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Abstract

Annotating a qualitative large-scale facial expression

dataset is extremely difficult due to the uncertainties caused

by ambiguous facial expressions, low-quality facial images,

and the subjectiveness of annotators. These uncertainties

lead to a key challenge of large-scale Facial Expression

Recognition (FER) in deep learning era. To address this

problem, this paper proposes a simple yet efficient Self-

Cure Network (SCN) which suppresses the uncertainties ef-

ficiently and prevents deep networks from over-fitting un-

certain facial images. Specifically, SCN suppresses the

uncertainty from two different aspects: 1) a self-attention

mechanism over mini-batch to weight each training sam-

ple with a ranking regularization, and 2) a careful rela-

beling mechanism to modify the labels of these samples in

the lowest-ranked group. Experiments on synthetic FER

datasets and our collected WebEmotion dataset validate the

effectiveness of our method. Results on public benchmarks

demonstrate that our SCN outperforms current state-of-the-

art methods with 88.14% on RAF-DB, 60.23% on Affect-

Net, and 89.35% on FERPlus. The code will be available

at https://github.com/kaiwang960112/Self-Cure-Network.

1. Introduction

Facial expression is one of the most natural, powerful

and universal signals for human beings to convey their emo-

tional states and intentions [7, 41]. Automatically recogniz-

ing facial expression is also important to help the computer

understand human behavior and to interact with them. In the

past decades, researchers have made significant progress on

facial expression recognition (FER) with algorithms[17, 47]

and large-scale datasets, where datasets can be collected in
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Figure 1: Illustration of uncertainties on real-world facial

images from RAF-DB. The right samples are extremely dif-

ficult for machines and even human which are better to be

suppressed in training.

laboratory or in the wild, such as CK+ [31], MMI [42],

Oulu-CASIA [54], SFEW/AFEW [10], FERPlus [4], Af-

fectNet [35], EmotioNet [11], RAF-DB [24], etc.

However, for the large-scale FER datasets collected from

the Internet, it is extremely difficult to annotate with high

quality due to the uncertainties caused by the subjective-

ness of annotators as well as ambiguous in-the-wild facial

images. As illustrated in Figure 1, the uncertainties increase

from high-quality and evident facial expressions to low-

quality and micro expressions. These uncertainties usually

lead to inconsistent labels and incorrect labels, which are

suspending the progress of large-scale Facial Expression

Recognition (FER), especially for the one of data-driven

deep learning based FER. Generally, training with uncer-

tainties of FER may lead to the following problems. First,

it may result in over-fitting on the uncertain samples which

may be mislabeled. Second, it is harmful for a model to

learn useful facial expression features. Third, a high ratio

of incorrect labels even makes the model disconvergence in

the early stage of optimization.

To address these issues, we propose a simple yet efficient

method, termed as Self-Cure Network (SCN), to suppress

the uncertainties for large-scale facial expression recogni-

tion. The SCN consists of three crucial modules: self-
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attention importance weighting, ranking regularization, and

noise relabeling. Given a batch of images, a backbone CNN

is first used to extract facial features. Then the self-attention

importance weighting module learns a weight for each im-

age to capture the sample importance for loss weighting. It

is expected that uncertain facial images are assigned low im-

portance weights. Further, the ranking regularization mod-

ule ranks these weights in descending order, splits them

into two groups (i.e. high importance weights and low im-

portance weights), and regularizes the two groups by en-

forcing a margin between the average weights of the two

groups. This regularization is implemented with a loss func-

tion, termed as Rank Regularization loss (RR-Loss). The

ranking regularization module ensures that the first module

learns meaningful weights to highlight certain samples (e.g.

reliable annotations) and to suppress uncertain samples (e.g.

ambiguous annotations). The last module is a careful rela-

beling module that attempts to relabel these samples from

the bottom group by comparing the maximum predicted

probabilities to the probabilities of given labels. A sample is

assigned to a pseudo label if the maximum prediction prob-

ability is higher than the one of given label with a margin

threshold. In addition, since the main evidence of uncer-

tainties is the incorrect/noisy annotation problem, we col-

lect an extreme noisy FER dataset from the Internet, termed

as WebEmotion, to investigate the effect of SCN with ex-

treme uncertainties.

