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Ceramics exhibit macroscopic stressistrain rate relations that 
should lead to superplastic extension. However, premature 
fracture is normally encountered, due to the formation and 
growth of grain-boundary cavities. Thus, cavity nucleation and 
growth were analyzed in an attempt to identify microstructures 
and/or strain-rate regimes that would suppress cavity evolution 
and hence allow superplasticity. Analysis of cavity nucleation 
indicates that fine-grained materials devoid of grain-boundary 
amorphous phases and inclusions should sustain substantial 
deformation rates without nucleating cavities, especially if 
solid-solution additions that encourage rapid grain-boundary 
diffusion (while not excessively decreasing surface energy) are 
identified. The analysis of void growth indicates that high rela- 
tive surface diffusivities are also desirable, indicating that alloy 
additions that do not depress (and probably enhance) the rela- 
tive surface diffusivities must be selected. 

I. Introduction 

H E N  polycrystalline ceramic materials are deformed in ten- 
sion at high temperatures, cavity formation and growth are 

prevalent.',* The cavities substantially limit the fracture strains and 
prevent the application of potentially viable deformation-forming 
techniques (e.g. superplastic forming). The mode of formation and 
initial propagation of these cavities is evaluated in the present paper, 
to identify the material parameters that are primarily responsible for 
cavity evolution. Concepts for microstructural modifications that 
would suppress cavity evolution at strain rates of practical interest 
are then proposed. 

Cavities can be generated at grain boundaries if the local stress 
exceeds the interface ruparie strength or if vacancies can coalesce 
into a size that exceeds a critical nucleation size. The propensity for 
cavity formation is, in both cases, affected by the presence of stress 
concentrations. The origin and character of the most severe sources 
of elastic stress concentration and their relaxation by diffusion are 
thus examined before detailing the cavity formation and growth 
concepts. 

11. Stress Concentrations 

The two primary sources of appreciable stress concentration in 
ceramics at high temperatures are thermal-expansion anisotropy 
and, when subjected to a tensile stress, grain-boundary sliding. The 
development of elastic stress concentrations and their partial relaxa- 
tion by diffusion processes are examined separately for both 
sources. 

(1)  Boundary Sliding 
When a remote stress crx is applied to a polycrystal, boundary 
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sliding occurs with a relatively short relaxation time* to generate 
stress singularities on adjacent boundaries (Fig. 1 ). The magnitude 
of this singularity depends on the deformation properties of the 
material .4 For most polycrystalline ceramics, the grains can be 
assumed to respond in a linear elastic mode and the boundaries in a 
linear viscous fashion. For this case, bounds on the singularity can 
be obtained from a two-dimensional solution for a polygon array 
with completely relaxed grain boundaries4: 

where u is the local stress, d the grain facet length, and x the 
distance from the triple point. From the solution for the tensile stress 
concentration of a single mode I1 penny-shaped crack5 (loaded by 
the shear uZ/2), 

These high local tensile stresses cause matter to diffuse to adja- 
cent (less stressed) boundaries and the stress singularity disappears, 
as indicated by the dashed line in Fig. 1. The relaxed stress distribu- 
tion can be estimated for an infinite bicrystal (Fig. 2), with the 
assumption that the time-dependent stress distribution G (.x,t) has 
the form at t = O  suggested by Eq. ( I ) ,  viz.: 

This stress distribution can be modeled by inserting a continuous 
distribution of opening dislocations along the negative x axis, with 
the density of the distribution proportional to 1 /6.6.7.t 

If 8 = 8 ( x , t )  is the effective "thickening" of the grain boundary 
(caused by the addition of matter to the crystals on each side) andJ is 
the number of atoms diffusing along the grain boundaryt per unit 
time, per unit thickness into the plane of the diagram, mass conser- 
vation requires that 

RaJ/ax+as/at = O  (3) 

Further, the linearized law of diffusion is6,Io 

where the equation has been arranged to emphasize that -nu is the 
chemical potential per atom. HereD,S, is the grain-boundary diffu- 

' For example. the ratio of  the relaxation time for sliding to that for boundary 
diffusion in the presence of a viscous boundary phase is =60vdZ/R":'. where II i s  the 
atomic volume and d is the grain-facet length (Ref. 3). 

tAlternatively. the matter tlow from the stressed boundary can be seen as causing the 
climb of discrete grain-boundary dislocations near the triple junction producing aclimb 
pileup configuration. The pileup stress superposes on and relaxes the concentrated 
stress (Fig. I ). Differences in the continuous and discrete dislocation descriptions 
appear only over distances of the order of  the grain-boundary dislocation spacing, in 
accord with St. Venant's principle. 

$The principal diffusion path in the present analysis is considered to be along grain 
boundaries. which is  true ifD,,ij,,PD,A, whereD, is the lattice diffusivity and A is the 
characteristic interval inx over which diffusion is occurring. For the present situations. 
this condition should invariably he satisfied on the basis oftypical values forD,, andD, 
(Refs. 8 and 9). 
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Fig. 2. Bicrystal system used to model diffu- 
sional relaxation of sliding singularity in Fig. 1 .  

