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Abstract 

Surface passivation of PbS colloidal quantum dots (QDs) with iodide has been used in highly 

efficient solar cells. Iodide passivation is typically achieved by ligand exchange processes on 

QD films. Complementary to this approach, herein we present a non-intrusive solution-based 

strategy for doping QDs with iodide to further optimize solar cell performance. The doping 

step is applied in-situ at the end of the synthesis of the QDs. The optimum precursor I/Pb ratio 

is found to be in the 1.5-3% range at which iodide substitutes S without excessively altering 

the dots´ surface chemistry. This allows for band engineering and decreasing the density of 

deep trap states of the QDs which taken together lead to PbS QD solar cells with efficiency in 

excess of 10%.  
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PbS QD based single junction solar cells have recently exceeded the 10% power conversion 

limit1. Much of this progress was facilitated by advancements made towards passivating the 

surface of the dots with ligands that cater for efficient inter-dot charge transfer while at the 

same time prevent the formation of surface-located electronic trap states2–4. Iodide and 

ethylenedithiol (EDT) are some of the most well studied5–8 and successful -in terms of end 

electronic functionality- ligands. These ligands combined are used for the fabrication of state 

of the art PbS CQD solar cells9. Therein, a bilayer of iodide-passivated dots and EDT-

passivated dots form a respective type-II donor-acceptor interface with the term donor 

signifying: a) a negative shift of the valence and conduction band edges and b) an enhanced n-

type doping character, with respect to the EDT-passivated dots. The shift of the band edges is 

related to changes of the ligand dependent electrostatic dipole moment on the dots´ surface9,10. 

The n-type doping effect of iodide dopants has been further assigned to two distinct 

mechanisms: i) I- substitutes divalent S-2 within the PbS structure, and ii) I- attached to the 

surface of the QDs prevents oxidation of the dots5. These two mechanisms are distinctive since, 

while the latter is a surface related one, the former is not necessarily surface located.  
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Distinguishing the two mechanisms has not been a trivial task since iodide is usually 

introduced in abundance during the QD film formation5,6,11,12 aiming at passivating the exposed 

Pb surface sites. This approach further prevents combining the first mechanism (substituting 

S2-) with passivating the surface of the dots with another ligand, specifically with EDT. It is 

then possible to construct bilayers of iodide-passivated QDs and EDT-passivated QDs, where 

substitutional iodide dopants exist within each layer and counter-balance the negative impact 

that environmental oxidation5,13 and hydroxylation14 of the dots have on their ionic balance13 

and thus doping character. Towards this direction, Lan et al.15 had recently reported such a 

doping method for photovoltaic applications were post-synthetically cleaned PbS QDs are 

subsequently doped over 24 hours in a solution containing a molecular I2 precursor under the 

inert N2 atmosphere of a glovebox. They further reported that at an optimized I/Pb ratio of 5%, 

the solar cell performance is statistically improved, and it drops above the aforementioned 

iodide concentration due to formation of traps as investigated by electronic device 

measurements15. We sought to develop a simpler and faster iodide doping method that would 

be readily integrated with all other steps taken in PbS QD photovoltaic technology, as well as 

to understand the physicochemical mechanisms at play that underpin the effects of this doping 

method on device performance.        

The steps followed from QD synthesis to film formation for solar cells are tabulated in 

Figure 1a with step 2 being the one introduced in this work for the purpose of doping the QDs 

with iodide. After the synthetic reaction used for producing the QDs and before the cleaning 

step which typically involves the use of acetone, we introduce the iodide precursor which is 1-

ethyl-3-methylimidazolium iodide (EMII) dissolved at room temperature in acetone and further 

clean/process immediately afterwards. The EMII salt has been recently shown to be a more 

efficient iodide source for PbS QDs compared to the other commonly used TBAI14. In our 

method, to avoid excessive passivation of the dots surface with iodide and to sustaining 
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colloidal stability of the QDs, a precursor ratio I/Pb≤6% is used. When iodide doping density 

is kept at a moderate level of I/Pb= 1.5%, the doped QDs exhibit enhanced photoluminescence 

compared to the un-doped ones as shown in Figure 1b in agreement with prior reports15. From 

figure 1b however, it is also evident that upon heavy doping (I/Pb=6%) the PL intensity of the 

QDs is reduced. We further find that the aforementioned PL evolution with doping is 

accompanied by changes in the intensity of the Urbach Tail (UT) at the edge of the QDs´ optical 

absorption spectra, as follows: for I/Pb=1.5% UT weakens compared to undoped QDs, while 

for heavy doping (I/Pb=6%) UT is re-strengthened, as shown in supplementary figure S1a. 

These facts (evolution of PL and UT with doping density) taken together indicate that at a 

moderate doping density, the density of empty trap states within the QDs´ bandgap is reduced, 

but increases again for heavy iodide doping. We sought to confirm the implications of this 

phenomenon in PbS QD photovoltaic technology. 

