
does not drop, as it does when initially adding edges between two
networks (Fig. 4 and Figs. S4 and S5), which agrees with theore-
tical results for isolated networks (1): the avalanche size distribu-
tion sðtÞ ∼ t−3∕2 for large t. We conclude that adding links between
two networks affects vulnerability to large cascades in a different
way than adding links within isolated networks.

Unstable p� for small cascades, stable p� for large cascades.Networks
seeking to mitigate cascades of small, intermediate, or large sizes
would seek different interconnectivity, as shown in the plots of
Prðℓ ≤ Ta ≤ ℓþ 50Þ as a function of p in Fig. 6. In Fig. S7,
we show more plots to show the change in concavity at intermedi-

ate cascade size and the robustness of the location of the stable
minimum p� ≈ 0.075 for Rð3Þ-BðpÞ-Rð3Þ.

Increasing capacity fuels larger system-wide cascades. Introducing
new interconnections between networks slightly enlarges the
largest global cascades. We ask to what extent is this due to
the direction of links (pointing internally or externally) and
due to the additional capacity for holding sand endowed by
the new links (because capacities of nodes are their degrees).
To isolate these two effects, we run simulations on two random
regular graphs interconnected by “correlated-Bernoulli” cou-
pling: Each node changes an internal edge stub to an external
edge stub with probability p.

The resulting total avalanche size distribution, Fig. S6, does
not significantly change for different values of interconnectivity
p. Thus, what causes the slight enlargement of the largest global
avalanches is the slight increase in total capacity of the network,
not the direction of links. Moreover, the enlargement of the
largest global cascades is consistent with the increase in capacity.
For the simulations on random three-regular graphs in Fig. S6,
the nth largest avalanche contains on average 1.4� 2.6 (mean�
standard deviation) more topplings with p ¼ 0.1 compared to
p ¼ 0.005, which is an insignificant difference. By contrast, in
an analogous simulation on Rð3Þ-Bð0.1Þ-Rð3Þ, in which we intro-
duce extra links with probability p, the nth largest avalanche con-
tains 204.8� 92.5 more topplings than Rð3Þ-Bð0.005Þ-Rð3Þ, a
significant difference for networks with 103 nodes. Furthermore,
this difference is on the order of the additional capacity of
2 × 103 × ð0.1 − 0.005Þ ¼ 190 among 2 × 103 nodes with Bð0.1Þ
compared to Bð0.005Þ coupling.

We find similar results when introducing eight additional inter-
connections between power grids c and d. The nth largest global
cascades in simulations are larger by an amount on the order of
the additional capacity of the two networks. Thus the additional
capacity due to the new interconnections, not the direction of
links, largely explains the amplification of system-wide cascades.

Bounding the critical load disparity r� for power grids c, d. In the main
paper, we showed that, for 16 interconnections between power
grids c and d, the critical load disparity is r� ≈ 15. That is, when
sand is dropped 15 times more frequently on c nodes than on d
nodes, the largest inflicted cascades from c to d approximately
equal in size the largest local cascades begun in d. (Recall that
by “inflicted cascade from c to d” we mean the number of top-
plings in d in an avalanche begun in c, and by “local cascade in d”
we mean the number of topplings in d in an avalanche begun in
d.) If d builds more interconnections (or increases the load dis-
parity r), the largest inflicted cascades become larger than the
largest local cascades. On the other hand, delete interconnections
(or decrease the load disparity r), and d could mitigate its largest
local cascades more than the enlargement of the largest inflicted
cascades. Hence r� ¼ 15 and 16 interconnections represent a
“modularity equilibrium” in local and inflicted cascades.