10-4 10-3 10 -2 10-1 
x /d 

Fig. 1. 
freely sliding grain boundaries. 

Tensile stresses developed as a result of 

sion parameter, with D, the grain-boundary diffusivity and 8, the 
effective width of the boundary. Hence, 

(Dbs&/kT)(a2a/ax2)+ (a S / a t )  = 0 (5 )  

A standard result of plane-strain isotropic elasticity indicates that 
for a stress distribution 

a(x,t) =B(t)e'w' (6) 
whereB contains the time dependence of the stress acting along thex 
axis, the required distribution of the thickening displacement 6 is 
twice the surface displacement in the corresponding problem of load 
application to a half-space. Thus, following Chuang and Chuang et 
aE. 

S(x,r)= -[2(1 -u)/GlwJ]B(t)e'"C (7) 

where G is the elastii?&ear modulus and u the Poisson ratio. If the 
expressions for a and S are to satisfy the diffusion equation (Eq. 
( 5 ) ) ,  a necessary condition is 

B ( f ) = B o  exp[-alw31t] (8) 

a=GD,6&/2(1 -u)kT (9) 

where" 

Hence, if the initial stress distribution of Fig. 2 is represented by 
+r 

Cr(x,O)= f B,(w)e'W%h (10) 

a ( x , t ) =  f ~ , ( w )  exp[-alw31t]e~~ w 

f -P 

--P 

the stress distribution at any time t>O is 
+= 

(1 1) 

Fourier inversion of Eq. (1 1) and a straightforward integration 
based on the form for a(x,O) given earlier yields the result 

-P 

+r 

Bo(w) = ( 1 / 2 ~ )  ~(x,O)e-'osdx ( I & )  

1.5 
INITIAL STRESS 
DISTRIBUTION 

. ^  r % n x  = 0.88 K/(at!' 
1.w- \ I 
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0- 
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Fig. 3. Initial and relaxed stress distribution 
plotted using normalized coordinates suggested 
by the analysis. 

(12)  K(1-i)/2&)W1112 O>o 

K ( 1  + i ) / 2 6 ( W 1 " '  O<o 

When these results are inserted into the integral for a (x,t) (Eq. 
( 1  l)), and w = ~ ~ / ( a t ) ~ / ~  is substituted, the result is 

d X ,  f )  = [K/(d)"']f[X (13) 

where 

f[Z] = J$i exp(-u6)[cos(u2Z)+sin(u2Z)]du (14) 

The functionAZ] approaches Z-1/2 at largeZ, so that the classical 
elastic stress distribution remains (for a short enough time) at points 
far removed from the grain junction. But,f[O] =0.74, and hence the 
stress at the junction, for t>O, is 

0 

o(o,t) =0.74[~/(at)"6] (15) 

Indeed, (at)li3 is the measure of the distance from the grain 
junction over which the stress concentration is seriously mitigated 
by diffusion (Fig. 3). The maximum stress is 

mlllax =o. 88[~/(at)"'] (16) 

which occurs at approximately x = 1 .3(at)1/3. The result corre- 
sponds approximately to calculating alllax as the initial stress acting 
at the distance 1 . 3 ( ~ ~ f ) ~ / ~  from the grain junction. 

This solution pertains to a stress field K/G that has been created 
by instantaneous load application. If, instead, K is some continuous 
function of time, say K = ~ ( t ) ,  representing the time dependence of 
external loadings exerted on the polycrystal with freely slipping 
boundaries, then by standard superposition techniques 

In particular, the stress a (o,t) at the junction can be calculated, 
usingf[O] =0.74. If the load increases linearly in time, starting at 
t =0, equivalent to a constant rate ri of stress intensity, the stress at 
the junction would be 

a(o,t) = 0.89[r;t/(af)"6] (18a) 

On the basis of the plot in Fig. 3, the maximum stress in the 
specimen might exceed this value by = 10%. Hence, if this maxi- 
mum admissible stress level for the grain junction is known, the 
maximum permissible loading rate K can be estimated. 
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For example, consider 

UlIw2Z = [K 4 a t L  (18b) 

as the maximum stress generated near the junction when loads 
equivalent to a stress intensity K are applied at a uniform rate over a 
loading time t,. If urnax is not to exceed some critical stress level uc 
for fracture nucleation, the loading time must be long enough to 
satisfy 

t ,  ~ 4 . 8 X  1 0 - 3 ( ~ J ~ c ) 6 ( d 3 / a )  (upper bound) 

t ,  5 3 . 4 ~  1 0 - 5 ( ~ , / ~ c ) 6 ( d 3 / a )  (lower bound) 

(19a) 

( 19b) 
Note that, since the term exp(-a(w3(t) arises in the expression for 
decay of an initial stress (or thickening) distribution of spatial 
circular frequency o, the termd3/a of Eq. (19) can be interpreted as 
the grain-boundary relaxation time for disturbances of frequency 
o = l / d .  