Overall, our contributions can be summarized as follows,

• We innovatively pose the uncertainty problem in facial

expression recognition, and propose a Self-Cure Net-

work to reduce the impact of uncertainties.

• We elaborately design a rank regularization to super-

vise the SCN to learn meaningful importance weights,

which also provides a reference for the relabeling mod-

ule.

• We extensively validate our SCN on synthetic FER

data and a new real-world uncertain emotion dataset

(WebEmotion) collected from the Internet. Our

SCN also achieves performance 88.14% on RAF-DB,

60.23% on AffectNet, and 89.35% on FERPlus, which

set new records on them.

2. Related Work

2.1. Facial Expression Recognition

Generally, a FER system mainly consists of three stages,

namely face detection, feature extraction, and expression

recognition. In face detection stage, several face detectors

like MTCNN [51] and Dlib [2]) are used to locate faces in

complex scenes. The detected faces can be further aligned

alternatively. For feature extraction, various methods are

designed to capture facial geometry and appearance fea-

tures caused by facial expressions. According to the fea-

ture type, they can be grouped into engineered features and

learning-based features. For the engineered features, they

can be further divided into texture-based local features[48],

geometry-based global features, and hybrid features. The

texture-based features mainly include SIFT [37], HOG [6],

Histograms of LBP [38], Gabor wavelet coefficients [28],

etc. The geometry-based global features are mainly based

on the landmark points around noses, eyes, and mouths.

Combining two or more of the engineered features refers to

the hybrid feature extraction, which can further enrich the

representation. For the learned features, Fasel [12] finds that

a shallow CNN is robust to face poses and scales. Tang [40]

and Kahou et al. [23] utilize deep CNNs for feature extrac-

tion, and win the FER2013 and Emotiw2013 challenge, re-

spectively. Liu et al. [29] propose a Facial Action Units

based CNN architecture for expression recognition. Re-

cently, both Li et al. [27] and Wang et al. [45] have de-

signed region-based attention networks for pose and occlu-

sion aware FER, where the regions are either cropped from

landmark points or fixed positions.

2.2. Learning with Uncertainties

Uncertainties in the FER task mainly come from am-

biguous facial expressions, low-quality facial images, in-

consistent annotations, and incorrect annotations (i.e. noisy

labels). Particularly, learning with noisy labels is exten-

sively studied in the computer vision community while the

other two aspects are rarely explored. In order to handle

noisy labels, one intuitive idea is to leverage a small set of

clean data that can be used to assess the quality of the labels

during the training process [43, 25, 8], or to estimate the

noise distribution [39], or to train the feature extractors [3].

Li et al. [25] propose a unified distillation framework using

‘side’ information from a small clean dataset and label re-

lations in knowledge graph, to ‘hedge the risk’ of learning

from noisy labels. Veit et al.[44] use a multi-task network

that jointly learns to clean noisy annotations and to clas-

sify images. Azadi et al.[3] select reliable images by an

auxiliary image regularization for deep CNNs with noisy

labels. Other methods do not need a small clean dataset

but they may assume extra constrains or distributions on

the noisy samples [34], such as a specific loss for randomly

flipped labels [36], regularizing the deep networks on cor-

rupted labels by a MentorNet [22], and other approaches

that model the noise with a softmax layer by connecting

the latent correct labels to the noisy ones [13, 50]. For the

FER task, Zeng et al. [50] first consider the inconsistent

annotation problem among different FER datasets, and pro-

pose to leverage these uncertainties to improve FER. In con-

trast, our work focuses on suppressing these uncertainties

to learn better facial expression features.
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3. Self-Cure Network

To learn robust facial expression features with uncertain-

ties, we propose a simple yet efficient Self-Cure Network

(SCN). In this section, we first provide an overview of the

SCN, and then present its three modules. We finally present

the detailed implementation of SCN.

