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Abstract

Introduction Adenine nucleotide translocator (ANT) 2 is highly
expressed in proliferative cells, and ANT2 induction in cancer
cells is known to be directly associated with glycolytic
metabolisms and carcinogenesis. In addition, ANT2 repression
results in the growth arrest of human cells, implying that ANT2
is a candidate for cancer therapy based on molecular targeting.

Methods We utilized an ANT2-specific RNA interference
approach to inhibit ANT2 expression for evaluating its antitumor
effect in vitro and in vivo. Specifically, to investigate the
therapeutic potential of ANT2 repression, we used a DNA
vector-based RNA interference approach by expressing shRNA
to knockdown ANT2 in breast cancer cell lines overexpressing
ANT2.

Results ANT2 shRNA treatment in breast cancer cell line MDA-
MB-231 repressed cell growth as well as proliferation. In
addition, cell cycle arrest, ATP depletion and apoptotic cell
death characterized by the potential disruption of mitochondrial
membrane were observed from the ANT2 shRNA-treated breast
cancer cells. Apoptotic breast cancer cells transfected with
ANT2 shRNA also induced a cytotoxic bystander effect that
generates necrotic cell death to the neighboring cells. The
intracellular levels of TNFα and TNF-receptor I were increased
in ANT2 shRNA transfected cells and the bystander effect was
partly blocked by anti-TNFα antibody. Ultimately, ANT2 shRNA
effectively inhibited tumor growth in vivo.
Conclusion These results suggest that vector-based ANT2
RNA interference could be an efficient molecular therapeutic
method for breast cancer with high expression of ANT2.

Introduction
Apoptosis can occur via a death receptor-mediated pathway

or a mitochondrial pathway, and mitochondria-mediated apop-

tosis is initiated by multiple stimuli such as TNF, CD95 and

stresses [1]. After receiving apoptotic signals, mitochondrial

membrane permeability increases and the mediators such as

cytochrome c and apoptosis-inducing factors are released to

the cytoplasm, rapidly followed by the activations of caspase

9 and executive caspase 3 [2]. In healthy cells, mitochondrial

membrane permeability is tightly controlled by voltage-

dependent anion channels that are regulated by the interac-

tions between Bcl2 family proteins [3,4].

Adenine nucleotide translocase (ANT) is a nuclear-encoded

protein abundantly located in the inner mitochondrial mem-

brane, and the role of this protein is to catalyze the exchange

of mitochondrial ATP with cytosolic ADP. ANT therefore plays

an important role in cellular energy metabolism by influencing

mitochondrial oxidative phosphorylation. In addition, ANT is

the major component of mitochondrial permeability–transition

pore complex (PTPC) that interacts with Bcl2 family proteins,

thereby contributing to mitochondria-mediated apoptosis

[4,5]. ANT-deficient mice are able to form mitochondrial PTPC

[6], however, inducing the argument about the roles of ANT in

mitochondrial PTPC.

ANT = adenine nucleotide translocator; BSA = bovine serum albumin; DMEM = Dulbecco's modified Eagle's medium; dsRNA = double-stranded 
RNA; FBS = fetal bovine serum; IFN = interferon; IL = interleukin; iRNA = interfering RNA; PBS = phosphate-buffered saline; PCR = polymerase 
chain reaction; PI = propidium iodide; PTPC = permeability–transition pore complex; RT = reverse transcription; shRNA = short-hairpin RNA; siRNA 
= small interfering RNA; TNF = tumor necrosis factor.
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Human ANT has four isoforms (ANT1, ANT2, ANT3 and

ANT4) and the relative expressions of these isoforms are

dependent on developmental stages, proliferation status as

well as tissue types or cell types. ANT3 is ubiquitously

expressed in all tissues and the degrees of ANT3 expression

are correlated with the levels of oxidative metabolism. ANT1 is

highly expressed in terminally differentiated tissues such as

skeletal muscles, heart and brain, whereas ANT4 is a murine

stem and germ cell-specific isoform whose DNA methylation

plays a key role in its transcriptional silencing in somatic cells

[7,8]. On the other hand, ANT2 is specifically expressed in

undifferentiated cells or tissues that are able to proliferate and

regenerate; for example, the lymphocytes, kidney and liver [9-

11]. The expression of ANT2 was recently found to be upreg-

ulated in several hormone-dependent cancers [12], and the

induction of ANT2 expression in cancer cells was directly

associated with glycolytic metabolisms, raising a question

regarding the role of ANT2 during carcinogenesis [13-16].

Indeed, the overexpressions of ANT1 or ANT3 induce apopto-

sis while ANT2 lacks this proapoptotic activity [17,18]. ANT2

repression also leads to cell growth arrest and increases mito-

chondrial membrane potential from human cells as well as

chemosensitized cancer cells [10,12], implying that ANT2

inhibits mitochondrial membrane permeability and acts as an

antiapoptotic oncoprotein. We therefore hypothesized that

ANT2 can be a promising candidate for cancer therapy based

on specific molecular targeting.

iRNA is currently used for knockdown of a particular gene

expression to identify the functions of a targeted gene and to

examine the potential usage of a targeted gene as a therapeu-

tic method. iRNA is an evolutionarily conserved phenomenon,

and a multistep process produces active siRNA from RNase III

endonuclease (Dicer). The consequent 21-nucleotide to 23-

nucleotide siRNAs then mediate the degradation of comple-

mentary homologous RNA [19-21]. Two basic methods have

currently been developed to selectively inhibit gene expres-

sion: the cytoplasmic delivery of short dsRNA oligonucle-

otides (siRNAs) that mimic the active intermediates of

endogenous iRNA; and the nuclear delivery of gene expres-

sion cassettes encoding shRNAs that imitate micro iRNAs

representing the active intermediates of different endogenous

iRNA mechanisms. The mechanisms of DNA vector-based

approaches involve the synthesis of small RNA from a DNA

template under the control of RNA polymerase III (Pol III) pro-

moter in transfected cells. Pol III has an advantage for directing

the synthesis of small noncoding transcripts whose 3' ends

are defined by the termination within a stretch of four to five

thymidines [22-25]. These properties allow us to use DNA

templates for generating small RNAs in vivo [26] whose struc-

tural features are close to the active siRNAs synthesized in
vitro. The DNA vector-based iRNA approach can therefore be

used widely for analyzing gene functions in vitro as well as in
vivo [27-29].