It is instructive to examine the loading times t, associated with the 
development of stress concentrations of magnitude 10 and 3 in 
typical ceramic systems. The most extensively documented systems 
are A1203 materials, in which the boundary diffusivities are? 

Db6,== exp[-Q/RT]m3 s-l (20) 
where Q is 400 k.J/mol. Values of tL between the upper- and 
lower-bound solutions are plotted in Fig. 4 ,  as a function of grain 
size, for the lowest temperatures at which significant deformation 
rates can be achieved, i.e. =1400°C.8 Evidently, except for 
coarse-grained materials, these large stress concentrations develop 
at much less than typical loading times. Hence, significant stress 
concentrations produced by boundary sliding are not expected to 
develop near triple p i n t s  in high-strength aluminas unless rapid 
transients created by local instabilities can occur. The maximum 
stress in these materials caused by nontransient sliding is thus 2u, ,  
occurring at the centers of the grain facet in the fully relaxed 
condition.'O RajI2 estimated the time dependence for achievement 
of this fully relaxed condition. Boundary-diffusion rates have not 
been measured directly for highly covalent ceramics such as Si3N4 
and Sic ,  but approximate values can be derived from creep or 
hot-pressing data. For hot-pressed Si3N4 (Ref. 9):  

Db6b=6x exp[-QIRT]m3 s-' 

where Q is 680 kJ1mol. Values oft, at 1400°C are plotted in Fig. 4 .  
These results indicate that, for typical experimental loading times, 
stress concentration factors of -3 should develop. The maximum 
achievable internal stress concentration for these materials should 
thus be taken as -3um,  again w t h  the assumption that local sliding 
transients do not develop. The stresses that develop at other temper- 
atures, or in other materials, can be much larger. 

(2) Thermal-Expansion Anisotropy 
Polycrystalline ceramics with thermal-expansion anisotropy de- 

velop large stresses near grain triple points at temperatures below 
the fabrication temperature.I3 The stresses near the mple points, in 
the absence of diffusional relaxation, take the form: 

u,=0.24GAaAT In ( 0 . 8 2 1 ~ )  (22) 

wherex is the distanct from the triple point, 2Aa is the difference 
between the maximum and minimum thermal-expansion coeff- 
cients , and AT is the temperature differential between the ambient 
and fabrication temperatures. The steepness of the stress gradient 
suggests (cf. the sliding singularity Eq. (1)) that the stresses near the 
triple points should relax very rapidly at temperatures where appre- 
ciable grain-boundary diffusion can occur. The stresses along the 
grain facet should thus quickly tend toward the steady-state 
parabolic distribution typical of uniform thickening. The magnitude 
of the peak stress at the facet center should decrease continuously 
with time by vacancy migration from facets under tension to adja- 
cent facets under compression. 

The stress distribution along grain facets under conditions of 
uniform thickening can be found directly by integrating Eq. (5) as: 

where 6 is the rate of ,strain decrease associated with boundary 
thickening (6 = ( f i / d ) 8 )  and C, and C, are constants. Inserting the 
(symmetry) boundary condition duldx=O at x = d / 2  and, for 
simplicity,* setting u = O  at x =O (cf. the analogous viscous liquid 
probleml4) then gives: 

u = ( i d  /2d2)(kT/fW&,)x(d  -X) 

<cr> = ( d 3 i /  1 2 f i ) ( k T / m & )  (25) 

(24) 

The average stress <a> along the facet is thus: 

and the maximum stress & is 15 <a>. 
Noting that <0>=2G&(1 +v) and equating the initial strain to 

the unrelaxed strain, 2G AaAT , then gives the time t dependence of 
the maximum stress at constant temperature: 

Some typical stresses for polycrystalline alumina (Db6b given by 
Eq. (20))  are plotted in Fig. 5. For test temperatures >1400°C, the 
thermal mismatch stresses relax very rapidly, especially in fine- 
grained materials. Their contribution to cavity formation in the 
materials of present interest is thus considered to be negligible. 

111. Cavity Nucleation 

The conditions of principal interest for the present analysis, i.e. 
those that involve appreciable grain-boundary diffusion, should 
limit the peak stress enough that the possibility of brittle grain- 
boundary cracking can be largely excluded, although this mode of 
crack nucleation should not be discounted under other test condi- 
tions. Cavity nucleation by vacancy coalescence is thus considered 
as the major mode of boundary separation. The formation of acavity 
by vacancy coalescence can be derived by considering the changes 
in external work, surface energy, vacancy concentration, and strain 
energy that accompany introduction of the cavity. In the absence of 
strain-energy terms and surface-energy anisotropy the critical nu- 
cleus will have the form indicated in Fig. 6 and its energetics can be 
described by the methods of Raj l5 and Raj and Ashby.'* In general, 
the strain-energy term is expected to be small fortypical dimensions 
of the critical nucleus. However, strain-energy effects may not 
always be negligible and bounds on the role of strain energy are 
included in the following results (a related discussion is presented 
in Appendix I). 