Here we use simulations to approximately bound the critical
load disparity 10⪅r�⪅20 for 16 interconnections between c
and d. As shown in Fig. S9 for r ¼ 10; 20, the largest inflicted
cascades (green dashed) are smaller and larger, respectively, than
the largest local cascades (gold dashed), indicating that
10⪅r�⪅20 for 16 interconnections. For eight interconnections
(solid blue and red curves), the critical load disparity r� is evi-
dently larger than 20, as the largest inflicted cascades are smaller
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than the largest local cascades for r ¼ 20 (red curve below
blue curve).

Power Grid Topologies. Power grids c and d. The readily available
datasets on power grids—Institute of Electrical and Electronic
Engineers test cases (2), Western States (3), and New York In-
dependent System Operator (4)—did not appear to contain mul-
tiple electrical grids connected to one another. As a result, we
requested data on power grid connectivity from the US Federal
Energy Regulation Commission via the Critical Energy Infra-
structure Information program (5). We focused on the southeast-
ern region of the United States, for which we had the output files
of power simulations of various grids. The southeastern region
consists of areas, distinct grids owned by different utility compa-
nies. The largest areas contain thousands of buses, an electrical
grid term for the connection points that link generators, transmis-
sion lines, and transformers. We ignore wind turbines, for they do
not belong to specific areas. Among the areas with at least 100
nodes, we chose grids c and d by first selecting the grid with the
highest average internal degree (2.91), and then selecting the
area, c, to which it had the most interconnections (eight of them).
Grid d consists of one giant component with 504 nodes, whereas
grid c consists of one giant component of size 439, and we ignore
14 additional nodes.

Two of the statistics of power grids c and d are important to our
study: the narrow degree distribution and small clustering coeffi-
cient. Some details are in Table S1. The average clustering coef-
ficient hCi, the fraction of possible triangles that exist, begins to
measure how locally tree-like power grids are. We find that
hCi ≈ 0.05 is low, yet an order of magnitude larger than the clus-
tering coefficient of a random three-regular graph with as many
nodes as grid d. The average shortest path length among pairs of
nodes, hℓi, which has been identified as a likely source of diffi-
culty for predicting cascades on networks (6), is rather large in the
power grids (hℓi ≈ 10) because of their two-dimensional, spatial,
nearly planar structure. By contrast, random three-regular graphs
have significantly smaller diameter hℓi ≈ 7.09� 0.03.

Correlation between degree and load. In the sandpile model studied
here, we choose the capacity of every node to be its degree, so
that toppled nodes unambiguously shed one grain to each neigh-
bor. To examine the reasonableness of this assumption for real
infrastructure, we sum the apparent power on the edges incident
to each bus in power grids c and d, and we plot in Fig. S3 a density
histogram of apparent power versus degree of the nodes. Most
buses have low degree and low apparent power, and some buses
have high degree but low power, whereas others bear high power
among few connections. But the general trend is positive: Each
additional degree correlates with 123 mVA of additional appar-
ent power, though the correlation is tenuous (R2 ¼ 0.30). This
correlation suggests that using the sandpile model with capacity
equal to degree in order to study cascades of load in power grids
—and by extension other infrastructure—is not unreasonable for
the purpose of obtaining heuristic understanding.

Branching Process Approximation. Comparing theory and experiment.
We choose the dissipation of sand f (the chance that a grain of
sand is deleted as it is shed from one node to another) so that the
largest cascades in simulations topple almost all the network. (As
a rule of thumb, take f ¼ 20∕N, where N is the total number of
nodes.) Decreasing or increasing f extends or shortens the tail of
the avalanche size distribution, respectively. Thus we tune f to
utilize the entire system and to achieve a power law over as many
scales as possible, because we see power law behavior in, e.g.,
blackouts in power grids (7).