In the present article we investigate the anticancer effects of

ANT2 RNA interference in breast cancer models in vitro and

in vivo using a DNA vector-based (H1-driven shRNA) iRNA

approach. Our results demonstrate that the silencing of ANT2

expression using a DNA vector-based iRNA approach induces

apoptotic cell death and cytotoxic bystander effects that elicit

anticancer activity in vitro as well as tumor regression in vivo,

implicating that the repression of ANT2 based on shRNA can

be a novel method for breast cancer therapy.

Materials and methods
Cell lines and culture

The human metastatic breast carcinoma cell lines MCF7 and

MDA-MB-231 as well as ovarian cancer cell lines SK-OV-3

and SNU8 were used throughout the study. These cells were

provided by the Korean Cell Line Bank, Seoul, Korea and were

cultured in DMEM supplemented with 10% FBS, 100 u/ml

penicillin and 100 μg/ml streptomycin. MCF-10A, a line of

healthy epithelial cells from human mammary gland (CRL-

10317) provided by the American Type Culture Collection

(Manassas, VA, USA) was used as a control. This cell line was

maintained in the DMEM/Ham's Nutrient Mixture F-12 (1:1)

with the addition of epidermal growth factor (20 ng/ml), chol-

era enterotoxin (100 ng/ml), insulin (10 μg/ml) and hydrocorti-

sone (500 ng/ml) in the presence of 5% horse serum.

Construction of the ANT2 siRNA expression vector

ANT2 siRNA-1, siRNA-2 and siRNA-3 were synthesized by

Bioneer (Daejeon, Korea), and pSilencer™ 3.1-H1 puro plas-

mids for DNA vector-based siRNA synthesis were purchased

from Ambion (Austin, TX, US). The oligonucleotide pairs of

ANT2 siRNA-1, siRNA-2, and siRNA-3 are complementary to

exon 2 or exon 4 (Genbank accession number NM001152),

and the sequences of ANT2 siRNA-1, siRNA-2 and siRNA-3

are 5'-GCAGAUCACUGCAGAUAAGTT-3', 5'-CTGACAT-

CATGTACACAGG-3' and 5'-GATTGCTCGTGATGAAGGA-

3', respectively. The oligonucleotide pairs were designed to

contain a terminal BamHI or HindIII restriction site for subclon-

ing into the BamHI or HindIII site of pSilencer™ 3.1-H1 puro

vector to generate pSilencer™ 3.1-H1 puro ANT2 siRNA vec-

tors (shRNAs). These vectors produce a shRNA with a

TTCAAGAGA linker sequence that forms looped structures.

This linker is processed with Dicer to generate an ANT2-spe-

cific siRNA. A negative scrambled siRNA (Ambion) control

with no significant homology to mouse or human gene

sequences was designed to detect nonspecific effects.

Transfection

For transfection, cells were plated on either six-well plates (2

× 105 cells per well) or 100 mm dishes (2 × 106 cells) and

were allowed to adhere for 24 hours. Lipofectamine 2000 (Inv-

itrogen, Carlsbad, CA, USA) was used for the transfections.

pSilencer™ 3.1-H1 puro ANT2 siRNA vectors or pSilencer™

3.1-H1 puro scramble siRNA vector were transfected into the

cells. Transfected cells were then cultured for 4 hours and the

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM001152
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culture media were replaced with fresh media supplemented

with 10% FBS. The cells were harvested at 24–48 hours after

transfection.

Reverse transcription-polymerase chain reaction

After 48 hours of transfection, the cells were collected and

total RNA was extracted using Trizol (Invitrogen) according to

the manufacturer's instructions. For RT-PCR analysis, 5 μg

total RNA was reverse-transcribed using RT-PCR kits

(Promega, Madison, WI, USA). PCR was used to amplify tar-

get cDNA with the following conditions: 35 cycles of 94°C for

1 minute, 55°C for 1 minute and 72°C for 2 minutes. The PCR

products were analyzed using standard agarose gel

electrophoresis.

The primers used for RT-PCR are ANT1 forward, 5'-ACA-

GATTGTGTGGTTT-3' and reverse, 5'-TTTTGTGCATTAAGT-

GGTCTTT-3' ; ANT2 forward, 5'-

CCGCAGCGCCGGAGTCAAA-3' and reverse, 5'-AGTCT-

GTCAAGAATGCTCAA-3' ; ANT3 forward, 5'-AACCAAGA-

GAACCACGTAGAA-3' and reverse, 5'-

CTTAGAACAGACTTGGCTC-3' ; TNF-receptor I forward, 5'-

CTGCCTCAGCTGCTCCAAA-3' and reverse, 5'-CGGTC-

CACTGTGCAAGAAGAG-3' ; and β-actin forward, 5'-

GGAAATCGTGCGTGACATTAAGG-3' and reverse, 5'-

GGCTTTTAGGATGGCAAG GGA C-3'.

Western blotting

Anti-ANT, anti-Bcl-xL, anti-Bax, anti-α-tubulin as well as anti-

caspase-3 antibodies were obtained from Santa Cruz Biotech

(Santa Cruz, CA, USA) and polyclonal anti-ANT3 antibody

was donated by Dr HH Schmid (University of Minnesota, MN,

USA).

For western blot analyses, cells were harvested after 48 hours

of transfection and were lysed with lysis buffer (5 mM/l ethyl-

enediamine tetraacetic acid; 300 mM/l NaCl; 0.1% NP-40;

0.5 mM/l NaF; 0.5 mM/l Na3VO4; 0.5 mM/l phenylmethylsulfo-

nyl fluoride; and 10 μg/ml each of aprotinin, pepstatin and leu-

peptin; Sigma, St Louis, MO, USA). After centrifugation at

15,000 × g for 30 minutes, the concentrations of supernatant

proteins were analyzed by Bradford reagent (Bio-Rad, Her-

cules, CA, USA).

For the analysis of protein contents, 50 μg total proteins was

electrophoresed in 10% SDS-PAGE gel, transferred to polyvi-

nylidene difluoride membranes (Millipore, Bedford, MA, USA)

and were then incubated with the respective antibodies indi-

cated above. Immunoblots were visualized using an enhanced

chemiluminescence detection system (Amersham Pharmacia

Biotech, Uppsala, Sweden).