As indicated in Fig. 6 ,  we treat the case of nucleation on a planar 
boundary, equilibrated with the local normal stress acting on the 
boundary prior to cavity nucleation, and with isotropic surface 
energy. On the basis of typical nucleation treatments, anisotropic 
surface-energy considerations would have a minor modifying result 
through a geometric factor. Nonequilibrium conditions represented 
by a nonuniform distribution of grain-boundary dislocations (i.e. in 
the pileup configuration discussed previously (Section II( l ) ) ,  would 
lead to a local enhancement of nucleation rate. Similarly, the pres- 
ence of steps or offsets in the boundary would yield a local en- 
hancement, analogous to other forms of Thus, the 
case treated here is a lower bound on nucleation effects. It can be 
readily shown from the change in Helmholtz free energy of the 
systeml5Sl6 that the critical nucleation radius, r*, is : 

where /3 is a constant (Ospsl) that depends on the elastic stress 
redistribution around the cavity, around vacancies, and at external 
surfaces (some issues related to the magnitude of the elastic field 
that dictates p are presented in Appendix I), ys is the surface energy, 
and 5=2 - 3 cosa+cos3a, where a is the equilibrium angle at the 
cavitylboundary intersection. 

Plots of r*a, lys  as a function of a for several values of alE 
(assuming upper and lower bounds for p of unity and zero, respec- 

*The exact boundary condition at x = O  depends on the relative grain-boundary 
orientations at the triple point 



Jul.-Aug. 1980 Suppression of Cavity Formation in Ceramics 
I 1 

- 
T = 1700’K 

- --- SILICON NITRIDE - ALUMINA 

I I I 
I 10 Id lo3 

GRAIN FACE LENGTH, d (pm) 

Fig.4. Plot indicating grain-size dependence of I O - ~  10-1 I 10 lo2 lo3 
T I M E  AT TEMPERATURE ( 5 )  loading time required to develop stress concentra- 
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Fig. 5. Plot of rate of diffusional relaxation of 
thermal-expansion-mismatch stresses in alumina. 
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Fig. 7. 
assuming an unrelaxed elastic stress field. 

Effect of included angle, a, on size of critical nucleus obtained 

tively) indicate (Fig. 7) that the strain-energy term can be important 
only for ae2Oo, i.e. boundary energies ye 5 1.88y,. This valueof 
a is smaller than that typically expected for most polycrystalline 
ceramics (Appendix 11). The strain-energy term can thus be ne- 
glected for most purposes (inclusions with a large interface energy 
may be an important exception). 

Standard nucleation theory 17~19 now indicates that the nucleation 
rate, ri, (being the product of the number of nuclei at the critical size 
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Fig. 8. 
surface energy indicated. 

Stress dependence of void nucleation rate at 1400°C for values of 

and the probability that a vacancy will be added to a critical nucleus) 
is given by 

ri =z(47ry, sincu/~,n~’~)D~&p, exp[ - ( 4 ~ y , ~ ( / 3 u , * k T ) ]  (28) 

where z is Zeldovich’s factor ( and no is the number of 
available nucleation sites per unit area of grain boundary. The 
nucleation rate exhibits a maximum at urn2 = 16~y ,3 ( /3kT .  Stresses 
below the maximum are those that generally dictate nucleation. The 
stress dependence of the nucleation rate at stresses in this range is 
plotted in Fig. 8 for two values of the surface energy (0.2 J m-2 for 
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applied stress and constant surface diffusivity. 
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Fig. 9. Temperature dependence of “critical” void nucleation stress in 
alumina for values of surface/boundary energy parameter, 5yS3, indicated. 

glass at high temperature, 1 J m-2 for most oxide ceramics at 
1400°C using y b = y s  (Appendix 11), a typicall),&, from Eq. (20), a 
grain size of 3 p m ,  and regarding all boundary sites as potential 
nucleation sites. It is evident that the large value of the formation 
energy leads essentially to “threshold” behavior, i.e. a critical 
stress, u,, for cavity nucleation. The critical stress is given by*: 

(29) UcZ= 8v25 
3kT ln[4m(y,sina)Db S b  n , / ~ , f l ~ / ~  ti] 

The temperature *endence of the nucleation stress in alumina,+ 
obtained by letting ri = 1 m-2 s-l, is plotted in Fig. 9 for several ys35 
(the variable that represents the boundary/surface energy influence 
on the nucleation process). For a ys35 typical of polycrystals with 
clean grain boundaries, = 1  J3m-6 (i.e. no glassy phase and no 
inclusions), local stresses >1 GPa are needed to initiate cavities. 
However, in the presence of an amorphous boundary phase, ys35 is 
typically 0.03 J3 m-6 (7, = 0.2 J m+) and local stresses <200 MPa 
are sufficient to nucleate cavities. In addition, heterogeneous cavity 
nucleation at inclusions will be possible if the inclusions have high 
interface energies (i.e. ys35 values =zO.O3), especially when the 
inclusions coincide with the zones of stress concentration produced 
by boundary sliding. 