In Fig. 3 of the main paper, we compare simulations of sand-
pile cascades with theoretical predictions for dissipation rate of
sand f ¼ 0.1. This somewhat large dissipation rate mitigates the

largest cascades. In Fig. S1, we show results for the same branch-
ing process prediction (seven iterations of the self-consistency
equations, started from Sa ¼ Sb ¼ 1) with two independent si-
mulations with dissipation rate of sand f ¼ 0.05. Halving the dis-
sipation rate noticeably extends the tails of the marginalized
avalanche size distributions—i.e., the largest avalanches become
larger. Iterating the self-consistency equations an eighth time
would more accurately compute the probability mass in the tails,
but is beyond our computer resources. Showing the results of two
independent simulations (blue and green curves of Fig. S1) illus-
trates the variation in the cascade size distributions. In particular,
variation between simulations is apparent only in the tails of the
distributions because the largest avalanches are so rare.

Even though the behavior of sandpile cascades on single
networks is rather robust to network structure (1, 8–12), we
see sensitivity to the sparse connections among modules, as de-
monstrated in the main paper. What is more, the particular de-
grees of nodes with external links profoundly affect the inflicted
avalanche size distributions, ∑ta

saðta;tbÞ and ∑tb
sbðta;tbÞ. Notice

the characteristic “blips” (deviations from straight lines) that oc-
cur in the blue and green curves (the simulations) in the inflicted
avalanche size distributions in the upper-right and lower-left plots
in Fig. S1. For instance, there is a particularly high probability
that an avalanche begun in d topples 8, 9, or 10 nodes in c.
We suspect this enhanced probability is because of the outlier
node in network c that has one external link and 10 internal
links—far more internal links than all other c nodes with an ex-
ternal link. Consequently, a cascade in d that leaks across to c via
this node topples with high probability around 8, 9, or 10 nodes in
c because of this node’s high internal degree. Similarly, the blip at
size three of the distribution of inflicted cascade size from c to d
results from the average internal degree 2.5 of d nodes with an
external link. It is surprising, given the indifference of sandpile
cascades to network structure, that the particular internal degrees
of nodes with an external link greatly affect the marginalized ava-
lanche size distributions.

Distance between the avalanche size distributions and the product of
their marginals. When we compare the branching process predic-
tions with simulations, such as in Fig. 3 and Fig. S1, we reduce
the dimensions of the joint saðta;tbÞ by marginalizing in order
to plot one-dimensional curves. This marginalization raises the
question: How far are the products of the marginals, such as
ð∑ta

saðta;tbÞÞð∑tb
saðta;tbÞÞ, from the joint distributions? Using

the first 112 coefficients of saðta;tbÞ (for 0 ≤ ta;tb ≤ 11) computed
using Lagrange inversion (Theorem 1), we computed the distance
between saðta;tbÞ and the product of its marginals—in the two-
norm, one-norm, and Kullback–Leibler divergence—as a func-
tion of Bernoulli coupling p between two random three-regular
graphs. With increasing coupling p, the cascade sizes ta, tb become
increasingly correlated, and the joint distribution sa grows in-
creasingly distant from the product of its marginals. This increas-
ing distance suggests that comparing marginals, as in Fig. 3 and
Fig. S1, is an insufficient test of the branching process, and thus
we next subject the branching process to its most stringent test.

Fine-grained comparison of branching process and simulation. Be-
cause marginalizing sa, sb, as in Fig. 3 and Fig. S1, may obscure
deviation between theory and the branching process, we next
compare the joint distribution saðta;tbÞ to simulation. In Fig. S2,
we plot PrðTa ¼ 10;Tb ¼ xÞ for 0 ≤ x ≤ 30 in the simulation
(blue) and branching process prediction (red), for interconnectiv-
ity p ¼ 0.005;0.01;0.1. We compute the branching process predic-
tion by calculating saðta;tbÞ;sbðta;tbÞ for ta ¼ 10 and 0 ≤ tb ≤ 30

using Lagrange inversion (Theorem 1). Because sand is dropped
on nodes uniformly at random and each network has 103 nodes,
the avalanches begin in a or in b with equal probability, so that
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PrðTa ¼ 10;Tb ¼ xÞ ¼ ðsað10;xÞ þ sbð10;xÞÞ∕2. A l t h ou gh t h e
branching process underpredicts theory for larger avalanches
(especially with greater interconnectivity), we see qualitatively
good agreement.