Apoptosis and DNA fragmentation assays

Approximately 2 × 105/ml MDA-MB-231 cells were trans-

fected with respective pSilencer™ 3.1-H1 puro ANT2 siRNA-

1, siRNA-2 and siRNA-3 vectors as well as with pSilencer™

3.1-H1 puro scramble siRNA vector for the indicated times.

The transfected cells were harvested, washed twice with PBS

and were then incubated for 15 minutes at room temperature

with a solution of annexin V conjugated with fluorescence iso-

thiocyanate (2.5 μg/ml) and propidium iodide (PI) (5 μg/ml)

(BD Pharmingen, San Diego, CA, USA) for flow cytometry

(Epics XL; Coulter, Marseille, France) to detect the levels of

apoptosis. Genomic DNA was extracted using genomic DNA

extraction kits (G-DEX™IIc; Invitrogen, Seoul, Korea) and was

subjected to electrophoresis in 2% agarose gels for DNA frag-

mentation analysis.

ATP assay

ATP assays were conducted using CellTiter-Glo™ Lumines-

cent Cell Viability assay kits (Promega) that quantify ATP levels

in viable cells. This bioluminescence assay utilizes luciferase,

which induces light emission during the interaction between

ATP and luciferin. Lyophilized enzyme/substrate mixtures (250

μl) were transferred to opaque 96-well microplates containing

cell lysates. The plates were incubated at room temperature

for 10 minutes to stabilize luminescence signals and then the

stabilized signals were quantified with an Orion Luminometer

(Berthold Detection Systems, Oak Ridge, TN, USA).

Cell cycle analysis

The cells transfected with pSilencer™ 3.1-H1 puro ANT2

siRNA or pSilencer™ 3.1-H1 puro scramble siRNA vector

were trypsinized, counted, centrifuged and fixed in ethanol for

3 hours. These cells were then washed twice in PBS and cen-

trifuged. Pellets were resuspended with a solution containing

RNase (0.02 mg/ml) (Sigma), incubated at 37°C for 30 min-

utes and were stained with PI (0.02 mg/ml) (Sigma). The cells

were analyzed by flow cytometry (Epics XL; Coulter).

Measurement of mitochondrial membrane potentials

To measure mitochondrial membrane potential disruption, the

cells transfected with pSilencer™ 3.1-H1 puro ANT2 siRNA or

pSilencer™ 3.1-H1 puro scramble siRNA vector were har-

vested, washed twice with PBS and were incubated with 20

nM 3,3'-diethyloxacarbocyanine (Molecular Probes, Eugene,

OR, USA) for 15 minutes at 37°C. Mitochondrial membrane

potential values were determined by flow cytometry (Epix XL;

Coulter).

In vitro bystander effect assays

MDA-MB-231 cells (1.5 × 103) were cultured with the culture

media of pSilencer™ 3.1-H1 puro ANT2 siRNA-1/siRNA-2/

siRNA-3-transfected cells for 24 hours and were then har-

vested. Cell death was determined by annexin V–fluorescence

isothiocyanate/PI staining followed by flow cytometry analysis

(Epics XL; Coulter).
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Fluorescent-activated cell sorter analysis (intracellular 

and surface staining)

Respective pSilencer™ 3.1-H1 puro ANT2 siRNA-1, siRNA-2

and siRNA-3 vectors as well as pSilencer™ 3.1-H1 puro

scramble siRNA vector were transfected into MDA-MB-231

cells for the indicated times. Six hours before harvesting, the

cells were treated with brefeldin A (10 μg/ml), washed twice

with PBS, fixed with 2% paraformaldehyde, permeabilized

with buffer (1% BSA, 0.1% saponine, 0.1% sodium azide in

PBS) and were then stained with phenylethylene-conjugated

anti-TNFα, anti-IFNγ, anti-IL-12 as well as anti-mouse IgG anti-

bodies for 1 hour at 4°C (BD Pharmingen). Surface staining

was performed with phenylethylene-conjugated anti-TNF-

receptor 1 as well as anti-mouse IgG antibodies and then ana-

lyzed by flow cytometry (Epics XL; Coulter).

Antitumor effect of ANT2 iRNA in vivo

For tumor challenges, we established tumor models in 6-week-

old to 8-week-old Balb/c nude mice by subcutaneously inject-

ing 5 × 106 MDA-MB-231 cells into the right flanks. Treat-

ments were started from 2 weeks after tumor inoculation when

tumor volumes were <100 mm3. Intratumoral injections of

PBS, pSilencer™ 3.1-H1 puro scramble siRNA vector (100

μg) or respective pSilencer™ 3.1-H1 puro ANT2 siRNA-1,

siRNA-2 and siRNA-3 supplemented with Lipofectamine

2000 (200 μl) were performed three times per day for 5 days.

Tumor sizes were measured using a caliper every week until

56 days after tumor challenges, and tumor volumes calculated

using the formula: m1
2 × m2 × 0.5236 (where m1 represents

the shortest axis and m2 the longest axis)

In situ detection of apoptosis detection

In situ detection of apoptosis was performed using ApopTag

Fluorescein (Intergenco, New York, USA). After the blocking

of endogenous peroxidase with 3% hydrogen peroxide for 5

minutes, the sections were digested with proteinase K (20 μg/

ml) for 15 minutes at room temperature and were then treated

with bovine testicular hyaluronidase (0.5 mg/ml) for 30 min-

utes at 37°C. DNA was end-labeled with deoxynucleotidyl

transferase-mediated dUTP nick end-labeling and was

detected with peroxidase-conjugated antidigoxigenin anti-

body. The reactivity was visualized by the mixtures of diami-

nobenzidine and hydrogen peroxide.

Statistical analysis

Data were analyzed using the Student's t test. P < 0.05 was

considered statistically significant.

Results
ANT2 expression markedly upregulated in human breast 

cancer cell lines and efficiently suppressed by RNA 

interference

To explore the functions of ANT2 in cancer, we first examined

its mRNA expression levels in human cancer cell lines

obtained from various organs (Figure 1a). RT-PCR showed

that ANT2 mRNA was expressed in various human cancer

cells originated from the stomach, lung, liver, ovary and breast.

