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We study wave propagation in mixed, 1D disordered stacks of alternating right- and left-handed
layers and reveal that the introduction of metamaterials substantially suppresses Anderson localiza-
tion. At long wavelengths, the localization length in mixed stacks is orders of magnitude larger than
in normal structures, proportional to the sixth power of the wavelength, in contrast to the usual
quadratic wavelength dependence of normal systems. Suppression of localization is also exemplified
in long wavelength resonances which largely disappear when left-handed materials are introduced.

PACS numbers: 42.25.Dd, 42.25.Fx, 72.15Rn

Anderson localization is amongst the most fascinating
and universal phenomena in the physics of disordered
systems [1, 2]. Despite the many rigorous results for 1D
disordered systems [3, 4], the study of classical wave lo-
calization [5] still reveals many novel and fundamental
properties, e.g. those associated with absorption [6] and
gain [7, 8]. In this Letter, we consider wave propaga-
tion in disordered, mixed metamaterials and reveal yet
another fascinating feature of Anderson localization.

Left-handed metamaterials [9] have received consider-
able attention recently, given their unique ability to re-
solve images beyond the diffraction limit [9, 10] and their
capacity to cloak objects [11]. To date, most studies con-
sider ideal systems [12] and do not address the effects of
disorder, although Gorkunov et al [13] demonstrated that
weak microscopic disorder may lead to substantial sup-
pression of wave propagation using magnetic metamate-
rials, while Dong and Zhang [14] considered localization
due to thickness disorder in alternating layers of normal
and meta-materials that were not impedance matched.

From simple arguments, it is clear that the mutual in-
fluence of disorder and negative refraction may lead to
nontrivial effects, either through evanescent wave ampli-
fication or the modification of wave phase due to negative
phase velocity. Here, however, there are no evanescent
waves and so the fascinating, and perhaps counterintu-
itive, effects that we observe are attributable to the im-
pact of disorder on the interference action in stacks of
materials in which the phase velocity alternates.

A key characteristic of Anderson localization is the lo-
calization length l. In normal, disordered systems com-
prising right-handed (RH) media, l is proportional to the
square of the wavelength λ in the long-wavelength limit,
tends to a constant in the short-wavelength regime, and
oscillates in the intermediate wavelength region [2, 15–
18]. Here, we consider 1D disordered systems of mixed
(M) stacks composed of N layers of alternating right-
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FIG. 1: Geometry of a disordered metamaterial structure.

handed (RH) and left-handed (LH) materials (see Fig. 1),
and show that the matched combination of LH- and RH-
layers causes not only an increase in l by several orders of
magnitude, but also changes dramatically its functional
dependence: instead of the well known, long-wavelength
asymptotic, l ∝ λ2, for disordered homogeneous (H)
stacks (i.e., comprising purely RH or purely LH layers),
we have l ∝ λ6 for the M-stack in the long wave limit.

We consider a disordered structure of N (even) layers
(Fig. 1). In layer j, the permeability and permittivity are
µj = ±1 and εj = ±(1 + δj ± iσ)2, respectively for the
RH and LH layers, and we consider both lossless (σ = 0)
and absorbing (0 < σ ¿ 1) structures. The refractive
index fluctuations δj are independent random variables
distributed uniformly on [−Q,Q]. With this, the refrac-
tive index and the impedance of each slab, relative to the
background (free space), are nj =

√
εµ = ±(1 + δj ± iσ)

and Zj =
√

µj/εj = 1/(1 + δj ± iσ) with the choice
of sign corresponding to RH- and LH-slabs respectively.
We assume that all layers have identical thickness d and
we make use of dimensionless variables, measuring all
lengths in units of d. The total length of the stack is
thus N , the (even) number of layers.

First, we study lossless systems (σ = 0) and notice that
when our structure is periodic (Q = 0), it is transparent
at all frequencies since there is no impedance mismatch
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at any boundary. That is, there are no forbidden bands in
the spectrum of the structure and, therefore, disorder in
the refractive index of the layers provides the only phys-
ical mechanism for wave localization. Interestingly, the
introduction of thickness disorder to such a refractively
unperturbed system conserves its complete transparency
at all frequencies, irrespective of the strength of the dis-
order, a consequence of layer impedance matching.