Capacity disparity.Cascades inflicted from large capacity networks
to small capacity networks are larger than those from small to
large capacity networks. Here we derive the heuristic formula
for this effect (Eq. 4) using the multitype branching process,
and we show qualitative agreement with simulation.

Differentiating the self-consistency Eqs. 3 with respect to τa

and τb and setting τa ¼ τb ¼ 1 yields four equations for the first
moments of the avalanche size distributions sa, sb:

hsaia ¼
hubib − 1

γ
; hsbib ¼

huaia − 1

γ
; [S1a]

hsaib ¼
−huaib

γ
; hsbia ¼

−hubia
γ

; [S1b]

with common denominator

γ ¼ −1þ huaibhubia − huaiaðhubib − 1Þ þ hubib: [S2]

For the first moments of the branch distributions ua, ub for
RðzaÞ-BðpÞ-RðzbÞ,

huaia ¼ 1 −
p

1þ za
; huaib ¼

p

1þ zb
[S3]

(and vice versa for ub, interchanging a with b), the denominator
[S2] is zero, and Eqs. S1 are all infinite. This result is not a sur-
prise, because in isolation the networks’ cascade size distributions
are asymptotically power laws with exponent −3∕2, which have
infinite first moments. However, one can compare the rates of
divergence of the mean inflicted cascade sizes, Eq. S1b, by com-
puting their ratio, hsaib∕hsbia ¼ ð1þ zaÞ∕ð1þ zbÞ. No other ratios
appear to contain useful information (nor dependence on p with
which to estimate the critical amount of interconnectivity p�):

hsaia
hsbia

¼
hsaia
hsbib

¼
1þ za
1þ zb

;
hsaia
hsaib

¼ 1.

In all simulations on RðzaÞ-BðpÞ-RðzbÞ with za ≠ zb, the heur-
istic formula (Eq. 4) works qualitatively, in that inflicted cascades
are always larger from the larger capacity network (i.e., za < zb ⇒

hsaib < hsbia). But finding quantitative agreement with (Eq. 4) is
difficult because the avalanche size distributions are power laws
with such heavy tails that their variances diverge. Fig. S8 is an
example: For Rð3Þ-Bð0.005Þ-Rð3Þ, hsaib ¼ 0.086� 0.019, and
hsbia ¼ 1.32� 0.023 (mean� standard error), which yields
hsaib∕hsbia ¼ 0.65� 0.019, whereas theory predicts ð1þ zaÞ∕ð1þ
zbÞ ¼ 4∕5 (20% error). Nevertheless, Eq. 4 provides a simple,
useful heuristic for the dangers of small capacity networks con-
necting to large capacity networks.

Computational challenges in showing the locally stabilizing effect.
Although the locally stabilizing effect of interconnections is ap-
parent in simulations, demonstrating it analytically poses math-
ematical and computational challenges. Here we use
multidimensional Lagrange inversion (Theorem 1 in Materials

and Methods) to solve for the probabilities of the smallest ava-
lanches, saðta;tbÞ for 0 ≤ ta;tb ≤ 10. Next we plot in Fig. S10A
the marginalized avalanche size distribution ∑10

tb¼0
saðta;tbÞ.

Although it appears in Fig. S10A that the largest avalanches
become less likely with increasing interconnectivity p, in accor-
dance with the results in simulations, this figure has a caveat:
We have only computed up to avalanche size at most 10 in each
network. As a result, the right-hand tail of Fig. S10A lacks prob-
ability mass compared to the actual marginalized avalanche size
distribution ∑∞

tb¼0
saðta;tbÞ, because, for example, there is a signif-

icant chance of an avalanche of size ta ¼ 10 and tb ¼ 11, 12, or 13.
This figure could be improved by computing saðta;tbÞ along “ver-
tical strips” 0 ≤ tb ≤ tmax

b , where tmax
b ≫ 1, for just a handful of

values ta. However, computing the large coefficients of Sa re-
quires differentiating expressions raised to large powers, so the
largest coefficients are the most difficult to compute.