3.1. Overview of SelfCure Network

Our SCN is built upon traditional CNNs and consists of

three crucial modules: i) self-attention importance weight-

ing, ii) ranking regularization, and iii) relabeling, as shown

in Figure 2.

Given a batch of face images with some uncertain sam-

ples, we first extract the deep features by a backbone

network. The self-attention importance weighting mod-

ule assigns an importance weight for each image using

a fully-connected (FC) layer and the sigmoid function.

These weights are multiplied by the logits for a sample re-

weighting scheme. To explicitly reduce the importance of

uncertain samples, a rank regularization module is further

introduced to regularize the attention weights. In the rank

regularization module, we first rank the learned attention

weights and then split them into two groups, i.e. high and

low importance groups. We then add a constraint between

the mean weights of these groups by a margin-based loss,

which is called rank regularization loss (RR-Loss). To fur-

ther improve our SCN, the relabeling module is added to

modify some of the uncertain samples in the low impor-

tance group. This relabeling operation aims to hunt more

clean samples and then to enhance the final model. The

whole SCN can be trained in an end-to-end manner and eas-

ily added into any CNN backbones.

3.2. SelfAttention Importance Weighting

We introduce the self-attention importance weighting

module to capture the contributions of samples for training.

It is expected that certain samples may have high impor-

tance weights while uncertain ones have low importance.

Let F = [x1,x2, . . . ,xN ] ∈ RD×N denotes the facial fea-

tures of N images, the self-attention importance weighting

module takes F as input, and output an importance weight

for each feature. Specifically, the self-attention importance

weighting module is comprised of a linear fully-connected

(FC) layer and a sigmoid activation function, which can be

formulated as ,

αi = σ(W⊤
a xi), (1)

where αi is the importance weight of the i-th sample, Wa

is the parameters of the FC layer used for attention, and σ is

the sigmoid function. This module also provides reference

for the other two modules.

Logit-Weighted Cross-Entropy Loss. With the atten-

tion weights, we have two simple choices to perform loss

weighting inspired by [19]. The first choice is to multiply

the weight of each sample by the sample loss. In our case,

since the weights are optimized in an end-to-end manner

and are learned from the CNN features, they are doomed to

be zeros as this trival solution makes zero loss. MentorNet

[22] and other self-paced learning methods [21, 32] solve

this problem by alternating minimization, i.e. optimize one

at a time while the other is held fixed. In this paper, we

choose the logit-weighted one of [19] which is shown to

be more efficient. For a multi-class Cross-Entropy loss,

we call our weighted loss as Logit-Weighted Cross-Entropy

loss (WCE-Loss), which is formulated as,

LWCE = −
1

N

N
∑

i=1

log
e
αiW

⊤

yi
xi

∑C

j=1
e
αiW

⊤
j

xi

, (2)

where Wj is the j-th classifier. As suggested in [30], the

LWCE has a positive correlation with the α.

3.3. Rank Regularization

The self-attention weights in the above module can be

arbitrary in (0, 1). To explicitly constrain the importance

of uncertain samples, we elaborately design a rank regular-

ization module to regularize the attention weights. In the

rank regularization module, we first rank the learned atten-

tion weights in descending order and then split them into

two groups with a ratio β. The rank regularization ensures

that the mean attention weight of high-importance group is

higher than the one of low-importance group with a margin.

Formally, we define a rank regularization loss (RR-Loss)

for this purpose as follows,

LRR = max{0, δ1 − (αH − αL)}, (3)

with

αH =
1

M

M
∑

i=0

αi, αL =
1

N −M

N
∑

i=M

αi, (4)

where δ1 is a margin which can be a fixed hyper parameter

or a learnable parameter, αH and αL are the mean values of

the high importance group with β∗N = M samples and the

low importance group with N − M samples, respectively.

In training, the total loss function is Lall = γLRR + (1 −
γ)LWCE where γ is a trade-off ratio.