The QDs are used in solar cells employing 90 nm thick ITO, 60 nm thick ZnO and two PbS 

CQD film layers (of 200 ±10 nm total thickness) each one treated with EMII and EDT 

respectively followed by Au evaporation for the top electrodes. The cross section of the device 

is shown in Figure 1c. Typical current-voltage characteristics of these solar cells under 1-Sun 

illumination are shown in Figure 1d. The best photovoltaic performance of 10.5% is achieved 

at an optimum I/Pb precursor ratio of 1.5%, and at this doping density a robust statistical 

improvement of photovoltaic power conversion efficiency (PCE) is observed compared to solar 

cells made with un-doped dots as shown in Figures 1e,f. This improvement is facilitated by 

statistically higher open circuit voltage (VOC) and fill factor (FF) values, but smaller (<5%) 

short circuit (JSC) values, for cells with doped QDs compared to undoped QDs, as shown in 

supplementary Figure S2 which further includes average values and standard deviations for the 

aforementioned figures of merit. Statistically, the power conversion efficiency of the cells with 
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optimized doped QDs is improved to 9.4 ±0.5% as compared to 8.9 ±0.6% for the undoped 

QDs.  

Different precursor I/Pb ratios were investigated in the 0-6% range and the best device 

results for each ratio are presented in Table 1 while the spectral photoresponse (external 

quantum efficiency i.e. EQE) of the devices is shown in supplementary Figure S3. The data in 

Table 1 illustrate that at heavy doping (I/Pb=6 %) the performance of the cells suffers from 

poor FF and Voc. Nevertheless, for all cells there is a good linear relationship between 

photocurrent and light intensity as shown in Supplementary Figure S4a.  By employing 

transient photovoltage (TPV) and photocurrent (TPC) characterization, we find that the 

evolution of photovoltaic performance with increasing I/Pb is associated with an initial 

decrease of trap state density and an increase of recombination lifetime as shown in Figures 

2a,b. These trends however are reversed beyond the optimum I/Pb ratio as this reflects upon 

the deterioration of the solar cell performance for heavy iodide doping. We note that the same 

conclusions can further be confirmed by considering that at a given charge density value, 

charge recombination in the I/Pb=0% QD cell is faster (i.e. is described by smaller 

recombination rates) as compared to the I/Pb>0% QD cells, and much faster compared to the 

optimized I/Pb=1.5% QD cell. This is evident by Supplementary Figure S4b, which depicts the 

TPV-, and TPC- extracted recombination lifetime plotted against the photogenerated charge 

density. The photocurrent-time traces from the TPC characterization as shown in 

Supplementary Figures S4c,d also confirm that charge collection in the QD solar cells occurs 

faster (<1μs) compared to charge recombination which is typically characterized by >1 μs 

lifetimes as seen in Figure 2a. 

Suppression of traps within the bandgap of the QDs via iodide doping should be an optically 

accessible effect and for this reason the PL properties of EMII-treated (i.e. ligand exchanged) 

QD films were investigated under low (≈0.1 excitons per QD) lighting conditions which are 
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relevant to solar cell operation.  The steady-state PL measurements shown in Figure 2c for 

different I/Pb ratios, confirm that at optimized density I/Pb=1.5% the PL strength is increased 

compared to the un-doped and heavily doped QDs. However, most importantly it is also 

observed (inset of Figure 2c) that an optimized iodide doping leads to elimination of the deep 

trap emission in the 1300-1600 nm range. This emission corresponds to optical transitions of 

energies 0.29 - 0.46 eV below the band-edge emission of the QDs. Thus, this emission is 

facilitated by trap states located deep within the bandgap of the QDs. We hypothesize that for 

optimized iodide doping these states become partially filled by the electrons that become “free” 

when monovalent I- substitutes divalent S2- in anion sites of the PbS structure. As a further 

consequence of this trap passivation mechanism, the PL-lifetime of the QDs is increased for 

I/Pb=1.5% as evident from the transient PL measurements shown in Figure 2d. The 

deterioration of the QDs´ PL characteristics for higher doping densities (I/Pb=6%) should 

originate from the generation of new trap states upon heavy doping.   