ANT2 mRNA was dramatically overexpressed in human breast

cancer cell lines (MCF7, MDA-MB-231 and SK-BR-3) and

was overtly increased in ovarian cancer cell lines (SK-OV-3

and SNU8), however, suggesting that overexpression of ANT2

could be a unique feature of breast cancer and ovarian cancer

that may play a role in cancer development.

To expand the knowledge of ANT mRNA expressions among

breast cancer cell lines, the MCF7 and MDA-MB-231 cell

lines, as well as the non-neoplastic mammary epithelial cell line

MCF10A, the relative expressions of three ANT isoforms from

these cell lines were investigated at mRNA and protein levels

(Figure 1b). In terms of mRNA expressions, ANT2 is highly

expressed in both breast cancer cell lines while ANT1 and

ANT3 expressions are not detectable. In contrast, the non-

neoplastic MCF10A cell line barely expresses ANT2 as well as

ANT1 but highly transcribes ANT3. Serendipitously, the tran-

scriptional patterns of ANT isoforms in ovarian cancer cell line

SK-OV-3 are identical to breast cancer cell lines (Additional

File 1a), emphasizing the significance of ANT2 overexpression

in breast cancer cells and ovarian cancer cells.

ANT2 protein levels were also tested from the breast cell lines

by western blotting (Figure 1b). Owing to the absence of

ANT1-specific and ANT2-specific antibodies, however, the

protein levels of ANT2 were indirectly detected by subtracting

the amount of ANT3 from total ANT protein levels. The total

protein levels of ANT in respective breast cell lines are about

the same, but ANT3 protein is not detectable from the breast

cancer cell lines. On the other hand, ANT3 protein is domi-

nantly expressed in the non-neoplastic MCF10A cell line

where ANT3 mRNA is highly expressed. This result suggests

that the breast cancer cell lines have more ANT1 and ANT2

proteins than ANT3 proteins. No ANT1 mRNA is detectable

from both breast cancer cell lines, however, indicating the

majority of ANT proteins in breast cancer cell lines might be

ANT2 proteins. Collectively, these arrays of results suggest

that the higher expression of ANT2 in breast cancer and ovar-

ian cancer cell lines is a unique feature that may play a key role

in cancer development.

Owing to the unique feature of overt ANT2 overexpression in

breast cancer and ovarian cancer cell lines, we hypothesized

that the downregulation of ANT2 in these cell lines may induce

serious physiological effects that result in cell growth inhibition

or cell death. To evaluate the functions of ANT2 in cancer

development or the possible utility of ANT2 downregulation for

breast cancer therapy, therefore, ANT2-specific knockdown

experiments were performed with human breast cancer cell

lines. Initially, respective siRNA-1, siRNA-2 and siRNA-3 oligo-

nucleotides directed at exon 2 or exon 4 of ANT2 mRNA were

synthesized to determine whether ANT2 siRNA suppresses

ANT2 expression. At the same time, DNA oligonucleotides
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representing the siRNA duplex were cloned into pSilencer™

3.1H1 puro vector to produce a high-level silencing effect

based on a DNA vector system. The synthesized shRNA

derived from DNA templates was composed of two identical

21-nucleotide sequence motifs in an inverted orientation, sep-

arated by a 9 base pair nonhomologous spacer (shRNA).

To confirm the silencing efficacies of ANT2 siRNA-1, siRNA-2

and siRNA-3 as well as pSilencer™ 3.1H1-ANT2 siRNA

(ANT2 shRNA-1, siRNA-2 and siRNA-3), the cell lines MCF7

and MDA-MB-231 were transfected with the above samples

as well as scramble siRNA and pSilencer™ 3.1H1-scramble

siRNA (scramble shRNA) as negative controls. After culturing

Figure 1

Expression and silencing efficiency of adenine nucleotide translocator 2 in cancer cell linesExpression and silencing efficiency of adenine nucleotide translocator 2 in cancer cell lines. Expression of adenine nucleotide translocator (ANT) 2 in 
cancer cell lines and the silencing efficiency of ANT2 siRNA and shRNA in human breast and ovarian cancer cell lines. (a) RT-PCR analysis for 
detecting ANT2 mRNA expression in various human cancer cell lines. To evaluate ANT2 expression levels in the human cancer cell lines of various 
origins (SNU668, SNU719, SNU638, NCI-H358, A549, NCI-H889, SK-HEP-1, SNU449, SNU423, SK-OV-3, SNU8, SNU840, MCF7, MDA-MB-
231 and SK-BR-3), total RNA was extracted from respective cell lines and subjected to RT-PCR using specific primers for human ANT2 or β-actin 
(internal control). (b) RT-PCR analysis and western blotting to detect ANT isoform expressions in breast cancer cell lines as well as a non-neoplastic 
breast cell line. To compare ANT isoform mRNA levels in non-neoplastic breast epithelial cell line MCF10A with other breast cancer cell lines such 
as MCF7 and MDA-MB-231, total RNA was extracted from the respective cell lines and subjected to RT-PCR using specific primers for human 
ANT1/ANT2/ANT3 or β-actin. In addition, to detect ANT protein levels, total cell extracts were used for performing western blotting with anti-ANT, 
anti-ANT3 and anti-β-actin antibodies. (c) RT-PCR analysis and western blotting for detecting the level of ANT2 repression mediated by ANT2 
siRNA and ANT2 shRNA. To assess the extinction of endogenous human ANT2 mRNA in MCF7 and MDA-MB-231 cells due to ANT2 RNA interfer-
ence, respective cell lines were transfected with ANT2 siRNAs, ANT2 shRNAs, scramble siRNA as well as scramble shRNA for 48 hours. Total RNA 
was then extracted from respective samples and subjected to RT-PCR using specific primers for human ANT2 or β-actin. To indirectly detect the 
reduction of ANT2 protein by ANT2 RNA interference, MCF7 cells were transfected with ANT2 shRNA-1, shRNA-2 and shRNA-3 as well as scram-
ble shRNA, and 48 hours later total cell extracts were collected for performing western blotting with anti-ANT and anti-β-actin antibodies.
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for 48 hours, their efficacies in extinguishing ANT2 mRNA

expression were evaluated by RT-PCR. As shown in Figure 1c,

the treatment with ANT2 shRNA was much more effective

than the treatment with ANT2 siRNA in terms of downregulat-

ing the ANT2 mRNA level. Treatment with ANT2 shRNA for 48

hours decreased ANT2 mRNA expressions in MCF7 and

MDA-MB-231 cells by over 90% compared with the cells

transfected with control vectors, while ANT2 siRNA treatment

resulted in markedly less reduction. The total protein levels of

ANT were also downregulated by ANT2 shRNA, indirectly indi-

cating that the knockdown of ANT2 reduces the protein levels

of ANT2 (Figure 1c). These results suggest that ANT2 shRNA

is superior to ANT2 siRNA for downregulating ANT2 mRNA as

well as protein levels and can be used to target ANT2 for

breast cancer therapy.