3.4. Relabeling

In the rank regularization module, each mini-batch is di-

vided into two groups, i.e. the high-importance and the low-

importance groups. We experimentally find that the uncer-

tain samples usually have low importance weights, thus an

intuitive idea is to design a strategy to relabel these samples.
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Figure 2: The pipeline of our Self-Cure Network. Face images are first fed into a backbone CNN for feature extraction.

The self-attention importance weighting module learns sample weights from facial features for loss weighting. The rank

regularization module takes as input the sample weights and constrain them with a ranking operation and a margin-based loss

function. The relabeling module hunts reliable samples by comparing maximum predicted probabilities to the probabilities

of given labels. Mislabeled samples are marked in red solid rectangles and ambiguous samples in green dash ones. It is

worth noting that SCN mainly resorts to the re-weighting operation to suppress these uncertainties and only modifies some

of the uncertain samples.

Table 1: The statistics of our WebEmotion.

Category Happy Sad Surprise Fear Angry Disgust Contempt Neutral Total

# Videos 4,231 5,670 4,573 5,328 5,668 5,197 5,266 5,406 41,339

# Clips 27,854 29,667 27,418 29,822 31,483 20,764 6,454 26,687 200,149

The main challenge to modify these annotations is to know

which annotation is incorrect.

Specifically, our relabeling module only considers the

samples in the low-importance group and is performed on

the Softmax probabilities. For each sample, we compare the

maximum predicted probability to the probability of given

label. A sample is assigned to a new pseudo label if the

maximum prediction probability is higher than the one of

given label with a threshold. Formally, the relabeling mod-

ule can be defined as,

y′ =

{

lmax if Pmax − PgtInd > δ2,

lorg otherwise,
(5)

where y′ denotes the new label, δ2 is a threshold, Pmax is

the maximum predicted probability, and PgtInd is the pre-

dicted probability of the given label. lorg and lmax are the

original given label and the index of the maximum predic-

tion, respectively.

In our system, uncertain samples are expected to ob-

tain low importance weights thus to degrade their nega-

tive impacts with re-weighting, and then fall into the low-

importance group, and finally may be corrected as certain

samples by relabeling. Those corrected samples may obtain

high important weights in the next epoch. We expect the

network can be cured by itself with either re-weighting or

relabeling, which is the reason why we call our method as

self-cured network.

3.5. Implementation

Pre-processing and facial features. In our SCN, face

images are detected and aligned by MTCNN [52] and fur-

ther resized to 224 × 224 pixels. The SCN is implemented

with Pytorch toolbox and the backbone network is ResNet-

18 [16]. By default, the ResNet-18 is pre-trained on the

MS-Celeb-1M face recognition dataset and the facial fea-

tures are extracted from its last pooling layer.

Training. We train our SCN in an end-to-end manner

with 8 Nvidia Titan 2080ti GPU, and set the batch size as

1024. In each iteration, the training images are divided into

two groups including 70% high importance samples and

30% low importance samples by default. The margin δ1
between the mean value of high and low importance groups
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can be either set at 0.15 by default or designed as a learnable

parameter. Both strategies will be evaluated in the ensuing

Experiments. The whole network is jointly optimized with

RR-Loss and WCE-Loss. The ratio of the two losses is em-

pirically set at 1:1, and its influence will be studied in the

ensuing ablation study of Experiments. The leaning rate

is initialized as 0.1 which is further divided by 10 after 15

epochs and 30 epochs, respectively. The training stops at 40

epochs. The relabeling module is included for optimization

from the 10th epoch, where the relabeling margin δ2 is set

at 0.2 by default.

4. Experiments

In this section, we first describe three public datasets and

our WebEmotion dataset. We then demonstrate the robust-

ness of our SCN under uncertainties of both synthetic and

real-world noisy facial expression annotations. Further, we

conduct ablation studies with qualitative and quantitative re-

sults to show the effectiveness of each module in SCN. Fi-

nally, we compare our SCN to the state-of-the-art methods

on public datasets.