In this Letter, we study the properties of the dimen-
sionless localization length l, defined as the reciprocal of
the Lyapunov exponent γ, [1, 3]

γ ≡ l−1 = lim
N→∞

ξN

N
= − lim

N→∞
ln |TN |

N
, (1)

where ξN is the natural logarithm of the magnitude of a
“zero-current” (fixed at the input) solution of the corre-
sponding dynamical equations, and TN is the transmis-
sion amplitude of a random stack of N layers. Due to
the self-averaging of the Lyapunov exponent, the numer-
ator in the final term of Eq. (1) can be replaced by its
ensemble average value. We thus introduce two lengths,

lξ(N) =
N

ξN
, and lT (N) = − N

〈ln |TN |〉 . (2)

The former is calculated for any single realization, while
the latter is computed by averaging its denominator over
many random configurations. For a sufficiently long
stack, both lengths almost coincide and practically do
not change with further increases in system length. If
these length scales are much smaller than the total length
of the structure, i.e. lξ, lT ¿ N , then either can be used
to characterize the genuine localization length.

To calculate lξ and lT , we use recurrence relations de-
rived from the transfer matrix method[19]. For any ran-
dom realization, we find TN from the recurrence relations
for the stack transmission and reflection amplitudes,

Tj =
Tj−1tj

1−Rj−1rj
, Rj = rj +

Rj−1t
2
j

1−Rj−1rj
, (3)

and then calculate lT (N) (2). Here, Rj and Tj denote
reflection and transmission amplitudes of a j layer stack,
enumerated from j = 1 at the rear through to j = N at
the front, and with layer j characterized by reflection and
transmission amplitudes rj and tj which are functions of
nj , Zj , and the phase change across the layer, φj .

To calculate lξ, it is convenient to choose pairs of adja-
cent LH and RH layers as the basic building block. Then,

1
lξ

=
1
N

N/2∑
m=1

ln |T (m)
22 + ζm−1T (m)

21 |, (4)

where T (m)
ik denote elements of the transfer matrix [17,

19] for layer pair m, expressed in terms of Zj , nj , and
φj , while the dynamical variable ζm satisfies

ζm =
T (m)∗

22 ζm−1 + T (m)∗
21

T (m)
22 + T (m)

21 ζm−1

, ζ0 = 1. (5)
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FIG. 2: Characteristic length lξ vs wavelength λ for Q = 0.25
and N = 109 layers; solid line is for the M-stack, while the
dashed line is for the corresponding (normal) H-stack. The
vertical lines at λ = 0.1, 1 delimit the short-, intermediate-
and long-wavelength regimes.
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FIG. 3: Characteristic length lT vs λ for Q = 0.25. The
inset shows the legend for M- and H-stack spectra. The fitted
straight line is lT ≈ 5.1λ6 (6). To facilitate comparison of the
single realization (Fig.2) and ensemble averaged calculations,
lξ for the M-stack of Fig. 2 is also plotted on this graph.

A similar procedure may also be used to calculate a single
realization of ln |TN |, used in the calculation of lT . Ac-
cordingly, these two approaches complement each other
well and, as should be expected, the results for lξ and lT
agree very closely and coincide in the region where both
represent the genuine localization length.

Our results, summarized in Figs 2 and 3, reveal a num-
ber of interesting and unexpected features. These show
the wavelength dependence of lξ and lT over various ran-
dom configurations for the disorder Q = 0.25. The solid
line in Fig. 2 corresponds to lξ for propagation in a M-
stack for a single realization of N = 109 layers, while the
dashed line is for the corresponding H-stack. Fig. 3 de-
picts lT for three different M-stacks of N = 107, 105, 103

layers (from top to bottom) and the same quantity for a
H-stack of N = 104 layers. In all cases, 〈ln |TN |〉, in the
denominator of Eq. (2), is averaged over 104 realizations,
sufficient to achieve graphical accuracy. As can be seen
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from Figs 2 and 3, for λ . 10, both lξ and lT are smooth
functions (the former due to self-averaging) which are (a)
essentially identical, (b) much smaller than the length of
the sample N , and (c) independent of N . These thus rep-
resent the genuine localization length l, with this being
further exemplified in Fig. 3.

From Figs 2 and 3, we see that, in the short-wavelength
regime (λ ¿ 1), the localization length of the M-stack
remains constant [15–18], while for 0.5 . λ . 1, it ex-
hibits oscillations similar to that seen in disordered H-
stacks [18]. However, for long-wavelengths, λ & 2, the
situation is markedly different. Instead of the well estab-
lished asymptotic form l ∝ λ2, applicable to disordered
H-stacks, the localization length of a M-stack grows much
more rapidly, with simulations for a range of values of the
disorder parameter Q (0.01 ≤ Q ≤ 0.3) revealing that

lξ, lT ∝ λ6. (6)

Thus, the inclusion of left-handed metamaterial layers
in the disordered stack substantially suppresses Ander-
son localization in the long-wavelength limit—the essen-
tial difference between M- and H-stacks being the much
weaker interference in M-stacks, attributable to a lack of
phase accumulation over the sample, due to the cancel-
lation of phase across alternating LH- and RH-layers.