IV. Cavity Propagation 

The initial growth of a void is typically a quasi-equilibrium 
process,11 wherein surface diffusion is rapid enough that the void 
shape remains invariant. Additionally, for the problem of present 
concern (initial growth after nucleation) the void spacing should be 

*a,. is insensitive to small changes in the logarithmic term and it  can be calculated 

tThe result is insensitive to the grain size in the range I to 200 Gm. 
accurately enough by letting thc ur term in the parentheses be = 100 MPa. 

much larger than the void length. For this condition the growth rate 
is given 

(30) akT [wxuIys -2 sincu] sin3a 
II 

u 3  In (b/2u)l; m baby ,  

where 2u is the cavity diameter and 26 is the separation between 
cavities. However, a transition to a different growth rate regime 
occurs at” 

a,kTa3/fD,S,y, = 24 (31) 

where D,6, is the surface diffusion parameter. This transition coin- 
cides with the condition wherein the surface diffusion is too slow to 
retain the equilibrium shape of the cavity and a “cracklike” cavity 
develops. The growth rate in the crack-like regime is: 

(32) 
ukT lI3 3{[ 1 +4QA~,b/3y, sin(a/2]”*- 1) ( ms4Y.) = 4bAQ[ 1 - ( ~ / b ) ’ ]  

where A=D,6,/Db6b and 

Q =3(a/bXln (b/a)-3/4+(ak~)~ 

[ i  -(~/2b)2-1)/[1 -(a/b)2~3 (33) 

At typical stress levels and for As=  1 ,  the term containing uX is 
much greater than unity” and Eq. (32) reduces to 

where the numerical factor 1.8 is accurate to within 217% 
for 0 .1<a/b<0.4  (the factor becomes larger for a/b<O.l 
or >0.4). 

The void growth characteristics implied by Eqs. (30) and (34) are 
that the void grows transiently in the quasi-equilibrium mode (Eq. 
(30)) until eventually a3u becomes too large for surface diffusion to 
maintain the spherical-cap shape. Thereafter, there is a gradual 
transition to growth in the cracklike mode, for which the limiting 
velocity depends primarily on Db and D,. The transition from one 
mode to the other occurs essentially when the average of the pre- 
dicted growth rate expressions satisfies Eq. (31). Figure 10 shows 
schematically the growth rate a vs a under constant applied stress; u 
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Fig. 11. 
indicating cavity nucleation. 

Schematic of amorphous enclave typical of anisotropic ceramics, 

initidly accelerates to a peak growth rate, dictated by urn, ys, Dbi3b, 
and T, and then decelerates to an essentially constant steady-state 
level. The steady-state rate exhibits a dependence on D,&, in the 
sense that the growth rate increases as the relative surface-diffusion 
rate decreases. An important feature of the void growth problem 
thus relates to the boundary and surface diffusivities of the polycrys- 
tal. In particular, low ratios of the surface-to-boundary diffusivity 
are of concern. 

V. Discussion 

( I )  Cavity Suppression 
As indicated in the preceding analysis, the most favorable sites 

for cavity formation in ceramic polycrystals are at triple points. The 
incidence of cavity formation can be assessed by comparing the 
relations for the local stress amplitude (Eqs. (18)) and the critical 
nucleation stress (Eq. (29)). The local stress amplitude of interest 
will be that required to produce deformation strain rates of practical 
use (e.g. s-l). Typically, without cavity formation, the 
appropriate process controlling the steady-state strain rate will be 
boundary diffusion-controyed creep,20 which yields a strain rate: 

n 
& = 1 @m&,Uw/d3kF (35) 

where d is now the grain diameter (mean linear intercept). Also, 
combining Eq. (35yqith Eq. (18b) gives 

tLE -- Io-*(un/E)(up/u,,,.s)~ (36) 

indicating that the local stress concentration bears a simple relation 
to the product of the steady-state strain rate and the loading time. 
Then, with the condition that the maximum stress cannot exceed the 
critical nucleation stress, Eqs. (29), ( 3 9 ,  and (36) yield an expres- 
sion for the strain rates that can be achieved without cavity forma- 
tion near triple points: 

(37) 
L 

The nature of the temperature dependence (contained in kT and 
Db6b) is such that, for typical activation energies ( ~ 4 0 0  kJ/mol), 
the optimum condition for triple-point cavity suppression (i.e. the 
maximum noncavitating strain rate) should be attained at the highest 
temperatures.* It is also apparent from Eq. (37) that, as expected, 

*Testing under conditions suggested by this relation will minimize the tendency for 
cavity formation when local or applied transients occur during deformation. 

fine grain sizes, large boundary diffusivities, and large surface 
energies permit enhanced noncavitating strain rates to be attained. 
Some caution should be exercised in applying Eq. (37), because it is 
confined to the analysis of cavity formation in the region near the 
triple point. The steady-state cavity nucleation that occurs at grain- 
facet centers can be analyzed directly from Fig. 9. 