4.1. Datasets

RAF-DB [24] contains 30,000 facial images annotated

with basic or compound expressions by 40 trained human

coders. In our experiment, only images with six basic ex-

pressions (neutral, happiness, surprise, sadness, anger, dis-

gust, fear) and neutral expression are used which leads to

12,271 images for training and 3,068 images for testing.

The overall sample accuracy is used for measurement.

FERPlus [4] is extended from FER2013 as used in the

ICML 2013 Challenges. It is a large-scale dataset collected

by the Google search engine. It consists of 28,709 training

images, 3,589 validation images and 3,589 test images, all

of which are resized to 48×48 pixels. Contempt is included

which leads to 8 classes in this dataset. The overall sample

accuracy is used for measurement

AffectNet [35] is by far the largest dataset that provides

both categorical and Valence-Arousal annotations. It con-

tains more than one million images from the Internet by

querying expression-related keywords in three search en-

gines, of which 450,000 images are manually annotated

with eight expression labels as in FERPlus. It has imbal-

anced training and test sets as well as a balanced validation

set. The mean class accuracy on the validation set is used

for measurement.

The collected WebEmotion. Since the main evidence

of uncertainties is the incorrect/noisy annotation problem,

we collect an extreme noisy FER dataset from the Inter-

net, termed as WebEmotion, to investigate the effect of

SCN with extreme uncertainties. The WebEmotion is a

video dataset (though we use it as image data by assign-

ing labels to frames) downloaded from YouTube with a set

of keywords including 40 emotion-related words, 45 coun-

tries from Asia, Europe, Africa, America, and 6 age-related

words (i.e. baby, lady, woman, man, old man, old woman).

It consists of the same 8 classes with FERPlus, where each

class is connected to several emotion-related keywords, e.g.

Happy is connected to the keywords happy, funny, ecstatic,

smug, and kawaii. To obtain meaningful correlation be-

tween the keywords and the searched videos, only the top

20 crawled videos with less then 4 minutes are selected.

This leads to around 41,000 videos which are further seg-

mented into 200,000 video clips with a constraint that a face

(detected by MTCNN) appears at least 5 seconds. For eval-

uation, we only use WebEmotion for pretraining since an-

notating is extremely difficult. Table 1 shows the statistics

of WebEmotion. The meta videos and video clips will be

public to the research community.

4.2. Evaluation of SCN on Synthetic Uncertainties

The uncertainties of FER mainly come from ambiguous

facial expressions, low-quality facial images, inconsistent

annotations, and incorrect annotations (i.e. noisy labels).

Considering that only noisy labels can be analyzed quanti-

tatively, we explore the robustness of SCN with three levels

of label noises including the ratio of 10%, 20%, and 30%

to RAF-DB, FERPLus, and AffectNet datasets. Specifi-

cally, we randomly choose 10%, 20%, and 30% of train-

ing data for each category and randomly change their la-

bels to others. In Table 2, we use ResNet-18 as CNN back-

bone and compare our SCN to the baseline (traditional CNN

training without considering label noises) with two training

schemes: i) training from scratch and ii) fine-tuning with

a pretrained model on Ms-Celeb-1M [15]. We also com-

pare our SCN to two state-of-the-art noise-tolerant meth-

ods on RAF-DB, namely CurriculumNet [14] and Meta-

Cleaner [53].

As shown in Table 2, our SCN consistently improves the

baseline by a large margin. For scheme i) with noise ratio

30%, our SCN outperforms the baseline by 13.80% , 1.07%,

and 1.91% on RAF-DB, FERPLus, and AffectNet, respec-

tively. For scheme ii) with noise ratio 30%, our SCN still

gain improvements of 2.20%, 2.47%, and 3.12% on these

datasets though the performance of them are relatively high.