The Cauchy formula, Eq. 5 of Materials and Methods, uses in-
tegration rather than differentiation, which can be more numeri-
cally stable (13). But computing the largest coefficients saðta;tbÞ
with this method requires integrating an increasingly large ex-
pression, namely, the result of iterating the self-consistency equa-
tions at least ta þ tb þ 1 times, starting from Sa ¼ Sb ¼ 1. This
approach, too, takes a long amount of computation time: Com-
puting saðta;tbÞ for 0 ≤ ta;tb ≤ 20 on a typical laptop computer
would take on the order of a week.

Nonetheless, even the smallest 112 coefficients of sa and sb are
useful. Fig. S10B, for example, shows the joint avalanche size dis-
tribution saðta;tbÞ for two random regular graphs with Bernoulli
(p)-distributed coupling, for p ¼ 0;0.1;1. As the interconnectivity
p increases, the cascades begun in a increasingly “smear out”
among a and b, and cascades are more frequently large in both
networks at once.
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Fig. S1. Blue and green curves: independent simulations of 106 grains of sand dropped on power grids c and d, labeled a and b, respectively, to match our

theoretical notation. As in Fig. 3, we collect statistics after 105 grains are dropped, initialized with amounts of sand chosen uniformly at random from zero to

one less a node’s degree, with dissipation of sand f ¼ 0.05 (half the value used in Fig. 3). Red curve: branching process approximation using the empirical degree

distributions of c and d, obtained by symbolically iterating the self-consistency equations (Eq. 3) seven times, expanding the result, and collecting coefficients.

The tails are decreased in the simulations due to finite system size (439 in c, 504 in d) and the dissipation of sand f , whereas the tails of the branching process

approximation miss probability mass due to only iterating seven times (which took a week on a 2 GHz laptop).

Fig. S2. Comparison of theory (red) and simulation (blue) of the chance of toppling 10 nodes in a and 0 ≤ x ≤ 30 nodes in b, in log–log scales. The simulations

were Bernoulli-coupled random three-regular graphs with 103 nodes each, dissipation f ¼ 0.02, and 2 × 106 grains dropped.

4,000

3,000

2,000

1,000

Fig. S3. Apparent power versus node degree for power grids c and d, showing a weak correlation between the degree of nodes and their load. The best fit

line power ¼ −17.4þ 123.8 k indicates that each additional degree k correlates with an increase in apparent power of 123.8 mVA (R2 ¼ 0.30).
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Fig. S4. For half the system size (Na ¼ 1;000), half the cutoff (C ¼ 500), and double the dissipation (f ¼ 0.02) of the system in Fig. 4, the chance of a large

cascade in a is qualitatively similar, and p� ≈ 0.12� 0.02 is slightly larger (in simulations with 2 × 106 grains dropped after 105 transients). This gold curve and its

critical point is stable to cutoffs C different from 500 (200 ≤ C ≤ 800). (Insets) Rank-size plots on log–log scales of the largest cascades in network a (Left) for

p ¼ 10−3, 10−2, 10−1, and in power grid d (Right) connected to c by 0, 8, or 16 edges.

Fig. S5. Increasing the internal degrees of both networks a, b from three to four [i.e., Rð4Þ-BðpÞ-Rð4Þ] slightly increases theminimum p� ≈ 0.2 of the chance of a

large cascade in network a. (Here, 103 nodes/network; f ¼ 0.02; 106 grains dropped after 105 transients.)