Taken together, we have uniquely identified the higher expres-

sion of ANT2 mRNA from human breast cancer cell lines

MCF7, MDA-231 and SK-BR-3 as well as ovarian cancer cell

lines SK-OV-3 and SNU8. To investigate the possible utility of

ANT2 downregulation as a cancer therapy, ANT2 shRNA sys-

tems were adopted and the actual downregulation of ANT2

mRNA as well as protein mediated by ANT2 shRNA was con-

firmed from human breast cancer cell lines. As a result, we

established a shRNA system to investigate the therapeutic

value of ANT2 downregulation in breast cancer in vitro and in
vivo.

ANT2 depletion induces cell cycle arrest (G1 arrest) and 

apoptotic cell death in vitro

To explore the potential of ANT2 shRNA as a treatment for

human breast cancer, the diverse phenotypic changes of

respective cancer cell lines affected by ANT2 shRNA were

investigated. Firstly, the cell survival and proliferation rate were

investigated using MDA-MB-231. After transfecting MDA-MB-

231 cells with ANT2 shRNA-1 for 24 hours, the transfected

cells became less confluent as compared with the cells trans-

fected with scramble shRNA. Many ANT2 shRNA transfected

cells even became rounded and detached from culture plates,

providing one line of evidence about cell death or cell cycle

arrest (Figure 2a). In addition, the proliferation rate of ANT2

shRNA-1 transfected MDA-MB-231 cells was also obviously

reduced (Figure 2b). To understand the effects of ANT2

shRNA in MDA-MB-231 cells more specifically, the levels of

intracellular ATP and the cell cycle status in transfected cells

were investigated. Intracellular ATP levels were significantly

reduced by up to 50% in the cells transfected with ANT2

shRNA-1 (Figure 2c), suggesting the death of ANT2 shRNA

transfected cells is ascribed to the reduction of ATP synthesis.

Cell cycle analysis indicated that the G1 populations of ANT2

shRNA-treated MDA-MB-231 cells were 12% (24 hours) and

14.6% (48 hours), while scramble shRNA-treated cells dis-

played 0.8% (24 hours) and 7.6% (48 hours) of the G1 popu-

lations (Figure 2d). Additional analysis gating on the sub-G1

population also showed similar results after 24 or 48 hours of

transfection, indicating ANT2 shRNA induces G1 arrest in

breast cancer cells.

We finally tested whether the knockdown of ANT2 shRNA

induces cell death in the breast cancer cell lines MCF7 and

MDA-MB-231 in vitro. Based on annexin V and PI staining,

both ANT2 siRNA and ANT2 shRNA increased early apoptotic

cells (AV+PI-), intermediate apoptotic cells (AV+PI+) as well as

late apoptotic cells (AV-PI-) compared with control groups

after 48 hours of transfection (Figure 2e). ANT2 shRNA was

more effective than ANT2 siRNA, however, in terms of induc-

ing cell death. For example, ANT2 siRNA induced around 25–

35% of cell death, while ANT2 shRNA generated about 50–

60% of apoptotic cells. These results coincide with our previ-

ous observation regarding the higher efficacy to suppress

ANT2 expression by ANT2 shRNA than ANT2 siRNA as

shown in Figure 1c, suggesting increased ANT2 downregula-

tion induces more cell death. Additionally, the ovarian cancer

cell lines SK-OV-3 and SNU8 transfected with ANT2 siRNA or

shRNA demonstrated similar results to those obtained from

the breast cancer cell lines (Additional File 1b). These results

imply that the physiological effects of ANT2 downregulation

could be consistent in both cancers.

Taken together, these results suggest that the downregulation

of ANT2 efficiently inhibits cell growth and proliferation by

reducing ATP levels as well as inducing G1 arrest, which ulti-

mately leads to the apoptosis of human breast cancer cells in
vitro.

ANT2 shRNA induces apoptosis by reducing the 

membrane potential of mitochondria and activating 

caspase 3 in MDA-MB-231 cells

To confirm apoptosis was responsible for the cell death

induced by ANT2 shRNA in breast cancer cell lines, we exam-

ined the presence of genomic DNA fragmentation. As we

expected, DNA laddering – a characteristic of apoptotic cell

death – was abundantly observed from ANT2 shRNA-1 trans-

fected MDA-MB-231 cells (Figure 3a), proving the death of

transfected cells mediated by ANT2 shRNA is apoptotic.

It has been reported that Bcl-2 family molecules can physically

interact with ANT and that this interaction regulates ANT-

mediated mitochondrial permeability transition pore formation

[7]. To understand the mechanisms of apoptosis induced by

ANT2 shRNA, we examined the changes of Bcl-2 family pro-

tein levels during the ANT2 shRNA-1-induced, shRNA-2-

induced and shRNA-3-induced apoptosis in MDA-MB-231

cells by western blotting. The transfection of ANT2 shRNA-1,

shRNA-2 and shRNA-3 resulted in the upregulation of Bax

(proapoptotic) and the downregulation of Bcl-xL (antiapop-

totic) (Figure 3b). In addition, caspase-3 activation – defined

by the appearance of cleaved caspase 3 – was observed from

ANT2 shRNA-treated cells. These results clearly demonstrate

that ANT2 shRNA induces the apoptosis via the Bcl-2 family.
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Figure 2