For both schemes, the benefit from SCN becomes more ob-

vious as the noise ratio increases up. CurriculumNet de-

signs training curriculum by measuring data complexity us-

ing cluster density which can avoid training noisy-labeled

data in early stages. MetaCleaner aggregates the features of

several samples in each class into a weighted mean feature

for classification which can also weaken the noisy-labeled

samples. Both CurriculumNet and MetaCleaner improve

the baseline largely but are still inferior to the SCN which

is simpler. Another interesting find is that the improve-

ment of SCN on RAF-DB is much higher than on other
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Figure 3: Visualization of the learned importance weights in our SCN, we show these weights on randomly selected images

with original labels (1st row) and synthetic noisy labels before and after relabeling (2nd row and 3rd row).

Table 2: The evaluation of SCN on synthetic noisy FER

datasets. ‘Pretrain’ means we use a pretrained model from

face recognition, otherwise we train from scratch.

Pretrain SCN Noise(%) RAF-DB AffectNet FERPlus

× CurriculumNet [14] 10 68.5 - -

× MetaCleaner [53] 10 68.45 - -

× × 10 61.43 44.68 77.15

× X 10 70.26 45.23 78.53

× CurriculumNet [14] 20 61.23 - -

× MetaCleaner [53] 20 61.35 - -

× × 20 55.5 41.00 71.88

× X 20 63.50 41.63 72.46

× CurriculumNet [14] 30 57.52 - -

× MetaCleaner [53] 30 58,89 - -

× × 30 46.81 38.35 68.54

× X 30 60.61 39.42 70.45

X × 10 80.81 57.18 83.39

X X 10 82.18 58.58 84.28

X × 20 78.18 56.15 82.24

X X 20 80.10 57.25 83.17

X × 30 75.26 52.58 79.34

X X 30 77.46 55.05 82.47

datasets. It may be explained by the following reasons. On

the one hand, RAF-DB consists of compound facial expres-

sions and is annotated by 40 people with crowdsourcing,

which make the data annotations more inconsistent. Thus,

our SCN may also gain improvement on the original RAF-

DB without synthetic label noises. On the other hand, Af-

fectNet and FERPlus are annotated by experts, thus less in-

consistent labels are involved, leading to less improvement

on RAF-DB.

Visualization of α in SCN. To further investigate the

effectiveness of our SCN under noisy annotations, we vi-

sualize the importance weight α during the training phase

of SCN on RAF-DB with noise ratio 10% . In Figure 3,

Table 3: The effect of SCN on WebEmotion for pretraining.

The 2nd column indicates finetuning with or without SCN.

WebEmoition SCN RAF-DB AffectNet FERPlus

× × 72.00 46.58 82.4

w/o SCN × 78.97 56.43 84.20

w/o SCN X 80.42 57.23 85.13

SCN X 82.45 58.45 85.97

the first row indicates the importance weights when SCN is

trained with original labels. The images of the second row

are annotated with synthetic corrupted labels, and we use

SCN (without Relabel module) to train the synthetic noisy

dataset. Indeed, the SCN regards those label-corrupted im-

ages as noises and automatically suppresses the weights of

them. After sufficient training epochs, the relabeling mod-

ule are added into SCN, and these noisy-labeled images are

relabeled (of course many others may be not relabeled since

we have relabeling constraint). After several other epochs,

the importance weights of them become high (the 3rd row),

which demonstrates that our SCN can ‘self-cure’ the cor-

rupted labels. It is worth noting that the new labels from

relabeling module may be inconsistent with “ground-truth”

labels (see the 1st, 4th, and 6th columns) but they are also

reasonable in visualization.

4.3. Exploring SCN on RealWorld Uncertainties

Synthetic noisy data proves the effectiveness of the ‘self-

curing’ ability of SCN. In this section, we apply our SCN

to real-world FER datasets which can include all types of

uncertainties.

SCN on WebEmotion for pretraining. Our collected

WebEmotion dataset consists of massive noises since the
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Figure 4: Ten examples of RAF-DB (w/o synthetic noisy

labels) with low importance weights. Each column corre-

sponds to a basic emotion. One can guess their labels and

the ground-truth labels of RAD-DB are included in the text.

Table 4: SCN on real-world FER datasets. The improve-

ments of SCN suggests that these public datasets more or

less suffer from uncertainties.