Since many practical ceramics contain an amorphous phase at 
grain triple points, the influence of such phases on cavity nucleation 
was explored. Viscous flow in the amorphous enclave will rapidly 
relieve shear stresses that develop as a consequence of sliding. 
However, the net hydrostatic stress will not be relieved and, if 
tensile, will tend to nucleate cavities (Eq. (29)). To assess the 
possible occurrence of hydrostatic tension, the sliding boundaries 
are simulated by two mode I1 cracks (Section 11). The unrelaxed 
hydrostatic stress p associated with each crack in plane strain5 is 
(Fig. 11): 

p ~ ( u r r + u e s + u z z ) / 3 =  -0.14(1 +u)u ,  sin(OI2)fi (38) 

For @<O, hydrostatic tension develops, whereas for @>O there 
exists a hydrostatic compressipn of equal magnitude. The average 
hydrostatic pressure within a symmetric enclave is thus zero. For 
example, in a cylindrical enclave, radius r ,  the average hydrostatic 
stress <p> is given by: 

<p > = [O. 14( 1 + v)/?r?]u, .fmj sin(@/2)d@dx=O 

Symmetric enclaves of an amorphous phase at a triple point should 
thus be regarded as expedient for the relaxation of stresses by 
viscous flow, without the concomitant tendency for cavity nuclea- 
tion. However, the amorphous enclaves in ceramics are rarely 
symmetric, because of surface-energy anisotropy . Certain asym- 
metries (e.g. Fig. 11) will result in a net tensile pressure and the 
enclaves will be potential sites for early cavity nucleation. 

The preceding analysis of cavity nucleation implies that attaining 
appreciable noncavitating strain rates requires fine-grained poly- 
crystals devoid of amorphous phases or grain-boundary precipi- 
tates, but with substantial grain-boundary diffusion rates. Additives 
that encourage grain-boundary diffusion but do not form amorphous 
phases or grain-boundary precipitates (i.e. solid-solution alloys) 
must thus be sought, especially additives that do not increase the 
ratio of the boundary to the surface energy. 

(2) Retardation of Cavity Growth 
Suppressing cavity formation in ceramics presents stringent fab- 

rication problems, which may prove insurmountable in many in- 
stances. The prospects for achieving large strains by retarding 
cavity growth (i.e. permitting appreciable cavity nucleation) are 
thus briefly explored. The initial equilibrium growth of the cavities 
is dictated (Eq. (30)) by the grain-boundary diffusivity Q S , ,  the 
surface energy ys, and the ratio of the boundary and surface ener- 
gies. Cavity growth is retarded by large values of ys and low ratios 
ofyb/ys, i.e. requirements consistent with the suppression of cavity 
nucleation. However, the other requirement for retarding growth, 
smallDbdb, is not compatible with either the attainment of apprecia- 
ble deformation rates without cavity suppression or the relaxation of 
internal stress concentrations and cannot be used.+ The subsequent 
growth of the cavities which contribute to premature failure in- 
volves the development of nonequilibrium shapes; hence, the 
growth occurs more rapidly for systems with low surface dif- 
fusivities or low surface energies (Eq. (31)). Systems with larger 
surface than boundary diffusivities are thus preferred. 

The large surface energy and small boundary energy required to 
limit premature failure by retarding cavity growth, without depress- 
ing the deformation rate, are compatible with the requirements for 
cavity suppression. The additional requirement for a large relative 
value of the surface diffusivity suggests that additives which also 
enhance the relative surface diffusivity should be investigated. 

(39) 
0 - n  

t l f  D,,& IS too small, another deformation mode, such as slip. could replace 
diffusion creep as the rate-controlling mechanism in the absence of cavity formation. 
Such a mechanism would tend to encourage fracture. 
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VI. Conclusion 

Studies of the stresses generated by boundary sliding and 
thermal-expansion anisotropy in the presence of grain-boundary 
diffusion indicate that large stress concentrations can be averted in 
fine-grained polycrystals, under conditions which permit relatively 
rapid diffusional deformation. The stress concentrations can be 
retained below the level required to nucleate cavities if the bound- 
aries are devoid of low surface-energy amorphous phases and inclu- 
sions, especially those with a high interface energy. A brief exami- 
nation of cavity-growth relations indicates that the surface diffusiv- 
ity is an additional parameter involved in the high-temperature 
failure process. A surface diffusivity higher than the boundary 
diffusivity encourages the equilibrium mode of cavity growth. A 
search for additives (particularly solid-solution additives) that en- 
courage deformation, while suppressing cavity nucleation or 
growth, is suggested. The key parameters are a high boundary 
diffusivity, a small ratio of boundary-to-surface energy, and a rapid 
surface diffusivity. Little is known about the role of additives on 
these parameters in ceramic systems. Carefully conceived studies 
should thus prove fruitful. 
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APPENDIX I 