Apoptotic changes of human breast cancer cell lines transfected with adenine nucleotide translocator 2 shRNAApoptotic changes of human breast cancer cell lines transfected with adenine nucleotide translocator 2 shRNA. (a) Cell morphology analysis: MDA-
MB-231 cells were transfected with scramble shRNA or adenine nucleotide translocator (ANT) 2 shRNA-1 and then examined under a phase con-
trast microscope after 24 hours of transfection. (b) Cell proliferation assay: after 2 or 4 days of transfection with ANT2 shRNA-1 as well as scramble 
shRNA, the numbers of viable cells were determined using a hemacytometer after staining dead cells with Trypan Blue. (c) ATP assay: cells were 
transfected with ANT2 shRNA-1 as well as scramble shRNA and then lysed to quantify total intracellular ATP levels after 24 hours of incubation. 
Results are tabulated in relative ATP production by normalizing luminescence units (RLU) with total protein levels. (d) Cell cycle analysis: after 24 or 
48 hours of transfection with scramble shRNA and ANT2 shRNA-1, the cells were trypsinized, fixed in ethanol and stained with propidium iodide to 
determine DNA contents. Cell cycle distributions were analyzed by flow cytometry. (e) Apoptosis analysis: cells were transfected with specific 
siRNA or shRNA against ANT2, and then 48 hours later the transfected cells were stained with annexin V–fluorescence isothiocyanate (FITC) and 
propidium iodide (PI) for flow cytometry analysis. Data are representative of three independent experiments.
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We assumed the apoptosis triggered by ANT2 shRNA must

be involved in the mitochondria-mediated apoptotic pathway

because ANT2 protein is abundant in mitochondrial mem-

branes. The potentials of mitochondrial membranes were

measured by 3,3'-diethyloxacarbocyanine staining to prove

our hypothesis. As expected, the cells transfected with ANT2

shRNA-1 displayed about 10-fold shifted curves to the left

after 24 and 48 hours of transfection, indicating that mitochon-

drial membrane potentials are disrupted in apoptotic cells

transfected with ANT2 shRNA (Figure 3c).

Taken together, these results implicate that ANT2 shRNA

changes the Bcl-2 family balance in mitochondrial mem-

branes, favoring a proapoptotic pore-forming status, and

thereby causes the disruption of mitochondrial membrane

potentials resulting in cell apoptosis.

Figure 3

Adenine nucleotide translocator 2 shRNA regulated Bcl-2 family members and disrupted mitochondrial membrane potentialsAdenine nucleotide translocator 2 shRNA regulated Bcl-2 family members and disrupted mitochondrial membrane potentials. Adenine nucleotide 
translocator (ANT) 2 shRNA regulated the levels of Bcl-2 family members and disrupted mitochondrial membrane potentials to induce apoptosis in 
MDA-MB-231 cells. (a) DNA laddering assay: cells were transfected with ANT2 shRNA-1, and then 48 hours later total genomic DNA was extracted 
and subjected to electrophoresis in 2% agarose gel to examine DNA fragmentation patterns. (b) Western blotting for identifying apoptotic mecha-
nisms: cells were transfected with ANT2 shRNA-1, shRNA-2 and shRNA-3. Cytoplasmic extracts (free of mitochondria) were prepared after 24 
hours of incubation for performing western blotting with anti-Bax, anti-Bcl-xL, anti-cleaved caspase 3 and anti-α-tubulin antibodies. (c) Analysis for 
detecting mitochondrial membrane potential: cells were transfected with ANT2 shRNA-1, and then 24 or 48 hours later the transfected cells were 
stained with 3,3'-diethyloxacarbocyanine. Mitochondrial membrane potentials were quantified by flow cytometry. Data are representative of three 
independent experiments.
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Cell death by ANT2 shRNA amplified by the cytotoxic 

bystander effect in MDA-MB-231 cells

Before transfecting MDA-MB-231 cells with ANT2 shRNA-1,

shRNA-2 and shRNA-3, we also assessed transfection

efficiencies using GFP (Green Fluorescence Protein)-express-

ing vector. Although the transfection efficiency was only about

30%, the proportion of cells killed by ANT2 shRNA treatment

exceeded 60%, raising the possible existence of bystander

effect. To confirm the presence of a bystander effect in MDA-

MB-231 cells, we cultured nontransfected cells with the

supernatants obtained from ANT2 shRNA-1, shRNA-2 and

shRNA-3 transfected cells and then evaluated cell death by

annexin V–PI staining.

As shown in Figure 4, nontransfected cells cultured with the

supernatants from ANT2 shRNA-1, shRNA-2 and shRNA-3

transfected cells committed to cell death defined by AV-PI+.

The absence of DNA laddering and the lack of an AV+ popula-

tion lead us to consider that necrosis might be the major

mechanism of cell death induced by this bystander effect.

These results therefore suggest that cytotoxic agents must be

secreted from ANT2 shRNA-transfected cells to the media.

Bystander effect associated with TNFα production and 

increased TNF-receptor I expression in ANT2 shRNA 

transfected cells

To determine the cause of this bystander effect, we examined

the levels of proinflammatory cytokines such as TNFα, IFNγ
and IL-12 from MDA-MB-231 cells treated with ANT2 shRNA

or scramble shRNA by intracellular fluorescent-activated cell

sorter. TNFα expression was elevated eight-fold in the cells

treated with ANT2 shRNA-1 but the levels of IFNγ and IL-12

Figure 4

Adenine nucleotide translocator 2 shRNA induced cytotoxic bystander effects on MDA-MB-231 cellsAdenine nucleotide translocator 2 shRNA induced cytotoxic bystander effects on MDA-MB-231 cells. To evaluate bystander effects, MDA-MB-231 
cells were transfected with adenine nucleotide translocator (ANT) 2 shRNA-1, shRNA-2 and shRNA-3. After 48 hours of incubation, nontransfected 
cells were cultured with the media obtained from ANT2 shRNA-1, shRNA-2 or shRNA-3 transfected cells for the next 24 hours. These nontrans-
fected cells were then stained with annexin V–fluorescence isothiocyanate (FITC) and propidium iodide (PI) for flow cytometric analysis. Data are 
representative of three independent experiments.
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were unchanged (Figure 5a).

In addition, we evaluated TNF family death receptor I expres-

sion by RT-PCR and flow cytometry. Both transcription and

surface expression of TNF-receptor I were upregulated by the

transfection with ANT2 shRNA (Figure 5b). Additionally, the

bystander effect was partially neutralized by anti-TNFα anti-

body (Figure 5c). These results suggest that the observed

bystander effect might be caused by TNFα secretion and TNF-

receptor I expression.