Pretrain SCN RAF-DB AffectNet FERPlus

× × 72.00 46.58 82.4

× X 78.31 47.28 83.42

× CurriculumNet [14] 74.67 - -

× MetaCleaner [53] 77.18 - -

X × 84.20 58.5 86.80

X X 87.03 60.23 88.01

searching keywords are regarded as labels. To better vali-

date the effect of SCN on real-world noisy data, we apply

our SCN to WebEmotion for pretraining and then finetune

the model on target datasets. We show the comparison ex-

periments in Table 3. From the 1st and the 2nd rows, we

can see that pretraining on WebEmotion without SCN im-

proves the baseline by 6.97%, 9.85%, and 1.80% on RAF-

DB, FERPlus and AffectNet, respectively. Fine-tuning with

SCN on target datasets obtains gains ranged from 1% to

2%. Pretraining on WebEmotion with SCN further boosts

the performance from 80.42% to 82.45% on RAF-DB. This

suggests that SCN learns robust features on WebEmotion

which is better for further fine-tuning.

SCN on Original FER datasets. We further conduct

experiments on original FER datasets to evaluate our SCN

since these datasets inevitably suffer from uncertainties

such as ambiguous facial expressions, low-quality facial im-

ages, etc. Results are shown in Table 4. When training

from scratch, our proposed SCN improves the baseline con-

sistently with gains of 6.31%, 0.7%, and 1.02% on RAD-

DB, AffectNet, and FERPlus, respectively. MetaCleaner

also boosts the baseline on RAF-DB but slightly worse than

our SCN. With pretraining, we still obtain improvements of

2.83%, 1.73%, and 1.21% on these datasets. The improve-

ment of SCN and MetaCleaner suggests that there indeed

exists uncertainties in those datasets. To validate our spec-

ulation, we rank the importance weights of RAF-DB, and

show some examples with low importance weights in Fig-

Table 5: Evaluation of the three modules in SCN.

Weight Rank Relabel RAF-DB RAF-DB (pretrain)

× × × 72.00 84.20

× × X 71.25 83.78

× X × 74.15 85.14

X × × 76.26 86.09

X X × 76.57 86.63

X X X 78.31 87.03

Table 6: Evaluation of the ratio γ between RR-Loss and

WCE-Loss.

0.2 0.3 0.5 0.6 0.8

76.12% 76.35% 78.31% 76.57% 71.75%

ure 4. The ground-truth labels from top-left to bottom-right

are surprise, neutral, neutral, sad, surprise, surprise, neu-

tral, surprise, neutral, surprise. We find that images with

low quality and occlusion are difficult to annotate and are

more likely to have low-importance weights in SCN.

4.4. Ablation Studies

Evaluation of the three modules in SCN. To evaluate

the effect of each module of SCN, we design an ablation

study to investigate WCE-Loss, RR-Loss and Relabel mod-

ules on RAF-DB. We show the experimental results in Table

5. Several observations can be concluded in the following.

First, for both training schemes, a naive relabeling mod-

ule (2nd row) added into the baseline (1st row) can degrade

performance slightly. This may be explained by that many

relabeling operations are wrong from the baseline model.

It indirectly indicates that our elaborately-designed relabel-

ing in the low-importance group with rank regularization

is more effective. Second, when adding one module, we

obtain the highest improvement by WCE-Loss which im-

proves the baseline from 72% to 76.26% on RAF-DB. This

suggests that the re-weighting is the most contributed mod-

ule for our SCN. Third, the RR-Loss and the relabeling

module can further boost WCE-Loss by 2.15%.

Evaluation of the ratio γ. In Table 6, we evaluate the

effect of different ratios between the RR-Loss and WCE-

Loss. We find that setting equal weight for each loss

achieves the best results. Increasing the weight of RR-Loss

from 0.5 to 0.8 dramatically degrades performance which

suggests that WCE-Loss is more important.