Elastic Contributions to Void Nucleation 

The precise determination of the shape and free energy of forma- 
tion of a critical-sized nucleus of the type shown in Fig. 6 is a 
complex problem beyond the scope of the present work. However, 
to estimate the elastic contributions to the free energy of formation 
and thus extend previous treatments (where it has been neglectedI6), 
the exact treatment for a spherical nucleus and approximate treat- 
ments for cavities in the shape of a cylinder with an elliptical cross 
section and for an ellipsoid are presented. The results indicate that 
the neglect of elastic contributions is usually warranted. 

Consider, for simplicity, a body subjected to a hydrostatic ten- 
sion, -p. Production of a vacancy at a dislocation or boundary 
produces a relaxation energy, - p a .  At local equilibrium this 
osmotic force is balanced by a vacancy supersaturation so that the 
chemical potential of vacancies is equilibrated. Hence: 

pU -po = -pa =kT In (C/C,) (A-1) 

where pU and p, are the actual and standard-state chemical poten- 
tials and C and C, are the actual vacancy concentration and the 
equilibrium concentratxw in the absence of stress, respectively. 
Thus for a void containing n vacancies, the reversible work term 
(Helmholtz free energy) associated with vacancy removal is 

AF, = -pv ( A 4  

where V =nR is the volume of the void. 
In addition, for a spherical void in an isotropic elastic solid, there 

will be an “image” relaxation, giving an added elastic contribution 
to AF. Consider cutting a spherical hole in a continuum, adding 
image stresses -urr to establish a force-free boundary, and relax- 
ing. This problem is standard for elasticity and gives a stress 

urr= -(G6v/mO3) (A-3) 

with ro the initial radius of the void and 6v the relaxation volume. 
Since u,.,. at ro= -p, 

6v = rrO3p/G (‘4-4) 

The outer free surface will expand more (by a factor ( 1  +4G/3B)), 
with B the bulk modulus. Hence the added work term is 

AF2 = -pz.rrro3 ( 1  + 4G/3B)/2G = 3p2V( 1 +4G/3B)/8G (A-5) 

For typical stresses ~ c I O - ~ G ,  AFz is 50.1% of AF,  and hence 
negligible. 

More dramatically, to the linear elastic approximation of consid- 
ering vacancies as tiny spherical holes, the relaxation of the type 

giving AF2 will have already been produced when the vacancies 
form and the added relaxation when the vacancies cluster to form a 
void would be zero. Even in a nonlinear model, the tendency will 
always be for part of AF2 to accompany vacancy formation and 
reduce the contribution to void-free energy (except for the unusual 
case of aluminum where a vacancy appears to be a center of 
compression on the basis of experimental measurements of vacancy 
concentration as a function of pressure). 

In the case of uniaxial tension, AF2 could, in principle, be more 
important. This possibility occurs because a void of given volume 
could spread into a disk shape, with the plane of the disk normal to 
the uniaxial force, and produce greater relaxation of external force 
than in the spherical-void case (the classic Eshelby-Nabmo result). 
For small particles, this tendency will be opposed by surface 
energy. Hence, the problem is to determine the equilibrium shapeof 
a void of given size. To examine this possibility, consider (for 
mathematical simplicity) the two-dimensional problem of a right- 
circular cylinder void relaxing to one of elliptical cross section. The 
exact solution is a complicated variational problem and only an 
approximate solution can be obtained analytically. However, in the 
present case, the regime of interest can be described by limiting 
procedures. 

For uniaxial stress u, if vacancies are created at dislocations with 
Burgers vectors parallel to the applied force or at boundaries lying 
normal to the force, the chemical balance gives 

P” -Po = ua ( A 4  

AF, = uV (A-7) 

AF2 = - 3[$( 1 - v 2 ) ~ d / 2 E ]  (A-8) 

For a cylinder, the equivalent work term to Eq. (A-5) is 

where a is the cylinder radius and u is Poisson’s ratio. As in the 
linear elastic case, the work AF2 is already included in vacancy 
formation. Any added contribution to the void-formation energy 
will thus be that of relaxing the cylinder to an ellipse. 

An exact solution would involve equilibrating the local chemical 
potential of an atom at the surface as influenced by curvature with 
that associated with local strain-energy density w, i.e. 

(A-9) 

An exact solution is difficult because both r and w depend (differ- 
ently) on cylindrical coordinates fixed on the center of the hole. 
Hence, the general minimization is a complicated variational prob- 
lem. To gain insight into the solution, the simpler problem of a fixed 
class of shape is treated, i.e. an elliptical hole with major and minor 
axesx andy , with uniaxial tensile stress giving a tensile force acting 
parallel to y . 