Fig. S6. When nodes change exactly one of their internal edge stubs to be an external edge stub with probability p [regular(za)-correlated Bernoulli(p)-regular

(zb)] rather than receiving an external edge stub with probability p [regular(za)-Bernoulli(p)-regular(zb)], global cascades are not significantly amplified. This

difference indicates that it is the small increase in capacity (due to the additional edges and the fact that capacities of nodes are their degrees) rather than the

direction of edges (internal versus external) that causes the increase in global cascades with increased Bernoulli-distributed coupling between networks. The

main plot is the total avalanche size distribution sðtÞ in a simulation with 106 grains of sand dropped (after 105 grains dropped without collecting statistics,

begun from initial amounts of sand chosen uniformly at random from zero to one less a node’s degree) on two networks with 103 nodes each, with dissipation

of sand f ¼ 0.05 and za ¼ zb ¼ 3. (Inset) Rank-size plot of largest 5 × 103 cascades, which are nearly indistinguishable.
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Fig. S7. Plots of Prðℓ ≤ Ta ≤ ℓþ 50Þ, for ℓ ¼ 50, 150,…, 850, as a function of interconnectivity p ∈ ½0;0.5�, in simulations on Rð3Þ-BðpÞ-Rð3Þ with 2 × 106 grains,

2 × 103 nodes/network, f ¼ 0.01. Intermediate cascades (50 ≤ Ta ≤ 300) have an unstable critical point p� ≈ 0.05, which changes concavity for cascades of size

approximately 350. Large cascades Ta ≥ 500 have an stable critical point p� ≈ 0.075.

Fig. S8. Qualitative agreement between the theoretical prediction (Eq. 4) and simulation on Rð3Þ-Bð0.005Þ-Rð4Þ (2 × 106 grains, 103 nodes/network, f ¼ 0.02).

(Main plot) Marginalized avalanche size distributions of inflicted cascades from a to b (blue), b to a (red). (Inset) Rank-size plot of the largest 103 inflicted

cascades from a to b (blue), b to a (red).

Fig. S9. Same plot as in Fig. 7, but for load disparity r ¼ 10 (main plot) and r ¼ 20 (Inset). For 16 edges between grids c and d (dashed curves), the largest

inflicted cascades from grid c to d (green dashed curve) are slightly smaller than the largest local cascades from d to itself (gold dashed curve) for r ¼ 10,

indicating that r�⪆10. For r ¼ 20 (Inset), the largest inflicted cascades are slightly larger than the largest local cascades, indicating that r�⪅20.
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Fig. S10. (A) Increasing the interconnectivity p between two random three-regular graphs appears to mitigate the tails of the local avalanche size distribution

∑tb
saðta;tbÞ. Plotted are the first 11 × 11 coefficients of Sa computed using multidimensional Lagrange inversion (1) for p ¼ 0;0.5;1. (B) Increasing the inter-

connectivity p between two random three-regular graphs “smears out” the avalanche size distribution saðta;tbÞ, so that cascades large in both networks

become more likely. Plotted are saðta;tbÞ for 0 ≤ ta;tb ≤ 10, computed using multidimensional Lagrange inversion (1) for p ¼ 0;0.1;1. We plot zero probabilities

in white and positive probabilities in a logarithmic color scale from orange (high probability) to bright red (low probability).

1. Good IJ (1960) Generalizations to several variables of Lagrange’s expansion, with applications to stochastic processes. Proc Cambridge Philos Soc 56:367–380.

Table S1. Summary statistics of power grids c and d (in isolation and

coupled together) and of a random three-regular graph with the same

number of nodes as d

c d c and d three-regular

No. nodes 439 504 943 504
No. internal edges 527 734 1,261 756
No. external edges 8 8 — —

hkinternali 2.40 2.91 2.69 3
hkexternali 0.0205 0.0179 — —

hCi 0.0109 0.0821 0.0488 0.003(2)
hℓi 9.32 8.26 11.42 7.09(3)

The statistics for the random three-regular graph are averages over 1,000

realizations, with the standard deviation in parentheses to convey the

fluctuation in the last digit.
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