ANT2 shRNA inhibits tumor growth in vivo

We finally evaluated the antitumor effects of ANT2 shRNA in
vivo using a nude mouse tumor xenograft model. Tumor sizes

Figure 5

Bystander effects generated in MDA-MB-231 cells associated with TNFα production and TNF-receptor I expressionBystander effects generated in MDA-MB-231 cells associated with TNFα production and TNF-receptor I expression. Bystander effects generated 
by adenine nucleotide translocator (ANT) 2 shRNA in MDA-MB-231 cells were associated with TNFα production and TNF-receptor I (TNFRI) 
expression. (a) Intracellular staining of TNFα, IFNγ and IL-12 p40. Cells were transfected with ANT2 shRNA-1. After 48 hours of incubation, the 
transfected cells were treated with brefeldin A for the next 6 hours. The cells were harvested, fixed in paraformaldehyde and then stained with phe-
nylethylene-conjugated anti-TNFα, IFNγ or IL-12 p40 as well as anti-mouse IgG antibodies (negative control). Intracellular levels of TNFα, IFNγ and 
IL-12 p40 were analyzed by flow cytometry. (b) RT-PCR and fluorescent-activated cell sorter analysis for detecting the expression of TNFRI at tran-
scriptional and translational levels. Cells were transfected with ANT2 shRNA-1. After 24 hours of incubation, total RNA was extracted and subjected 
to RT-PCR using specific primers for human TNFRI and β-actin. The RT-PCR products were analyzed by 1% agarose gel electrophoresis. In addi-
tion, the surface expression of TNFRI was measured by flow cytometry after staining cells with phenylethylene-conjugated anti-TNFRI antibody. (c) 
Partial neutralization of bystander effect mediated by anti-TNFα antibody. Cells were transfected with ANT2 shRNA-1. After 48 hours of incubation, 
the supernatants were collected and then mixed with or without TNFα antibody before transferring into nontransfected cells. These nontransfected 
cells were cultured for the next 24 hours and stained with annexin V–fluorescence isothiocyanate (FITC) and propidium iodide (PI) for flow cytomet-
ric analysis.
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were measured twice per week and the observations lasted

over 56 days after tumor challenge with MDA-MB-231 cell

lines. Tumor growth was significantly inhibited in ANT2

shRNA-1-treated, shRNA-2-treated and shRNA-3-treated

mice as compared with PBS-treated mice or scramble

shRNA-treated mice (P < 0.05) (Figure 6a), suggesting intra-

tumoral ANT2 shRNA treatment has a strong antitumor effect

in vivo. One week after the final intratumoral injection of

respective ANT2 shRNA-1, shRNA-2 and shRNA-3 (day 32),

increased apoptotic cell death was detected by Terminal

deoxynucleotidyl transferase-mediated dUTP nick end-labe-

ling assay (Figure 6b) and the suppression of ANT2 was

detected by RT-PCR (data not shown) from the tumor tissues

obtained from ANT2 shRNA-treated mice. As a result, these

data indicate that the injection of ANT2 shRNA induces tumor

regressions associated with apoptosis in vivo.

Discussion
Energy generation by cells in the form of ATP can be achieved

in two main ways: oxidative phosphorylation in the mitochon-

dria, and glycolysis in the cytoplasm. Most normal cells mainly

utilize mitochondrial oxidative phosphorylation for ATP synthe-

sis but switch to glycolysis at lower oxygen tension [30-34].

Cancer cells, however, typically depend upon glycolysis (the

anaerobic breakdown of glucose to ATP) even in the presence

of adequate oxygen, and this phenomenon is called the War-

burg effect [35]. This increased glycolytic activity in cancer

cells is suspected to possibly be due to mitochondrial defects

and/or adaptation to a hypoxic tumor microenvironment [36-

39]. The inhibition of glycolysis in cancer cells has therefore

been suggested as a novel therapeutic strategy as well as a

method to overcome drug resistances associated with mito-

chondrial dysfunctions [40,41].

ANT exchanges ADP and ATP across the mitochondrial inner

membrane. Specifically, ANT1 and ANT3 export ATP pro-

duced by mitochondrial oxidative phosphorylation, whereas

ANT2 imports ATP produced by glycolysis into mitochondria

to supply the energy required for mitochondrial functions

[14,16]. In fact, ANT2 is mainly expressed in proliferative and

undifferentiated cells, and only trace amounts are existed in

differentiated cells, suggesting ANT2 can be an anticancer

therapeutic target. In addition to their role in energy

metabolism, ANTs are also involved in the formation of mito-

chondrial PTPC that mediates the nonspecific release of

apoptotic mediators. PTPC composed of ANTs, voltage-

dependent anion channel, cyclophilin D and Bcl2-Bax family

members is formed at the contact sites between mitochondrial

inner and outer membranes [42,43]. In previous reports, the

overexpression of ANT1 or ANT3 induced proapoptotic

effects, whereas overexpression of ANT2 did not [17,18]. In

addition, ANT2 suppression was also associated with cell

growth arrest and the increase of mitochondrial permeability

[9,11]. ANT2 is therefore considered an antiapoptotic onco-

protein that functions as an inhibitor of mitochondrial

membrane permeability such as Bcl2 and Bcl-xL, supporting

the idea to repress ANT2 as an anticancer strategy.

In the present study, we used DNA vector-based ANT2 siRNA

as a tool to inhibit ANT2 transcripts. It was found that DNA

vector-based ANT2 siRNA (shRNA) reduced ATP levels,

induced cell cycle G1 arrest and effectively induced apoptotic

cell death. Moreover, this apoptosis was accompanied by

mitochondrial membrane potential disruption, cytochrome c

release (data not shown) and caspase-3 activation. These

facts encouraged us to speculate that ANT2 repression may

disable ADP/ATP exchanges in mitochondrial membranes

and/or promote PTPC formation as well as apoptosis.