The relaxational strain energy of an elliptical hole is given by 
Rice7 as 

p -/Lo = y a / r  = WR 

AF,=-(A/2)[~(1-  vZ)/E][l + 2 ( ~ / y ) ] ~  (A-10) 

where A =my is the cross-sectional area for unit length of the 
cylinder. The corresponding surface-energy term is 

+ ”..( ”) +.  . . ]  
x + Y  

(A-1 1) 

The simpler variational problem is then to minimize (AF3 + AF,) 
with respect to x and with A = m y  held constant. An expansion to 
first order in (x-y), with the validity to be checked a posteriori 
gives 

(X -Y)/x = [4u2 (l - u2)/3E(y/b)](x/b) (A- 12) 

For typical values a /E  = 1 0-3,  v = 1 /3, and y/bE = 2 X 1 0-2,  the 
result is 

xlb: 1 1 0 2  103 
(x -y)/x: 5 x 5 x 0.05 

m is an atomic dimension, the deviation of Thus, since b=2 X 
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the ellipse from sphericity is essentially negligible untilx S O .  1 p m .  
Correspondingly, the shape-change energy relaxation is negligible 
compared to the already small AF, until xs0 .1  p m .  Typical 
critical-sized nuclei when nucleation is appreciable (see text) vary 
fromx=O. 1 to 10 nm. Thus, in the range of interest for nucleation, 
the expansion leading to Eq. (A-12) is accurate and shows that the 
elastic shape relaxation term is negligible. In void growth after 
nucleation, this elastic term will become important for sizes above 
x =O. 1 p m .  In this case, higher-order terms in Eqs. (A-10) and 
(A-1 1) would be required to give the solution equivalent to Eq. 

The preceding discussion treated a homogeneous void within a 
grain. For a lens-shaped void at a boundary, the relative importance 
of the elastic terms will be unchanged for the hydrostatic pressure 
case where the contact angle will be a function of relative surface 
energies only and curvature will depend only on the hydrostatic 
stress,p. For the normal stress, the elastic stress concentration at the 
point of contact with the boundary will differ from that of the 
internal void. However, in view of the two-orders-of-magnitude 
difference between the size range of interest and the actual size as 
reflected in the earlier result it is unlikely that the added stress would 
shift the important size regime for appreciable contributions of the 
elastic term into the nucleation-size regime. To formally treat the 
boundary case, a fixed-shape class could not be assumed; rather, the 
full variational treatment would be needed. 

As a final estimate of elastic terms, the double cap-shaped lens of 
Fig. 6 was approximated by an ellipsoid with major and minor axes 
x andy, respectively, and withx=r sina (to correspond to Fig. 6) 
was assumed. SneddonZ1 gives the energy term equivalent to Eq. 
(A-5) for such a case (but in an infinite medium with uniaxial stress 
giving a tensile force parallel to y) as 

(A-12). 

AF5 = [8( 1 - vZ)uzx3/3E] (A- 13) 

AS in the previous cases, part of the relaxation energy is already 
associated with vacancy formation. Also, diffusive motions in ad- 
joining material may act to reduce local stresses6J3 so that the elastic 
energy changes are yet smaller. Both of these factors are included in 
the analysis by introducing a factor p into Eq. (A- 13) with O<p c 1. 
This form is used in the text. 

APPENDIX I1 

Boundary Energies in Ceramics 

The frequent occurrence of transgranular, rather than intergranu- 
lar, fracture in many ceraaic polycrystals would imply that the 
energies of a substantial proportion of the boundaries are quite low. 
Although it is recognized that fracture energies cannot be equated to 
thermodynamic energies, it is reasonable to anticipate that the ratio 
of the boundary fracture energy, yfb, to the transcrystalline fracture 
energy, yfc, should reflect the relative values of the boundary and 
surface energies, through the relation5 

YfdYfc =(2Ys - Yb)/2ys (A-14) 

or 

(A-15) Ybt2Ys= -(YfdYfs) 

A crack will propagate transgranularly if the stress intensity 
factor for extension along the preferred cleavage plane exceeds the 
crystalline crack-extension resistance, before the stress intensity 
factor for extension along the boundary exceeds the boundary 
crack-extension resistance. The maximum probability of trans- 
granular crack extension in a polygon array (Fig. 1)  occurs when the 
cleavage plane is coplanar with the crack plane (O=O) and the 
boundary inclination is d 3 .  This condition thus yields a lower limit 
for the ratio of the boundary to the cleavage fracture resistance in 
materials that exhibit some transgranular fracture. 

Recent solutions for the angled crackZZ indicate that the stress 
intensity factor ratio along the plane 6 = 0 and n/3 is = I .54. Hence, 
~ , ~ > 0 . 4 2  y,,. and, from Eq. (A-15), yb<l.2y, for transgranular 
cracking to occur. However, the possibility that some boundaries 
have larger energies cannot be excluded. 
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