To further elucidate the physicochemical origins of the evolution of trap-density in QD films 

-and thus of their impact on the QDs´ photovoltaic performance- with increasing I doping 

density, we employed X-ray and Ultraviolet photoelectron spectroscopies (XPS and UPS 

respectively) on EDT- and EMII-passivated QD films. The chemical species and their 

concentrations as identified by analysing the Pb4f, O1s, S2p, C1s and I3d XPS spectra are 

shown in Tables 2 and 3. Examples of deconvoluted XPS spectra are shown in Supplementary 

Figure S5 and analysed UPS spectra are shown in Supplementary Figure S6. For the EDT-

treated QDs the following remarks can be made according to Table 2: i) XPS confirms the 

efficient incorporation of iodide dopants with our doping scheme and this is further seen in the 

I3d spectra shown in Figure 3a. ii) Iodide doping is accompanied by a decrease of the sulphur 

assigned to PbS, this further indicates that iodide substitutes S in the PbS lattice; this 

mechanism should have an n-type doping effect on the QDs. iii) Iodide doping is accompanied 
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by a decrease of EDT bound onto the QDs as measured from the S2p spectra. iv) At heavy 

iodide doping (I/Pb=6%) undercharged Pb appears on the QDs and this can be a source of 

electronic trap states16. When calculating the ionic charge balance for the EDT films as shown 

in Table 2, we see that it progressively increases from 0.14 to 0.18 with increasing I/Pb. This 

should result to a progressive upward shift of the Fermi level (EF) with respect to the valence 

band edge (EV) of the QD film. Indeed, this is confirmed by the UPS measurements as shown 

in Figure 3b. The feature appearing on the Pb4f spectra and that is assigned to undercharged 

Pb is further shown in Figure 3c. 

Figure 3b also shows the band levels for EMII-treated QD films with increasing the I/Pb 

precursor ratio of the initial doping step. Increasing I/Pb does not monotonically cause an n-

type doping effect (as determined by the relative position of EF compared to EC and EV). Rather, 

EF does shift away from EV for the optimum doping I/Pb=1.5%, and then shifts backwards for 

heavy doping (I/Pb=6%). This can be explained by considering the ionic charge balance as 

measured with XPS for these films and shown in Table 3. The stoichiometric data in Table 3 

further suggest that the underlying reasons for the non-monotonic evolution of the charge 

balance calculation with increasing I/Pb for the EMII-treated QD films, are the following: i) 

The final iodide concentration of the films decreases when increasing the iodide concentration 

during the initial I/Pb ratio. ii) While upon I-doping the concentration of SPbS is decreased, this 

effect does not progress further for heavy I-doping iii) After heavy doping, the final QD film 

are completely striped off the original oleic acid (as evident by the OC=O concentration). This 

QD film is also significantly oxidized and hydroxylated as evident by both the Pb-O and Pb-

OH species´ concentrations measured from the Pb4f and O1s XPS spectra. To account for the 

aforementioned effects, we posit that during the post-synthetic iodide doping, sulphur and oleic 

acid are removed and substituted -to some extent- by iodide. However, upon subsequent 

EMII/methanol treatment of the films, the following effects take place: methanol attacks and 
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removes the originally attached (via substitution and/or surface attachment) iodide dopants and 

this renders the surface of the QDs prone to environmental oxidation and hydroxylation. These 

effects have a p-type doping effect which is confirmed by the evolution of EF as shown in 

Figure 3b, and can be explained by the charge balance calculations at the bottom of Table 3. 

Our hypothesis further agrees with previous reports regarding the aggressive character of 

methanol in removing halides from the surface of PbS QDs17.  

Based on this analysis, it is evident that iodide doping of PbS QDs in solution improves 

solar cell performance as long as it mainly results to n-type substitutional doping and does not 

cause a significant alteration of the final QD films´ surface chemistry. Such an alteration is the 

formation of undercharged lead in EDT-treated films which acts as a trap state and can be 

detrimental for solar cell performance16.  For EMII-treated films, the undesired side effect of 

the initial iodide doping is the oxidation and hydroxylation of the final QD films, with both 

mechanisms having p-type doping effect and introducing electronic trap states14,18. The doping 

effect and chemical side effects of the iodide doping scheme presented here when followed by 

EDT and EMII treatment of the QD films, are tabulated in Figure 3d. When an optimum I/Pb 

ratio of 1.5% is used and the detrimental surface effects are thus being avoided, the solar cells 

are benefited by iodide substitutional doping. Furthermore, at the optimum doping 

concentration, the band edge offset between the EMII- and EDT-treated QD films is at its 

maximum as can be seen in Figure 3b. This may further account for the improved performance 

and VOC of the cells made with optimized doped QDs. 

In conclusion, subtle changes in the iodide doping density of PbS QDs in solution may alter 

significantly the chemistry of the final QD films. This in turn affects the electronic structure, 

density of trap states, photoluminescence intensity and dynamics, carrier recombination 

lifetime and photovoltaic performance of the QD films. The efficiency of solar cells is 

improved for an optimized iodide doping density for which a clear substitutional doping 
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mechanism is resolved. When exceeding the optimum doping density, the photovoltaic 

performance of the QD films drops due to undesired chemical species formed on the surface 

of the QDs films. 
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spectroscopy and related analysis20, vii) XPS and UPS measurements, viii) XPS analysis14, 16, 
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Table 1. Best results for solar cells made with QDs of different I/Pb doping ratios. 