Figure 6

Adenine nucleotide translocator 2 shRNA inhibited tumor growth in vivoAdenine nucleotide translocator 2 shRNA inhibited tumor growth in 
vivo. (a) In vivo experimental schedule and tumor regression induced 
by adenine nucleotide translocator (ANT) 2 shRNA. Balb/c nude mice 
were challenged with 5 × 106 MDA-MB-231 cells by subcutaneous 
injection into the right flanks and then treated with PBS, scramble 
shRNA or respective ANT2 shRNA-1, shRNA-2 and shRNA-3 vectors 
supplemented with Lipofectamine 2000 by intratumoral injection on 
day 21, day 23 and day 25 post challenge. Tumor sizes were measured 
by a caliper every week and volumes calculated using m1

2 × m2 × 
0.5236 (where m1 represents the short tumor axis and m2 the long axis) 
until day 56 post tumor challenge. (b) On day 32, tumor tissues were 
isolated and subjected to in situ apoptosis staining (Terminal deoxynu-
cleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay). 
Bright green dots represent apoptotic bodies.
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Interestingly, we also observed that ANT2 shRNA treatment

upregulated proapoptotic Bax expression and downregulated

antiapoptotic Bcl-xL expression. We speculate that these

changes of gene expressions may contribute to the apoptotic

cell death induced by ANT2 shRNA. Bcl2 family members in

the mitochondrial membranes modulate the activities of ANTs,

and the Bcl2 family and ANT interactively participate in the for-

mation of PTPC [42,43]. No previous report, however, has

demonstrated that ANTs can affect the expressions of Bcl2

family members. The specific mechanisms underlying this

novel finding should be determined by further studies.

In contrast to our results, a recent study using siRNA oligonu-

cleotides to knockdown ANT2 showed that ANT2 suppres-

sion neither induced apoptosis nor had any discernible effect

on the mitochondrial network as well as the cell cycle. This

suppression, however, did result in chemosensitization and

increased mitochondrial transmembrane potential as well as

reactive oxygen species levels [12]. These different observa-

tions between our report and others might be due to the utili-

zation of different RNA interference technologies for

suppressing ANT2 gene expression. Chemically synthesized

siRNA is easily transfected into cancer cell lines and may be

more effective in silencing targeted genes than shRNA vector

[44]. siRNA synthesized in vitro, however, suppresses gene

expression only for a short period, while shRNA expression

vectors are transcribed and generated in vivo over long peri-

ods of time [45]. shRNA expression vectors therefore allow

more sophisticated investigations and have been widely used

for the functional analyses of genes and for anticancer thera-

pies [28,29]. For example, when siRNA and shRNA iRNA

technologies were utilized to knockdown the same gene, their

effects were different [46,47]. In the present study, ANT2

shRNA was found to be more effective for suppressing ANT2

(Figure 1c) and induced more cell death than ANT2 siRNA

(Figure 2e). As a result, our observations support that shRNAs

synthesized from DNA templates can induce robust, lasting

and near complete inhibitions of gene expression, suggesting

shRNA is more applicable to gene therapy than siRNA [27].

Another important finding from the present study was the

bystander effect induced by ANT2 shRNA treatment. We

demonstrated that this phenomenon was due to TNFα secre-

tion and TNF-receptor I upregulation from ANT2 shRNA-

treated cells. In addition, the cell death induced by the

bystander effect was mainly interpreted as necrosis. How the

expressions of TNFα and TNF-receptor I were induced by

ANT2 shRNA treatment, however, and why the bystander

effect induced necrotic cell death, are not known. More exper-

iments are needed to address these questions.

In a previous report, mitochondrial H+-ATPase inhibitor was

found to increase mitochondrial membrane permeability, to

decrease cellular ATP levels and to stimulate reactive oxygen

species production, subsequently leading to the activation of

stress-activated pathways and p21 induction [48]. In the

present study using ANT2 shRNA, we observed the disruption

of mitochondrial membrane potentials, ATP depletion, G1

stage arrest, apoptosis, the induction of TNFα and TNF-recep-

tor I as well as the upregulation of surface and intracellular

heat shock protein 70 expression in vitro (data not shown).

Among the many common observations between two sys-

tems, the induction of heat shock proteins is notable from the

immunological point of view. For example, the killing of tumor

cells by a HSV-tk (herpes simplex virus thymidine kinase) gan-

cyclovir system generated potent antitumor immunity and

induced heat shock protein expression [49]. Interestingly, the

induction of heat shock protein 70 expression induced the

infiltrations of T cells, macrophages and predominantly den-

dritic cells into tumors, as well as the intratumoral expressions

of T helper 1 cytokines such as IFNγ, TNFα and IL-12 [50,51].

We therefore speculate that ANT2 shRNA administration in
vivo might accelerate tumor cell death and increase immune

responses against tumors due to heat shock protein 70. A

study is now underway to investigate the mechanisms of

immune response associated with ANT2 shRNA in a wildtype

mouse tumor xenograft model.

In summary, the knockdown of ANT2 using ANT2 shRNA sys-

tems in breast cancer models induces apoptotic cell death

followed by ATP depletion, G1 stage arrest and the disruption

of mitochondrial membrane potentials in vitro and tumor

regression in vivo. In addition, the induction of TNFα and TNF-

receptor I in breast cancer cells mediated by ANT2 shRNA

generates the bystander effect that leads necrosis to the adja-

cent cells. We speculate that the antitumor effect mediated by

ANT2 shRNA in vivo is mainly due to its apoptotic functions.

The necrosis induced by the bystander effects, however, may

contribute to the tumor regression in vivo. We are currently try-

ing to evaluate the knockdown of ANT2 as a novel therapeutic

model for breast cancer treatment based on our interesting

observations.

Conclusion
This present study demonstrates that ANT2 silencing by DNA

vector-based iRNA effectively induces apoptotic cell death

and tumor growth inhibition in breast cancer models in vitro
and in vivo. We speculate that ANT2 silencing may offer a

novel cancer therapeutic strategy for breast cancer.
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Additional file 1 is a jpeg file containing images showing 
detection of apoptotic death of human ovarian cancer 
cell lines SK-OV-3 and SNU8 induced by adenine 
nucleotide translocator (ANT) 2 siRNA and shRNA. (a) 

Detection of ANT isoform mRNA from SK-OV-3. To 
evaluate ANT isoform mRNA in ovarian cancer cell line 
SK-OV-3, total RNA was extracted from this cell line and 
subjected to RT-PCR using specific primers for human 
ANT1/ANT2/ANT3 or β-actin. (b) Apoptosis analysis. 
Cells were transfected with specific siRNA or shRNA 
against ANT2, and then 48 hours later the transfected 
cells were stained with annexin V–fluorescence 
isothiocyanate (FITC) and propidium iodide (PI) for flow 
cytometry analysis. Data are representative of three 
independent experiments.
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