Evaluation of δ1 and δ2. δ1 is a margin parameter

to control the mean margin between the high- and low-

importance groups. For fixed setting, we evaluate it from

0 to 0.30. Figure 5 (left) shows the results for both fixed

and learned δ1. The default δ1 = 0.15 obtains the best per-

formance, which shows that the margin should be an ap-

propriate value. We also design a learnable paradigm of
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Figure 5: Evaluation of the margin δ1 and δ2, and the ratio β on the RAF-DB dataset.

Table 7: Comparison to the state-of-the-art results.∗These results are trained using label distributions. +Oversampling is used

since AffectNet is imbalanced. ‡RAF-DB and AffectNet are jointly used for training. Note that IPA2LT tests with 7 classes

on AffectNet.
(a) Comparison on RAF-DB.

Method Acc.

DLP-CNN [24] 84.22

IPA2LT [50] 86.77

gaCNN [26] 85.07

RAN [45] 86.90

Our SCN (ResNet18) 87.03

Our SCN (ResNet18) ‡ 88.14

(b) Comparison on AffectNet.

Method mean Acc.

Upsample [35] 47.00

Weighted loss [35] 58.00

IPA2LT‡ [50] (7 cls) 55.71

RAN [45] 52.97

RAN+ [45] 59.5

Our SCN+(ResNet18) 60.23

(c) Comparison on FERPlus

Method Acc.

PLD∗ [5] 85.1

ResNet+VGG [20] 87.4

SeNet50∗ [1] 88.8

RAN [45] 88.55

RAN-VGG16∗ [45] 89.16

Our SCN (ResNet18/IR50) 88.01/89.35

δ1, and initialize it to 0.15. The learnable δ1 converges to

0.142± 0.05 and the performances are 77.76% and 69.45%

in original and noise RAF-DB datasets, respectively.

δ2 is a margin to determine when to relabel a sample.

The default δ2 is 0.2. We evaluate δ2 from 0 to 0.5 on orig-

inal RAF-DB, and show the results in Figure 5 (middle).

δ2 = 0 means we relabel a sample if the max prediction

probability is larger than the probability of the given label.

Small δ2 leads to a lot of incorrect relabeling operations

which may hurt performance significantly. Large δ2 leads

to few relabeling operations which converges to no relabel-

ing. We get the best performance in 0.2.

Evaluation of the β. β is the ratio of high importance

samples in a minibatch. We study different ratios from 0.9

to 0.5 in both synthetic noisy and original RAF-DB dataset.

The results are shown in Figure 5 (right). Our default ratio

is 0.7 that achieves the best performance. Large β degrades

the ability of SCN since it considers few of the data is un-

certain. Small β leads to over-consideration of uncertainties

which decreases the training loss unreasonably.

4.5. Comparison to the State of the Art

Table 7 compares our method to several state-of-

the-art methods on RAF-DB, AffectNet, and FERPlus.

IPA2LT [50] introduces the latent ground-truth idea for

training with inconsistent annotations across different FER

datasets. gaCNN [26] leverages a patch-based attention net-

work and a global network. RAN[45] utilizes face regions

and original face with a cascade attention network. gaCNN

and RAN are time-consuming due to the cropped patches

and regions. Our proposed SCN does not increase any cost

in inference. Our SCN outperforms these recent state-of-

the-art methods with 88.14%, 60.23%, and 89.35% (with

IR50 [9]) on RAF-DB, AffectNet, and FERPlus, respec-

tively.

5. Conclusion

This paper presents a self-cure network (SCN) to sup-

press the uncertainties of facial expression data thus to

learn robust feature for FER. The SCN consists of three

novel modules including self-attention importance weight-

ing, ranking regularization, and relabeling. The first module

learns a weight for each facial image with self-attention to

capture the sample importance for training and is used for

loss weighting. The ranking regularization ensures that the

first module learns meaningful weights to highlight certain

samples and suppress uncertain samples. The relabeling

module attempts to identify mislabeled samples and modify

their labels. Extensive experiments on three public datasets

and our collected WebEmotion show that our SCN achieves

state-of-the-art results and can handle both synthetic and

real-world uncertainties effectively.
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