Precursor I/Pb (%) VOC (V) JSC (mA/cm2) FF PCE (%) Rs (Ohm) Rsh (Ohm) 

0 0.64 22 71 9.96 19.7 62900 

0.75 0.62 21.8 71 9.62 23.5 18400 

1.5 0.65 22.6 71 10.47 25.9 50900 

3 0.66 21.3 72 10.05 44.8 31600 

6 0.63 21.2 63 8.82 48.3 14600 
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Table 2.  XPS results for EDT treated samples. For Pb4f and S2p peak energies refer to Pb4f5/2 

and S2p3/2 respectively.  

ElementXPS peak Speciesbinding energy I/Pb=0% I/Pb=1.5% I/Pb=6% 

Pb4f Total 1 1 1 

 PbS137.5 eV 0.96 0.96 0.91 

 Pb/PbS oxidized138.4 eV 0.04 0.04 0.03 

 Pb undercharged136.4 eV - - 0.06 

S2p Total 1.24 1.21 1.14 

 PbS160.6 eV 0.62 0.6 0.58 

 EDT bound161.5eV 0.57 0.53 0.53 

 EDT unbound163.5eV 0.06 0.08 0.02 

I3d PbI618.7 eV 0 0.01 0.05 

C1s Total 1.03 1.10 1.31 

 C=O288.9 eV 0.04 0.05 0.05 

O1s Total 0.12 0.18 0.11 

 Pb-O529.6 eV 0.01 0.01 0 

 Pb-OH531.2 eV 0.03 0.08 0.02 

 COO, CO2532.3 eV 0.04 0.05 0.05 

 OH533.7 eV 0.04 0.04 0.05 

Charge balance 
according to XPS 

2(Pbtotal-Pbundercharged) -2SPbS -
SEDT bound -IPbI -2OPb-O -OPb-OH 0.14 0.16 0.18 
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Table 3. XPS results for EMII treated samples 

ElementXPS peak Speciesbinding energy I/Pb=0% I/Pb=1.5% I/Pb=6% 

Pb4f Total 1 1 1 

 PbS137.9 eV 0.95 0.95 0.92 

 Pb/PbS oxidized138.9 eV 0.05 0.05 0.08 

S2p PbS161eV 0.61 0.59 0.59 

I3d PbI619.2 eV 0.64 0.63 0.61 

C1s Total 0.67 0.70 0.89 

 C=O288.9 eV 0.04 0.04 <0.01 

O1s Total 0.14 0.13 0.18 

 Pb-O529.6 eV 0.01 0.01 0.04 

 Pb-OH531.2 eV 0.03 0.02 0.07 

 COO, CO2532.3 eV 0.05 0.05 0.04 

 OH533.7 eV 0.05 0.05 0.03 

Charge balance 
according to XPS 

2Pbtotal -2SPbS -IPbI- 
2OPb-O -   OPb-OH 0.09 0.15 0.06 
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Figures 

 

Figure 1 (a) CQD processing towards use in solar cells, (b) Normalized (according to optical 

absorption) PL profile upon increasing iodide doping concentration in solution (no additional 

ligand exchange), (c) micrograph of the cross section of a QD solar cell with layers as indicated, 

(d) current-voltage trace under 1-sun illumination for best solar cells made without (black line) 

and with (red line) halide doping and indicated power conversion efficiency (PCE) values, (e,f) 

histograms for PCE of several solar cells made without (e) and with (f) optimized halide doping 

of QDs in solution.  
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Figure 2 (a) Carrier recombination lifetime and (b) density of trap states, in solar cells for 

different I/Pb doping ratios. (c) Steady-state PL (normalized to absorption) measurements of 

EMII-treated films of QDs of different initial I/Pb doping ratio. The region in the 1200-1600 

nm range, is further shown in the inset. (d) Normalized PL lifetime traces for the EMII-treated 

QD films and indicated average lifetimes as calculated by a triple-exponential fitting (dashed 

lines) performed for each trace. [Measurements shown in (c) and (d) were performed using 

laser excitation at 785 nm and an excitation intensity corresponding to ≈0.1 excitons per QD.]  
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Figure 3. (a) I3d XPS spectra of EDT-treated QD films with varying I/Pb precursor ratio. (b) 

Energy positions of valence band edge EV (lower solid lines), conduction band edge EC (upper 

solid lines) and Fermi level (dotted lines) according to UPS measurements and bandgap of 

QDs, for EMII- and EDT-treated QD films. (c) Pb4f XPS spectra of EDT-treated films of un-

doped and heavily iodide-doped QDs. (d) Schematic showing the electronic doping effect and 

chemical and electronic side effects of the iodide doping scheme presented here.    

 

 