For λ & 10, lξ and lT are quite different, with lξ ex-
hibiting giant, irregular oscillations (Fig. 2) that appear
in all realizations. At such wavelengths, the stack is not
sufficiently long for self-averaging, needed for lξ to at-
tain its (non-random) limit. In contrast, the length lT is
smooth even for λ & 10, due to ensemble averaging (2).
Here, however, lT does not represent the genuine local-
ization length since it is larger than N , the total length
of the system. Nevertheless, in this ballistic transport
regime, lT is still a physically meaningful quantity. Here,
the transmittance |TN |2 is close to unity, exhibits strong
relative fluctuations in 1 − |TN |2, and has an average
value [2, 20] of 〈|TN |2〉 = 1− 2N/lbal, where the ballistic
length lbal is much larger than N .

For H-stacks, it follows that lT = −N/(〈ln |TN |〉) ≈ lbal

(2), coinciding with the same length that occurs in the
localization limit, lT (¿ N). That is, the transmission
properties of a normal stack, in both the localized and
ballistic regimes, are characterized by a single length
scale, proportional to λ2. In contrast, and somewhat sur-
prisingly, the long wavelength properties of mixed stacks
are described by two different characteristic lengths: the
localization length, proportional to λ6, and the ballistic
length, proportional to λ2 (See Fig. 3).

In addition to the differences in the behaviour of the
localization length exhibited by homogeneous and mixed
media, another discriminating characteristic is their res-
onance properties. Fig. 4 presents a single realization of
|TN |2 as a function of λ for a M-stack (dashed line) of
N = 103 layers, and for the corresponding H-stack (solid
line). From this, we see that the disordered H-stack ex-
hibits resonances over the entire spectrum, while there
are no resonances for the M-stack for λ & 4. While this,
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FIG. 4: Transmittance |T |2 vs λ for a single realization (Q =
0.25, N = 103). Solid: normal H-stack, dotted: M-stack.

at first, may be unexpected, it is just a further manifes-
tation of the lack of phase accumulation over the length
of the system: for this realization, the accumulated wave
phase in the mixed stack did not exceed π/2. This be-
haviour is replicated over all realizations and is consistent
with our earlier observation that, for mixed media, much
longer stacks are required to cause localization.

We have also studied localization in M-stacks that in-
clude absorption, present in all real metamaterials. Here,
the attenuation of the field is attributable to both An-
derson localization and absorption, and so latt(N) =
−N/〈ln |TN |〉 has the meaning of an attenuation length.
Fig. 5 plots latt for a M-stack with N = 104 and
σ = 0.0001 (solid line), and the absorption length labs =
λ/(2πσ) (dashed line). Clearly, absorption dominates in
the short-wavelength region, λ . 0.01, and also in the
long-wavelength region, λ & 1000, while for intermedi-
ate wavelengths, 0.1 . λ . 10, the main contribution
to the attenuation is localization. The only difference
is that due to absorption, with latt for the lossy sam-
ple having fewer oscillations in the resonance region than
lT for the lossless case. These effects combine through
l−1
att ≈ l−1

T + l−1
abs, with the solid black curve of Fig. 5 dis-

playing latt, in which lT = cλ6 (c ≈ 5.1) is taken from
the equivalent lossless system. Clearly, this is an excel-
lent fit to the simulations in both the localization and
long wavelength regimes.

In conclusion, we have shown that in stratified media
with alternating layers of right- and left-handed mate-
rials, the localization properties differ dramatically from
those exhibited by conventional, disordered materials. In
particular, at long wavelengths, the localization length of
mixed, metamaterial stacks is proportional to the sixth
power of the wavelength, a result which has been neither
predicted nor observed in conventional 1D disordered sys-
tems. In contrast to normal, disordered materials, the
characteristic ballistic and localization lengths of mixed
stacks differ substantially in the weak scattering limit,
with the length of the mixed stack needed to realize trans-
mission resonances being much greater than for the cor-
responding normal sample. This shows that left-handed
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FIG. 5: Attenuation length latt vs λ for a M-stack with Q =
0.25, σ = 10−4, N = 104. Solid (red) line: numerical results;
dashed (green) line: labs; solid black line: latt where l−1

att ≈
l−1
T + l−1

abs.

metamaterials can substantially suppress Anderson lo-
calization in 1D disordered systems.
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